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Developments in sensor technology have made high resolution hyperspectral 

remote sensing data available to the remote sensing analyst for ground cover 

classification and target recognition tasks. Further, with limited ground-truth data in 

many real-life operating scenarios, such hyperspectral classification systems often 

employ dimensionality reduction algorithms. In this thesis, the efficacy of spectral 

derivative features for hyperspectral analysis is studied. These studies are conducted 

within the context of both single and multiple classifier systems. Finally, a modification 

of existing classification techniques is proposed and tested on spectral reflectance and 

derivative features that adapts the classification systems to the characteristics of the 

dataset under consideration. Experimental results are reported with handheld, airborne 

and spaceborne hyperspectral data. Efficacy of the proposed approaches (using spectral 

derivatives and single or multiple classifiers) as quantified by the overall classification 

accuracy (expressed in percentage), is significantly greater than that of these systems 

when exploiting only reflectance information. 
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CHAPTER 1 

INTRODUCTION

Development of accurate and robust image classification algorithms has been a 

major area of research in the field of remotely sensed data analysis. With the 

advancements in imaging sensor technology, remote sensing has been made possible 

even for inaccessible and dangerous areas. Insufficient amounts of ground truth (labeled) 

data and the redundancy present in many current state-of-the-art remotely sensed data 

affect the performance of image classification algorithms. Although significant 

accomplishments have been made for signal processing and exploitation of remotely 

sensed data, there is typically a tradeoff between the performance of an algorithm and its 

complexity. A new approach of exploiting spectral derivatives for improved classification 

of hyperspectral imagery is presented in this thesis. The proposed approach 

simultaneously exploits information in the reflectance signatures and higher order 

derivatives in an efficient manner – a multi-classifier decision fusion framework is 

employed to efficiently utilize the high dimensionality of the resulting feature space.  

1.1 Remote sensing and applications 

Remote sensing involves the acquisition of information about an object or a scene 

using a sensing device that makes no physical contact with that object. Data is typically 

collected by sensors on-board aircrafts (airborne imagery), satellites (spaceborne 

imagery), ships etc., which also enables acquisition over otherwise inaccessible areas 
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such as forests, valleys and glaciers. Remote sensing can be passive or active. A passive 

sensor records radiation reflected by the object with sun being the source of radiation 

while an active sensor emits its own radiation and detects the reflected (or backscattered) 

radiation from the object under observation. Examples of passive sensors include optical 

sensors and radiometers, and those of active sensors include Radio Detection and 

Ranging (RADAR) and Light Detection and Ranging (LIDAR) sensors. Such sensing 

techniques have a wide variety of applications, such as monitoring forest fires and 

deforestation, monitoring floods, making topographic maps, mineral mapping, soil 

moisture estimation, land-cover classification and target recognition. 

1.2 Multispectral and hyperspectral data 

In the earlier days of remote sensing, aerial photography and camera recordings 

were used for topographic mapping and radiometric analysis. For image analysts, these 

images provided good differentiation in recognizing classes that were distinctly separate 

such as vegetation and soil, soil and water etc. Recognition of classes that are closely 

related (e.g. separating deciduous tree species in a forest, different soil conditions) 

requires more information from a wide range of wavelengths in the electromagnetic 

spectrum, at a finer spectral resolution. Developments in optical sensor technology have 

made this possible by capturing the data in hundreds of bands over a broad range of 

wavelengths. Sensors capable of recording data in multiple bands are categorized into 

two types - multispectral and hyperspectral.  

Multispectral images contains data collected in a few spectral bands that are 

optimally chosen and are typically not contiguous, while hyperspectral sensors collect 

data in hundreds to thousands of contiguous bands. Examples of multispectral and 
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hyperspectral sensors include National Aeronautics and Space Administration (NASA) 

Landsat Multispectral Scanners (MSS) aboard Landsat satellites1-5, Sea-Viewing Wide 

Field-of-view Sensor (SeaWiFS), Indian Remote Sensing System (IRS), Linear Imaging 

Self-scanning Sensor (LISS-III and LISS IV), NASA Terra Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), DigitalGlobe, Inc. (QuickBird), 

Space Imaging, Inc. (IKONOS), Leica Geosystems, Inc. Airborne Digital Sensor System 

(ADS-40) and Analytical Spectral Devices, Inc. (ASD) handheld Spectroradiometer [1]. 

Applications of multispectral and hyperspectral imaging include agriculture crop 

management, mineral extraction and air surveillances. Figure 1.1 depicts the overview of 

a typical remote sensing system and Figure 1.2 shows a remotely sensed image of 

Mississippi State fields at Brooksville, MS using an airborne hyperspectral sensor named 

Pro-SpecTIR-VNIR acquired by SpecTIRTM for Mississippi State University.  

Figure 1.1 Example optical passive remote sensing procedure using a space 
borne sensor. 
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Figure 1.2 Optical remote sensing – Top: RGB true color composite with Blue-
488nm, Green-533nm and Red-602nm. Top: RGB false color 
composite with Blue-533nm, Green-602nm and Red-753nm. Both 
show hyperspectral image of Mississippi State fields at Brooksville, 
MS, acquired using an airborne SpecTIRTM inc. sensor. 
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1.3 Pattern recognition and methodologies 

Pattern recognition involves “labeling” input data with different category labels 

(classes). Pattern recognition problems are of two types – supervised and unsupervised. 

In supervised classification, the classifier parameters are learned from available labeled 

sample data (training data), which are then used to label unlabelled data samples. 

Unsupervised classification is similar to a data organization problem where the user is 

provided with only unlabeled data which is to be classified into different types. An 

example of an unsupervised classification technique is clustering. In this study, we 

restrict ourselves to supervised pattern recognition techniques. Figure 1.2 shows the 

block diagram of a typical pattern recognition system.  

Figure 1.3 Block diagram of a typical pattern recognition system. 

Input data refers to data which requires further analysis to be understood or for 

deriving some useful information from it. Some examples of input data in a pattern 

classification setting are speech data, medical imagery, and remotely sensed data. After 

data acquisition, the data is typically preprocessed before proceeding with any analysis. 

Preprocessing includes steps such as noise removal, registration of images, atmospheric 

corrections and calibration in the case of remotely sensed optical data. Analysis involves 

employing a pattern classification technique to label or cluster the processed input data. 

Input Data Pre-
processing 

Output Data Analysis 
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For remote sensing classification tasks, output data from such analyses could be a 

classification map, abundance estimates and soil characteristics, soil moisture maps, etc. 

1.4 Limitations of hyperspectral data analysis 

Despite the abundance of information, hyperspectral datasets present some key 

challenges to data analysts. With increased dimensionality, one would expect increased 

target recognition and classification accuracies with multispectral and hyperspectral data, 

but accuracy is often traded off for complexity (large data computations) in the 

algorithms. Insufficient amounts of training data (small sample size) with high 

dimensionality when used to learn a classifier always result in over fitting (Hughes’s 

phenomenon) and misclassification. Thus the use of dimensionality reduction and feature 

extraction schemes has become an important part of hyperspectral image analysis 

systems. Currently, most research in hyperspectral image classification is concentrated on 

developing algorithms that provide near-optimal dimensionality reduction and feature 

extraction. Figure 1.3 shows a general hyperspectral image classification system.

Figure 1.4 Block diagram of a typical hyperspectral image analysis system.

Image 
Acquisition 

Pre-
processing 

Feature 
extraction 

Segmentation 

Feature 
optimization 

Classification 
or Labeling 

Post-
processing 

Classified 
map 
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1.5 Contributions of this work 

This thesis investigates the benefits of spectral derivatives as “features” for 

improving hyperspectral image classification. Current state-of-the-art hyperspectral 

feature extraction algorithms exploit only reflectance information from the spectral 

signatures for classification, ignoring the available slope or derivative information. Figure 

1.4 shows a simple block diagram of the hyperspectral classification system used in this 

study. In this study, we explore the benefits of considering higher order derivatives as 

features to improve the classification performance of hyperspectral data. In particular, we 

study the benefits of combining spectral reflectance information with derivative 

information for classification.  

The benefits of spectral derivatives for classification are studied in the context of 

two different types of pattern recognition systems – a traditional single classifier system, 

and a recently proposed multi-classifier system. The single classifier system is based on 

employing Stepwise-Linear Discriminant Analysis (S-LDA) for feature reduction and 

optimization and a single Maximum Likelihood (ML) classifier for class labeling (also 

called SLDA-ML in this work). Combining reflectance features with spectral derivatives 

further increases the dimensionality of the feature space, thereby exacerbating the 

problem of over dimensionality on typical traditional classification system. To overcome 

this, a recently developed classification framework, the Multi-Classifier Decision Fusion 

(MCDF) is employed and its’ benefits are studied [2].  
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Figure 1.5 Block diagram of the hyperspectral image analysis system used in this study.

The outline of this thesis is as follows. Chapter 2 presents a literature survey of 

current state-of-the-art methods employing dimensionality reduction, single classifier, 

multi-classifier and decision fusion techniques in the raw reflectance domain and the 

spectral derivative domain for hyperspectral classification and target recognition. Chapter 

3 provides a description of the proposed approach and the algorithms employed in this 

work for incorporating spectral derivatives effectively for classification. Chapter 4 

provides a description of the experimental setup and the hyperspectral datasets employed 

for quantifying the efficacy of the proposed algorithms, and provides a summary of 

Pre-processing the data

Remotely sensed data

Classification (ML or MCDF)

Feature reduction and optimization

Feature extraction (reflectance and derivatives)

Hyperspectral reflectance signatures 

Radiometric and geometric corrected dataWater band interpolated

Extracted features

Optimal features from LDA and SLDA 

Confusion matrix or a labeled map
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classification and target recognition results. Chapter 5 concludes this thesis with a 

summary of results and potential future directions
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CHAPTER 2 

LITERATURE REVIEW 

The main aim of hyperspectral image analysis in most applications is to classify 

or label different kinds of patterns present in an image. For the past two decades, 

researchers have been successful in developing different kinds of classification systems, 

which were either application specific or generic. Figure 1.3 (page 6) shows a typical 

hyperspectral image classification system. Optimization of each block in this figure is an 

ongoing research area. This study concentrates on optimizing feature extraction and 

classification for improved hyperspectral land cover classification.

2.1 Feature reduction (optimization) 

State-of-art pattern recognition methods developed previously for multispectral 

and gray-scale imagery were based on datasets with small dimensionality. These 

techniques are not optimal when working with high dimensional spaces, such as those 

resulting from hyperspectral imagery. Although such datasets can potentially provide 

valuable classification information, they can exacerbate problems such as data 

redundancy and over-fitting (Hughes’s phenomenon [3]). In such circumstances, one 

would prefer to use feature extraction and classification techniques that classify data 

using a smaller dimensional subset of the original feature space while keeping most of the 

relevant information intact. Most feature reduction and optimization techniques attempt 
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to select features and perform dimensionality reduction projections along directions that 

best separate the classes under consideration in these projected spaces.

Principal Component Analysis (PCA) [4] is a basic mathematical dimensionality 

reduction technique, which transforms a highly correlated vector space into an 

uncorrelated space, conserving most of the variability present in the input data. It is a 

very popular data compression scheme and is also often used for dimensionality 

reduction. PCA performs an Eigen-analysis on the second order covariance matrix 

developed from the training data. Eigenvectors corresponding to larger eigenvalues are 

referred to as the principal components, which tend to retain most of the variability in the 

original data. Dimensionality reduction of the feature space is achieved by ignoring the 

components along which the data scatter is the least. Farrell et al. [5] demonstrated how 

some principal components of PCA can be used for dimensionality reduction and feature 

optimization in data classification. The authors were also successful in achieving greater 

classification accuracies with PCA when compared to that obtained using some other 

popular dimensionality reduction schemes of their time. Although it is often used for 

dimensionality reduction, it is not necessarily optimal for classification tasks. Prasad et al

[6] demonstrated mathematically and experimentally that PCA can potentially discard 

“useful” directions, and is not optimal for classification tasks.

Fisher’s Linear Discriminant Analysis (FLDA) [7] projects the input data onto a 

c-1 dimensional hyper plane (c is the number of classes in the classification task) and 

then finds an optimal direction for the hyper plane that best separates the data projections. 

FLDA finds the optimal direction by using both the within class and between class scatter 

matrices that best separate the classes under consideration. However in some situations, 
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such as when the input data is multi-modal in distribution FLDA projections fail to 

separate the classes adequately. Prasad et al [8] studied the limitations of FLDA in such 

data conditions, and proposed alternate nonlinear approaches to overcome this limitation 

[9] [10]. Lee et al. [11] proposed a novel approach for extracting the optimal features 

based on decision boundaries. With this approach the authors were able to find a 

minimum number of features that yield same classification accuracy, which is achieved 

by considering the original space for any given classification problem. The feature 

optimization technique was successful in removing data redundancy, thereby reducing 

the computational costs associated with processing high dimensional data. A general case 

where the above feature optimization technique fails to function properly is when the data 

is multimodal. Stefan et al. [12] developed a feature extraction algorithm for 

hyperspectral image analysis that takes some real world scenarios into consideration, 

such as pixel mixing.  Peter et al. [13] introduced the concept of ranking the bands based 

on some metrics like entropy, contrast measure and correlation measure. After ranking 

the bands, the best ranked ones are selected as the optimal features for further 

classification.  

Apart from their individual limitations, a common problem with all the above 

methods is that the performance of these algorithms depends on the amount of training 

data available, which is used to learn these projections. In situations where the available 

training data is much less relative to the dimensionality of the data (the 10N rule [14]), 

statistical estimates required to learn the projections are likely to be ill-conditioned, 

thereby yielding sub-optimal features. 
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Considering the limitations of FLDA and other dimensionality reduction 

techniques, some researchers developed algorithms that employ these dimensionality 

reduction techniques on a reduced subset of available features. One such attempt was 

made in [15] [16], where features were selected in a stepwise format based on the 

forward-selection and backward-rejection of individual features from a high dimensional 

feature space into a small subset of features, based on the class separation that the feature 

provides. Class separation provided by the feature is obtained by using a metric that relies 

on means and covariance-matrices of the individual classes for calculating the inter class 

distance. Next, FLDA is employed on this subset of features for dimensionality 

reduction. The authors were successful in reducing the high dimensional feature space 

into a small subset of optimal feature space, which provided good target recognition 

accuracies when compared with that achieved by considering the complete feature space 

in small-sample-size conditions. One limitation of this algorithm is that it ignores the 

remaining features once a set of features are selected, and hence can discard potentially 

useful information. The authors limited the application of the above algorithm to a two 

class problem, which is extended to multi class problems in this study. 

In general, one common drawback of these algorithms is that they tend to throw 

away valuable information present in the narrowly spaced hyperspectral bands. This 

suggests the need for a hyperspectral image classification framework that better exploits 

the available high-dimensional features without discarding features away. 

2.2 Multi-Classifier Decision Fusion framework (MCDF) 

Recently, there has been an increased research in data fusion techniques for 

remotely sensed data, where data from different sensors is fused for various recognition 
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and identification tasks, for example, Memarsadeghi et al. [17] who studied fusion of 

data from two different sensors for invasive species forecasting. Although the multi-

sensor data fusion was carried out due to a lack of sufficient information (spatial and 

spectral resolution) from one single sensor, this fusion technique can also be employed 

for a high dimensional single-sensor classification tasks – where we partition the high 

dimensional feature space into many smaller dimensional subspaces, treating each 

subspace as having come from a different sensor, and then fusing results from each 

subspace for a combined classification result per pixel. With this approach, all features in 

the hyperspectral data are likely to be used effectively in the classification process. 

A similar idea was successfully studied and implemented by Fauvel et al. [18] 

where the authors used the idea for classification of urban images. Fuzzy fusion 

techniques were used by Chanussot et al. [19] for detecting linear features in synthetic 

aperture radar images with application to road network extraction. The authors used the 

fusion techniques for combining the results from multi-temporal data. Recently, Prasad et

al. [20] [21] and [22] developed a multi-classifier decision fusion framework, where the 

feature space from high dimensional hyperspectral data is partitioned into “optimal” 

subsets that are treated independently for classification and these “local” classification 

results are then fused. The authors used a divide-and-conquer approach to overcome the 

small sample size problem by dividing the high dimensional data into subgroups, where 

feature optimization and classification in each subgroup is carried out separately and then

classification results from each subgroup were combined using a decision fusion 

mechanism. The authors developed efficient algorithms for optimal feature partitioning 
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and techniques for effective data fusion. An attempt to improve the performance of this 

classifier system to multi-class data is made by using adaptive learning techniques. 

2.3 Spectral derivatives and benefits 

The concept of derivative analysis has its roots in analytical chemistry, where it 

was successfully used in spectroscopy for many years. The same theory is applied to 

remote sensing applications by researchers for improving classification performance of 

the classification systems for remote sensing data [23]. Goodin et al. [24] used first and 

second order numerical derivatives of the reflectance spectrum for discriminating 

chlorophyll signals from those of suspended solid particles present in the water. William 

D. Philpot [25] was successful in avoiding the atmospheric effects from airborne 

remotely sensed data using derivatives and band ratios. The author was able to 

discriminate two classes (vegetation and water) using a derivative ratio algorithm from 

the distorted data. Fuan Tsai et al. [26] also used higher order spectral derivatives in a 

land cover based classification. The authors used a PCA based dimensionality reduction 

scheme to reduce the dimensionality of features from the reflectance spectrum and its 

derivatives, which are then fused and sent to the classifier system. Derivative features 

entering the classifier are restricted using PCA reduction, which, as previously discussed 

is not an optimal way of selecting features. More recently, Demir et al. [27] studied the 

fusion of first and second order spectral derivatives with spectral reflectance in an 

attempt to improve the classification performance. Their usage of spectral derivatives was 

also confined to lower order derivatives, and they also used conventional techniques for 

feature extraction and classification.
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CHAPTER 3 

METHODOLOGIES

3.1 Motivation 

Most of the conventional pattern recognition systems for hyperspectral image 

analysis discussed in chapter 2 confined their feature extraction procedure to the available 

reflectance values present in the narrowly spaced spectral bands. These methods did not 

exploit the slope or derivative information present in the reflectance signatures. The key 

motivation behind this work was to study the benefits of spectral derivative information 

for effective hyperspectral classification. The outline of this chapter is as follows. Section 

3.2 describes the concept of estimating spectral derivatives from hyperspectral data. 

Sections 3.3 – 3.6 describe the various dimensionality reduction and classification 

techniques employed in this work. 

3.2 Spectral derivatives 

Derivatives quantify the change in value of a function with respect to changes in 

the independent variable. In hyperspectral imagery, spectral derivatives are estimated by 

obtaining the slope information from the reflectance curve over the available wavelengths 

in the spectrum. The process of estimating a derivative is called differentiation, and the 

order of the derivative is the number of times the function is being differentiated. 
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Hyperspectral data collected in real time uncontrolled conditions is bound to be 

contaminated with different types of noise. Apart from general random noise, thermal 

noise, shot noise, atmospheric effects causing path irradiance, viewing angles and 

illumination affects introduce additive noise into the data. Hyperspectral sensors when 

employed for longer periods of time in hot weather conditions tend to introduce some 

noise that typically spectrally coherent. Derivatives are very sensitive to these 

disturbances. Additive noise in the reflectance signatures usually gets severely magnified 

when derivatives are calculated on such data. Therefore it becomes necessary to pass the 

reflectance signatures through an appropriate filtering process that removes such 

disturbances. In this study, mean and median filtering algorithms were used to filter out 

the unnecessary noise present in the hyperspectral signatures. 

3.2.1 Mean filtering 

Mean filtering is a simple process of smoothing out unexpected reflectance 

variations between consecutive spectral bands. Replacing each reflectance value in a 

band with the mean (average) reflectance value in its neighboring bands forms the basis 

of a mean filter. This effectively removes any values which are unrepresentative of their 

neighborhood. Filter order is the number of surrounding neighbors that are considered 

when computing the average. Usually odd numbers starting from three are employed as 

filter orders. Increase in the order of the filter increases the smoothing effect on the 

signature, but can also blur out certain sharp features. 
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3.2.2 Median filtering 

Median filtering is similar to mean filtering except that instead of replacing the 

value with the average of the surrounding reflectance values, it replaces it with the 

median of those values. Median filtering is considered to be more effective than mean 

filtering in terms of preserving the useful details (shape) present in the signatures.  

3.2.3 Estimating spectral derivatives 

In practice, computation of derivatives depends on the order of the derivative and 

the sampling order of the spectral measurements. The first derivative is calculated by 

using the formula below 

,       (3.1) 

where is the separation between the adjacent bands at  and , with ,

) is reflectance value at  and is the first derivative at wavelength .

Similarly second and third derivatives are defined as

,
     (3.2)

where  is second derivative at wavelength , and

., and

 ,   (3.3) 
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where  is the third derivative at wavelength ,

and .

This could be generalized to an nth order derivative as 

 .  (3.4) 

Here  is the combinatorial function of n and j. For every n, n+1 wavelengths are 

considered where  and so on are separated by the desired sampling order. 

Here  is the difference between any two adjacent wavelengths considered, with 

uniform sampling across the spectrum. 

Sampling order is defined as the difference between two adjacent spectral bands, 

where reflectance value is available and also plays an important role while calculating the 

derivatives. Thus, three user defined parameters, filter order (of the smoothing filter), 

derivative order (differentiation) and sampling order (the separations between the 

wavelengths), are to be carefully selected before including derivatives into a feature 

space for classification. 

Figure 3.1 shows the plot of experimental hyperspectral signatures of two aquatic 

plant species named American Lotus (a native species) and Water Hyacinth (an invasive 

species) collected using an ASD hyperspectral sensor. Details of the sensor used for 

collecting this data are provided in chapter 4. The mean signatures of the two classes are 

plotted in reflectance and derivative domain against the wavelengths. 
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Figure 3.1 Plot of mean of the original signatures in reflectance domain and the 
derivative signatures of first five orders for a experimental hyperspectral 
two class data. 

Figure 3.2 shows the plot of Bhattacharyya distance (A metric that quantifies 

class separation for Gaussian distributions – C.f. page 23, eq. 3.13) versus wavelength for 

the first order derivative features plotted against the Bhattacharyya distance calculated 

using the reflectance features for comparison. The original hyperspectral signatures in 

reflectance domain are from the previously mentioned American Lotus-Water Hyacinth 

data collected using an ASD sensor. Bhattacharyya distance is a metric for measuring 

class separation. For a two class problem (which is the case here), distance between the 
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classes is calculated for every feature, while for a multi-class problem (as will be reported 

in the next chapter) the minimum of the pair-wise distance measurements of all the 

classes is considered in finding the class separating distance. 

Figure 3.2 Plot of Bhattacharyya distance vs. wavelength for derivative features 
plotted against that of reflectance values. 

The increased metric value with derivatives, when compared to that with raw 

reflectance values suggests that the inclusion of spectral derivatives into the feature space 

will result in improved classification performance. With an appropriate selection of these 

features with high Bhattacharyya distances into the feature set, we expect the 

classification accuracies to be higher than those achieved using the reflectance values 
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only. Further, at many wavelengths when the distance is small in the reflectance domain, 

the corresponding distance is high in the spectral domain, and vice-versa. This implies 

employing both reflectance and derivative features simultaneously is going to be 

beneficial.

3.3 Fisher’s linear discriminant analysis (FLDA) 

Discriminant analysis involves finding directions that are effective for 

discrimination. Linear discriminant analysis (LDA) constructs discriminant functions that 

are linear in the input variables, resulting in linear decision boundaries. LDA seeks to 

project a d-dimensional feature space onto a c-1 dimensional hyper plane in a direction or 

orientation that best separates the projected samples. Fisher’s LDA method also finds the 

linear combination of inputs or, in some sense, a direction that best separates the classes 

under consideration. FLDA finds an optimal linear direction by maximizing the between 

class separability while simultaneously minimizing the within class variability. 

The criterion maximizes the Rayleigh quotient, given by 

,     (3.5)

where  is the optimum direction,  is the between class covariance matrix and  is 

the within class covariance matrix. This problem is solved by using the Eigen-analysis 

technique. For optimal projections that best separate the classes, it is required for the 

within class matrix to be symmetric and full ranked which requires ample amount of 

training data from which these projections are learned. 

The within class covariance matrix is given by 
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μ  ,   (3.6) 

where μ  is the within class mean for class k given by  

,      (3.7) 

and  is the total mean given by 

,      (3.8) 

where n is the total number of samples in all the classes, nk is the number of samples in 

class k and c is the number of classes. 

The between class covariance matrix is given by 

μ μ .   (3.9) 

For a ‘c’ class distribution data, FLDA produces a transformation into a hyper space of 

dimension at most equal to c-1. The vector w that maximizes the equation (3.5) must 

satisfy the condition  

.      (3.10) 

This takes the form of a generalized Eigen value problem given by 

.       (3.11) 

After  is found, the optimal feature projection is calculated by taking a product of 

complete features with the optimal projection. 

,      (3.12) 

where  is the optimal reduced-dimensional feature space that has good class 

separation.
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Figure 3.3 illustrates the operation of FLDA. In the figure an example two-

dimensional, two class data is considered to explain the FLDA operation with data 

distribution along the two dimensions is shown on the left side of the figure. The main 

aim of FLDA is to find the direction of a projecting line (or a hyper-plane for a multi-

class problem) that best separates both classes. Two directions X and Y, for the 

projecting line are marked on the figure. FLDA finds the direction Y (least overlap) with 

the help of scatter matrices as the optimal direction discarding the direction X (high 

overlap). Right side of the figure shows the distribution functions of both the classes 

when projected onto the line along the Y direction. 

Figure 3.3 Fisher's LDA for a two class problem. 

3.4 Stepwise-linear discriminant analysis (SLDA) 

Stepwise LDA is a type of compromise for FLDA where, instead of finding an 

optimal projection from the original high dimensional feature space, a sub-optimal 

projection is found by working on a relatively smaller dimensional subset of the feature 
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space. This kind of feature optimization best suits situations where the feature space has 

high dimensions and the available training data sample size is low. Use of SLDA for such 

data not only decreases the number of computations but is also effective for classification 

tasks. 

 Performance of SLDA depends on the choice of the discriminating metric used 

for identifying an appropriate subset of the original high dimensional feature space. There 

are many metrics that could be considered for SLDA, including area under the receiver 

operating characteristics (ROC), Bhattacharyya distance (BD), and Jeffries Matusita (JM) 

distance. In this study, BD has been chosen as the metric. 

3.4.1 Bhattacharyya distance 

 Bhattacharyya distance (BD) in general statistics is used to measure the 

similarities between two discrete probability distribution functions (PDF). In image 

processing, BD is used to assess the class separation capability in a feature space. For a 

two-class problem, BD is estimated as follows 

μ μ μ μ ,  (3.13) 

where μ μ  are the means and  are the covariance matrices for 

class 1 and class 2. One drawback of BD is that it assumes the PDF is Gaussian while 

calculating the distance. 
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3.4.2 Functioning of SLDA 

For an N dimensional feature space, SLDA finds the BDs separating the classes 

along each of the N individual dimensions to yield a 1 X N BD vector. For a two class 

problem, Bhattacharyya distance between the two classes is taken and stored, while in the 

case of a multi-class problem, the minimum of all possible pair-wise class separations is 

used. The BDs are sorted in descending order. The rest of the functionality can be divided 

into two parts, namely, forward selection and backward rejection. Figure 3.4 shows a 

flowchart of the SLDA operations. 

Figure 3.4 Flowchart of the Stepwise-linear discriminant analysis operations.
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3.4.2.1 Forward selection 

Figure 3.5 shows the flowchart of the forward selection process. In forward 

selection, for a ‘c’ class problem, the first c features with highest BDs are selected and 

are then sent through an FLDA for reducing them to c-1 feature space. Then, BD is 

calculated for this reduced dimensional feature space and is saved as BD1. Then the 

feature with the next best BD is included into the original feature space, which goes 

through FLDA to get a new reduced dimensional feature space. BD calculated on the new 

space is now stored as BD2. A comparison operation performed between BD1 and BD2 

decides the inclusion (BD1 < BD2) or rejection (BD1 > BD2) of the last added feature 

into the feature stream. This process goes on until either the entire feature space gets 

exhausted or a certain “maximum allowable” dimensionality of feature space (based on 

the user’s choice of the variable LenFea) is reached. 

3.4.2.2 Backward rejection 

Figure 3.6 shows the flowchart of the backward rejection process. In the 

backward rejection process, the final BD with the selected feature space from the forward 

selection process is calculated and stored as BD1. Then, of the N features selected, the 

first feature is removed from the feature space and is then sent through FLDA to get a 

reduced dimensional feature space, on which a new BD is calculated and saved as BD2. 

Rejection (BD1 < BD2) or retention (BD1 > BD2) of the removed feature from the 

feature space is performed. In this way, a final subset of the original feature space that 

best separates the classes under consideration is selected. Since this algorithm finally 

employs FLDA on a reduced subset of features (based on the outcome of the forward 
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selection, backward rejection), the resulting FLDA formulation is expected to be well-

conditioned even when a relatively smaller amount of training data is available. 

Figure 3.5 Flowchart of the forward selection process of the SLDA operations.
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Figure 3.6 Flowchart of the backward rejection process of SLDA operations.
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3.5 Maximum likelihood classifier 

Maximum Likelihood classifier (ML) is defined as a decision rule that estimates 

the probabilities of the unlabeled data conditioned on all available classes and assigns a 

label to this data that results in the highest probability. Given its simplicity and efficacy, 

the maximum likelihood classifier is commonly used for image analysis.  

The maximum likelihood decision rule is given by 

µ µ ,  (3.14) 

where the class label is decided by finding the highest posterior probability. In equation 

3.14, µ  is the mean vector for the c’th class,  is the covariance matrix for the c’th 

class, and Pc is the a-priori probability for the c’th class. The ML classifier assumes that 

the probability distribution function of each class is a Gaussian distribution with mean µ

and covariance , given by . The advantages of maximum likelihood 

estimation include simplicity in representation and good convergence for ample amounts 

of training data. A key drawback is that it assumes data to be normally distributed, which 

is not always the case. 

In situations where the amount of training data is much less than the 

dimensionality of the data, the covariance matrices estimated by the classifier are usually 

ill-conditioned (not being full ranked). This affects the matrix inverse calculations, 

thereby making classification unreliable under such situations.

3.6 Multi-classifier decision fusion 

Figure 3.7 shows the flowchart of the MCDF operations. Multi-classifier decision 

fusion (MCDF) involves partitioning a high dimensional feature space into groups of 
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smaller dimensions, assigning a dedicated classifier per group, and fusing results from 

these classifiers into a single class label per data sample. Functioning of a MCDF 

framework can be divided into three parts – subspace identification, multiple 

classification and decision fusion.

Figure 3.7 Flowchart of a Multi classifier decision fusion framework with 
adaptive weight assignment.Subspace identification. 

Subspace identification, also called band grouping, involves grouping of the 

hyperspectral feature space into contiguous subgroups so that each subspace/subgroup 

possesses good class separation and correlation between the subspaces is minimum. 

Using training data, the band grouping algorithm first keeps on adding individual spectral 

bands (features) into a subgroup until a metric governing the class separation does not 
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change with further addition of features. Along with maintaining good class separation, 

the partitioning should ensure minimum intergroup correlation. Good class separation 

within the subspace ensures accurate classification in further stages, reducing the local 

classification errors. Minimum correlation between the subspaces further ensures robust 

decision fusion, avoiding propagation of correlated errors. 

Three parameters governing the subspace partitioning are employed in this study, 

and they are threshold, size bound, and minimum size. Threshold is used to monitor the 

sensitivity of partitioning to changes in the separation metric. It acts as a stopping 

criterion for the growing group size. For example for threshold ‘t’, band grouping of the 

current group stops when

,     (3.15) 

and at this point, the next grouping starts. In this study we maintained the threshold ‘t’ as 

zero.  

Size bound lays an upper bound on the number of bands grouped into one 

subspace. This ensures that the size of each group is not so large that it breaks the feature 

optimization and classification steps that follow band grouping. Minimum size keeps a 

check on the number of band groups formed. 

3.6.1 Metric

 In this study the metric used for the band grouping process is BDCorr. BDCorr is 

the product of BD and the Correlation Coefficient. BD is given by equation 3.13, and is 

defined in the previous section. Correlation coefficient is a measure of the second-order 
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statistical relationship between two random variables. Correlation coefficient for two 

variables x and y is given by 

,    (3.16) 

where C = cov(x) is the covariance matrix. 

For a data set with N variables, a correlation coefficient matrix of dimensions 2 x 

2 is calculated for all N2 paired variables, of which the minimum value is taken and 

multiplied with the BD to obtain BDCorr.  

3.6.2 Multi-classifiers 

With partitioned subgroups available, an individual classifier system is run on 

each subgroup for obtaining local per group decisions, which are then sent to a decision 

fusion system for obtaining a global class label per data sample. The multi-classifier 

system is essentially a bank of classifiers operating locally on the partitioned subspaces. 

For this study, an LDA based feature reduction, followed by a maximum likelihood 

classifier is used to make these local decisions.  

 Recall that feature reduction using LDA tends to be suboptimal in the case of 

available training data being less than the dimensionality of the feature space. That is not 

the case here, as the data is being partitioned into subgroups with bounds imposed on the 

minimum and maximum sizes of each subgroup. LDA offers the best optimization at the 

local subspace level because the scatter matrices are likely to be well conditioned 

(assuming uni-modal class conditional distributions). 

The maximum likelihood classifier, which estimates the label, is also expected to 

work properly at the subspace level. The covariance matrices are likely to be full ranked, 
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ensuring reliable estimation, even with little amounts of available training data. 

Membership function and details of ML classifier are explained previously in section 3.5. 

3.6.3 Decision fusion 

Two kinds of decision fusion mechanisms are employed in this study - majority 

voting and linear opinion pool. 

3.6.3.1 Majority Voting (MV) 

Majority voting is a kind of hard decision fusion mechanism where the final 

classification label is assigned based on a vote over individual class labels coming out 

from the “local” classifiers. A simple MV decision fusion is given by: 

.  (3.17) 

One advantage of MV over soft decision fusion techniques is that it is not 

sensitive to the inaccuracies in the estimates of posterior probabilities. The above 

equation assumes equal weights to all the individual subspace classifiers. An adaptive 

weight majority voting ensures greater priority for strong classifiers, and is given by: 

.  (3.18) 

The weight assignment ({ }) is based on the class separation metric, indicating the 

strength of that subspace/classifier (Bhattacharyya distance in this work) that each 

subspace provides. 

3.6.3.2 Linear opinion pool: 

Linear opinion pool is a soft decision fusion algorithm where the global class 

membership function is generated using the individual posterior probabilities coming out 
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from each of the ML classifiers. The global class membership function is a weighted 

average of the ‘local’ class membership functions given by:  

 . (3.19) 

Uniform classifier weights assigned to each classifier make the above equation an 

ordinary LOP, while non-uniform weight assignment, based on the class separation 

metric (Bhattacharyya distance), make it a weighted LOP. 

Figure 3.8 Block diagram of the MCDF classifier system used in this study.
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Figure 3.8 shows the block diagram of the MCDF system used in this study. 

Spectral derivatives are concatenated with the reflectance values as shown in the figure. 

The concatenated data is then partitioned into contiguous subspaces so that each subspace 

possesses good class separation and the correlation between subspaces is minimized. This 

is achieved using the feature-grouping method described above. After the feature 

grouping process, LDA is employed for feature optimization within each group. A 

Maximum likelihood (ML) classifier per subspace/group is then used to classify the data. 

Decision fusion techniques, LOP and MV, are used to fuse the different class labels 

coming from multiple classifiers.
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CHAPTER 4 

EXPERIMENTAL SETUP AND RESULTS 

In this chapter, the benefits of including spectral derivatives for classification of 

hyperspectral data are tested and quantified for three different hyperspectral datasets. 

First a set of tuning experiments are carried out for obtaining “optimal” system 

parameters such as derivative order, sampling order and filter order for calculating the 

appropriate derivative features. A “combined” analysis is then carried out, where 

reflectance features are combined with derivative features and fed to traditional single 

classifier systems, and to the proposed MCDF system for classification. Finally, 

sensitivity of the proposed and traditional classification approaches to the amount of 

training data employed for classification is presented. 

4.1 Experimental hyperspectral data 

Three different datasets are used as case studies in this thesis. Each sensor is on-

board a different platform, representing data collection and acquisition in different 

scenarios. 

4.1.1 Dataset 1 – handheld hyperspectral data 

The first dataset consists of hyperspectral signatures collected from a corn crop 

treated with six different levels of herbicide concentrations, along with a part of it being 

left untreated. This represents a 7-class dataset representing a corn crop under varying 
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severity of chemical stress (ranging from no stress to severe stress). The data is collected 

using an Analytical Spectral Device (ASD) Fieldspec Pro handheld spectroradiometer 

[28], with specifications shown in Table 4.1. 

An average of ten samples collected every second is recorded and stored as one 

sample. The sensor (aboard a tractor) is held 4 feet above the vegetation canopy using a 

250 instantaneous field-of-view while collecting the data. This data is collected from 

Brooksville, Mississippi in good weather conditions (during clear sky in summer) on 2nd

of June 2008 and is used to test the multi-class classification accuracy of the system. 

The six different herbicide concentrations sprayed on the field are 1, 0.5, 0.25, 

0.125, 0.0625 and 0.03125 times the standard concentration, measured in fluid ounces per 

area (fl. oz./a.). The data represents seven classes with one class per treatment and an 

additional class for no treatment. The classes are labeled as control (untreated), rate1x, 

rate05x, rate025x, rate0125x, rate00625x and rate003125x.

Table 4.1 Specifications of the handheld ASD sensor.

Sensor Type Handheld ASD Sensor 

Spectral Range 350 nm to 2500 nm. 

Spectral Resolution 3 nm at 700nm and 10nm at 1400/2100 nm 

Sampling interval 1 nm 

Scanning time 100 milliseconds 

Detectors 0ne silicon and two InGaAs photodiodes 
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With high levels of noise creeping into the signatures, especially at higher 

wavelengths due to extended usage time of the sensor in higher temperatures, the 

signatures are used after truncating them to 1800 nm with the noise from the water band 

absorption at 1350 to 1430 nm removed using water band interpolation. 

Figure 4.1 Top: Plot of mean signatures for the seven class ASD data; Bottom-
Left: Photograph of the corn field in Mississippi State University 
experimental fields at Brooksville, MS. Bottom-Right: photograph of 
the ASD Feildspec Pro sensor used. 
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The dataset consists of approximately 180 (per class) finely resolved reflectance 

signatures that can be used for classification of the seven closely related classes. A two-

fold cross-validation technique (Jackknifing) is employed, where the data is equally 

divided into two groups called training data and test data for experimental analysis on this 

dataset. The setup represents a rapid crop stress detection and classification task. Figure 

4.1 shows a plot of mean signatures associated with the seven classes. 

4.1.2 Dataset 2 – spaceborne hyperspectral data 

The second dataset is from a spaceborne hyperspectral image acquired using the 

HYPERION sensor. The data is collected over some areas in Colorado, where the affect 

of invasive species on the native vegetation is predicted to be very high. HYPERION is a 

spaceborne hyperspectral sensor aboard NASA Earth-Orbiter I satellite [29]. Sensor 

specifications are shown in Table 4.2.  

Table 4.2 Specifications of the spaceborne Hyperion sensor.

Sensor type Space borne Hyperion

Spectral range 400 nm to 2500 nm. 

Number of bands 200 contiguous bands 

Spectral resolution 10 nm 

Swath 7.5 km 

Spatial resolution 30 m 

All the reflectance signatures in this dataset are grouped into two classes; 1) 

Tamarisk (Tamarix ramosissima) and 2) Non-Tamarisk (a collection of native vegetation 
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signatures in the vicinity, such as those of cottonwood and willow). Tamarisk, also 

known as salt cedar, is considered as an invasive species, which suppresses the growth of 

native vegetation by aggressively consuming the available water supply.  

Figure 4.2 Top: Plot of mean signatures for the two class Hyperion data; 
Bottom-Left: Photograph of the tamarisk stand in Colorado State; 
Bottom-Right: Hyperion sensor aboard the EO-1 mission. 

The data consists of 115 signatures of Tamarisk and 65 signatures of Non-

Tamarisk. Because of limited amounts of ground truth available, an n-fold cross-

validation technique, also called Leave-one-out, is used for carrying out the experimental 
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analysis. With the aim of recognizing Tamarisk from other species, this classification task 

forms a good example of a typical hyperspectral target recognition system. Figure 4.2 

shows a plot of mean signatures of the two classes present in the data. 

4.1.3 Dataset 3 – airborne hyperspectral data 

The third dataset is an airborne hyperspectral image data acquired using a Pro-

SpecTIR-VNIR sensor. Data is collected on 6th June 2008, over the same corn field 

where dataset 1 (using the ASD sensor) is collected. Pro-SpecTIR-VNIR is a 

hyperspectral sensor with specifications shown in Table 4.3 [30].

Table 4.3 Specifications of the airborne SpecTIR sensor.

Sensor type Air borne Pro-SpecTIR-VNIR 

Spectral range 400 nm to 994 nm. 

Number of bands 128 contiguous bands 

Spectral resolution 2.3 - 20 nm 

Sampling intervals 4.6 nm 

Spatial resolution 1 m 

 The ground spatial distance (equivalent to spatial resolution) was 1m.With the 

help of the global positioning system (GPS) coordinates recorded while collecting the 

ground truth data with the ASD handheld sensor (Dataset 1), corresponding signatures 

from the airborne imagery are separated and grouped into “ground truth data” for the 

SpecTIR imagery. This collection consists of approximately 400 signatures for each class 

which are used as training data for classifying the entire imagery. The ground truth data 
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from the SpecTIR imagery is also used to perform the experimental analysis for this 

study. A two-fold cross-validation technique, (Jackknifing), is used for dividing the 

available ground-truth data into training and test data. Figure 4.3 shows a plot of mean 

signatures of the seven classes present in the data. 

Figure 4.3: Top: Plot of mean signatures for the seven class SpecTIR data; 
Bottom-Left: Hyperspectral image of the corn field in Mississippi 
State Universitys’ experimental fields at Brooksville, MS; Bottom-
Right SpecTIR-VNIR sensor. 
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4.2 Preliminary experiments for parameter tuning 

In this section, some tuning experiments are conducted to identify an appropriate 

set of system parameters that will be used for all experiments. Parameters such as 

derivative order ‘d’, filter order ‘f’ and the sampling order ‘s’ (used in calculation of 

derivatives), that yield the best classification accuracies with the available development 

data are found and are used on the ‘training’ and ‘testing’ data. Development data is 

derived from available “training data” by further partitioning the training data into 

training and test data, for tuning the system parameters. 

4.2.1 Dataset 1 

ASD data having a total of approximately 1,200 signatures with 2,151 dimensions 

is divided into two groups called ‘training’ and ‘testing’ with 600 signatures each. The 

training group, with a total of 600 training samples from all the seven classes, is further 

divided into two groups called ‘training_trn’ and ‘training_tst’ each with 300 samples. 

This is the development data we use to “tune” the system. Experiments for finding the 

appropriate parameters (particular to this data) yielding good classification accuracies are 

performed by using these 300 ‘training_trn’ samples for training the classifier and then 

testing it on the ‘training_tst’ samples. Per class mean signatures calculated for all the 

seven classes using the reflectance features and first five derivative features are shown in 

the Figure 4.4.

A set of classification accuracies (final) are determined using the SLDA-ML 

classifier system by varying the derivative order from 1 to 6, sampling order from 1 to 30 

and filter order from 3 to 10. In this way the SLDA-ML classifier is run on 1,440 

different kinds of derivative data. The classification accuracies are stored in a 6 x 30 x 8 
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ordered three-dimensional matrix. Now the parameter combination yielding the highest 

accuracy for all the six derivative orders is found by looking for the local maxima in the 

3D matrix. The parameter set and the best accuracies for dataset1 are shown in Table 4.4. 

Figure 4.4: Plot of mean signatures for the handheld ASD data. Mean of the 
seven classes taken in reflectance domain and the derivative domain 
for the first 5 derivative orders are plotted in subplots. 

It can be seen from the table that different derivatives yield different classification 

accuracies depending on the class separation provided by the individual derivative 

features. Figure 4.5 shows plots of class separation metric (Bhattacharyya distance), 
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calculated using different derivative features (different derivative orders), versus the 

wavelength, compared against the metric calculated using reflectance features. The plot 

shows a clear difference in the distances provided by the derivative features of different 

orders, which is reflected in the final accuracy variation. 

Table 4.4 Accuracies for ASD data with different derivative orders.

Derivative order Sampling order Filter order Accuracy % ± CI

1 16 4 72.0 ± 1.1 

2 24 9 79.5 ± 1.1 

3 18 7 81.8 ± 1.0 

4 20 9 82.8 ± 0.9 

5 28 8 81.1 ± 1.0 

6 14 3 79.5 ± 1.0 

 Higher values of sampling order are expected to be better with ASD data 

(sampled at 1nm wavelengths), since calculating derivative at lower sampling rates 

means finding the slope information between bands very close on the wavelength 

spectrum. With increasing sampling order and filter order, the variation in the accuracies 

with higher order derivative features is minimal, which can be seen in the mesh plots 

shown in Figure 4.6. 
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Figure 4.5: Plot of Bhattacharyya distance vs. wavelength for the first 6 
derivative orders plotted against the Bhattacharyya distance with the 
reflectance values for ASD data. 

Table 4.4, though, shows variation in the sampling orders with increasing derivative 

order, and this is because a local maxima was picked from the closely varying accuracies. 

It is also evident from the Figure 4.5 that derivative features seem to be performing better 

than the reflectance values in providing good class separation. The fact that SLDA selects 

the features based on a class separation metric, correlates with the increase in the 
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classification accuracies with derivative features over reflectance values, as shown in the 

Table 4.5. Note that for this dataset, we found MV based decision fusion to outperform 

LOP, and have hence used MV in all experiments reported with this dataset. 

Figure 4.6: Mesh plot of accuracies with varying sampling rates and filter orders 
for first 6 derivatives orders for ASD data using an SLDA-ML 
classifier. 
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Table 4.5 Accuracies with full training and testing data for both the classifiers 
using the reflectance values and derivative features calculated using 
the combination found previously for each derivative order for ASD 
data.

Derivative order 
SLDA- ML 

Accuracy % ± CI

MCDF 

Accuracy % ± CI 

Reflectance values 66.2 ± 1.1 68.2 ± 1.5 

1 66.5 ± 1.1 68.5 ± 1.5 

2 71.8 ± 1.1 71.3 ± 1.4 

3 74.1 ± 1.0 72.8 ± 1.4 

4 77.8 ± 0.9 71.5 ± 1.5 

5 72.3 ± 1.0 67.8 ± 1.4 

6 72.5 ± 1.0 70.5 ± 1.4 

4.2.2 Dataset 2 

The Hyperion dataset has a total of 180 signatures of which 115 are Tamarisk and 

65 are Non-Tamarisk. The available data being insufficient, relative to the dimensionality 

of the dataset, forces the use of an N-fold cross-validation technique (Leave-one-out) for 

performing experiments on this dataset. Therefore, parameter tuning for this dataset is 

made by considering all the available data – that is, we do not partition training data into 

further training and test data, and instead tune the system with the entire dataset. The 

classification accuracies with this dataset are hence expected to be slightly biased, but the 

results will nevertheless provide valuable insight into the efficacy of the proposed 
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approach with such data. Per class means calculated for both the classes using the 

reflectance features and first five derivative order features are shown in the Figure 4.7. 

Figure 4.7: Plot of mean signatures for the spaceborne Hyperion data. Mean of 
the two classes taken in reflectance domain and the derivative domain 
for the first 5 derivative orders are plotted in subplots. 

Classification accuracies (final) are determined using the SLDA-ML classifier 

system by varying the derivative order from 1 to 6, sampling order from 1 to 20 and filter 

order from 3 to 10. In this way, the SLDA-ML classifier is run on 960 different 
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ordered three-dimensional matrix. Now the parameter combination yielding the highest 

accuracy for all the six derivative orders is found using the 3-D matrix. The parameter set 

and the best accuracies for the dataset 2 are shown in Table 4.6.  

Table 4.6 Accuracies for Hyperion data with different derivative orders.

Derivative order Sampling order Filter order Accuracy % ± CI

1 16 4 72.0 ± 1.1 

2 24 9 79.5 ± 1.1 

3 18 7 81.8 ± 1.0 

4 20 9 82.8 ± 0.9 

5 28 8 81.1 ± 1.0 

6 14 3 79.5 ± 1.0 

The fact that Hyperion data is sampled at 5nm spectral resolution, higher than that 

of ASD data explains the lower of sampling order for this dataset. Also, filter orders 

being constant across the varying derivative order indicates the invariance of derivative 

data to filter order. Selection of the parameters for each derivative is done based on the 

accuracy each combination yields, and the combinations shown in the table are the ones 

which gave the highest accuracies for the corresponding derivative order. The table 

shows an increase in the accuracies for derivative features for this data. A pattern similar 

to that with ASD data (dataset 1) is observed with the mesh plots drawn using the 3-D 

matrix for the Hyperion data. Figure 4.8 shows the bar graph of Bhattacharyya distance (a 
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measure of class separation) provided by each derivative feature plotted against that 

provided by the individual reflectance values over the available spectral range. 

Figure 4.8: Plot of Bhattacharyya distance vs. wavelength for the first 6 
derivative orders plotted against the Bhattacharyya distance with the 
reflectance values for Hyperion data. 

The plot shows a clear domination of derivative features over the reflectance 

values in providing a greater class separation, and this is one reason for derivatives 

providing higher classification accuracies than the reflectance values. Table 4.7 shows 

the final accuracies with and without derivatives included into the feature space. Note 
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that for this dataset, we found LOP based decision fusion to outperform MV, and have 

hence used LOP in all experiments reported with this dataset.  

Table 4.7 Accuracies with full training and testing data for both the classifiers 
using the reflectance values and derivative features calculated using 
the combination found previously for each derivative order for ASD 
data

Derivative order 
SLDA- ML 

Accuracy % ± CI

MCDF 

Accuracy % ± CI 

Reflectance values 67.8 ± 2.1 78.7 ± 2.3 

1 72.8 ± 2.0 78.8 ± 2.0 

2 75.0 ± 2.3 80.5 ± 2.4 

3 75.0 ± 2.5 82.1 ± 2.3 

4 75.6 ± 2.3 77.1 ± 2.5 

5 72.8 ± 2.1 77.6 ± 2.5  

6 73.9 ± 2.0 77.8 ± 2.6 
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4.2.3 Dataset 3 

The SpecTIR dataset consists of 2,590 signatures of ground truth data points with 

128 dimensions and is divided into ‘training’ and ‘testing’ datasets, each with 1,245 

samples. As was done with the ASD dataset, the ‘training’ dataset is further divided into 

‘training_trn’ and ‘training_tst’ datasets (our “development” data) with 622 and 623 

samples in the respective groups. Tuning experiments are performed on these 

‘training_trn’ and ‘training_tst’ datasets. Per class mean signatures calculated for seven 

classes using the reflectance features and first 5 derivative order features are shown in 

Figure 4.9.

Table 4.8 Accuracies for SpecTIR data with different derivative orders. 

Derivative order Sampling order Filter order Accuracy % ± CI

1 13 8 56.7 ± 1.1 

2 12 5 60.3 ± 1.1 

3 13 10 59.8 ± 1.1 

4 12 10 55.0 ± 1.1 

5 12 10 54.2 ± 1.1 

6 10 6 52.8 ± 1.1 

SLDA-ML classifier is run on different derivative datasets formed by varying the 

derivative order from 1 to 6, sampling order from 1 to 15 and filter order from 3 to 10.  In 

this way the SLDA-ML classifier run on 720 different kinds of derivative data yielded a 

classification accuracy matrix of the order 6 x 15 x 8. Now the parameter combination 
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yielding the highest accuracy for all the six derivative orders is found using this 3-D 

matrix. The parameter set and the best accuracies for the dataset 3 are shown in Table 

4.8.

Figure 4.9: Plot of mean signatures for the handheld SpecTIR data. Mean of the 
seven classes taken in reflectance domain and the derivative domain 
for the first 5 derivative orders are plotted in subplots. 

Higher band sampling for the SpecTIR data (4.6 nm) accounts for the lower 

values of “optimal” sampling orders and filter orders. Combinations of parameters shown 

in Table 4.8 for different derivative orders are the ones that yielded highest accuracy 
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when compared to all possible combinations of these parameters. Mesh plots plotted 

using all the parameter combinations, showed a pattern similar to that of the previous two 

datasets (ASD and Hyperion). Bhattacharyya distance graphs for different derivative 

orders plotted against the distances calculated using the reflectance values at the same 

wavelengths are shown in Figure 4.10.

Figure 4.10: Plot of Bhattacharyya distance vs. wavelength for the first 6 
derivative orders plotted against the Bhattacharyya distance with the 
reflectance values for SpecTIR data. 
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It can be seen from the plot that there is a clear increase in the distance values 

with derivative features when compared to the ones provided by the reflectance values, 

which explains the increase in the final classification accuracies with derivative features 

over reflectance features as shown in Table 4.9. Note that for this dataset, we found LOP 

based decision fusion to outperform MV, and have hence used LOP in all experiments 

reported with this dataset.  

Table 4.9 Accuracies with full training and testing data for both the classifiers 
using the reflectance values and derivative features calculated using 
the combination found previously for each derivative order for 
SpecTIR data. 

Derivative order 
SLDA- ML 

Accuracy % ± CI

MCDF 

Accuracy % ± CI 

Reflectance values 58.9 ± 0.7 63.1 ± 0.7 

1 62.5 ± 0.7 64.2 ± 0.7 

2 61.3 ± 0.7 62.8 ± 0.7 

3 62.8 ± 0.7 62.6 ± 0.7 

4 60.5 ± 0.7 63.3 ± 0.7 

5 58.9 ± 0.7 63.5 ± 0.7 

6 61.9 ± 0.7 63.1 ± 0.7  
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4.3 Classification experiments after parameter tuning: 

Derivative features calculated using the parameter combinations identified from 

the tuning experiments are combined with the existing feature space (reflectance values) 

simultaneously (one after the other) to analyze the benefits of combining derivatives with 

the reflectance values using the available classifier systems. 

4.3.1 Dataset 1 

Figure 4.11 shows the accuracies obtained using the SLDA-ML classifier and the 

MCDF classifier.

Figure 4.11: Bar graph comparing the accuracies, in percentage, for SLDA-ML 
and MCDF classifier systems, with the addition of each successive 
higher order derivative into the feature space for ASD data. 
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classifier systems. One point that can be noted from the graph is the invariance of SLDA-

ML accuracies to further addition of a derivative features after a certain number being 

added which actually highlights the drawback of SLDA – its inability to utilize all the 

features available (restricted to select a small subset of all available features only). On the 

other hand, the MCDF system shows a steady increase, hence handling the over-

dimensionality problem from the additional derivatives more effectively, which is the key 

advantage of the system. 

4.3.2 Dataset 2 

Figure 4.12 shows the accuracies obtained using the SLDA-ML classifier and the 

MCDF classifier.

Figure 4.12: Bar graph comparing the accuracies, in percentage, for SLDA-ML 
and MCDF classifier systems, with the addition of each successive 
higher order derivative into the feature space for Hyperion data. 
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Both the systems show a similar pattern discussed in the previous section. The overall 

accuracy with the SLDA-ML classifier system is invariant to the additional derivatives 

sent into the system, instead there is a slight drop in the accuracy due to the over 

dimensionality of the input data. The drop is because of the insufficient training data 

available when compared to that available with the ASD data. The MCDF framework, 

which can work well in small-sample-size conditions, exhibits a steady increase in the 

accuracy. 

4.3.3 Dataset 3 

Figure 4.13 shows the shows the accuracies obtained using the SLDA-ML 

classifier and the MCDF classifier. 

Figure 4.13: Bar graph comparing the accuracies, in percentage, for SLDA-ML 
and MCDF classifier systems, with the addition of each successive 
higher order derivative into the feature space for SpecTIR data. 
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 As before, the MCDF system outperforms the SLDA system, and the overall 

classification with derivative features included is higher than that obtained with just the 

reflectance features. 

4.4 Stress classification maps 

In this section, the hyperspectral imagery for the corn field acquired by 

SpecTIRTM for Mississippi State University is employed to come up with a ground-cover 

classification map, indicating the variation in chemical stress on the corn crop, by using 

the combination of reflectance values and derivative features that gave the best 

classification accuracy on the ground truth data (performed in the previous section). Here, 

the available ground truth data is used to train the classifier and is then used to label 

every pixel present in the imagery. Results accomplished using the SLDA-ML classifier 

and MCDF classifier systems by considering previously mentioned feature space is 

compared with that achieved using just reflectance values as feature space. Table 4.10 

shows the original spray rate distribution map of the corn field.  

Table 4.10 Original spray rate distribution map of the corn field.

0         1/2  1       
1         1/32   1/4  

  1/2    1/16 0       
  1/4  1         1/8  
  1/8    1/8    1/32 
  1/16 0         1/16 
  1/32   1/4    1/2  
  1/2  1       1       
  1/4    1/16   1/8  
  1/8    1/32 0       

0         1/2    1/4  
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Figure 4.14 shows the classification maps obtained using the SLDA-ML classifier 

system. Original optical image [top] is also shown along with the maps achieved with 

[bottom] and without [middle] using the derivative features. Similarly the classification 

map obtained using the MCDF classifier system is shown in Figure 4.15.  

It can be seen from figure 4.14 that including derivative features into the feature 

stream resulted in superior performance compared to reflectance features, resulting in a 

sharper separation between different spray rates (especially between the rows sprayed 

with relatively closer herbicide concentrations). Regions of the image labeled 1and 2 on 

both the maps (middle and bottom) highlight this: 

Region 1) Rows of corn sprayed with rates ½ and ¼ are segregated well in the bottom 

image.  

Region 2) The salt and pepper noise (in the row of corn sprayed with rate ½ at the edge of 

the field) due to misclassification is reduced in the bottom image. 

The same pattern is evident when an MCDF classifier system is employed, as 

shown in Figure 4.15. Regions of the image labeled 1, 2 and 3 on both the maps (middle 

and bottom) highlight this: 

1) Misclassification noise (spray rate ½ being mislabeled as spray rate 1) is significantly 

reduced with derivatives features.

2) Rows of corn sprayed with rates 1 and ½ are well defined (demarked) in the image 

obtained using the derivatives features. 
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Figure 4.14: [Top]: Original RGB colored map of the corn field taken using the 
SpecTIR sensor. [Middle]: Classification map using the original 
reflectance features with SLDA-ML classifier. [Bottom]: 
Classification map using the derivative features with SLDA-ML 
classifier. 
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Figure 4.15: [Top]: Original RGB colored map of the corn field taken using the 
SpecTIR sensor. [Middle]: Classification map using the original 
reflectance features with MCDF classifier. [Bottom]: Classification 
map using the derivative features with MCDF classifier.
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4.5 Sensitivity analysis 

Through all of these experiments, the inclusion of derivatives into the feature 

space is proven to be very effective in improving the classification accuracies of the 

hyperspectral data. In this section, sensitivity of these classification systems to variations 

in the amount of data employed for training the system is studied with derivatives as the 

feature space and is compared with when reflectance values are considered as the feature 

space. Dataset 2 is not considered for this experiment as the data available is insufficient 

for performing this study.  

Figure 4.16 and Figure 4.17 show a line plot of the accuracies obtained with and 

without derivatives included into the feature space for dataset 1 and dataset 3 

respectively. The plot on the top shows the accuracies obtained using the SLDA-ML 

system and the bottom plot shows accuracies with the MCDF system. Both the classifier 

systems perform better with derivatives included. The SLDA-ML classifier with 

derivatives at lower percentages of training data is no better than the one without 

derivatives. MCDF on the other hand performs well at all times being somewhat 

independent of the training data availability. These observations can be made with both 

datasets. 
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Figure 4.16: Final accuracy, in percentage, for dataset 1 (ASD data) using 
SLDA [Top] and MCDF [Bottom] for varying training sizes. 

30

40

50

60

70

80

90

100

50 45 40 35 30 25 20 15 10 5C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (f

in
al

)

% Training data

Without Derivatives With Derivatives

30

40

50

60

70

80

90

100

50 45 40 35 30 25 20 15 10 5C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (f
in

al
)

% Training data

Without Derivatives Without Derivatives



67

Figure 4.17: Final accuracy, in percentage, for dataset 3 (SpecTIR data) using 
SLDA [Top] and MCDF [Bottom] for varying training sizes.
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4.6 Adaptive classifier 

In this section, a new technique is proposed for further improving the overall 

classification accuracy of a multi-class classifier system. In this extension, individual 

class producer accuracies in the confusion matrix are used for adaptively including 

features that best separate the classes that are most confused. The efficacy of this 

adaptive classifier on the overall classification accuracy is studied over the normal 

classification system. 

4.6.1 Functioning of the Adaptive classifier: 

To start with, the adaptive multi classifier system takes in the training and test 

datasets, and the training data is further divided into two sets called ‘training_trn’ and 

‘training_tst’. Now the classifier is trained on the ‘training_trn’ data, which is then used 

to label the ‘training_tst’ dataset. A confusion matrix is computed based on the labeling 

given to the ‘training_tst’ data by the classifier. Table 4.10 shows a typical confusion 

matrix for a five class problem.  

Table 4.11 Typical confusion matrix for a five class problem. 

Class Name Class1 Class2 Class3 Class4 Class5 Producer
accuracy

Class1 127 42 2 0 19 66.84

Class2 116 32 9 3 5 19.39

Class3 76 38 19 27 0 11.88

Class4 43 3 14 117 16 60.62

Class5 0 1 6 0 177 96.20

User Accuracy 35.08 27.59 38.0 79.59 81.57 52.91
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It can be seen from the confusion matrix that even though the overall accuracy is 

53 percent this accuracy is largely contributed by the classification accuracies from 

Class1, Class4 and Class5. The misclassification rates in Class2 and Class3 are high, and 

their classification accuracies are not in harmony with the overall accuracy. In such cases, 

the adaptive algorithm searches for such sources of ‘confusion’ in the confusion matrix 

by comparing the overall accuracy with the individual producer accuracies. In this case, 

the algorithm finds two instances of severe confusion, which are Class2 and Class3.  

In the next step, the algorithm searches for the class names that confuse the 

previously found confused classes (with low producer accuracies). This is done by 

examining the total number of pixels from the confused classes, which are classified or 

labeled into other classes. In this case, the algorithm finds Class1 as the confusing class 

for Class2 and for Class3. After finding the confused and confusing class name pairs, the 

algorithm now finds the features that best separate these class pairs (excluding the ones 

selected previously by the optimizer) and includes them into the optimal feature space 

selected by the feature optimizer present in the classifier system. At this point the 

algorithm tests the classifier trained on the new optimal feature space with the available 

‘training_tst’ data and also the ‘testing’ data and generates new confusion matrices. All 

the above described processes continue until all the producer accuracies get into harmony 

with the overall accuracy or until the optimal feature space becomes too large for the 

classifier to produce a reliable classification. 

A flowchart explaining the procedure is shown in Figure 4.18 for the two 

classifier systems employed in this thesis.  
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Figure 4.18: Flowchart of the operations of an adaptive classifier system used in 
this study. 

The flowchart can be used with the SLDA-ML classifier and the MCDF classifier, 

with a small change in the step where the additional features picked up by this algorithm, 

Start

Input data, C, NumFeat, MaxFeat 

Jack-knife I/p data to Train and Test and again 
Train into Train_trn, Train_tst 

Run classifier on Train_trn and Train-Tst with 
NumFeat features = F1. Get Confusion matrix 

CM 

Analyze the CM for confusion 

If confusion and 
NumFeat < MaxFeat 

Add features F1, that best separate confused 
classes 

NumFeat = NumFeat + Feat

Get CM with train_tst and CM_actual with Test 
data  

CM_actual 

End

No

CM 
Yes



71

denoted by the feature vector F1, instead of being added to the previous optimal feature 

vector as was done in SLDA, are added to every subgroup that comes out of the subspace 

identification (band-grouping) process of the MCDF framework. 

4.6.2 Results and discussion: 

The proposed technique is implemented with the SLDA-ML and the MCDF 

classifiers. The efficacy of the adaptive system is then tested on two datasets, 1) ASD 

corn data (Dataset 1) and 2) SpecTIR corn data (Dataset 3). Figure 4.19 shows the bar 

plot of classification accuracies achieved using the adaptive classifier compared with that 

obtained using the normal classification process for both the datasets and both the 

classifier systems with and without using the derivative features. In all cases, the adaptive 

classification process outperforms the normal classification approach.  
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Figure 4.19: Final accuracy charts for dataset 1 and 3 using SLDA and MCDF 
using the normal classification process and adaptive process with 
and without using derivatives. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions

In this thesis, the effects of including the spectral derivative information into 

feature space of hyperspectral data were investigated. The study was conducted on three 

different kinds of experimental hyperspectral data sets collected using different sensor 

systems. The derivative information is extracted from the reflectance information 

measured in different spectral bands that are specific to each sensor. For each data, 

derivative orders up to six are used. Class separation efficacy using the derivative 

features was found to be better than that achieved using the reflectance features. The 

performance of the spectral derivatives in providing higher class separation was found to 

be dependent on the derivative order chosen which in turn depended on the sampling 

order and the filter order (used to filter the hyperspectral data). The parameter 

combination defined by derivative order, sampling order and filter order are first obtained 

for all the three data sets by performing some preliminary experiments (parameter tuning) 

using the development data and are then used for the further study. An SLDA based 

feature selection/reduction algorithm followed by a ML classifier is used to perform the 

preliminary experiments.  

            73
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After finding the parameter combinations for all the three data sets, the 

performance of spectral derivatives is then tested using two classifier systems, they are: 

1) SLDA-ML classifier and 2) MCDF classifier system. The testing is carried out in three 

phases. 1) The classifiers trained using the development data are tested on testing data for 

every derivative order separately. 2) The features with increasing order of derivative 

combined with the reflectance features are then used for training and testing the data. 3) 

The sensitivity of the classifier systems to the amounts of training data is then tested 

using the feature space yielding the highest final accuracy (from the previous 

experiments) and is compared to that obtained by considering only reflectance values as 

features. An adaptive classifier system for improved classification accuracies is 

introduced and its benefits are studied. 

From the experimental results, the following conclusions are made. In the first set 

of experiments, where the efficacy of each derivative order is tested using both single and 

multiple classifier systems, the performance of both the classifiers is better when using 

derivative features instead of reflectance features. This is the case with every derivative 

order considered in this study and for all the three data sets. In the second set of 

experiments, where the feature set formed by adding derivative features with increasing 

derivative order to the reflectance features, the SLDA-ML classifier showed an increase 

in the classification accuracy for the first few additions of higher order derivative 

information, which then either remained constant or started to decline with the further 

additions. This can be attributed to the fact that SLDA provides a sub-optimal 

dimensionality reduction to alleviate the high dimensional problem, and actually discards 

a majority of potentially useful features. The MCDF classifier on the other hand exhibits 
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a steady and consistent increase in the classification accuracy with the addition of 

derivative features into the feature space. This is the case with all the three data sets. In 

the third set of experiments, sensitivity of both the classifier systems to the variations in 

the amount of data available for training the classifier is studied. The SLDA-ML 

classifier system with spectral derivatives as features is seen to be performing better 

compared to when reflectance values are used. For the extreme case where the training 

data availability is 5%, SLDA-ML with derivatives is no better than without derivatives. 

MCDF classifier with spectral derivatives outperforms the one without derivatives in all 

the cases, which proves the ability of MCDF classifier to be somewhat invariant to the 

availability of training data. 

Finally, the adaptive classification algorithm, which seeks to find additional 

features adaptively based on the confusion matrices calculated from the development data 

performed better than the previous classifier methods. The adaptive versions of the 

SLDA-ML and MCDF classifiers outperformed the standard implementations. This was 

observed with and without derivatives features included in the feature set. 

5.2 Future work 

In this work, Gaussian class distributions were assumed for representing and 

classifying features. It is expected that nonlinear analysis methods, such as support vector 

machines (SVMs) [31] will further improve classification and target recognition 

performance. Such classification paradigms can model more complex decision 

boundaries, and are hence expected to provide further robustness under severe operating 

conditions. Finally, it would be interesting to study the efficacy of spectral derivatives 

and their ratios to alleviate problems arising due to illumination variations and 
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atmospheric distortion. Previous pilot studies indicate an improvement in classification 

performance when using spectral derivative ratio features under such conditions, and it is 

likely that the proposed classification methods will outperform conventional methods 

under such scenarios.
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