1,221 research outputs found

    Constraint-based synthesis of shape-morphing compliant structures in virtual reality

    Get PDF
    The purpose of this research is to establish a novel approach to the design of compliant shape-morphing structures using constraint-based design methods (CBDM) and virtual reality (VR). Compliant mechanisms, as opposed to rigid link mechanisms, achieve motion guidance via the compliance and deformation of the mechanism\u27s members. They are currently being explored as structural components to produce shape changes in products such as aircraft wing and antenna reflectors. The goal is to design a single-piece flexible structure capable of morphing a given curve or profile into a target curve or profile while utilizing the minimum number of actuators. The successful design of compliant mechanisms requires an understanding of solid mechanics (deformation, stress, strain, etc.) and mechanism kinematics (properties of motion). As a result, only a fairly narrow, experienced group of engineers are successful in designing these mechanisms. This approach was developed as an alternative to the two primary methods prevalent in the design community at this time - the pseudo-rigid body method (PRBM) and the topological synthesis (which tend to suffer from either a poor potential solution synthesis capabilities or from susceptibility to overly-complex solutions). A tiered design method that relies on kinematics, finite element analysis, and optimization in order to apply the CBDM concepts to the design and analysis of shape-morphing compliant structures is presented. By segmenting the flexible element that comprises the active shape surface at multiple points in both the initial and the target configurations and treating the resulting individual elements as rigid bodies that undergo a planar or general spatial displacement we are able to apply the traditional kinematics theory to rapidly generate sets of potential solutions. An FEA-augmented optimization sequence establishes the final compliant design candidate. Coupled with a virtual reality interface and a force-feedback device this approach provides the ability to quickly specify and evaluate multiple design problems in order to arrive at the desired solution without an excessive number of design iterations and a heavy dependence on the intermediate physical prototypes

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Optimal Design of Beam-Based Compliant Mechanisms via Integrated Modeling Frameworks

    Get PDF
    Beam-based Compliant Mechanisms (CMs) are increasingly studied and implemented in precision engineering due to their advantages over the classic rigid-body mechanisms, such as scalability and reduced need for maintenance. Straight beams with uniform cross section are the basic modules in several concepts, and can be analyzed with a large variety of techniques, such as Euler-Bernoulli beam theory, Pseudo-Rigid Body (PRB) method, chain algorithms (e.g.~the Chained Beam-Constraint Model, CBCM) and Finite Element Analysis (FEA). This variety is unquestionably reduced for problems involving special geometries, such as curved or spline beams, variable section beams, nontrivial shapes and, eventually, contacts between bodies. 3D FEA (solid elements) can provide excellent results but the solutions require high computational times. This work compares the characteristics of modern and computationally efficient modeling techniques (1D FEA, PRB method and CBCM), focusing on their applicability in nonstandard problems. In parallel, as an attempt to provide an easy-to-use environment for CM analysis and design, a multi-purpose tool comprising Matlab and modern Computer-Aided Design/Engineering (CAD/CAE) packages is presented. The framework can implement different solvers depending on the adopted behavioral models. Summary tables are reported to guide the designers in the selection of the most appropriate technique and software architecture. The second part of this work reports demonstrative case studies involving either complex shapes of the flexible members or contacts between the members. To improve the clarity, each example has been accurately defined so as to present a specific set of features, which leads in the choice of a technique rather than others. When available, theoretical models are provided for supporting the design studies, which are solved using optimization approaches. Software implementations are discussed throughout the thesis. Starting from previous works found in the literature, this research introduces novel concepts in the fields of constant force CMs and statically balanced CMs. Finally, it provides a first formulation for modeling mutual contacts with the CBCM. For validation purposes, the majority of the computed behaviors are compared with experimental data, obtained from purposely designed test rigs

    Variable Stiffness Legs for Robust, Efficient, and Stable Dynamic Running

    Get PDF
    Humans and animals adapt their leg impedance during running for both internal (e.g., loading) and external (e.g., surface) changes. To date, the mechanical complexity of designing usefully robust tunable passive compliance into legs has precluded their implementation on practical running robots. This work describes the design of novel, structure-controlled stiffness legs for a hexapedal running robot to enable runtime modification of leg stiffness in a small, lightweight, and rugged package. As part of this investigation, we also study the effect of varying leg stiffness on the performance of a dynamical running robot. For more information: Kod*La

    Hydraulically-actuated compliant revolute joint for medical robotic systems based on multimaterial additive manufacturing

    Get PDF
    IEEE International Conference on Robotics and Automation (ICRA), Montréal, Canada, janvier 2019 Research team : AV

    Creative design and modelling of large-range translation compliant parallel manipulators

    Get PDF
    Compliant parallel mechanisms/manipulators (CPMs) are parallel manipulators that transmit motion/load by deformation of their compliant members. Due to their merits such as the eliminated backlash and friction, no need for lubrication, reduced wear and noise, and monolithic configuration, they have been used in many emerging applications as scanning tables, bio-cell injectors, nano-positioners, and etc. How to design large-range CPMs is still a challenging issue. To meet the needs for large-range translational CPMs for high-precision motion stages, this thesis focuses on the systematic conceptual design and modelling of large-range translational CPMs with distributed-compliance. Firstly, several compliant parallel modules with distributed-compliance, such as spatial multi-beam modules, are identified as building blocks of translational CPMs. A normalized, nonlinear and analytical model is then derived for the spatial multi-beam modules to address the non-linearity of load-equilibrium equations. Secondly, a new design methodology for translational CPMs is presented. The main characteristic of the proposed design approach is not only to replace kinematic joints as in the literature, but also to replace kinematic chains with appropriate multiple degrees-of-freedom (DOF) compliant parallel modules. Thirdly, novel large-range translational CPMs are constructed using the proposed design methodology and identified compliant parallel modules. The proposed novel CPMs include, for example, a 1-DOF compliant parallel gripper with auto-adaptive grasping function, a stiffness-enhanced XY CPM with a spatial compliant leg, and an improved modular XYZ CPM using identical spatial double four-beam modules. Especially, the proposed XY CPM and XYZ CPM can achieve a 10mm’s motion range along each axis in the case studies. Finally, kinematostatic modelling of the proposed translational CPMs is presented to enable rapid performance characteristic analysis. The proposed analytical models are also compared with finite element analysis

    DESIGN, ANALYSIS, AND TESTING OF A FLAPPING WING MINIATURE AIR VEHICLE

    Get PDF
    Flapping wing miniature air vehicles (MAVs) offer several advantageous performance benefits, relative to fixed-wing and rotary-wing MAVs. The goal of this thesis is to design a flapping wing MAV that achieves improved performance by focusing on the flapping mechanism and the spar arrangement in the wings. Two variations of the flapping mechanism are designed and tested, both using compliance as a technique for improved functionality. In the design of these mechanisms, kinematics and dynamics simulation is used to evaluate how forces encountered during wing flapping affect the mechanism. Finite element analysis is used to evaluate the stress and deformation of the mechanism, such that a lightweight yet functional design can be realized. The wings are tested using experimental techniques. These techniques include high speed photography, stiffness measurement, and lift and thrust measurements. Experimentally measured force results are validated with a series of flight tests. A framework for iterative improvement of the MAV is described, that uses the results of physical testing and simulations to investigate the underlying causes of MAV performance aspects; and seeks to capture those beneficial aspects that will allow for performance improvements. Wings and flapping mechanisms designed in this thesis are used to realize a bird-inspired flapping wing miniature air vehicle. This vehicle is capable of radio controlled flights indoors and outdoors in winds up to 6.7m/s with controlled steering, ascent, and descent, as well as payload carrying abilities

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society

    In-Mold Assembly of Multi-Functional Structures

    Get PDF
    Combining the recent advances in injection moldable polymer composites with the multi-material molding techniques enable fabrication of multi-functional structures to serve multiple functions (e.g., carry load, support motion, dissipate heat, store energy). Current in-mold assembly methods, however, cannot be simply scaled to create structures with miniature features, as the process conditions and the assembly failure modes change with the feature size. This dissertation identifies and addresses the issues associated with the in-mold assembly of multi-functional structures with miniature components. First, the functional capability of embedding actuators is developed. As a part of this effort, computational modeling methods are developed to assess the functionality of the structure with respect to the material properties, process parameters and the heat source. Using these models, the effective material thermal conductivity required to dissipate the heat generated by the embedded small scale actuator is identified. Also, the influence of the fiber orientation on the heat dissipation performance is characterized. Finally, models for integrated product and process design are presented to ensure the miniature actuator survivability during embedding process. The second functional capability developed as a part of this dissertation is the in-mold assembly of multi-material structures capable of motion and load transfer, such as mechanisms with compliant hinges. The necessary hinge and link design features are identified. The shapes and orientations of these features are analyzed with respect to their functionality, mutual dependencies, and the process cost. The parametric model of the interface design is developed. This model is used to minimize both the final assembly weight and the mold complexity as the process cost measure. Also, to minimize the manufacturing waste and the risk of assembly failure due to unbalanced mold filling, the design optimization of runner systems used in multi-cavity molds for in-mold assembly is developed. The complete optimization model is characterized and formulated. The best method to solve the runner optimization problem is identified. To demonstrate the applicability of the tools developed in this dissertation towards the miniaturization of robotic devices, a case study of a novel miniature air vehicle drive mechanism is presented
    corecore