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Abstract

Beam-based Compliant Mechanisms (CMs) are increasingly studied and implemented in
precision engineering due to their advantages over the classic rigid-body mechanisms, such
as scalability and reduced need for maintenance. Straight beams with uniform cross sec-
tion are the basic modules in several concepts, and can be analyzed with a large variety of
techniques, such as Euler-Bernoulli beam theory, Pseudo-Rigid Body (PRB) method, chain
algorithms (e.g. the Chained Beam-Constraint Model, CBCM) and Finite Element Analysis
(FEA). This variety is unquestionably reduced for problems involving special geometries,
such as curved or spline beams, variable section beams, nontrivial shapes and, eventually,
contacts between bodies. 3D FEA (solid elements) can provide excellent results but the so-
lutions require high computational times. This work compares the characteristics of modern
and computationally efficient modeling techniques (1D FEA, PRB method and CBCM), fo-
cusing on their applicability in nonstandard problems. In parallel, as an attempt to provide an
easy-to-use environment for CM analysis and design, a multi-purpose tool comprising Mat-
lab and modern Computer-Aided Design/Engineering (CAD/CAE) packages is presented.
The framework can implement different solvers depending on the adopted behavioral mod-
els. Summary tables are reported to guide the designers in the selection of the most appropri-
ate technique and software architecture. The second part of this work reports demonstrative
case studies involving either complex shapes of the flexible members or contacts between
the members. To improve the clarity, each example has been accurately defined so as to
present a specific set of features, which leads in the choice of a technique rather than others.
When available, theoretical models are provided for supporting the design studies, which are
solved using optimization approaches. Software implementations are discussed throughout
the thesis. Starting from previous works found in the literature, this research introduces novel
concepts in the fields of constant force CMs and statically balanced CMs. Finally, it provides
a first formulation for modeling mutual contacts with the CBCM. For validation purposes,
the majority of the computed behaviors are compared with experimental data, obtained from
purposely designed test rigs.
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Chapter 1

Introduction and Thesis Outline

1.1. General Concepts and Terminology

Differently from rigid-body mechanisms, which transfer forces and displacements em-

ploying traditional kinematic pairs based on conjugate surfaces, Compliant Mechanisms

(CMs) gain at least some of their mobility from the deflection of elastic members [1]. Po-

tential advantages over traditional mechanisms can be outlined into cost reduction and in-

creased performance. In fact, CMs require fewer components to achieve the desired mobility

with consequent reduction of time/cost for device manufacturing. For what concerns pos-

sible performance improvement, the absence of rigid kinematic pairs reduces wear, need of

lubrication and possible backlash, which might be beneficiary in terms of mechanism pre-

cision. Also, CMs can be scaled and miniaturized. Some CMs’ application areas include

constant force and nonlinear springs [2, 3], compliant actuators [4], monolithic cardan/-

spherical joints [5, 6], micro-manipulators [7, 8] and micro-grippers for precision assembly

[9]. Moreover, the development of new materials, production technologies (e.g. additive

manufacturing [10]) and fields of application (see, e.g., medical [11, 12] or origami-inspired

devices [13, 14]) largely justifies the increased studies in this area during the last twenty

years of research.

From a terminology standpoint, generic CMs may be classified into two main categories:

lumped CMs and distributed CMs. As for lumped CMs, they are characterized by compliant

structures whose elastic deformation is localized in “small regions”, i.e. the so-called Small

Length Flexural Pivots (SLFPs) [15], as shown in Fig. 1.1(a). These are usually obtained by

machining one or two cutouts in a blank material with constant width, making it possible to

obtain (if desired) monolithic solutions. On the contrary, in distributed CMs the deformation

occurs along a large part of the elements, which are usually identified by beam-like segments

(also referred to as beam-based CMs) or shells, as depicted in Figs. 1.1(b) and 1.1(c). Beam-
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(a) Lumped CM. (b) Beam-based CM. (c) Compliant shell. (d) Hybrid flexure.

Figure 1.1: Compliant configurations.

based CMs may comprise both flexible and rigid links connected with traditional kinematic

pairs [1], whereas compliant shells are open, thin-walled, discretely corrugated structures,

with flat facets or curved regions [16].

According to [17], in this thesis, the term “hybrid flexures” is adopted for describing

distributed CMs with complex topology, seen as a combination of eyelets, holes, rounds or,

in general, as a pattern of geometrical attributes. Figure 1.1(d) shows an example of a hybrid

flexure in a beam-based CM. A similar concept is reported in [18], which introduces the

“lattice flexures” as a new flexure type that has an envelope similar to a standard flexure but

has dramatically reduced motion-direction bending stiffness.

1.2. Problem Statement

Beyond the above-mentioned advantages, a series of challenging issues arise when deal-

ing with CMs. In particular, it should be considered that: a) the motion of a flexible member

is limited to the elastic deflection range; b) a certain amount of strain energy is stored during

the deflection; c) fatigue life of the flexible members requires special attention in case of

cyclical loads; d) stress relaxation can occur if the flexible members are loaded for long peri-

ods of time. These aspects make the design of CMs more complex if compared to traditional

mechanisms, since analysis and synthesis methods must be integrated with accurate models

describing the deflections of the flexible members. As long as CMs undergo large deflections,
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simple linearized equations are not valid and geometric nonlinearities must be taken into ac-

count. Starting from the Euler-Bernoulli beam theory, several advances have been made over

recent decades regarding the modeling of large deflections. Many researchers developed new

algorithms for improving the computation or proposed innovative techniques for including

even more complex scenarios, such as nonstandard geometries and contacts between bodies.

Aside from the general and well established Finite Element Analysis (FEA), some specific

examples in the CM area are the elliptic integrals solution [19], the Pseudo-Rigid Body

(PRB) method [1], the circle arc method [20], the Beam-Constraint Model (BCM) [21] and

the Chained Beam-Constraint Model (CBCM) [22]. In the following, 1D FEA and 3D FEA

will be used to indicate the mono-dimensional or three-dimensional element types within the

FEA. A detailed overview of the modeling techniques will be given in Chap. 2.

As specified in the previous section, CMs may be categorized on the basis of the relative

size of the deflecting “portion”. Lumped CMs have been largely described and analyzed from

the research community. Concepts and design methods are well summarized in [15]. As for

beam-based CMs, their macroscopic deflections have been modeled via different approaches,

each of them usable under certain conditions. Overall, the large variety of modeling tech-

niques may be quite confusing for designers that have to face nonstandard problems and

challenging requirements. These circumstances usually need an optimization study, where

several simulations must be performed. Therefore, the selection of the appropriate modeling

technique becomes essential to achieve fast and accurate solutions. At the current state-of-

the-art, despite a wide literature dealing with the theories behind any modeling technique is

available, neither comparative studies between the techniques nor practical guidelines that

show the applicability of such theories are provided.

In parallel, there is an evident lack of specific CM design tools. The existent solutions are

limited to SPACAR [23] and DAS 2D/3D [24], namely open source environments capable

of accurately solving problems involving CMs with both rigid and flexible parts. These

packages may be useful during the preliminary design steps. They provide simple modeling

features that help in exploring new concepts. Also, the high computational efficiency allows

to quickly compute the properties of the conceived design. However, as the main drawback,

complex geometries of the flexible members as well as contacts cannot be natively included

in the simulations. Consequently, these environments are successful only for case studies
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(a) Example of DAS 2D/3D post-processing.

(b) Example of SPACAR post-processing.

Figure 1.2: Flexible systems modeled with the open source design tools.

involving “standard” compliant elements, as the ones visible in Figs. 1.2(a) and 1.2(b).

1.3. Contribution of the Thesis

This research reports on advances in the design of beam-based CMs. The main contribu-

tions of the thesis are as follows:

• a structured study concerning the advantages and the limits of the most used model-

ing techniques for the analysis/design of complex scenarios (1D FEA, 3D FEA, PRB

method and CBCM). Comparative tables are presented to help designers in the selec-
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tion of the appropriate technique(s) on the basis of the defined design intents.

• a set of possible software frameworks that combine commercial packages in an in-

tegrated design environment. The frameworks are guided from Matlab and can be

customized by the user to solve optimization problems with one or more modeling

techniques. Technical details about the codes as well as discussions about the selec-

tion of the solver are given throughout the chapters.

• practical examples that support the previous comparison and illustrate how to face

design problems of different natures by combining the capabilities of the modeling

techniques and the software frameworks. For each case study, theoretical models are

reported and discussed in order to show their applicability. In most of the reported

examples, physical experiments are used to validate the numerical results and to prove

the suitability of the proposed approaches.

• new concepts in the field of constant force CMs and statically balanced CMs.

• an exploratory study showing the CBCM capabilities for modeling contact-aided CMs.

Numerical results achieved on a demonstrative case study are validated through FEA

and experiments.

1.4. Research Methods

The research work proceeded along the following general steps:

1. Survey of literature for design methods and modeling techniques regarding beam-

based CMs;

2. Study of special-purpose beam-based CMs focusing on their design procedures;

3. Development of accurate and efficient behavioral models by exploiting different tech-

niques;

4. Numerical validations of the models through rapid comparisons between the outputs

from different techniques;

5. Production and testing of physical prototypes.
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1.5. Collaboration

The majority of this work has been performed at the University of Genova, but will also

include important results achieved during the visiting period at Brigham Young University -

Compliant Mechanisms Research Group (Provo, Utah).

1.6. Thesis Outline

This thesis is composed of chapters that are conceived as “stand alone” contributions.

Therefore, each chapter contains its introduction and final remarks. It must be specified that

the mathematical notation is consistent within each chapter, whereas the terminology is kept

general to facilitate the reading.

The manuscript is organized as follows:

• Chapter 1 introduces the motivation for studying the modeling techniques of beam-

based CMs in case of nonstandard scenarios and the need to develop dedicated design

tools.

• Chapter 2 reviews the background and literature concerning the design methods and

behavioral modeling of beam-based CMs. The limits of each techniques are high-

lighted and discussed. Practical considerations are given to help the designers in the

selection of the most convenient/efficient modeling technique(s) in case of nontrivial

shapes of the flexible members or contacts. The chapter also presents possible software

framework architectures that can be implemented in design optimization problems.

• Chapter 3 reports the shape optimization process carried out on custom shaped hy-

brid flexures and provides details about the software implementations. Such flexures

are used as compliant elements in a four-bar linkage and are subjected to out-of-plane

motions. The design problem is solved in two sequential steps. At first, a PRB model

is employed to investigate the behavior of the system by varying different geometrical

parameters. Performance maps are produced and then used to select the most promis-

ing configuration. By adopting the optimal PRB configuration as reference, the second

step provides the final flexures’ configuration through a FEA optimization.
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• Chapter 4 illustrates a multi-step procedure for the structural optimization of CMs

that combines analytical and numerical modeling techniques. The method is tested on

a constant force linear mechanism based on the slider-crank concept. At first, the PRB

approximation is used to synthesize the optimal lumped compliance configuration.

Then, a variable thickness beam is adopted to smooth the shape of the CM where the

cross section presents discontinuities. The final shape is achieved by means of a FEA

optimization. At last, the predicted behaviors are validated with experiments on 3D

printed specimens.

• Chapter 5 reports the optimal design of nonlinear torsional springs with prescribed

load-deflection relationships. Two case studies are discussed, namely a Compliant

Transmission Element (CTE) to be used in an antagonistic Variable Stiffness Actuator

(VSA), and a compensation spring integrated in the design of statically balanced CMs.

Theoretical models of the overall systems are discussed to prove the need of specific

nonlinear torque-deflection relationships. The prescribed behaviors are obtained using

spline beams as connection elements between the inner and outer rings. A FEA op-

timization is performed to obtain the final shapes. Lastly, data acquired by means of

two custom test rigs are used to validate the numerical results.

• Chapter 6 presents the modeling of a contact-aided Cross-Axis Flexural Pivot (CAFP),

namely a system comprising a standard CAFP and a purposely shaped contact mem-

ber that acts on a single flexure. The behavior of the pivot is numerically investigated

by introducing a penalty-based contact algorithm in the CBCM formulation. The ob-

tained results are compared to the ones achieved with FEA in order to evaluate the

CBCM efficiency in case of contact analysis. The accuracy of the results is finally

validated via experimental investigations for different planar loads.

• Chapter 7 summarizes the main contributions of this thesis and reports on the methods

and tools used to achieve the presented results.

• Appendix includes a group of codes used in this research.
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Chapter 2

Design of Beam-Based Compliant Mechanisms

2.1. Introduction

CM design is more complex when compared to traditional mechanisms. In rigid-body

mechanisms, the motion and the transmitted forces can be singularly analyzed (i.e. in two

sequential steps, if necessary). On the contrary, in CMs, forces are required to produce defor-

mations, which are related to the mechanism configuration and geometry, as well as on the

adopted material. Therefore, CMs are more sensitive to the geometrical parameters. CM de-

sign is primarily made difficult by the presence of finite deflections of the flexible members,

possibly causing undesired deformations (i.e. cross-axis and parasitic error motions [21, 25]),

whose effects are usually more pronounced in beam-based CMs than in lumped compliance

CMs. Specific requirements in terms of motion and load-displacement functions must be

satisfied by designing a mechanism capable of achieving large deflections within the elastic

range. Consequently, the stress arising in the mechanism has to be monitored and it repre-

sents a crucial aspect during the design. Continuous rotational motions cannot be obtained

and, as it may be evident, CMs’ resistance to buckling and fatigue must be carefully ad-

dressed via either experimental characterization (see e.g. [26]) or dedicated simulation tools

(such as ANSYS, see, e.g., [27, 28]). The necessity to provide the engineering community

with effective strategies for CM analysis and synthesis has led to the development of several

design approaches and modeling techniques. An overview of the design approaches is given

in the following, whereas Sec. 2.2 provides a description of the techniques commonly used

for CM modeling.

Once the mechanism requirements and constraints are defined, the design procedure fo-

cuses on the research of the correct topology, shape and size of the flexible parts. In the last

decades, many planar and spatial CMs have been introduced, analyzed and optimized. Thus,

for a given kinematic and force deflection need, plenty of configurations can be adopted
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within the existing devices (a comprehensive library can be found in [29]). In most situations

(see Chaps. 4 and 6), the synthesis process starts from the selection of a consolidated con-

cept, namely a system well described and discussed in the previous literature. This system

may be a compliant device or a rigid-body mechanism performing a desired function (in this

case the rigid-body replacement method [29] is employed for the transition into compliant

mechanisms). Recommended actions, behavioral models and performance maps are usually

available and guide the designers in the definition of new prototypes. Note that rigid-body

kinematic methods are particularly useful for the analysis and design of lumped compliance

mechanism, but are not longer applicable if a large portion of the structures deforms, i.e. in

case of beam-based CMs.

As it may be evident, to fulfill strict requirements or achieve high levels of accuracy, the

designer may choose to synthesize a new concept instead of selecting, combining and mod-

ifying previous configurations. This approach leads to innovative solutions that can match

precise design requirements, however, it needs the use of more advanced and sophisticated

design methods. For instance, the conceptual design of beam-based CMs has been tackled by

means of the Constraint-Based Design Approach (CBDA), which is described in [30]. The

CBDA leverages on the evidence that any motion of a rigid body is basically determined by

the constraints’ position and orientation (i.e. the constraint topology). Also, a mathematical

formulation of the CBDA, based on the screw theory formalism, has been addressed in [31].

In parallel, the Freedom And Constraint Topology (FACT) method, described in [32, 33],

combines qualitative information about the flexure system’s degrees of freedom and its con-

straint topology, in order to investigate the relationships between all possible flexure designs

and related displacements. Then, the shapes of the deformable members, which allow re-

alizing a desired motion of a point of interest, are selected on a map in which all known

shape combinations are distributed over the design space. On the other hand, quoting [34],

when the FACT method is used for designing multi-degree-of-freedom CMs, the quantitative

modeling of the motion characteristics is not involved. Therefore, FACT-based CM design

can be improved by employing the so-called position-space-based reconfiguration approach,

which allows to reconfigure a CM designed for a specific task, with the aim of minimizing

its parasitic motions [34–36].

Another alternative method for generating viable initial solutions directly from problem
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specifications leverages on the concept of basic compliant building blocks, which are well

described in [37]. However, whenever strict tolerances on the desired displacement are re-

quired, a further optimization procedure is necessary after the preliminary study. Shape

optimization [38] and topology optimization [39–43] (or, more generally, continuum struc-

ture optimization approaches [44]) are applicable for the synthesis of distributed CMs with

irregular or complex shapes (see e.g. [45]). Topology optimization can result in novel solu-

tions that the designer might not have arrived at by combining standard compliant elements.

It is intended to predict the best topology, or structural layout, for a specific design problem.

From a practical standpoint, once the spatial domain as well as the connection element type,

the constraints and the external loads acting on the solid are defined, this method is used to

find the best pattern of connectivity (or spatial sequence of elements in the structure), i.e. the

one that provides a specified output displacement in response to the input force. The topol-

ogy optimization problem has been formulated in a number of alternative ways and a dense

literature is available (see [46] for a survey). Nonetheless, a well-known drawback of this

method is the possibility to generate design solutions comprising singularities (like punctual

flexural structures). For a more detailed overview about the design approaches, the interested

reader may refer to [1, 29, 44].

2.2. Modeling Techniques: A Literature Review

Once a concept is chosen, behavioral models need to be defined in order to characterize

the CM under investigation, understand the influence of the design variables (such as thick-

ness and length of flexible parts) on the required outputs (motion, forces and stresses), and

then finalize the design. As previously stated, systems employing SLFPs may be modeled

resorting to common theories for rigid-body mechanisms both for analysis and synthesis pur-

poses [1, 4]. A case study employing the principle of virtual works is discussed in Chap. 3.

Simple, parametric and accurate analytical models are always desirable for designing

flexible parts since they require limited computational resources. However, when modeling

beam-based CMs, the use of analytical approaches, such as the Euler-Bernoulli beam theory,

is restricted to regular geometries, i.e. flexible beams with constant cross sectional area along

the main axis. Large deflections introduce additional limits in the problem, since geometric

nonlinearities must be taken into account and a closed-form solution is no longer available.

10



The elliptic integral approach has been extensively used for modeling large deflections of

slender beams in which the elongation and the shear are negligible, showing accurate results

[19, 47]. However, its implementation is quite intricate and the solution is straightforward

only when the end slope of the deflected beam is in a certain range. Practically speaking,

these expressions must comply with some strict limitations in order to work properly and are

convenient only when relative simple geometries and loading scenarios are considered.

Given that initially straight beams are largely used in the field of CMs, building upon

the above-mentioned limits, several model improvements have been developed to either in-

corporate even more features or to simplify the derivation process. A numerical integration

technique, based on the Gauss-Chebyshev quadrature formulae, is proposed in [48] with the

aim of simplifying the procedure and limit the computational time. As an attempt to fur-

ther facilitate the computation, an incremental linearization approach to turn the nonlinear

problem into a sequence of linear problems is presented in [49]. In [50], the Adomian de-

composition method is used to obtain a semi-analytical solution that is particularly suitable

for optimization purposes.

Many researches focused on the need to extend the applicability of the Euler-Bernoulli

formulation to more complicated case studies. A complete model that incorporates the ax-

ial deflection of the beam to correct for the inextensible assumption made in the bending

model is reported in [51], whereas a comprehensive elliptic integral approach capable to

solve beams of any end angle and with multiple inflection points is proposed in [52], show-

ing accurate results for complex deflection modes.

In this context, another powerful method for CM analysis/synthesis is the PRB approach

[1], which describes a CM by a series of rigid links connected through spring-loaded kine-

matic pairs, such as spherical, prismatic or revolute joints (also called characteristic pivots).

Once a PRB topology has been selected (namely, number and type of kinematic pairs), spe-

cific optimization routines, such as gradient-based [53] or nongradient based methods [54],

are employed in order to assess the values of both springs’ stiffness and pivots’ location

allowing a PRB-based mechanism to replicate the CM kinetostatic behavior as close as pos-

sible. In general, it may happen that the chosen PRB representation does not capture the

deformations of the compliant elements up to a level of accuracy that is deemed sufficient

for the application at hand, thus forcing the designer to increase the PRB model’s degrees of

11



freedom. A detailed discussion of this issue can be found in [55], where a spring-loaded 3R

chain is used to approximate the deflection of a cantilever beam subjected to a general tip

load. The obtained performances are compared with the ones achievable through a simple

1R PRB model.

In practice, PRB techniques basically offer two advantages: i) enhanced computational

efficiency during CM simulation; ii) possibility to employ well established methods and

software tools, such as common Multibody Dynamics (MBD) environments, specifically

conceived for analyzing rigid-link mechanisms. On the other hand, PRB limitations, whose

acceptability has to be evaluated on a case by case basis, may be listed as follows: i) possi-

bility for the PRB parameters to become load dependent in case of insufficient mobility of

the chosen PRB topology (refer to [56] for an overview and a comparison of several PRB

topologies); ii) incapability to capture nonlinear effects arising during large deflections, such

as material nonlinearity, geometric nonlinearity and load-stiffening effects [21]. Henceforth,

CM architectures computed via the PRB method are usually validated by means of FEA or

experiments at the end of any design process. Despite these limitations, PRB techniques

have been successfully used for the preliminary design of beam-based CMs [57], for evalu-

ating CM workspaces [58], for comparing compliant joints morphologies [59], for modeling

contacts [60], bi-stability [61] and dynamics [62] in CMs, and for model-based control of

compliant mechatronic devices [63]. Examples of applications of the PRB method are re-

ported in Chaps. 3 and 4.

There are also a few discretization-based techniques available for the modeling of CMs.

They provide accurate prediction of very large deflections and may be very efficient and use-

ful in certain situations, such as for describing irregular (curved) geometries of the flexible

members. Also, they represent a valid approach for simulating the effect of contacts between

members or their buckling instability. This class of methods divides the beam being modeled

into elements and analyzes each contribute in succession in order to obtain the overall behav-

ior. A chain algorithm has been initially proposed in [64], where each element is modeled

as a small-deflection beam cantilevered at the end of the previous element. The response

is computed by inverting the elements’ stiffness matrices. An alternative procedure is de-

scribed in [20], where the beam is discretized using a low number of elements, each of them

assumed to deform into a circle arc when loaded. The algorithm can be easily programmed
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(a) Spline beam [38]. (b) Cylindrical CAFP [67].

(c) Contact-aided CM for passive bending [68].

Figure 2.1: Examples of configurations with nonstandard geometry.

due to its simple formulation and it is well suitable for optimization procedures. The main

limit is that the beam is treated as inextensible.

Recently, by leveraging the closed-form BCM reported in [21], which include the axial

deflection and accurately capture the relevant nonlinearities when deflections are within 10-

15% of the beam length, an efficient chain algorithm has been defined. The CBCM [22] di-

vides the flexure into elements and models each element via BCM equations. Because of the

higher accuracy of the single element model, the CBCM requires much fewer elements than

other discretization-based techniques utilizing linear elements to obtain the desired accuracy

in large deflection problems. Other important advantages are the closed-form nature of the

overall system (which leads to evident advantages from a computational point of view), and

the possibility of analyzing initially curved beams [65], spatial deflections [66] and contacts

(see Chap. 6). Generally, the CBCM outperforms all the methods that ignore the axial strain.

A detailed explanation of the CBCM equations is included in Chap. 6.

At last, a powerful technique for the CM modeling is the FEA due to its wide library
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of element types, modeling features and options. Modern commercial environments allow

to easily manage nontrivial geometry (such as hybrid flexures) and to analyze systems com-

prising large numbers of parts. On the contrary, the previously discussed techniques are best

used for modeling single elements due to their complex formulation. FEA provides accurate

algorithms for the modeling of contacts and other nonlinearities, such as specific material

properties (plasticity, superelasticity, creep, etc.) or buckling instability. For this reason,

most of the works dealing with the CM analysis/design make final performance checks us-

ing FEA. Properly defined FE models can be an excellent way to demonstrate the potentiality

of a concept and validate the study [67, 69].

As demonstrated by [38, 70, 71], 1D FEA (beam elements) may be a strategic tool for

designing beam-based CMs when irregular shapes, as the one in Fig. 2.1(a), or systems

composed of several beams in series and parallel are considered. A single parametric 1D FE

model can be solved in few seconds, promoting the use of optimization routines.

The use of 3D FEA becomes essential for systems comprising custom shaped geome-

tries, defined and subsequently exported from a parametric Computer Aided Design (CAD)

environment. Examples of configurations that need 3D FE models are visible in Figs. 2.1(b)

and 2.1(c). In such cases, none of the other techniques can be used for achieving accurate

results.

2.3. A Demonstrative Case Study

This section aims at comparing the primary outputs of a typical CM analysis (force-

deflection relationship and maximum stress) obtained with four modeling techniques among

the most used and described. The large deflections study is performed on a standard CAFP

by considering regular beam geometries and by excluding contacts, buckling and other addi-

tional nonlinearities. More complex case studies will be discussed in the next chapters.

The first part of the section introduces and describes the CAFP concept, whereas the

second part reports the results of the comparative study.

2.3.1. Cross-Axis Flexural Pivot

The CAFP is a planar beam-based CM formed by two symmetric beams, that are con-

nected at both ends to a pair of shared rigid blocks [72], hereafter referred to as ground
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and output links. Two different configurations have been conceived in literature: in the first

one, the crossing beams are completely independent, whereas in the second one, usually

referred as cartwheel pivot, the beams are connected to each other where they cross, produc-

ing a single structure. As highlighted in [73], the resulting elasto-kinematic behavior shows

remarkable differences based on the selected configuration. In particular, the first configura-

tion is characterized by an increasing nonlinear trend of the equivalent stiffness for very large

deflections, whereas the second configuration presents the typical trend of circular and ellip-

tical flexural hinges, namely a reduction of the equivalent stiffness as the angle of rotation

increases.

From a kinematic standpoint, the CAFP’s maximum deflection is naturally limited by

the stress field arising within the flexures [74] and it is usually constrained in the range

[0, π/2], depending on the employed material. This aspect restricts the use of the CAFP

to applications that need a limited well-defined deflection range. Also, the relative rotation

between the ground and output links entails a parasitic shift from the initial center of rotation,

i.e. the intersection point between the flexures in the undeflected configuration [70, 75–78].

When employed in place of a revolute joint, the CAFP morphology enables a highly

selective compliant behavior [15, 25], namely a low stiffness for in-plane motion and high

stiffness along other directions. Due to potential advantages over common rigid kinematic

pairs, such as the absence of backlash and friction, the high positioning accuracy, and the

reduced number of components (thus, the simplified manufacturing process), the CAFP con-

cept is commonly implemented in precision engineering applications [79]. Examples include

measurement systems [80], precision mechanisms [67, 81–83], optical instruments [84], bio-

inspired devices [85] and space systems [86]. The relatively simple CAFP topology allows

to easily form arrays [87] or to combine the mechanism with additional structural elements

to synthesize static-balanced mechanisms [88–91]. As a result of the advent of efficient ad-

ditive manufacturing technologies, even more complex shapes can be produced [18, 67, 90].

Furthermore, by combining typical origami principles and two-dimensional machining pro-

cesses, folded CAFP joints can be manufactured [13].

However, as a CM, the CAFP analysis/design is more complex and some critical struc-

tural issues have to be considered. In the literature, several works are focused on the CAFP

performance analysis. Apart from the fatigue life [92], which has to be carefully investigated
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Figure 2.2: Standard CAFP - geometrical parameters.

in case of dynamic operative conditions, the CAFP’s beams can fail due to buckling in case

of compressive loads acting on the ground and output rigid links [72].

The CAFP analysis and design have been addressed via various approaches. For example,

models employing the linear Euler-Bernoulli beam theory for small angles of deflections are

reported in [72, 79]. In [72], the large deflection problem is solved by means of elliptic

integrals for a pure moment load case. In [93], the CAFP is studied resorting to two PRB

models. In [74, 76], the CAFP under the effect of both forces and moment is modeled

resorting to the BCM [21, 94], which can accurately capture the intermediate deflection

range. Very Large deflections can be correctly described via the CBCM, as proven in [22].

2.3.2. Kinetostatic Large Deflections Modeling of the Pivot

As specified in the previous section, the CAFP modeling can be approached through dif-

ferent numerical techniques. The current comparative study comprises a group of general

purpose techniques among the most used and described in the recent literature about CMs,

namely the PRB method, the 1D and 3D FEA and the CBCM. Generally, each technique

allows to solve problems of different nature, and with specific sets of boundary conditions,

material models and simulation settings. Also, the required level of expertise varies depend-

ing on the adopted approach and increases when commercial tools cannot be used for solving

the problem.
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A standard CAFP consisting of two independent beams with constant rectangular cross

section along the axis is considered in order to evaluate the results accuracy, the modeling

time (i.e. the total time required to build a single model) and the simulation time for each of

the above-mentioned techniques. In fact, by excluding complex scenarios, such as complex

beam’s geometries (i.e. nontrivial shapes) and contact analysis, all the considered approaches

can be applied to solve the CAFP’s large deflection problem.

With reference to Fig. 2.2, the CAFP geometry is completely defined by w1, w2, β, b and

t, namely the lower and upper width, the angle between the crossing beams and the cross

section dimensions. The pivot height, h, and the flexure length, L, can be easily found as:

h =
w1 + w2

2 tan(β)
(2.1)

L =
w1 + w2

2 sin(β)
(2.2)

Four behavioral models are developed by considering an isotropic material with Young’s

modulus and Poisson’s ratio equal to E = 1400 MPa and ν = 0.4 respectively, and by

adopting w1 = w2 = 30 mm, β = π/4, b = 5 mm and t = 1.6 mm. In particular:

1. a 3D CAD of the system is drawn and meshed with brick elements to build the 3D FE

model (see Fig. 2.3(a));

2. two simple lines are drawn, meshed with beam elements and connected each other

with a rigid body element to build the 1D FE model (see Fig. 2.3(b));

3. an anti-parallel symmetric four-bar-linkage, as the one proposed and described in [93],

is adopted as PRB model (see Fig. 2.3(c));

4. the closed-form procedure reported in [22] is used to define the CBCM model (shown

in Fig. 2.3(d)).

Detailed descriptions of the numerical models are beyond of the scope of the current section

and will be given in the next chapters (see also the Appendix for code implementations). By

applying a rotation θ = 0.7 rad to the outer link and recording the reaction torque, the static

load-deflection relationship has been obtained in a series of substeps. The models also output

the maximum stress occurred during the deflection. Figure 2.4 shows a comparison between
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CBCM Elem.

(d) CBCM with 10 elements for each beam.

Figure 2.3: CAFP modeling.

the numerical results. Overall, there is acceptable agreement between the data, confirming

the suitability of the techniques for studying beam-based CMs in large deflections problems.

Taking the 3D FEA as the reference load-displacement behavior, the discrepancy may be

quantified with a Root Mean Square (RMS) error equal to 0.36 Nmm, 2.42 Nmm and 1.09

Nmm for the 1D FEA, PRB method and CBCM respectively. Modeling and simulation

times are listed for each technique in Tab. 2.1. While the former values are related the user’s

skills, the latter may vary depending on the employed software as well as on the workstation

characteristics. In this research work, all the simulations are performed on a workstation
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Figure 2.4: Comparison of results achieved on the standard CAFP with different modeling
techniques for an imposed rotation θ = 0.7 rad.

with an Intel Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.6 GHz and 32GB RAM.

2.4. General Guidelines: How to Proceed in Design Problems

This section focuses on the selection of the appropriate modeling technique(s) in the de-

sign of nonstandard scenarios, namely specific case studies where purely analytical methods

fail to provide useful information. As highlighted in the previous state-of-the-art overview

(see Sec. 2.2), the large deflection problem has been studied extensively in the field of CMs.
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Table 2.1: Modeling techniques: time required to build and solve the single model.

Modeling
Technique

Modeling
Time

Solving
Time

3D FEA 45 min 300 s
1D FEA 30 min 2.5 s

PRB method 60 min 0.2 s
CBCM 180 min 1.5 s

Many techniques can be selected for general problems, as visible from the discussion re-

ported in the previous section (note, once again, that more than four techniques can be em-

ployed for modeling the standard CAFP). When available, analytical approaches are always

suggested since they provide accurate outputs and require limited resources. Moreover, sev-

eral codes can be found in the literature, allowing a relatively simple implementation of the

proposed methods.

In addition to the large deflections, which are commonly experienced in design problems

involving beam-based CMs, designers may need to model specific features or conditions

arising within the beams. Typical situations involve irregular geometries, for example spline

beams [38], variable section beams [95] or hybrid flexures [17], as an efficient way for

increasing the range of motion or configuring the mechanism selective compliant behavior

[15]. Other examples may be contact-aided CMs, which are particularly effective for limiting

the CM operative range or the stress level [67, 68], for avoiding buckling phenomena [96]

and for achieving nonlinear torque-deflection behaviors [97].

To include these features in the behavioral models, designers may refer to the 3D FEA.

It is the most general and comprehensive approach and it provides a large variety of outputs.

However, as visible from Tab. 2.1, its computational cost is much higher than the other

techniques. The time required to solve the simulation depends on several aspects, such as

number and type of elements, simulation settings, contact algorithm and options set in the

model. Even though the designer can easily adopt simplifications in the model (causing

a lost of quality regarding the achievable results), the 3D FEA is not particularly suitable

for optimization studies, i.e. when several simulations must be performed in order to assess

the final configuration. In fact, as discussed in the next section and implemented in the

following chapters, problems involving special geometries of the flexible members and/or

20



contacts are usually approached with meta-models or Genetic Algorithms (GAs) [98], since

a direct correlation between the design variables and the performance indexes is not available

at the proof-of-concept step. Two more issues make the 3D FEA not the best choice for

optimization purpose:

1. the limited user’s control in the mesh definition during a batch analysis. At each iter-

ation of the optimization process, the geometry must be updated and thus re-meshed.

User’s mesh options may be appropriate for a certain configuration and completely

incorrect for the others. This may be solved using a free mesher and general options

(element size and type, shape functions order and constraint on the numbers of tetra-

hedral). However, the quality of the numerical results would surely decrease.

2. the necessity to perform a mesh convergence check in order to evaluate the influence

of the element size on the simulation outputs. This can be done very quickly in case

of a single analysis (e.g. for the final configuration). On the contrary, checking each

candidate during the optimization routine would significantly increase the total number

of simulations.

This proves the necessity of making important considerations before proceeding with the

modeling. The selection of a technique rather than others can offer a considerable reduction

in the overall computational cost (in the order of 150-200 times), while still preserving high

accuracy concerning the obtained results.

In the following, three computationally efficient techniques (1D FEA, PRB method and

CBCM) are considered as possible alternatives of the well established 3D FEA. Each tech-

nique describes accurately a specific set of conditions but may result inappropriate in other

scenarios. To simplify the selection of the most convenient technique, a comparison is re-

ported in Tab. 2.2. A score is assigned to the techniques for each category of problems: “−”

means unavailability, “0” is to indicate that the use is discouraged, “1” is assigned when

examples can be found in the literature, whereas “2” implies full availability for a certain

problem.

As visible in Tab. 2.2, 1D FEA can be used as behavioral unit as long as hybrid flex-

ures are excluded from the analysis. The beams are defined by polynomial functions that

interpolate or approximate a set of control points. Thus, by parametrizing the location of the
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Table 2.2: A comparison of modeling techniques for the study of nonstandard problems.

Modeling
Technique

Curve/Spline
Beams

Variable
Sections

Nontrivial
Shapes

Contact
Pairs

Computational
Efficiency

3D FEA 2 / 2 2 2 2 0
1D FEA 2 / 2 2 – 1 1

PRB method 1 / – 1 1 1 2
CBCM 1 / – – – 1 2

control points, very complex shapes can be defined and tested [38]. Also, the designer can

adopt one or more cross sectional areas along the beam’s axis. Nontrivial beam’s shape, as

the one shown in Fig. 2.1(b), cannot be accurately described with beam elements (even with

tapered cross sections) and must be drawn in a CAD environment. Contact analysis can be

performed but it is limited to the line-to-line type, which is preferably used in planar prob-

lems [99]. The contact is detected around a radius for the line contact elements, so proper use

would be for beams with regular geometry. For this reason, complex interactions between

convoluted surfaces require the use of surface-to-surface contacts from the 3D FEA library.

The PRB method makes the CMs much easier and is applicable to the most of the con-

sidered scenarios, including contact-aided CMs [60, 100]. Initially curved beams are well

captured with a simple 2R PRB model [101], whereas spline configurations require much

more complex chains with remarkable increments in the number of parameters. Therefore,

the inherent lost of simplicity excludes the use of the PRB method when spline geometries

are involved. At last, as it will be demonstrated in Chap. 3, a well defined PRB model can

accurately describe the spatial deflections of hybrid flexures, even though theoretical models

describing the correlation between the systems are not obtainable.

From a rapid overview of Tab. 2.2, the designer may feel dissuaded to implement the

CBCM. However, it must be remarked that it has been introduced recently and it is still

under investigations. As a discretization method, many researches focus on the development

of more accurate element models. An example may be found in [65], where the circular-

arc segments are introduced for studying initially curved beams of uniform cross section.

Models employing variable thickness segments are not available, though impressive BCM

equations are presented in [102]. Also the modeling of contacts has not yet been treated in

the literature, and will be addressed in Chap. 6. In line with the 1D FEA, customized beams
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(holes, eyelets, rounds, etc.) cannot be described with BCM elements.

2.5. Optimization Approaches

Optimization has been extensively used in the field of CMs. Ready examples are constant

torque CMs [103], joints for assistive devices [104], microgrippers [105], rotational springs

[106], positioning stages [107] and balancing systems [108]. Depending on the nature of the

problem, on the number of design variables and on the computational cost related to each

simulation, the optimizations are usually performed resorting to deterministic algorithms,

meta-models [109] or GAs [110].

Generally, deterministic algorithms are directly applied to analytical models and provide

very efficient responses. On the contrary, meta-modeling techniques become useful when it

is impossible or too complex to define analytical correlations between the objective function

and the design variables. They provide a suitable approximation of the real objective func-

tion, whose construction is based on two essential steps: Design Of Experiments (DOE),

where the design space is sampled in a discrete number of points, and Response Surface

Modeling (RSM), which refers to all those techniques employed to create an interpolating

or approximating n-dimensional hypersurface in the (n + 1)-dimensional space given by

the n design variables plus the objective function. Considering the objective function, Y ,

and a set of design variables, X = p1, .., pn, the selected DOE+RSM procedure provides an

approximation, Ŷ , such that:

Y = Ŷ + ε (2.3)

where ε is the approximation error, that can be minimized with a careful compromise be-

tween the number of samples and the choice of the discretization technique (e.g. full fac-

torial, fractional factorial, central composite, Tagughi, latin hypercube, etc.). As it always

happens in optimization, there is no general role and the choice depends on the problem to

be investigated. The designers may refer to [98] for assistance in the selection of the best

technique.

The benefit of this approach is that, once the meta-model has been obtained, very quick

gradient-based algorithms [98] can be used to determine the stationary points on the response
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surface. However, the total number of samples increases with the number of design variables,

n, and with the allowed levels for each of these variables, k. For instance, adopting the full

factorial discretization technique (very common in design optimization problems), the total

number of samples (i.e. simulations) is nsim = kn. Consequently, the DOE+RSM is not

particularly suitable for problems with a large number of design variables and/or levels for

each variable, since a high value of nsim would increment the total elapsed time, especially

if 3D FEA is employed (see, once again, Tab. 2.1). On the contrary, GAs do not provide

as an output the complete representation of the objective function over the domain but they

can manage a very large number of design variables and converge after a relatively limited

number of iterations [98].

2.6. Integrated Design Tool

In terms of computer-aided design of mechanisms, there has been a number of numerical

solvers developed throughout the years (see [24] for a review), comprising nonlinear FEA

and MBD packages. Nonetheless, practical methods, which take advantage of the capa-

bilities of integrated Computer Aided Engineering (CAE) environments, when specifically

applied for CM analysis/design, have been scarcely described and should be further investi-

gated. As for the latter point, for what concerns specific CM design tools, a first example is

represented by SPACAR [23], an open-source code that can simulate the motion of 3D flex-

ible devices. More recently, a Matlab-based, object-oriented software tool called DAS-2D

[24] has been released for the same purpose. Possible drawbacks of the above-mentioned

tools are the rather basic graphic interface (see Fig. 1.2) and the restricted element and con-

tact libraries. Therefore, by using either SPACAR or DAS-2D, it is currently impossible to

manage compliant members with nonconventional shape or undergoing self and mutual con-

tacts. In addition, DAS-2D is limited to planar case studies, although a 3D version (i.e. DAS-

3D) is announced in development.

In practice, nowadays, despite several impressive modeling techniques are largely em-

ployed and refined, an integrated environment easily allowing for CM design optimization in

case of nonstandard scenarios, such as the ones reported in Tab. 2.2, is nonexistent. There-

fore, similarly to [111], the only viable strategy seems to be the integration of multiple

platforms, namely a CAE solver for model solution and an external optimizer. A parametric
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Table 2.3: Selection of the appropriate framework architecture and solver.

Scenario PRB method CBCM 1D FEA 3D FEA

CM

Simple or
Built-in
Geom.

PRB 

Model
Main

A)

CBCM 

Equations
Main

C)

FE 

Model
Main

D)

FE 

Model
Main

D)

External
CAD PRB 

Model
Main

B)

–
FE 

Model

Main
Param.

CAD

E)

FE 

Model

Main
Param.

CAD

E)

CM
+

RIGID

Simple or
Built-in
Geom.

PRB 

Model
Main

A)

CBCM 

Equations
Main

C)

FE 

Model
Main

F)

FE 

Model
Main

F)

External
CAD PRB 

Model
Main

B)

–
FE 

Model

Main
Param.

CAD

G)

FE 

Model

Main
Param.

CAD

G)

CAD for shape modeling may also be considered in case of hybrid flexures. Many CAE tools

provide an internal CAD for the modeling of 3D shapes and also an optimizer. Even so, in

case the shape of the compliant members needs to be optimized on the basis of a user-defined

cost function, the designer may rapidly face the intrinsic limits of all the above-mentioned

packages.

Owing to these considerations, the purpose of this section is to propose possible soft-

ware frameworks specifically conceived for analyzing and designing beam-based CMs by

means of the above-discussed modeling techniques. Such frameworks, shown in Tab. 2.3,

are guided by Matlab, which manages the optimization process, along with all the simula-

tions and the data exchange activities. In Tab. 2.3, “CM” means that the system is composed

of only flexible members, whereas “CM+RIGID” indicates the presence of both flexible and

rigid bodies.
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Depending on the adopted modeling technique (see Tab. 2.2), the single framework

adopts specific commercial tools, such as:

• ANSYS as nonlinear FEA solver;

• RecurDyn as interdisciplinary tool that simulates both rigid and flexible body dynam-

ics by combining traditional rigid MBD and nonlinear FEA solvers;

• PTC Creo as parametric CAD.

By entering in Tab. 2.3 with the information regarding the mechanical model, the designer

can evaluate the most appropriate framework architecture. At first sight, the use of two

commercial solvers may be confusing. This point can be clarified by looking at the system

under investigation. In fact, while ANSYS may be the best choice for analyzing individual

elements or systems composed of flexible members only, RecurDyn allows to easily com-

bine rigid and flexible bodies in a single simulation environment. This potentiality leads to

remarkable reductions of the computational cost since meshing operations are not required

for the rigid bodies in RecurDyn. By exploiting its MBD solver, RecurDyn can be also

employed for solving complex PRB models, for example systems composed of several bod-

ies undergoing out-of-plane motions. As previously stated, the use of PTC Creo becomes

necessary only for including nonconventional geometries of the flexible members.

All the proposed frameworks can be modified based on the available tools. Same results

can be obtained with other commercial programming (Fortran, Python, etc.), FEA (Abaqus,

Nastran, etc.), MBD (Adams, LMS Virtual.Lab, etc.) and CAD (Solidworks, Catia, etc.)

packages.

2.7. Final Considerations

This chapter is intended to orient the designer in the solution of nonstandard problems

and provides general guidelines for assisting in the selection of the most appropriate mod-

eling technique and software framework. Detailed descriptions of the theory behind the

techniques as well as of the software implementations will be given in the next chapters. In

particular, each chapter solves a case study in the field of beam-based CMs by combining

the information of Tabs. 2.2 and 2.3:
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(a) Hybrid flexures in a four-bar link-
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(b) variable section beam.

(c) Nonlinear torsional spring with
spline beams.

(d) Statically balanced CM. (e) Contact-aided CAFP.

Figure 2.5: Demonstrative case studies.

1. Chapter 3 analyzes a system composed of a rigid slider-crank mechanism and a com-

pliant four-bar linkage utilizing hybrid flexures (see Fig. 2.5(a)). The aim is to optimize

the shape of such flexible parts to fulfill strict requirements in terms slider’s trajectory.

According Tabs. 2.2 and 2.3, the system is modeled resorting to the PRB method and

the 3D FEA by adopting the frameworks B and G respectively. Meta-models are used

to study the influence of the design variables on the output performances and then to

finalize the design.

2. Chapter 4 explores the use of variable section beams for the design of a linear constant

force CM, depicted in Fig. 2.5(b). The proposed device is based on the compliant

crank-slider concept and is initially studied with the PRB method through the frame-

work A. The 1D FEA is used in the final design step to accurately model the flexible
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beam with multiple parametric sections along the axis. To solve the shape optimiza-

tion problem, aiming at finding a beam configuration that ensures a precise constant

output force, a GA is set within the framework D.

3. Chapter 5 shows the design procedure for obtaining torsional CMs with prescribed

torque-deflection relationships. The considered CMs, shown in Figs. 2.5(c) and 2.5(d),

are implemented in antagonistic VSAs and statically balanced mechanisms. The non-

linear behavior is obtained by employing spline beams, whose shapes are optimized

with 1D FEA by adopting the framework D and a GA.

4. Chapter 6 deals with a contact-aided CAFP, namely a system that combines a standard

CAFP and a contact member, which affects one of the CAFP’s beams (as visible in

Fig. 2.5(e)). The CM behavior is investigated for various load cases with both the

CBCM and the 1D FEA techniques. Frameworks C and D are combined together and

meta-models are used to map the design domain.

To facilitate the reproduction of the results, the used codes are reported in the Appendix.
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Chapter 3

Hybrid Flexures Synthesis in a Compliant Four-Bar
Linkage

3.1. System Description and Aim of the Study

In this chapter, an industrial case study consisting of a spatial CM with hybrid flexures

is discussed. Let one first consider a particular linkage system, namely a spatial slider-

crank mechanism (see Fig. 3.1(a)), which transforms a rotational motion of an input crank

into a purely translational motion of a slider (hereafter also referred to as platform). Such

mechanism is composed of a revolute, a spherical, an universal and a prismatic pairs. An

eccentricity along y-axis, namely an offset between the crank rotational axis and the platform

translational axis is introduced (see the distance e in Fig. 3.1).

To reduce friction, the prismatic joint may be substituted by parallel leaf-spring flexures

(i.e. a fully compliant four-bar linkage), which can provide approximate straight line guiding

[112]. The CAD model of such partially CM is depicted in Fig. 3.1(b). The system is

composed of three moving rigid bodies (crank, rod and platform), two rigid bodies fixed to

the ground (motor and frame), and two hybrid flexures [17] with nonstandard shape. These

flexures, made of spring steel, are designed as slender beams that comprise a set of eyelets.

It is evident that, due to the mechanism topology and the absence of a prismatic joint guiding

the platform (as in Fig. 3.1(a)), a spatial motion of the platform itself may occur during

functioning. This crucial aspect is highlighted in Fig. 3.1(b), where the platform spatial

trajectory is shown in red. The main dimensions of the system are reported in Tab. 3.1.

In the following sections, the shape optimization carried out on the hybrid flexures with

the specific aim of reducing the undesired out-of plane motion is reported and described.

The design target could be achieved by simply considering flexures with constant rectangular

cross section and by increasing the beams width. In any case, it shall be remarked that the

main purpose of the study is to show that custom flexures with defined in-plane and out-
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Table 3.1: Main dimensions of the system.

Dimension Value

l 400 mm
d 59 mm
r 70 mm
s 345 mm
e 93 mm

of-plane stiffness characteristics can be obtained according to complex design goals via the

proposed design frameworks.

3.2. Overview of the Design Approach

The behavior of custom shaped hybrid flexures cannot be modeled with theoretical ap-

proaches, especially when the topology of such flexures is subjected to functional or practical

constrains (as in the industrial scenario, where fabrication processes play an important role

in the design). Given a parametric CAD file, 3D FEA is the most appropriate modeling

approach. However, as previously discussed, the computational cost may be an important

issue for optimization purposes, i.e. when a large number of simulations must be performed.

As visible in Tab. 2.2, the presence of holes and/or eyelets does not limit the use of the

PRB approach if straight beams are considered. Building upon on these considerations, in

this study, a PRB model is initially employed to study the behavior of the spatial compliant

four-bar linkage in a very quick and efficient way. The 3D FEA is then used to finalize the

design.

A conceptual schematic of the adopted design flow is depicted in Fig. 3.2. The two main

steps can be described as follows:

• #Step 1: several design alternatives can be tested by means of a PRB model, the only

limit being that the initial mechanism topology shall be maintained. Naturally, the PRB

representation allows to simulate each design variant in a limited computational time

(reduced of three order of magnitude as compared to 3D FEA, as shown in Tab. 2.1);

• #Step 2: once the most promising solution (still based on a PRB representation) is

found, the final shape of the flexible members is determined by leveraging on a CAD/-
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Figure 3.2: Multi-step design flow.

CAE optimization framework (see Tab. 2.3). Note that the final CM design fully

replicates the behavior of its PRB counterpart. In the following, this last step will

be referred to as FEA shape optimization.

If the computed accuracy is envisaged as sufficient for the considered application, the ob-

tained hybrid flexure represents the final solution. In any other case, a design iteration will

be necessary, based on an increment of the number of Degrees of Freedom (DOFs) as com-

pared to the initial PRB model.

3.3. PRB Modeling: Background Theory and Practical Procedure

The adopted compliant four-bar linkage presents out-of-plane motions and thus its PRB

counterpart must implement spherical spring-loaded joints. Before dealing with spatial PRB

modeling, a simple beam subjected to planar boundary conditions is discussed. In fact, by

neglecting all the out-of-plane forces and motions, the considered CM may be described by

a pair of fixed-guided flexible segments, as shown in Fig. 3.3.

3.3.1. Planar Assumption: Fixed-Guided Flexible Segment

This section recalls the modeling of the fixed-guided flexible segment, visible in Fig. 3.4,

and provides formulas to derive the dimensions of a simple flexure on the basis of the op-
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Figure 3.3: Planar compliant four-bar linkage.

timal PRB model (i.e. the one obtained after #Step 1 with desired stiffness characteristics).

The schematic layout and the boundary conditions of such slender beam flexure are depicted

in Fig. 3.4(a), the related 2R PRB model is shown in Fig. 3.4(c), whereas the free-body

diagram of one half of the beam and its 1R PRB model are reported in Figs. 3.4(b) and

3.4(d). In particular, one end of the flexure is fixed to the ground, whereas the other end

is guided to maintain absence of rotation. In order to obtain this configuration, a resultant

clockwise moment M must be applied at the beam end point, in addition to the vertical force

F . The resulting deflected shape is antisymmetric at its centerline (as shown in Fig. 3.4(a)),

the angular deflection of the beam (θ) reaching its maximum for θy=ac/2 = θ0 where the

curvature is zero. Being directly related to the beam curvature, the moment at y = ac/2 is

null. Consequently, a single half-beam subjected to the only vertical force F can be consid-

ered. Summing moments at either ends of the free-body diagram in Fig. 3.4(b) yields to the

following relation:

Fac −M =
Fac

2
→M =

Fac
2

(3.1)

where ac is the horizontal distance between beam free and fixed ends (see Fig. 3.4(a)). Fol-

lowing the theory reported in [1], a system consisting of three rigid links connected by two

symmetrically-disposed revolute pairs, as the one in Fig. 3.4(c), is used as a PRB model.

Two torsional springs with same stiffness are located over the revolute joints in order to ap-

proximate the beam compliance. Therefore, such 2R PRB model requires two characteristic

parameters to describe the kinematic and the force-deflection behavior of the related CM. By
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Figure 3.4: Fixed-guided flexible beam.

employing the same notations suggested in [1], the PRB parameters are indeed the charac-

teristic radius factor (γ) and the stiffness coefficient (KΘ). Within the PRB approximation,

the length of the links (i.e. l1 and l2, see Fig. 3.4(c)) and, consequently, the horizontal, ap,

and vertical, bp, positions of the PRB model end point can be defined as function of γ. The
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following relations hold:

l1 =
(1− γ)l

2
l2 = γl (3.2)

ap = l(1− γ(1− cos(Θ))) bp = γl sin(Θ) (3.3)

In parallel, the stiffness of the torsional springs can be expressed considering the half-beam

and the related PRB model (see Fig. 3.4(d)). The PRB angle Θ is proportional (with K

constant) to the torque at the revolute joint, given by T = Ftγl/2. Combining the equations,

the force can be expressed as follows:

Ft =
2KΘ

γl
(3.4)

where Ft is the transverse component of the vertical force F . Moreover, by considering also

the nondimensional transverse load index [1], defined as:

αt =

√
Ftl2

EJzz
(3.5)

where E is the Young’s modulus of the beam material and Jzz is the moment of inertia of

the beam cross section with respect to the z-axis (perpendicular to the motion plane), the

force-deflection relationships may be written as:

α2
t =

Ftl
2

EJzz
= KΘΘ (3.6)

where KΘ is, as previously introduced, the stiffness coefficient. Then, by means of Eqs. 3.4

and 3.6, the constant spring stiffness of each revolute joint of the half-PRB model can be

formulated as:

K = γKΘ
EJzz

2l
(3.7)

Equation 3.7 has to be adapted in order to comply with the complete PRB model, that

involves two revolute pairs and a total length equal to l. In this case, Eq. 3.6 becomes
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α2
t = 2KΘΘ, and the final stiffness value is given by:

K = 2γKΘ
EJzz
l

= τ
EJzz
l

(3.8)

where τ = 2γKΘ. The numerical values of γ and KΘ and, as a consequence, of τ can

be assessed via optimization techniques aiming at providing PRB models which can fulfill

pre-defined functional requirements (#Step 1 in Fig. 3.2).

For what concerns the determination of the flexure geometric parameters starting from

a PRB model (i.e. #Step 2 in Fig. 3.2), some additional assumptions are needed, namely

cross section type and flexure material properties. Let one then consider a slender beam with

rectangular cross section, as the one shown in Fig. 3.4(e). The moment of inertia of the beam

cross section is:

Jzz =
BH3

12
(3.9)

As previously said, it is also necessary to consider the maximum stress associated to the load

condition. Considering bending as the predominant loading mode, the associated stress is

given by:

σmax =
Mmax

W
=

6Mmax

BH2
(3.10)

where W is the cross section’s modulus, whereas B and H are, respectively, the cross sec-

tion’s width and thickness. Since the maximum bending moment |Mmax| is placed, for this

configuration, at each beam end, Eq. 3.10 evolves in:

σmax =
3Fac
BH2

(3.11)

In order to avoid failures, the maximum stress σmax shall be always lower than the material

yield strength, σs. In conclusion, the cross section width, B, and thickness, H , can be de-

termined by solving a system of equations, in which the reference PRB model is completely
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defined. The first system includes Eqs. 3.8 and 3.9:K = τ EJzz
l

Jzz = BH3

12

→ BH3 =
12Kl

Eτ
(3.12)

The final system also considers Eq. 3.11, having selected a maximum stress σmax and having

imposed ap = ac (namely, the compliant system to be designed replicates the reference PRB

model). The cross section dimensions are finally determined as follows:BH3 = 12Kl
Eτ

σmax = 3Fap
BH2

→

H = 4klσmax
EτFap

B = 3Fap
σmaxH2

(3.13)

3.3.2. Spatial Case Study

Note that the above-mentioned theoretical procedure is quite straightforward, although

based on simplifying assumptions (e.g. bending stress only) and only applicable to the design

of slender beam-like segments with uniform cross section subjected to planar deformations.

For what concerns flexures subjected to out-of-plane deformations (i.e. spatial motions), the

above-mentioned theoretical procedure is rather complex [113], and a numerical approach

seems preferable. Let consider a slender flexible beam subjected to out-of-plane loads, as the

one shown in Fig. 3.5(a). In this particular situation, the compliant system can be approxi-

mate via a 2S PRB model consisting of three links connected by two spring-loaded S pairs, as

shown in Fig. 3.5(b). Considering the rectangular cross section depicted in Fig. 3.4(e), along

with a reference frame in which the principal beam axis is directed in the y-direction, the

x-axis and the z-axis respectively defining the direction of the higher (primary) and smaller

(secondary) beam cross-section moments of inertia (also shown in Fig. 3.4(e)), the values for

the PRB rotational stiffness can be formulated as follows [114, 115]:

Kθx = µ
EJxx
l

= µ
EHB3

12l
(3.14)

Kθy = ε
2G(Jxx + Jzz)

l
= ε

2GBH(B2 +H2)

12l
= Kθx

ε

µ

2G(B2 +H2)

EB2
(3.15)

Kθz = τ
EJzz
l

= τ
EBH3

12l
= Kθx

τ

µ

H2

B2
(3.16)
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(a) CM model.

Sph. Loaded joint

Fix. Joint

Sph. Loaded joint

(b) Related 2S PRB.

Figure 3.5: Cantilever flexible beam subjected to out-of-plane loads.

where Kθx , Kθy and Kθz are, respectively, the stiffness related to the rotations around the

x-, y-, and z-axis, Jxx is the moment of inertia of the beam cross section along x-axis, G is

the shear modulus of the material and µ, ε and τ are specific constants. In practice, in case

of planar CMs, the PRB model derivation process requires the determination of the revolute

joints location and a single stiffness coefficient, Kθz = K, for each rotational pair (or, in

turn, the values of γ and τ , see Eqs. 3.2, 3.3 and 3.8). On the other hand, when dealing with

spatial CMs and spring-loaded spherical joints, two additional rotational stiffness, namely

Kθx , Kθy shall be determined (or, in turn, the values of µ and ε, see Eqs. 3.14, 3.15 and

3.16). In such case, the numerical optimization procedure presented hereafter can provide

reliable results in an efficient manner.

3.4. #Step 1: Quick Evaluation of Design Alternatives

To allow the spatial motion of the platform, the adopted PRB system (shown in Fig. 3.6(a))

is formed by four equally-spaced spherical joints, each having a generalized rotational spring

mounted in parallel. These four springs are characterized by the same rotational stiffness

constants (Kθx , Kθy and Kθz ). Such PRB model replicates the behavior of a simple spatial

system composed of two flexures with rectangular cross section, defined by width B = 15

mm and thickness H = 5 mm, as shown in Fig. 3.6(b). The relation between these mechan-
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Figure 3.6: Spatial four-bar linkage: adopted PRB model.

ical systems is expressed by Eqs. 3.14, 3.15 and 3.16 with γ = 0.86, µ = 0.47, ε = 0.12

and τ = 2.40 (details about the PRB derivation process can be found in the published paper

related to this work, [116]). #Step 1 allows to quickly evaluate several design alternatives

resorting to a computationally efficient PRB model.

3.4.1. Performance Indexes Estimation

Three measures of the CM performance, evaluated on its PRB implementation, will be

evaluated hereafter, namely:

• trajectory tracking of an ideal path;

• required actuation torque (measured on the motor shaft);

• maximum bending stress arising in the flexures.

Regarding the first measure, since parallel leaf-spring flexures are employed to replace

a prismatic joint acting on the platform (along x-direction), the kinematic performance of

the PRB model may be evaluated by computing the actual platform trajectory (green body
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in Fig. 3.6) and comparing it to a pure platform translation (ideal motion) that would be

obtained by the rigid slider-crank mechanism in Fig 3.1(a). The tracking error elin between

the platform’s trajectory and the ideal profile (i.e. a straight line along the x-axis) can be

evaluated in a series of Q simulation steps as follows:

elin(Kθx , Kθy , Kθz , d) = elin(l, B,H, d) =

√√√√ 1

Q

Q∑
i=1

[
2∑
j=1

∣∣xPj ∣∣
]2

i

(3.17)

where xP1 and xP2 are the displacements of the platform along y-direction and z-direction. As

highlighted in Eq. 3.17, the trajectory tracking error is function of the flexure distance, d (see

Fig. 3.6), along with the parameters Kθx , Kθy and Kθz . These latter stiffness values are, in

turn, function of the flexure geometry via the parameters l, B and H (see Eqs. 3.14, 3.15 and

3.16), which respectively represent flexure length and cross section’s width and thickness. As

for the actuation torque, it can be directly measured within the MBD environment, whereas

the maximum bending stress (which is mainly function of the beam thickness H [115]), is

computed via Eq. 3.11 by neglecting the out-of-plane deformations.

3.4.2. Design Tool - Framework B

The multi-DOFs nature of the system as well as the use of dedicated CAD files suggests

the implementation of the framework B in Tab. 2.3, which exploits Matlab as a multi-tasks

programming environment and RecurDyn as a MBD solver. Based on the schematic depicted

in Fig. 3.7, the framework is guided by Matlab and leverages on RecurDyn’s interfacing ca-

pabilities, which allow the use of batch simulation execution: RecurDyn’s solver can be run

in batch mode through a set of command files set up by Matlab. In particular, the following

file types are employed in the framework:

• Scenario File (MBD Scenario.rss), that contains information about the simulation to

be performed (e.g. the simulation type and the number of simulation steps);

• RecurDyn Design Parameter Files, which provide all the parametric data to be set in

the model. In particular, the mathematical relations between the parameters are stored

in MBD Parameters.rdp, whereas the numerical values of l, B, H and d are stored into

MBD Input.rpv, that can be created and modified via a Matlab function.
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Figure 3.7: Framework B used for the #Step 1.

To generate the performance maps, the full factorial criterion and the radial basis function

(Multi-Quadratic) technique are respectively adopted for the DOE+RSM phase [98, 117].

With 2-dimensional design domains, the full factorial provides an uniform grid of points over

the plane, being the samples given by every possible combination of the design variables. To

complete the DOE+RSM, the following operations are performed through a sequence of

Matlab functions:

• Creation of the design space and sampling points

• For k = 1 to Number of Sampling Points

– Update the RecurDyn design parameter file (MBD Input.rpv) with the k-th set of

values;

– Batch RecurDyn execution of the k-th PRB model

– Extraction of the k-th results set from MBD Output.req and evaluation of elin,k,

Mk and σmax,k;

end

• Data fitting
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Figure 3.8: Performance maps for the evaluation of design alternatives.
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3.4.3. Numerical Results - Performance Maps

Several DOE+RSM investigations have been performed by considering different vari-

ables intervals. As an example, the following discrete intervals are hereinafter examined

to build the performance maps: l ∈ {300, 350, 400, 450, 500} mm, d ∈ {9, 49, 59, 69, 79}

mm, B ∈ {10, 12, 15, 18, 25} mm, and H ∈ {3, 4, 5, 6, 7} mm. To consider the quasi-static

behavior of the system, a rotation at low constant velocity is enforced along the rotation

axis of the crank (0.25 rev/s) for each simulation in RecurDyn. The obtained results are

reported in Fig. 3.8, allowing to easily evaluate a design solution that is suited to the func-

tional requirements of the system in terms of the above-mentioned quantities, i.e. maximum

and RMS trajectory tracking and actuation torques, and maximum stress. As a result of the

study, the selected PRB model is characterized by a length l = 500 mm, a width B = 18

mm, a thickness H = 4 mm, and a distance d = 59 mm. Note that, as visible in Figs. 3.8(a)

and 3.8(b), the trajectory tracking performance reasonably increases as the flexures’ length, l,

and width, B, increase. However, in order to limit the maximum and RMS actuation torques,

the beam width should not exceed a certain threshold (as visible in Figs. 3.8(c) and 3.8(d)).

Regarding the maximum stress, the adopted spring steel is characterized by a Young’s Mod-

ulus E = 207000 MPa, a Poisson’s ratio, ν = 0.33, and a yield strength σs = 950 MPa.

Therefore, by adopting a flexure thickness H = 4 mm, the designer is enforcing a safety

coefficient slightly higher than 2, as visible in Fig. 3.8(e).

3.5. #Step 2: Shape Optimization

To obtain the hybrid flexure design (see Fig. 3.1(b)) based on the PRB model evaluated

in the previous section, no general analytic solution is available. Systems composed of both

flexible and rigid parts may be analyzed via the RecurDyn software, as suggested in Tab. 2.3

(framework G). In this case, the problem can be tackled resorting to a software tool (i.e. Re-

curDyn) enabling an effective search of a CM optimal design starting from a parametric

CAD/CAE model. Essentially, such tool aims at solving a shape optimization problem, hav-

ing defined an objective function, lower and upper bounds for a set of design variables in the

CAE environment, and a set of constraints.
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Table 3.2: Hybrid flexures - additional parameters.

Dimension Value

lβ 500 mm
lγ 45 mm
Bβ 7 mm
Bγ Bα − 2Bβ

3.5.1. Problem Formulation

In the final design, custom shaped hybrid flexures are optimized to replicate the spatial

load-displacement behavior of the optimal PRB model. Practically speaking, by imposing

an input motion to the crank, the platform’s trajectory (shown in red in Fig. 3.1(b)) can be

used as a performance index in the optimization. The overview of the adopted hybrid flexure

is shown in Fig. 3.9, together with the user-defined set of geometric dimensions setup within

the parametric CAD. The design variables considered in the study are lα, Bα and Hα. The

remaining principal dimensions are reported in Tab. 3.2. The optimization problem, whose

objective function will be hereafter referred to as trajectory error, etra, can be formulated as

follows:

Min. etra(lα, Bα, Hα) =

√√√√ 1

Q

Q∑
i=1

[
3∑
j=1

∣∣∣∣xPj − xCjl

∣∣∣∣+
3∑

k=1

|θPk − θCk |

]2

i

(3.18)

Constraint→ σ < σs (3.19)

where xCj , xPj , θCk , θPk are, respectively, translations and rotations (defined, for instance,

via the Euler angles convention) of the chosen reference frame fixed to the platform (green

body in Fig. 3.6) of the CM (superscript C) and of the PRB (superscript P), and l is the

flexure length (as in Fig. 3.6). The objective function etra, namely the RMS value of the

trajectory error, is then evaluated through a series ofQ simulation steps from the undeformed

configuration to the maximum imposed deflection. The constraint expressed by Eq. 3.19

allows to respect the yield strength (950 MPa) during the optimization study.
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3.5.2. Design Tool - Framework G

Given that the explicit relationship between design variables (lα, Bα and Hα) and the

objective function (etra) is not available, similarly to the performance study carried out in

Sec. 3.4, the DOE+RSM technique is used in #Step 2 to investigate the design domain. A

deterministic algorithm is then used to find the minimum, namely the optimal hybrid flexure

configuration.

Concerning the software architecture, important changes have to be made when flexible

members are included in the analysis. With reference to Tab. 2.3, custom shaped 3D flexures

can be managed via the software framework G. In #Step 1, parametrization and calculations

are performed by leveraging only on Matlab functions managing the MBD environment

(i.e. framework B in Tab. 2.3). In case of CM shape optimization two additional tools are

needed, as visible in the conceptual schematic in Fig. 3.10(a). This is due to the necessity to

vary the flexure parametric dimensions at each iteration of the DOE, to regenerate the actual

3D shapes of the beams and, consequently, to re-mesh them, to re-set their boundary condi-

tions (connections with other bodies of the system) and to specify material properties. Auto-

matic execution of re-meshing and boundary condition definition are not natively provided

by RecurDyn, but it is possible to implement them by leveraging on ProcessNet, a macro de-

velopment toolkit integrated within RecurDyn and based on C# programming language. A

ProcessNet script, executing re-meshing, boundary conditions re-settings and material prop-

erties definition, can be automatically run when RecurDyn is launched in batch mode. By

implementing the framework G, the procedure involves Matlab (main environment), PTC

Creo, RecurDyn and ProcessNet.

As mentioned, the need to change the flexure geometry at every iteration involves the use
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public void  RegisterFunction ()

BEAM_CM.FileImport(@"…\BEAM_CM.x_t");

IGeometry BEAM_CM_geom = BEAM_CM.GetEntity(“BEAM_CM") as IGeometry;

IJointFixed jointFixed1 = model.CreateJointFixed("FixedJoint1", BEAM_CM, PLATFORM_BODY, refFrame1);

IJointFixed jointFixed2 = model.CreateJointFixed("FixedJoint2", BEAM_CM, FRAME_BODY, refFrame2);

IMesherAssistModeling assistModeling2 = meshMode2.AssistModeling(BEAM_CM_geom);

meshOption2.MeshType = MeshType.MeshType_Solid8;

meshOption2.MaxElementSize = 2;

meshOption2.MinElementSize = 1;

Material.Density.Value = 0.00000775;

Material.DampingRatio.Value = 0.0001;

Material.YoungsModulus.Value = 207000;

Material.PoissonsRatio.Value = 0.33;

modelDocument.ModelProperty.DynamicAnalysisProperty.SimulationStep.Value = 100;

modelDocument.ModelProperty.DynamicAnalysisProperty.SimulationTime.Value = 4;

modelDocument.Analysis(AnalysisMode.Dynamic);

modelDocument.DeleteEntity(BEAM_CM);

modelDocument.FileSave(szFilename1, true);

System.Diagnostics.Process.Start(@…\RecurDyn_killer.bat");
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(b) Main sections of the ProcessNet script.

Figure 3.10: Framework G used for the #Step 2.

of a parametric CAD (i.e. PTC Creo) that can be controlled by using a text file, in which geo-

metrical features and dimension parameters are defined. Such text file is modified by Matlab

and overwritten for every k-th sampling of the design space. In this way, the k-th geometry

is automatically generated and exported. Then, a specific ProcessNet script updates the Re-

curDyn model with the k-th CAD file. The structure of the ProcessNet script considered in

this routine is represented in Fig. 3.10(b), which provides an overview of the main sections

of the code. The complete code is reported in Appendix A. For a detailed explanation of

each command/action, the interested reader may refer to the ProcessNet manual [118].

To obtain the mathematical expression of the objective function via the DOE+RSM (full
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Table 3.3: Optimal hybrid flexure - numerical solution.

Design Var. Range Opt. Value

lα ∈ [100, 250] mm 200 mm
Bα ∈ [18, 24] mm 19 mm
Hα ∈ [3.5, 6] mm 4 mm

factorial criterion combined with radial basis function), the following operations are per-

formed through a sequence of Matlab functions:

• Creation of the design space and sampling points

• For k = 1 to Number of Sampling Points

– Batch PTC Creo execution to create the k-th hybrid flexure geometry;

– Batch RecurDyn execution of the k-th CM configuration. The model is managed

by a ProcessNet Script (launched automatically from RecurDyn), that imports

the k-th flexible model and enforces joints, mesh (first order brick elements) and

material properties definition. Subsequently, the k-th simulation starts upon the

execution of a ProcessNet command.

– Extraction of the k-th results set from Results.req and evaluation of etra,k;

end

• Data fitting

A deterministic algorithm within Matlab (fmincon routine) is then used to find the min-

imum of the response surface (etra) and thus identify the optimum (i.e. lα,opt, Bα,opt and

Hα,opt). Since the definition of an initial value (from which the algorithm starts the opti-

mum search) is usually required, in order to avoid local minima, several initial values are

tested. Those values are selected among the discrete minima found during the DOE step, as

suggested in [98].

3.5.3. Numerical Results - Optimal Configuration

The results of the shape optimization process are plotted in Fig. 3.11(a), where the func-

tion etra(lα, Bα, Hα) and its minimum value are shown over the explored design space (by
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Figure 3.10: Optimal solution and comparison between PRB model and CM behaviors.

60

50

40

30

20
-60

-50

-40

-30

-20

-10

-50

-45

-40

-35

-30

-60

-55

0y
-d

is
p

la
ce

m
e

n
t 

[m
m

]

Final Platform’s Trajectory

PRBM Platform’s Trajectory

y

z-displacement [mm] x-displacement [mm]

CM Platform’s Trajectory

Final Platform’s Trajectory (Scaled View)

Figure 3.11: Final platform trajectory.

fixing lα = 200 mm for visualization purposes). The optimal solution, summarized in

Tab. 3.3, represents the final flexure geometry. To confirm the accuracy of the procedure a

comparison between the optimized PRB model and the final CM is presented in Figs. 3.11(b),

3.11(c) and 3.11(d), which provide the position profiles of the two systems (PRB model and

hybrid flexure CM) along the x-, y-, and z-axis. Also, the path followed by the platform in

the 3D space is provided in Fig. 3.11. As desired, the final CM design closely follows the

behavior established by the PRB model, also confirming that the choice of the PRB topology

is acceptable for the considered application. After the shape optimization routine, a final
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simulation test has been performed to verify the maximum Von Mises stress and the actua-

tion torque at the motor shaft, that are, respectively, 580 MPa, 590 Nmm (maximum torque)

and 397 Nmm (RMS torque). These values are compatible with the design constraints.

3.6. Summary

In this chapter, a general method for optimizing the shape of spatial CMs with nonstan-

dard custom geometry has been presented. The compliant system under investigation is a

spatial slider-crank mechanism connected to a compliant four-bar linkage. The overall pro-

cedure consists of two main steps, each of them addressed via a specific design tool (selected

on the basis of Tab. 2.3). In #Step 1 several design alternatives are evaluated on a parametric

PRB model so as to produce several performance maps and select the most promising so-

lution with a limited computational cost. Then, in #Step 2, the final CM design (composed

of two hybrid flexures) is derived, confirming the practical usability of the proposed multi-

software frameworks. For what concerns computational times, every CM model is solved in

RecurDyn in 200 s (mean value, having defined ≈ 2500 first order brick elements for each

flexure), whereas the PRB models are simulated in 0.35 s, further highlighting the advantage

of the PRB method in the initial design step.
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Chapter 4

Design of a Linear Constant Force Compliant Crank
Mechanism

4.1. Constant Force Compliant Mechanisms

Constant force CMs provide a reaction force at the output port that does not change for a

specific range of input motion [2]. These devices are useful in a large variety of applications,

including mechatronic systems designed to interact with humans or to manipulate sensitive

parts/interfaces. Ready examples are grippers [119], surgical tools [11], robot end-effectors

[120], energy absorption devices [121], small-scale electrical contacts [122] and exercise

machines [123].

One of the reasons is that, adopting a CM, a constant force can be exerted on the ma-

nipulated part with an open loop work-cycle [124], removing the need of force sensing and

control. Nowadays, due to the rapid development of advanced manipulation technologies, a

precise force regulation becomes essential, especially when dealing with flexible and/or deli-

cate objects that are particularly sensitive to the change of the contact force [125]. Generally,

robots operating in unknown environments are equipped with an adequate controller [126]

and specific sensors [127, 128]. By implementing a closed loop algorithm the manipulation

force can be maintained at a precise value [129]. However, the presence of the sensory ap-

paratus may be inappropriate in harsh industrial environments or in small-scale applications

[11], where clearances must be accurately defined. In this context, the implementation of a

well designed CM would simplify the overall system, even thought the force level would be

constrained to a single value [125, 130, 131] or to a limited range of values [11, 57, 120].

Focusing on the recent literature in the field of linear constant force CMs, the intrinsic

zero-stiffness condition can be obtained resorting to two different methods [2]. The first

method combines a typical positive stiffness structures, i.e. a system characterized by a direct

proportionality between the applied force and the resulted displacement, with a negative
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(a) Prototype taken from [137].
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(b) Principle schematic of the system.

Figure 4.1: Constant force mechanism in robot end-effector.

stiffness structure, usually identified by a bi-stable beam [130, 132–135]. The second method

refers to a single member, whose shape has to be accurately designed with the specific aim

of providing a constant response. The result is a monolithic compliant solution (see [136] as

an example), usually characterized by a larger available stroke. However, the complex shape

of the resulting structure leads to possible machining error, which can affect the output force.

For a more detailed review about constant force CMs, the interested reader may refer to [2].

4.2. System Description and Aim of the Study

In the following sections, the design of a linear monolithic long-stroke constant force CM

to be used in robot end-effectors is reported. A possible application of the proposed scalable

device is shown in Fig. 4.1, which refers to the work described in [62]. Four parallel springs

are connected to a movable interface, while a linear guide ensures a purely translational

motion during the operations. Following the results described in [1, 124], in this work, the

compliant slider-crank concept is used as a module for the spring system shown in Fig. 4.1(b)

due to its simplicity and to evident advantages from the analysis/design standpoint, such as

the possibility to employ the PRB approximation. An additional eccentricity (i.e. an offset

between the slider axis and the crank pin) is added to connect the robot interface with the

tool/gripper interface, as shown in Fig. 4.1(b).
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Figure 4.2: Multi-Step design flow.

4.3. Overview of the Design Approach

The CM design is divided in two main steps, as visible in Fig. 4.2. With reference to

previous works in the literature dealing with the crank-slider concept [1, 124, 138], the PRB

method is adopted in #Step 1a to synthesize the optimal lumped compliance configuration

with good accuracy and reduced computational costs. In particular, the kinetostatic behavior

of the 1-DOF rigid mechanism is studied with the principle of virtual work. A simple an-

alytical model describing the output force at the slider is derived and subsequently used to

optimize the PRB characteristic parameters (length of links and stiffness coefficients) with

the aim of achieving a constant output force, equal to 1.5 N, over a large range of linear

displacements.

Then, by replacing the spring-loaded revolute joints with equivalent SLFPs [1, 15, 139],

in #Step 1b the lumped compliance constant force mechanism is obtained, as shown in

Fig. 4.2. The system is tested with 1D and 3D FEA, resulting in a constant force-deflection

behavior available for a limited displacement range (in the order of few millimeters). To

reduce the stress concentration areas and thus extend the available operative stroke of the

mechanism, a shape optimization is performed in #Step 2 by taking the sub-optimal lumped

compliance configuration as a reference. The new embodiment, depicted in Fig. 4.2, consists

of a flexible beam with variable thickness along the main axis. Continuously variable thick-

ness beams cannot be easily modeled via analytical formulations, especially when subjected
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to very large deflections. Consequently, the explicit relationship between input variables

and the objective function (i.e. the force error with respect of the target force, 1.5 N) is not

available.

The behavior of the proposed beam-based CM can be analyzed resorting to the CBCM.

Optimization studies may benefit from its high computational efficiency. Given that at the

current state-of-the-art the CBCM implementation is limited to cases involving constant

cross sections along the beam’s axis (see Tab. 2.2), variable cross sections, as the ones consid-

ered in the current application, may be analyzed by dividing the beam into several elements

and by modeling each element as a constant cross section segment. However, following this

method, the benefits in terms of computational efficiency would be limited by the large num-

ber of elements (and parameters) required in order to approximate linearly variable segments.

Based on these considerations, 1D FEA (beam elements with tapered cross sections) have

been chosen as an attempt to compromise between result accuracy and computational costs

[38, 71]. In fact, compared to 3D FEA, 1D FEA requires limited computational resources

(and time) to generate, mesh and solve a complex-shaped structure. The design space is

parametrized by variables describing the shape and size of the beam-based CM. The best

variable set is determined via a Matlab GA. In line with the lumped compliance design, the

optimal solution has been verified through a 3D FEA simulation.

Finally, physical prototypes are fabricated via 3D printing technology and tested by

means of a special purpose test rig. The aim of the test is to verify the constant behavior

of the mechanisms as well as the absence of structural failures in the whole design stroke.

4.4. #Step 1a: Optimal PRB Model Derivation

The analysis/design is focused on a single module of the spring system shown in Fig. 4.1(b).

A PRB model is used to determine the stiffness of the SLFPs on the basis of a pre-defined

target output force, so that the system behaves as a nonlinear compression spring. To com-

ply with the difference in terms of diameter between the robot interface and the tool/gripper

interface, the eccentric slider-crank mechanism is adopted as architecture. In particular,

xin = 100 mm and e = 60 mm (i.e. the required encumbrance, see Fig. 4.1(b)) are consid-

ered as design requirements.
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Figure 4.3: Eccentric crank-slider mechanism - PRB model.

4.4.1. Eccentric Crank-Slider Mechanism: Analytical PRB Model

This section reports the analytical formulation of the output force provided by the slider

with an imposed linear displacement. Referring to Fig. 4.3(a), r1 and r2 are the crank and the

connecting rod lengths respectively, e is the mechanism eccentricity, xin is the initial slider

position, θ1 and θ3 are the crank angle and connecting rod angular position. The torques due

to the presence of each spring-loaded revolute joint are given by:

Ti = −KiΨi (4.1)

where Ki, i = 1, 2, 3 are the spring stiffness values, and Ψ1, Ψ2, Ψ3 are defined as:

Ψ1 = θ1 − θ10 (4.2)

Ψ2 = θ2 − θ20 = θ3 − θ30 − θ1 + θ10 (4.3)

Ψ3 = θ3 − θ30 (4.4)

being θ10, θ20 and θ30 the initial joint angles, measured in the undeflected state. Consider-

ing ideal frictionless joints, the static behavior of the system, i.e. the vertical output force

transmitted by the slider for an imposed displacement ∆x, may be derived by applying the
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principle of virtual work. From a practical standpoint, θ1 is used as kinematic input instead

of ∆x in this work. By defining α = arctan(e/x), where x is the slider position along the

working direction with respect to the fixed coordinate system, and resorting to the superpo-

sition principle, the total output force may be written as:

F = F1 + F2 + F3 (4.5)

where

F1 = K1Ψ1cos(θ3)
/
r1sin(θ3 − θ1) (4.6)

F2 = K2Ψ2cos(α)
/
r1sin(θ1 − α) (4.7)

F3 = K3Ψ3cos(θ1)
/

(x sin(θ1)− e cos(θ1)) (4.8)

are the contributes related to each single rotational spring. To calculate F for different slider

positions (imposed by increasing θ1), the values of e, r1, x and θ3 as well as K1, K2 and K3

are needed, as visible in Eqs. 4.6, 4.7 and 4.8. Resorting to the mechanism position analysis,

the following relations hold:

r2 =
√
x2
in + e2 − r1 (4.9)

ϑ3 = π + arcsin
(e− r1 sin(θ1)

r2

)
(4.10)

x = r1 cos(θ1)− r2 cos(θ3) (4.11)

By considering θ1 as the Lagrangian coordinate and (xin, e) as known parameters (design

inputs), and by taking into account Eqs. 4.9 and 4.10, the remaining set of variables is com-

posed of r1, θ10, K1, K2 and K3. Note that (xin, e) may be added to the design variables

vector whenever no strict requirements in terms of encumbrance are specified.
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4.4.2. Problem Formulation

To obtain the constant force behavior, the optimization problem can be formulated as

follows:

Min. eF = eF (r1, θ10, K1, K2, K3) =
√

1
Q

∑Q
i=1 [Fi − Ft]2 (4.12)

where eF represents the RMS value of the error, namely the difference between the target

force Ft = 1.5 N and the one derived by means of Eq. 4.5, evaluated for a single design

candidate in a series of Q simulation steps.

4.4.3. Design Tool - Framework A

From a practical standpoint, the following aspects shall be taken into consideration:

• a simple mathematical formulation correlating the design variables vector (r1, θ10, K1,

K2, K3) and the objective function (eF ) is available (see Secs. 4.4.1 and 4.4.2);

• no information about the geometry of the parts (i.e. special CAD files) are needed to

complete the study;

• being all the dynamics effects (e.g. inertias, dampings, frictions, etc.) neglected in

the current scenario, to perform the kinetostatic behavioral analysis no special purpose

solvers are required.

As suggested by Tab. 2.3, the study can be easily conducted in Matlab by means of the

framework A. As shown in Fig. 4.4, the optimization is managed in the main environment,

whereas the behavioral model is stored in an external function. A computationally efficient

gradient-based algorithm (fmnincon routine) is used to solve the problem. For each of the

candidate,a for loop structure with a total number of Q increments on the Lagrangian co-

ordinate θ1 allows to analyze the whole linear stroke, ∆x = 35 mm, and thus compute the

corresponding value of eF . See Appendix B for Matlab code used in this work.

4.4.4. Numerical Results - Optimal Configuration

The optimal variable set is summarized in Tab. 4.1. The PRB model is characterized by

a RMS error equal to 0.01 N with respect to the ideal constant force solution. To validate the
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Table 4.1: Optimal PRB model - characteristic parameters.

Design Var. Range Opt. Value

r1 [e/5, (9/10)e] mm 54.00 mm

θ10

[
arcsin

(
e√

e2+x2in

)
, π/2

]
rad 0.54 rad

K1 [0, 100] Nmm/rad 28.30 Nmm/rad
K2 [0, 100] Nmm/rad 35.38 Nmm/rad
K3 [0, 100] Nmm/rad 35.38 Nmm/rad

results, a MBD simulation is performed in RecurDyn. The model, depicted in Fig. 4.5(a),

is analyzed by imposing a linear displacement ∆x = 35 mm to the slider and by measuring

the resulting reaction force during the motion. To exclude dynamics effects, a quasi-null

material density is set for the rigid bodies and a total simulation time of 4 s is imposed.

Figure 4.5(b) shows the performance of the optimal PRB configuration and, in particular,

the comparison between the results achieved with the theoretical model and the final MBD

simulation in RecurDyn. The plot highlights a precise matching between the data, being the

discrepancy quantifiable with a RMS error equal to 0.0035 N.

4.5. #Step 1b: Flexural Hinges Dimensioning

4.5.1. Theoretical Formulation and Practical Procedure

From the values of Ki, i = 1, 2, 3 listed in Tab. 4.1, the dimensions of the SLFPs can be

derived. Supposing the SLFPs are straight beam hinges with rectangular cross section, the
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Figure 4.5: PRB behavioral analysis.

following relation holds [1]:

Ki =
EJi
Li

(4.13)

where E is the Young’s modulus, Li is the SLFP length, and Ji = bihi
3/12 is the moment of

inertia of the cross sectional area with respect to the barycentric axis (parallel to the width),

bi and hi being the hinge width and thickness respectively. By adopting ABS plastic as the

CM material, Young’s modulus, Poisson’s ratio and flexural yield strength are respectively

equal to E = 1800 MPa, ν = 0.4 and σs = 42.5 MPa. Starting from the optimal PRB model

and assuming bending as the predominant behavior, the SLFPs dimensions are determined

by considering that:
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Table 4.2: Flexure dimensions.

Dimension bi hi Li

Joint K1 2.72 mm 0.91 mm 10.80 mm
Joint K2 2.88 mm 0.96 mm 10.80 mm
Joint K3 2.88 mm 0.96 mm 10.80 mm

• to behave as a SLFP, Li, i = 1, 2, 3 must be significantly lower than the length of the

shortest rigid body (i.e. the crank);

• to minimize out-of-plane deflections, bi, i = 1, 2, 3 must be larger than hi, i = 1, 2, 3.

On the basis of these considerations and similarly to previous literature dealing with

SLFP design [15, 139], Li = r1/5 = 10.8 mm and bi = 3hi, i = 1, 2, 3 are imposed in the

model. Therefore, by knowing Ki, E and Li, the value of hi can be obtained as:

hi =
4

√
4LiKi

E
(4.14)

The value of bi is then easily calculated as bi = hi/3, i = 1, 2, 3. Each PRB rigid pair is

located at the center of the related SLFP [1].

4.5.2. Final Dimensions and FEA Validation

To compute the hinges dimensions, the above-discussed formulas are added to the main

file of the framework A (after the PRB optimization section). The obtained values are re-

ported in Tab. 4.2, whereas Fig. 4.6(a) shows the CAD model of the lumped compliance

configuration. The CM is numerically analyzed via 1D and 3D nonlinear (NLGEOM op-

tion) FEA simulations in ANSYS. Regarding the FE models, Beam 188 elements are used

for the 1D analysis, whereas a free Hexa-dominant mesh has been defined (0.5 mm as max

element size on the SLFPs) for the 3D analysis. As for the boundary conditions, the base

of the system is fixed to the ground and the upper interface is guided along the x-axis and

constrained along the y-axis, as visible in Fig. 4.6(a).

The FEA results are shown in Figs. 4.6(b), 4.6(c) and 4.6(d), where both the force-

deflection characteristic and the 1D and 3D stress fields are reported. As clearly depicted

in Fig. 4.6(b), both the 1D and 3D FEA outputs show good agreement with the behavior pre-
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Figure 4.6: Optimal results on the small-length configuration.

dicted by the PRB model, confirming the validity of the previous assumption (Li = r1/5 =

10.8 mm, i = 1, 2, 3). However, the assessed stress field limits the use of the lumped com-

pliance configuration to the deflection range 0 < ∆x < 4 mm. Accepting a RMS force error

of 0.01 N, the constant reaction force becomes available after an initial deflection equalling

1 mm, thus resulting in an useful available stroke equalling 3 mm.
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4.6. #Step 2: FEA Shape Optimization

This section describes a shape optimization process aiming at extending the operative

stroke ∆x of the constant force CM, limited to about 3 mm in the previous design. The new

CM solution is composed of a series of variable thickness straight segments. The idea is to

smooth the shape of the lumped compliance solution where the cross section undergoes re-

markable variations (see Fig. 4.2). As previously said, continuously variable thickness beams

cannot be easily modeled via analytical approaches. Consequently, 1D FEA is selected from

Tab. 2.2 as the most efficient way to analyze the nonlinear beam-based CM. ANSYS is

adopted as solver to accurately model the single parametric flexible beam (see Tab. 2.3). The

script-based approach allows to avoid the graphical user interface if the simulations are run

in batch mode.

4.6.1. Parametric FE Model

To keep consistency with the lumped CM and its related PRB system, the extremities of

each SLFP are taken as fixed reference points for the new design (blue points Si, i = 1, .., 6

in Fig. 4.7). In fact, as specified in Sec. 4.5.1, each revolute joint is located in the center of

the related SLFP. The coordinates of the fixed reference points are listed in Tab. 4.3. To vary

the shape of the overall CM, a set of two movable design points (red points pj , j = 1, .., 10

in Fig. 4.7) is added to every interval defined by two fixed reference points. From a practical

standpoint, these intervals (S1 − S2, S2 − S3, S3 − S4, S4 − S5 and S5 − S6) correspond to

the SLPFs and to the rigid bodies in the lumped compliance configuration (see Fig. 4.6(a)).

Each design (red) point identifies a parametric rectangular cross section and it is free to move

in the interval between two consecutive fixed reference (blue) points.

The overall CM is a chain of straight segments, whose extremities are defined by the

design points pj , j = 1, .., 10, except for the initial and final segments, which are also con-

nected to S1 and S6 respectively (see Fig. 4.7). Each design point, pj , is located at a precise

distance from the closest inferior fixed reference point, Si. Taking as an example the design

point p3 (detailed view in Fig. 4.7), its position in the work-space can vary in the interval
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Table 4.3: Reference points coordinates.

Reference Point x-coordinate y-coordinate

S1 0.00 mm 0.00 mm
S2 8.37 mm 6.36 mm
S3 43.64 mm 31.78 mm
S4 52.85 mm 37.41 mm
S5 99.10 mm 60.75 mm
S6 108.74 mm 65.61 mm
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Figure 4.7: Schematic showing the correlation between the mechanisms.

S2-S3 as follows:

p3 →

xp3 = xS2 + a3(xS3 − xS2)

yp3 = yS2 + a3(yS3 − yS2)
(4.15)

where a3 is the position coefficient taken into account during the optimization, along with

the cross section width B3 and thickness t3 related to the point p3. Hence, in the segment

defined between p3 and p4, the thickness is linearly varied from t3 to t4.

Concerning the FE model, all the straight segments are discretized with Beam 188 ele-

ments (quadratic shape functions), that allow tapered cross sections. The first node, located

in S1) is fixed to the ground, whereas the upper node, located in S6, is guided by a remote

displacement ∆x = 20 mm along the x-axis and constrained along the y-axis.
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4.6.2. Problem Formulation

By imposing an equal out-of-plane width B for all the segments of the beam-based CM,

the design variables vector is be composed of 23 entities:

• aj , j = 1, .., 10 (design point location);

• tj , j = 1, .., 10 (thickness at pj);

• T1, T6 (thickness at CM’s extremities, i.e. S1 and S6);

• B; (CM’s out-of-plane width).

The optimization problem can be formalized as follows:

Min. eF =
√

1
r

∑r
i=1 [FFEAi − Ft]

2 (4.16)

Constraint→ σ < σs = 42.5MPa (4.17)

where FFEA is the output force evaluated for the single FE model by imposing the displace-

ment ∆x = 20 mm in a series of r = 10 simulation substeps. The constraint expressed in

Eq. 4.17 is used to respect the material yield strength.

4.6.3. Design Tool - Framework D

Differently from the #Step 1a, the absence of an explicit correlation between the objective

function and the related design variables suggests the use of DOE or GA [98]. By adopting

a full factorial discretization in the design space, the DOE method can provide an excellent

approximation of the objective function, allowing the use of a gradient-based algorithm for

the subsequent research of the optimum (see Chap. 3). However, a large number of design

variables (such as 23) leads to a remarkable increment in the total amount of simulations

to be performed. For instance, by considering only 3 levels, namely 3 possible values for

each design variable within its range, the total number of simulations would be equal to

nsim = 323 = 9.4 1010. Therefore, to limit the total computational cost, the optimization is

solved by using the Matlab GA, particularly suitable for studies characterized by a very large

number of design variables [38].
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In the adopted software architecture (i.e. framework D from Tab. 2.3), Matlab man-

ages the optimization process and the data exchange activities whereas ANSYS APDL per-

forms the behavioral analysis. Following the schematic depicted in Fig. 4.8, for each can-

didate Matlab defines the design variables vector, which is then stored into an external

FEA Input.txt file and imported in ANSYS environment to update the FE model. ANSYS is

automatically run by Matlab and provides, as a response of the nonlinear FEA simulation,

the force-deflection behavior of the CM as well as the maximum Von Mises stress. These

outputs are stored into another external FEA Output.txt file, which is then automatically im-

ported and processed by Matlab, allowing the evaluation of the error eF . The GA is run

with 100 generations and a population size of 30 candidates for each generation. The Matlab

solver stops either when the average relative change in the value of eF is less than or equal

to the function tolerance (10−2 N) or if the maximum number of iterations exceeds 3000. To

avoid issues due to possible unconverged FEA simulations, a Matlab subroutine capable of

recognizing the lack of results from ANSYS has been setup. In particular, the subroutine

returns a result of eF = 5 N for all the unconverged candidates. Consequently, once the

optimization study is concluded, the resulted configuration is a feasible solution. However,

the accuracy of its behavior, defined by eF , depends on the allowed range of variation of

each design variable as well as on the algorithm settings. An APDL code that simulates the

optimal configuration can be found in Appendix C.
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Table 4.4: Optimal beam-based CM parameters.

Design Variable Range Opt. Value

a1 [0.125, 0.500] 0.285
a2 [0.625, 0.875] 0.803
a3 [0.500, 0.625] 0.582
a4 [0.750, 0.875] 0.851
a5 [0.125, 0.375] 0.254
a6 [0.625, 0.875] 0.842
a7 [0.375, 0.625] 0.578
a8 [0.750, 0.875] 0.798
a9 [0.125, 0.375] 0.231
a10 [0.750, 0.875] 0.765
t1 [0.850, 1.100] mm 0.997 mm
t2 [0.850, 1.100] mm 0.929 mm
t3 [1.200, 1.400] mm 1.356 mm
t4 [1.200, 1.400] mm 1.339 mm
t5 [0.800, 1.150] mm 0.996 mm
t6 [0.800, 1.150] mm 0.920 mm
t7 [1.300, 1.600] mm 1.440 mm
t8 [1.300, 1.600] mm 1.434 mm
t9 [0.900, 1.100] mm 0.968 mm
t10 [0.900, 1.100] mm 1.046 mm
Tin [0.850, 1.100] mm 0.927 mm
Tfin [0.900, 1.100] mm 0.947 mm
B [5.000, 8.000] mm 5.138 mm

4.6.4. Numerical Results - Optimal Configuration and Final Tests

The code has been run several times to test the repeatability of the framework. The GA

always converged to a vector whose differences have been registered on the third decimal

number, after 82±3 iterations. Overall, these differences do not affect the fabrication process

if 3D printing is employed. Imposed range of variation for each design parameter, evaluated

after a limited number of initial FEA simulations, and optimal values are summarized in

Tab. 4.4. Figure 4.9(a) shows the optimal configurations of the proposed beam-based CM.

Similarly to the previous lumped compliance solution, a 3D FEA simulation is performed

on the optimal CM. The force-deflection characteristic and the maximum registered Von

Mises stresses along the stroke are plotted in Fig. 4.9(b). It is possible to see the matching

between the desired target force (i.e. 1.5 N), the behavior obtained by means of the automatic

design procedure (i.e. FEA-1D) and the one resulted from the last simulations (i.e. FEA-3D).
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Figure 4.9: Optimal results on the beam-based configuration.

The overall deflection range is equal to 18 mm. With reference to Fig. 4.9(b), accepting a

RMS force error (computed by means of Eq. 4.17) equal to 0.075 N, the constant force

behavior is achieved in the range 4 < ∆x < 18 mm (i.e. overall useful stroke of 14 mm).

Therefore, considering the lumped compliance mechanism as the reference solution, namely

the behavior reported in Fig. 4.6, the available useful stroke is increased of an amount equal

to 467% (i.e. from 3 mm to 14 mm).

It must be remarked that the optimal beam-based design can be modified in case of a dif-

ferent target force by simply changing the material, by scaling the out-of-plane thickness B,
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or by employing systems composed of several beams placed in parallel spring configuration

(as in Fig. 4.1).

4.7. Experimental Validation

To confirm the modeled results experimentally, the synthesized constant force CMs have

been fabricated by employing a 3D printer capable of extruding ABS with a layer height of

0.100 mm. The specimens have been printed by aligning the 3D printer’s z-axis with the

out-of-plane width (i.e. B) direction. Experimental tests have been carried out on the CMs

resorting to a purposely designed test rig. The test aims at verifying output force of the pro-

totypes and the absence of failures for a deflection range equal to ∆x = 4 mm for the lumped

compliance solution, and to ∆x = 18 mm for the distributed compliance solution. The exper-

imental setup, shown in Fig. 4.10, is equipped with a linear motor (LinMot PS02-23x80-F),

a 1-axis load cell (characterized by a structural stiffness of 242.000 N/mm, an overall weight

of 11 g and an accuracy of 0.1 N), and a series of 3D printed connection members. Two spec-

imens are tested simultaneously, as shown in Fig. 4.10, in order to maintain the symmetry

and to exclude undesired disturbance forces (e.g. friction or other out-of-axis contributes).

Moreover, the considered configuration (a couple of parallel linear springs) ensures to keep

consistency with the schematic depicted in Fig. 4.1. The specimens are fixed to the ground

from one end and guided in a linear motion by means of the LinMot slider on the other end.

The 1-axis load cell is mounted on the LinMot slider and provides the overall reaction force.

A LabView interface is used to acquire the data from the LinMot integrated linear encoder

and the load cell. With the aim of investigating the static behavior of the system, a velocity

of 2 mm/s has been assigned to the slider, neglecting the major dynamic contributes.

As depicted in Fig. 4.11, which reports the contribute of a single beam for all the tested

configurations, the experimental results show good agreement with the behavior predicted

during the previous design steps. The differences between FEA and experimental force-

displacement relationships are mainly due to:

• manufacturing errors in the deposition of the filament, causing uncertainties in the

thickness effectively obtained along the path of the beams;

• technical limits of the 3D printer, such as the layer height equal to 0.100 mm, that does
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Figure 4.10: Experimental setup.

not allow to respect the optimal values of B, i.e. the one reported in Tab. 4.4;

• nonideal linear guides, affected by friction (see Fig. 4.10).

Different from the FEA results, the lumped compliance solution failed at ∆x = 6.5 mm,

and the straight segments solution presented irreversible structural damages at ∆x = 22 mm.

4.8. Summary

This chapter describes a computationally efficient two-steps procedure for the structural

optimization of CMs, by combining analytical and numerical modeling techniques. The

method can be applied to a large number of beam-based CMs, starting from their PRB coun-

terpart. Each of the design steps is implemented and solved using an integrated design tool

69



0 5 10 15 20 25 30 35

x
 [mm]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
 [

N
]

1D FEA

3D FEA

Experimental

(a) Small-length configuration.

0 5 10 15 20 25 30 35

x
 [mm]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
 [

N
]

1D FEA

3D FEA

Experimental

(b) Beam-based configuration.

Figure 4.11: Experimental force-deflection relationships.

(selected among the configurations in Tab. 2.3). The method is tested on a monolithic con-

stant force CM based on the slider-crank architecture. In #Step 1, a fast optimization routine

is performed on the equivalent PRB model to synthesize three SLFPs. FEA results verified

the validity of the solution and highlighted a critical stress condition after a rather limited

linear displacement. To overcome this drawback, in #Step 2, the CM’s shape is optimized by

combining the Matlab GA and the ANSYS solver. The resulted configuration is composed

of a series of variable thickness flexible segments. The stress concentrations have been dras-

tically reduced, as proved by a remarkable increment of the available stroke, approximately
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about 467%.

As for the computational efficiency, the PRB optimization process takes 25 to be com-

pleted, whereas a single batch FEA simulation is solved in 3 − 4 s with 250 1D elements

distributed along the beam.

The designed CMs have been produced by means of 3D printing technologies and ex-

perimentally verified. The acquired data show good consistency with the numerical results,

confirming the suitability of the proposed multi-step design approach.
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Chapter 5

Design of Special-Purpose Torsional Compliant Springs

5.1. Compliant Mechanisms with Nonlinear Prescribed Load-Displacement
Behavior

Many special-purpose CMs present, for a certain working condition, a defined nonlinear

relation between the deflection and the applied force/torque. Examples include constant

force CMs (see Sec. 4.1), constant torque CMs [103] (i.e. the rotational counterpart of the

constant force CMs), quadratic CMs [4] and bistable CMs [140]. Several applications benefit

from the use of nonlinear CMs. In particular:

• constant force CMs may reduce the number of sensors and the complexity of the con-

trol law in mechatronic systems (see Chap. 4);

• constant torque CMs are useful for rehabilitative and assisting devices [103], medi-

cal tools [11], aerospace devices [141] and counterbalancing systems in robotic arms

[142];

• quadratic CMs are commonly implemented in antagonistic VSAs to obtain a decou-

pled regulation of joint position and stiffness [4, 143–145];

• bistable CMs can be used as compensation modules in statically balanced mechanisms

[2, 146].

Each application requires a prescribed load-displacement behavior. Therefore, the CM

configuration must be tailored to match unique requirements. Apart from bistable CMs,

which usually exploit the post-buckling behavior of straight beams [2, 146–149], the design

of nonlinear CMs is typically achieved via the use of self and mutual contacts [67, 68, 97,

150, 151] (see also Chap. 6) or curvilinear/spline beams [38, 106]. The former solution leads

to an increment in the number of parts, whereas the latter allows monolithic designs. Spline
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beams offer greater effective lengths that enable larger deformations (and lower stresses)

within relatively compact footprints. Several works exploited the benefits of spline beams

in shape optimization [11, 71, 103, 152, 153]. Given that theoretical approaches, such as

elliptic integrals [1], are quite knotty for the modeling of spline beams, the optimal design

can be addressed through FEA (see Tab. 2.2).

5.2. Aim of the Study

This chapter reports a procedure for the shape optimization of special-purpose torsional

CMs exploiting spline beams. Two case studies are discussed and analyzed among the pre-

vious classification, namely a quadratic torsional CM to be used in antagonistic VSAs and a

statically balanced CM (hereinafter referred as to zero torque CM, as explained in Sec. 5.4).

Before dealing with the compliant parts, a general overview of the mechanical systems is

given to clarify the design requirements and the overall working principles. Afterwards, a

single design procedure is reported, allowing the definition of the final torsional CMs. Lastly,

physical prototypes of both torsional springs are manufactured and their performance tested

with two rotational setups.

5.3. #Case Study I - Quadratic Compliant Mechanisms in Variable Stiff-
ness Actuators

5.3.1. Antagonistic Variable Stiffness Actuators

As for the first case study, a VSA is considered, namely a mechatronic system capable

of actively varying the compliance of a joint [144]. Numerous configurations of VSAs have

been developed in the last two decades to address specific demands in terms of functionality

and performance (overviews are reported in [154, 155]). These electromechanical devices

are implemented in many applications, resulting particularly useful in entertainment robots

[156], rehabilitative prostheses [157] and for increasing the safety in robotic arms that inter-

act with humans in a work environment [158].

In fact, industrial robots are usually realized extremely fast and stiff in order to increase

positioning accuracy, thus leveraging on mechanical structures characterized by very rigid

links and aiming at minimizing the joint elasticity. Such design paradigms, especially in
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industrial applications, lead to devices that may be rather unsafe in case of physical interac-

tion with humans. As proven by [158], an effective way to enhance the safety in robotics

arms is the introduction of a programmable compliance in the mechanical chain, which can

be actively varied during the robot functioning. Such functional feature can be achieved by

implementing VSAs on the robot joints [4, 143, 154, 159–161]. The aim of the VSAs is

to increase safety while maintaining at the same time an adequate level of accuracy. This

type of solution allows to change both mechanical stiffness and angular position of the robot

joints. A conceptual schematic of a VSA with antagonistic architecture [4, 143] is depicted

in Fig. 5.1: a moving link, i.e the actuator output, is controlled, both in terms of angular

position and rotational stiffness, via two separate electrical motors and a pair of nonlinear

CTEs [144, 145]. If such nonlinear behavior is achieved via a quadratic torque-deflection

relationship, both design and control may be simplified, as properly explained in Sec. 5.3.3.

By actively acting on the CTEs pre-load, the stiffness of the joint can be varied in both static

and dynamic conditions. Referring to such concept, plenty of different design solutions have

been developed in the literature [143, 160, 162, 163]. The VSA principle as well as the guide-

lines for the selection of the appropriate CTE profile (i.e. the torque deflection relationship)

are described in the following sections.

5.3.2. Embodiment Design of the Actuator

In this section the embodiment design of a VSA, which implements the antagonistic

principle depicted in Fig. 5.1, is introduced and described. The VSA CAD drawings are
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Figure 5.2: VSA CAD overview.

shown in Fig. 5.2. By observing the exploded view of Fig. 5.2(b), the main parts of the

device can be listed as follows:

• a Moving Link, fixed to the Central Member and to the Main Shaft, which is supported

at both extremities by a couple of Support Bearings;

• a set of two DC Motors, equipped with an optical encoder and a gearbox with reduction

ratio of 23:1;
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• a pair of conic transmissions (i.e. Motor Gear and Shaft Gear) with ratio 3.5:1, that

allows to arrange the DC Motors perpendicular to the VSA Main Shaft and, as a con-

sequence, to reduce the lateral encumbrance of the VSA;

• a pair of identical Nonlinear CTEs, connecting the Moving Link to each Shaft Gear

and, as a consequence, to the DC Motors;

• a set of additional bearings (i.e. Flange Bearings) for supporting and decoupling each

Shaft Gear from the Main Shaft. In this way, DC Motors can deflect the Nonlinear

CTEs without directly acting on the Moving Link;

• a Base Link (composed of Bottom Support and two Lateral Supports) that acts as a

common frame for the DC Motors and the joint.

At last, Fig. 5.2(c) shows the Nonlinear CTE. As said, this planar spring is designed to

match a pre-defined quadratic torque-deflection behavior. In particular, spline beams are

used to realize the connection between the inner and the outer rings, being Rin = 10 mm

and Rext = 41 mm input parameters, defined by the physical encumbrances. The inner rings

are rigidly guided by the DC Motors, whereas the outer rings are fixed to the Moving Link.

5.3.3. Actuator Theoretical Static Model

As previously stated, the antagonistic VSA employs two independent motors, mounted

on a single fixed frame, that act on a pair of nonlinear CTEs, as shown in Fig. 5.1. These

CTEs are connected to the moving link, namely the VSA output member. The torques Mα

and Mβ applied by the motors are given by:

Mα = τα(εα) +�
��

Im θ̈α Mβ = τβ(εβ) +�
��Im θ̈β (5.1)

where

εα = θα − θ εβ = θβ + θ (5.2)

having defined Im as the motors’ inertia (assumed identical for both motors), τα = τα(εα) =

τα(θ, θα) and τβ = τβ(εβ) = τβ(θ, θβ) as the coupling torques between the moving link
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and the actuators generated by the CTEs deformations, θα and θβ as the motors’ positions, θ

as the angular position of the moving link, εα and εβ as the angular deflection of the CTEs.

Since a static model is now being considered, as shown in Eq. 5.1, the angular accelerations

θ̈α and θ̈β are null. The total torque MJ applied to the joint by the two motors is then:

MJ = Mβ −Mα = τβ − τα (5.3)

and the joint stiffness is given by:

k =
∂MJ

∂θ
(5.4)

If τα and τβ are chosen to be nonlinear functions of the angular deflections εα and εβ , both

joint position, θ, and stiffness, k, can be independently modulated via a precise control of

the motors’ angular positions, θα and θβ [164]. The joint stiffness profile, defined by Eq. 5.4

and its range of variation, [kmin, kmax], depend on the VSA technological implementation.

The only strict requirement for the CTEs is to provide a nonlinear characteristic τα =

τα(εα) (note that τα = τβ since identical CTEs are considered). The CTE’s torque-deflection

relationship, τα(εα), can be defined by ensuring some advantages for the VSA controller. It

is possible to prove that only if τα is designed to be a quadratic functions of εα, the joint stiff-

ness k is not related to the joint position θ. Consequently, k can be precisely modulated with

no actual information about the value of θ. Hence, practically speaking, a position sensor

on the moving link, schematized in Fig. 5.1 and implemented in [162, 165, 166], as well as

its cabling and interface can be avoided, allowing a more compact and simple design. The

stiffness can be controlled by knowing the values of θα and θβ from the motors’ integrated

encoders. Generally, the dependence of the joint stiffness from its position can be compen-

sated by control within its bandwidth [167]. However, a quadratic CTE enables the joint

stiffness to be independent from the joint position disregarding the controller bandwidth.

Therefore, the joint stiffness will be preserved also in case of abrupt change of the external

torque Me applied to the joint.

Let one then suppose that τα and τβ can be written as:

τα = a2ε
2
α + a1εα τβ = a2ε

2
β + a1εβ (5.5)

77



where the parameters a1, a2 are user-selected constants of the quadratic CTE’s torque-

deflection profile. Then, recalling all the previous equations, the following relations hold

for the total torque and for the joint stiffness:

MJ = [a2(θα + θβ) + a1][θβ − θα + 2θ] (5.6)

k =
∂MJ

∂θ
= 2[a2(θα + θβ) + a1] (5.7)

Note that, in static conditions, i.e. when θ(t) = const, MJ is equal and opposite to the

total external loadMe, if present. From Eq. 5.7 the following concepts can be easily verified:

1. a nonlinear CTE is necessary for achieving stiffness modulation capabilities. In fact,

by employing a linear CTE (i.e. with stiffness coefficient a1, as in Eq. 5.5 if a2 = 0),

the resulting joint stiffness will always be constant, i.e. equal to k = 2a1;

2. if a quadratic CTE is selected, the joint stiffness can be varied by a suitable selection

of the actuators configuration, i.e. by changing θα and θβ , since k does not depend to

θ. This concept can be further demonstrated by considering an exponential profile for

the CTEs [167], i.e τα = a1e
εα − 1 and τβ = a1e

εβ − 1. In this case, the joint stiffness

can be expressed as k = a1e
εα + a1e

εβ = a1e
θα−θ + a1e

θβ+θ and thus a sensor that

provides the value of θ is required for control purpose.

From Eqs. 5.6 and 5.7, the equilibrium position of the moving link can be derived as:

θ =
1

2

(
θα − θβ +

MJ

a2(θα + θβ) + a1

)
=
θα − θβ

2
+
MJ

k
(5.8)

The first term in Eq. 5.8, i.e. (θα− θβ)/2, is the joint position in absence of an external load,

whereas the second term, i.e. MJ/k, describes the effect of the external load, highlighting

the decoupling of θ from k. On the basis of these considerations, a quadratic profile for the

CTEs is selected in this work for the VSA design.

5.3.4. CTE Reference Quadratic Behavior

In the current work the CTE torque-deflection relationship, described by a1 and a2 (see

Eq. 5.5), has been defined by considering:
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1. a variation in the actuator stiffness in the order of 1000 Nmm/rad between the mini-

mum (i.e. kmin) and the maximum (i.e. kmax) conditions (see Eq. 5.7);

2. a deflection range θα,β = [−0.26, 0.26] rad for the CTEs;

3. the selected material for the CTE, i.e. ABS plastic. Considering a layer height equal to

0.1 mm, the Young’s modulus, Poisson’s ratio and flexural yield strength adopted for

the current work are, respectively, Eb = 1800 MPa, νb = 0.4 and σs,b = 42.5 MPa.

The resulting coefficients are a1 = 630.25 Nmm/rad and a2 = 510.66 Nmm/rad2, allow-

ing a stiffness modulation in the range [726, 1795] Nmm/rad.

5.4. #Case Study II - Nonlinear Compensation Springs in Zero Torque
Compliant Mechanisms

5.4.1. Zero Torque Compliant Mechanisms

As the rotational version of the constant force CMs (described in Chap. 4), constant

torque CMs are devices that provide a near constant output torque for a certain range of an-

gular inputs [11, 71, 103, 152, 168, 169]. Different than the constant torque springs presented

in [170], the constant torque CMs are characterized by a single common axis of rotation be-

tween the input and output frames. Despite their stiffness is null for a definite range of

angular displacements, constant torque CMs require external actuation to deflect the flexible

members and to maintain the deformed state. In particular, employing the same terminol-

ogy of [89], the spring-back behavior can be avoided by designing hereby called zero torque

CMs, namely a special class of statically balanced mechanisms [88, 171–174] characterized

by a single pure rotational DOF. Referring to Fig. 5.3, a zero torque CM is composed of

two concentric rings, one fixed and one movable. If a pure rotation is applied to the mov-

able ring and other external disturbances (parasitic loads [25]) are neglected, the system will

react with a negligible torque and a null axis shift. However, differently from e.g. C-Flex

bearings [175], also referred to as tubular CAFP in [29], the zero torque CMs cannot sup-

port radial loads, unless a properly defined constraint set is provided to the rings (as it will

be shown in the following sections). Such devices can drastically reduce actuation effort,

allowing for smaller actuators [88]. Practically speaking, they combine the benefits of CMs
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Figure 5.3: Conceptual schematic of the zero torque CM.

with some benefits of conventional rigid mechanisms, namely absence of a preferential equi-

librium position and absence of undesired energy storage [89]. Due to their compactness and

scalability, zero torque CMs may be used as substitutes for traditional rotational joints in me-

chanical systems that need reduced part number or reduced friction. For instance, they may

be considered during the initial CM design phase when applying the rigid-body replacement

method [176]. Envisaged applications concern small manipulators, such as tendon driven

robotic fingers [25].

A zero torque CM can be realized by means of the stiffness compensation method [177,

178], i.e. by adding additional elements to store and release potential energy during the mo-

tion of the system, as shown in Fig. 5.3. The overall mechanism is then composed by positive

stiffness members (red springs in Fig. 5.3) and by negative stiffness members (blue springs
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in Fig. 5.3, hereinafter referred to as negators). Differently from the above-mentioned con-

stant force/torque CMs, the negators are pre-loaded and thus the stiffness compensation is

achieved without the initial force/torque offset. In fact, as shown in [148, 149], initially

straight beams behave as positive stiffness springs in the first range of deflections. In the

recent literature, plenty of architectures for statically balanced CMs employing the CAFP

concept have been presented [89–91]. Many of them achieve significant angular deflections

(see [89], where the null output is available for 1.4 rad of rotation), however, these mecha-

nisms are rarely implemented due to their large size. Moreover, the CAFP is subjected to an

axis shift during the deflection (as it will be shown in Chap. 6).

5.4.2. Design Configuration in Annular Domain

On the basis of the conceptual schematic reported in Fig. 5.3, a new design of an ex-

tremely compact zero torque CM, which can be used in small-scale applications that require

limited encumbrances, is reported. The proposed device, realized in an annular design do-

main, can be miniaturized to a large extent. Based on the results reported in [147, 179],

pinned-pinned pre-buckled beams are adopted as negators.

If the negators are equally spaced in the angular domain, defined by inner/outer ring

radii (Rin and Rext), their number, nN , can be arbitrarily selected while still preserving

equilibrium in the initial configuration and thus during assembly. Except for nN = 1, which

requires a central pin to constrain the translation along the x-axis, the equally spaced parallel

configurations ensure force and torque balancing in the initial state (θ = 0 rad). In practice,

the central pin is adopted also for nN = 2, as visible in Fig. 5.4, in order to avoid instability

along the vertical axis. To ensure compactness and avoid mutual contact between flexible

elements, the proposed device comprises a set of two negators and two connection spline

beams arranged in a parallel spring configuration. To achieve a complete balancing, the shape

and size of such spline beams are optimized via 1D FEA to match a pre-defined behavior,

obtained by reversing the negator’s characteristic in the positive plane.

To facilitate machining, Rin = 10 mm and Rext = 50 mm are considered in this work.

Much smaller designs necessitate the use of special tools/machines for manufacture. As for

the materials, polypropylene and 1095 spring steel are adopted for the spline beams and for

the negators respectively. The Young’s moduli are Eb = 1450 MPa and EN = 190000 MPa,
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the Poisson’s ratios are νb = 0.4 and νN = 0.33 whereas the yield strengths are σs,b = 50

MPa and σs,N = 950 MPa.

5.4.3. Analytical Modeling of Pinned-Pinned Pre-Buckled Beams

In this section, the behavior of a single pre-buckled beam in the annular domain is ana-

lyzed, as visible in the principle schematic of Fig. 5.5. The negator is simply a pinned-pinned

straight beam with a constant rectangular cross section along the main axis. Its geometry is

defined by length LN , width bN and thickness tN , as shown in Figs. 5.5(a) and 5.5(b). Ref-

erencing Fig. 5.5(b) as well as the theory reported in [147], the behavioral modeling of the

beam under axial loads beyond the buckling load, Fcr = π2ENJN/L
2
N , EN being the ma-

terial Young’s modulus and JN = bN t
3
N/12 the cross section’s moment of inertia, can be

solved in closed-form resulting in the following relations:
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f

LN
=
LN − a
LN

= 2

(
1− E(α)

K(α)

)
(5.9)

F

Fcr
=

4K(α)2

π2
(5.10)

δ

LN
=

sin(α/2)

K(α)
(5.11)

where f is the axial displacement of the movable pin, a = Rext−Rin is the distance between

the pins in the deformed configuration, δ is the maximum transversal displacement of the

beam, Mfmax is the maximum bending moment acting on the beam, and α is the end rotation

of the beam under load. The quadratic functions E(α) = π/2 − 0.1α2 and K(α) = π/2 +

0.1α2 are used in place of the complete elliptic integrals of the first and second kind [180]

to ensure the closed-form of the problem. By imposing a rotation θ to the inner ring (see
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Fig. 5.5(c)), the distance between the pins can be expressed as:

c =
√
c2
x + c2

y =

√
(a−Rin (cos(θ)− 1))2 +R2

in sin2(θ) (5.12)

By introducing Eq. 5.12 in Eq. 5.9 (where a becomes c), it is possible to derive the following

expression for α:

α = ±
√

5π

√
LN − c
3LN + c

= ±
√

5π

√√√√√ LN −
√

(a−Rin (cos(θ)− 1))2 +R2
in sin2(θ)

3LN +
√

(a−Rin (cos(θ)− 1))2 +R2
in sin2(θ)

(5.13)

Equation 5.13 can be substituted in K(α) and thus entered in Eq. 5.10 to find the following

solution for F :

F =
16ENINπ

2

(3LN + c)2
=

16ENINπ
2(

3LN +
√

(a−Rin (cos(θ)− 1))2 +R2
in sin2(θ)

)2 (5.14)

Referring to Fig. 5.5(d), the torque generated by the negator can be written as:

MN = FtRin = F cos(π/2− θ − β)Rin (5.15)

where

β = arctan

(
Rin sin(θ)

a+Rin −Rin cos(θ)

)
(5.16)

5.4.4. Negator Trend and Reference Behavior

To realize the negators in spring steel, it may be convenient to cut a commercial sheet

with a pre-defined size instead of trying to machine a precise thickness. In this work the

adopted strips are characterized by bN = 2.12 mm, tN = 0.26 mm and LN = a + f =

40 + 6.5 = 46.50 mm. The effect of the single negator for an imposed rotation θ = 0.7 rad

can be computed from Eq. 5.15 and then verified through 1D FEA in ANSYS.

To analyze pre-buckled beams starting from their initial undeformed state, a multi-step
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Figure 5.6: Negator Testing.

FEA simulation is needed: i) in the first load-step a displacement ∆x = f and a perturbation

force Fp are applied to the beam, as in Fig. 5.6(a), to obtain the pre-buckled state with a

limited number of numerical iterations (substeps); ii) in the second load-step, Fp is removed

and the central node is guided in a rotation θ. All the beams are meshed with Beam 188

elements (quadratic shape functions). MPC 184 rigid elements are used both to model the

rigid inner ring and, by setting Key-opt(1)=6, to create the revolute joint between the negator

and the inner ring (see Fig. 5.6(a)).

A comparison between analytical and FEA data, scaled on the basis of nN = 2, is re-

ported in Fig. 5.6(b). The following considerations can be made:

• the analytical and FEA results match very well, as visible in Fig. 5.6(b). The RMS
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error between the functions is equal to 0.05 Nmm;

• the load-deflection law shows a remarkable loss in linearity for θ > 0.28 rad.

Therefore, the negators can be balanced with a linear positive stiffness structure, such as

the Archimedean Spiral [181–184], for θ ≤ 0.28 rad. The dimensional synthesis can be

performed with simple analytical models in a limited time. For Larger deflection range,

i.e. θ > 0.28 rad, a customized torsional spring may be the best option for achieving a

complete balancing. In the following, the behavior in Fig. 5.6(b) is reversed in the positive

plane and then used as reference for the shape optimization. Adopting the same notation as

in Eq. 5.5, the resulting coefficients are a1 = 75.32 Nmm/rad and a2 = −23.94 Nmm/rad2.

5.5. Overview of the Design Approach

The design of the nonlinear torsional CMs is addressed through 1D FEA shape optimiza-

tions. The aim is to design a spring that generates a desired nonlinear load-displacement

behavior, defined by coefficients a1 and a2 (see Secs. 5.3.4 and 5.4.4). Both the springs are

formed by inner and outer rings and employ spline beams as connection elements between

the rings. A system of nb flexible beams in parallel spring configuration facilitates the de-

signer since each spring experiences an equal part of the total applied load. Therefore, nb

can be selected according to encumbrances, material properties and torque magnitude. Con-

sidering a deflection range of [−0.26, 0.26] rad and the presence of physical limiters (see

Fig. 5.2(c)), the first CM is composed of four identical spline beams in order to avoid con-

tacts between bodies. As for the second CM, the negators limit the available space, thus only

two spline beams are adopted for compensating the system in the range [0, 0.7] rad.

To limit the computational cost, a single spline beam is modeled in FEA and the results

of each simulation are then scaled on the basis of nb = 4 and nb = 2 in the first and second

case study respectively.

During the optimization, each spring candidate is subjected to the same angular displace-

ment (equivalent to the specified angular range). The simulations are conducted in ANSYS

(framework D), as indicated in Tab. 2.3, due the absence of rigid parts and/or particular dy-

namic conditions. In line with Sec. 4.6, to solve optimization problems with a large number

of design variables (see Sec. 5.6), a Matlab GA and a parametric ANSYS APDL script are
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linked together. Given as input a desired torque-deflection law, the framework will output an

appropriate CM configuration. Details about the optimization flowchart and the convergence

criteria can be found in Sec. 4.6.3.

5.6. General Problem Formulation

Referring to Fig. 5.7, the neutral axis of the flexible beams is defined by a cubic spline

[71] and by a set of four interpolation (red) points, pi, i = 1, ..4), in addition to the ex-

treme (black) points pin and pext, placed on the inner (Rin) and outer (Rext) rigid rings. The

number of interpolation points has been selected after a series of preliminary design studies,

aimed at finding the simplest configuration that matches the functional requirements for the

applications.

The shape optimization is performed by varying the position of the control points and the

cross section’s size. Therefore, by adopting a rectangular constant cross section along the

path of the beams, the total number of design variables is 12:

• rpi , i = 1, .., 4 (parametric points radius);

• ϕpi , i = 1, .., 4 (parametric points angle);

• ϕpin , ϕpext (extreme points angle);

• bb and tb (beam’s cross section dimensions).
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Figure 5.8: Graphical representation of the error evaluation principle.

Therefore, the optimization problem is defined as follows:

Min. eM =
√

1
r

∑r
i=1 [MFEAi −Mti ]

2 (5.17)

Constraint→ σ < σs (5.18)

where eM is the RMS value of the error between the single FEA response (i.e. MFEA)

and target behavior (i.e. Mt, defined by coefficients a1 and a2), computed in a series of

r = 10 simulation substeps. Instead of evaluating the error over the entire load-displacement

function, the behaviors are compared in r discrete points, as shown in Fig. 5.8. The constraint

on the maximum stress is added to the algorithm to exclude all the candidates that exceed the

yield strength during the simulation. The GA is run with 100 generations and a population

size of 30 candidates for each generation. The Matlab solver stops either when the average

relative change in the value of eM is less than or equal to the function tolerance (10−4 Nmm)

or if the maximum number of iterations exceeds 3000. Regarding the FE model, BSPLIN

command is used to define the geometry, which is then discretized by Beam 188 elements as

shown in Fig. 5.7. The beam is fully constrained at one node (the upper extremity, i.e. pext)

and guided in a pure rotation thanks to a rigid body element (MPC 184) between the the

lower extremity, pin, and a master node placed in the center of the spring. See Appendix D

for APDL code used in this work.
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5.7. Numerical Results - Optimal Configurations

The GA converged after 96 ± 2 and 90 ± 4 iterations in the first and second case study

respectively. Allowed range of variation for each design variable and optimal values are sum-

marized in Tab. 5.1. Figure 5.9 shows the FEA stress fields on the deformed shape of both

the torsional CMs. The optimal torque-deflection relationships are shown in Figs. 5.10(a)

and 5.10(b), where the matching with the reference behaviors can be easily verified. With

reference to Eq. 5.18, the final configurations are affected by a RMS error equal to 2.16

Nmm and 0.21 Nmm. This variance is justified by the evident difference in the torque levels

reached in the CMs (200 Nmm vs 40 Nmm).

The behaviors can be scaled with respect to EbJb/Lb, where J = bbt
3
b/12 and Lb repre-

sents the length of each spline beam.

5.8. Experimental Validations

Physical prototypes have been fabricated and tested to validate the predicted torque-

deflection behaviors. The CTE has been tested in dynamic conditions to underline the effect

of the material damping and thus facilitate the development of a proper controller for the

overall VSA. Concerning the compensation spring, the experiment has been performed by

considering the overall zero torque CM to verify the accuracy of the designed part.

According to the calculations, the quadratic CTE is made of 3D printed ABS. To obtain

high precision, the compensation spring is manufactured by means of a 3-axis Haas DM1

CNC machine using polypropylene, whereas the negators are cut from a commercial spring

steel sheet (0.26 mm thick). The negator pins are realized by direct contact of the thin beam

against “V” sockets cut into the inner and outer rings.

5.8.1. #Case Study I - Dynamic Test

The optimal configuration is tested by means of the experimental setup shown in Fig. 5.11.

The system is composed of a Dynamixel MX-28AR servo, an ATI commercial torque sensor,

and a set of rigid 3D printed connection members. The CTE is fixed to the ATI sensor by

means of the red flange, whereas the inner ring is actuated by the servo thanks to the con-

nection (gray) member in Fig. 5.11. A LabView interface have been exploited to control the
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Figure 5.9: Optimal FE models.
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Table 5.1: Optimal dimensions of the nonlinear torsional CMs.

Design Variable Range Opt. Value

Quadratic CTE
bb [2.5, 7] mm 3.41 mm
tb [0.8, 5] mm 1.00 mm
rp1 [10.5, 13] mm 11.33 mm
rp2 [1.5, 4.5] mm 23.19 mm
rp3 [3, 7] mm 25.50 mm
rp4 [3, 6.5] mm 35.36 mm
ϕp1 [0.8, 2.5] rad 1.33 rad
ϕp2 [0.8, 2.5]rad 1.70 rad
ϕp3 [0.8, 2.5] rad 1.37 rad
ϕp4 [0.8, 2.5] rad 1.71 rad
ϕpin [0.8, 2.5] rad 1.27 rad
ϕpext [0.8, 2.5] rad 1.73 rad

Compensation Spring
bb [1, 10] mm 3.81 mm
tb [0.5, 5] mm 0.80 mm
rp1 [11, 21] mm 13.29 mm
rp2 [22, 26] mm 25.00 mm
rp3 [27, 32] mm 28.21 mm
rp4 [33, 49] mm 35.00 mm
ϕp1 [1, 2.5] rad 1.61 rad
ϕp2 [1, 2.5] rad 1.56 rad
ϕp3 [1, 2.5] rad 1.40 rad
ϕp4 [1, 2.5] rad 1.13 rad
ϕpin [1, 2.5] rad 1.77 rad
ϕpext [1, 2.5] rad 1.75 rad

servo position and to acquire the data (i.e. reaction torque) from the sensor. A sinusoidal mo-

tion is imposed with the aim of investigating the dynamic response of the nonlinear CTE in

the operative range. The results of the dynamic test are shown in Fig. 5.12, with an imposed

sinusoidal motion with frequency equaling, respectively, to 1 Hz and 5 Hz. The experimental

torque-deflection relationship is visible in Fig. 5.12(c), confirming the reliability of the FEA

output. The operative range, [−0.26, 0.26] rad, is reached without failure, which occurred

with an angular deflection of 0.32 rad. The differences between numerical and experimental

results are mainly due to error in the 3D printing process, causing imperfection on the beam’s

cross section (bb and tb). In addition, the dynamic conditions adopted for the experimental

characterization allow to register the effect related to the material damping, as it is clearly
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Figure 5.10: Performance of the optimal configurations.

highlighted in Fig. 5.12(c), where the hysteresis effect during loading/unloading cycles is

visible. This issue must be properly managed via the VSA controller during the functioning.

5.8.2. #Case Study II - Static Test

The accuracy of the machined parts can be seen in Fig. 5.13, which shows a complete

balancing of the zero torque CM for different angular positions in the range [0, 0.7] rad. The

CM is tested with the experimental setup shown in Fig. 5.14. The system is composed of a

worm-wheel gearset that acts on a shaft, an Omega TQ103-50 torque sensor and a US Dig-
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Figure 5.11: CTE physical prototype and experimental rotational setup.

ital E2-500-375-IE-H-D-B optical encoder. A shape coupling is used to connect the shaft

extremity with the inner ring. The outer ring is then fixed to the ground through a connec-

tion member (shown in blue in Fig. 5.14). The shaft is manually actuated and both angular

position and reaction torque are acquired using a LabView interface. The results of the test

are plotted in Fig. 5.15, together with the FEA output obtained from a final simulation on

the overall zero torque CM (see Appendix E for the APDL code). FEA and experimental

torque-deflection relationships show good agreement, confirming the accuracy of the pro-

posed modeling approach. The discrepancy between the data is due to:

• small defects in the machined parts;

• uncertainties in the material properties;

• the nonideal pins (contact between the negators and the “V” sockets);

• the user’s irregular action during the manual deflection of the inner ring.

5.9. Summary

This chapter presents a general efficient method for the design of torsional CMs charac-

terized by a pre-defined torque-deflection law. Spline beams are used as building blocks to

achieve large deflections and introduce the nonlinear behavior. According to Tab. 2.2, 1D

FEA is selected to solve compliant curved beams in a limited time. In line with Chap. 3, a
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Figure 5.12: CTE experimental results.
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Figure 5.15: Comparison between predicted and measured behaviors.

framework comprising Matlab and ANSYS APDL is developed to solve the shape optimiza-

tion problem.

To test the validity of the approach, two special-purpose torsional CMs are designed
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resorting to a GA linked to a parametric FE model. The first case study deals with a quadratic

CTE to be implemented in antagonistic VSAs, whereas the second case study focuses on the

synthesis of a nonlinear CM capable of balancing the torsional contributes of pre-buckled

straight beams.

After preliminary discussions about the design targets, the chapter reports the results

obtained via the framework D. Both the optimizations converged in a limited computational

time, being 1.5 s the mean value required to solve the single candidate (with 220 Beam 188

elements).

Physical prototypes of the torsional CMs are fabricated via 3D printing and CNC ma-

chining, and subsequently tested for validation purpose. Generally, the experimental results

confirm that the systems behave as expected. Concerning the CTE, the operative conditions

imposed for the test highlighted a nonnegligible hysteresis due to the material damping.
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Chapter 6

Performance Study of a Contact-Aided Cross-Axis
Flexural Pivot

6.1. Contact-Aided Pivots as Asymmetrical Compliant Transmission El-
ements

This chapter reports the study of a planar CAFP comprising an additional contact pair.

The proposed device may be useful for applications requiring a revolute joint that behaves

differently when deflecting clockwise/anti-clockwise. In particular, the presence of the con-

tact pair reduces the free length of one flexures, resulting in a considerable increment of

the overall joint stiffness. Note that, as specified in [185], referring to contact-aided CMs,

contacts can occur between:

1. different regions of the same flexible member (self-contact);

2. parts of different flexible members;

3. part(s) of a flexible member and rigid obstacle(s);

4. parts of different rigid bodies.

Depending on the application, contacts can be exploited for different purposes, such as to

limit the operating range of the system or to achieve a specific path of the end-effector by

guiding the deflection of the flexible members [68, 186]. In the current case study, the

adopted contact-aided solution falls within the third category.

The contact-aided CAFP concept may be employed to design bio-inspired robotic wrists

[188], namely joints mimicking the natural asymmetry of the human counterpart. The os-

teokinematics of the human wrist are limited to 2 DOFs, i.e. the ulnar-radial deviations and

the flexion-extension, respectively on the frontal and sagittal planes, as shown in Fig. 6.1(a)

(taken from [187]). It can be easily noted that the maximal ulnar-deviation (about 0.52 rad)
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Figure 6.1: Conceptual design of a bio-inspired wrist employing the contact-aided CAFP.

normally is double that of the radial deviation (about 0.26 rad). Also the flexion-extension

module presents a nonnegligible asymmetric motion (i.e. from 1.13−1.40 rad to 0.96−1.22

rad), as clearly highlighted in Fig. 6.1(a). Furthermore, as specified in [189] and experi-

mentally proved in [189], the human wrist exhibits evident differences in terms of passive

stiffness (i.e. the contribute due to the presence of the muscles in the forearm) between the

ulnar and radial deviation and the flexion and extension movements. The proposed contact-

aided CAFP offers the required asymmetry and ensures limited encumbrances, thus high
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adaptability to complex mechanical systems. An example of possible design embodiment of

a robotic wrist with the contact-aided CAFP is shown in Figs. 6.1(b) and 6.1(c).

By stepping back to the preliminary design step, this chapter aims at characterizing the

contact-aided pivot under different load cases. The study is performed with the CBCM

technique and the results are compared to the ones achieved via 1D FEA. Treating contact

analysis in CMs using the CBCM is a new contribution to the field and this work seeks to

prove its efficiency, both in terms of results accuracy and computational cost. Two practical

aspects guided this research:

• the CBCM closed-form formulation allows to accurately capture the large deflections

behavior of beam-based CMs (several examples may be found in [22]), resulting in a

computational efficiency higher than the 1D FEA, as it can be seen in Sec. 2.3;

• as a discretization-based approach, the CBCM can be combined with several penalty-

based contact algorithms [190]. The mathematical formulation is defined by the user

and additional features can be coded.

In the following sections, frameworks C and D (see Tab. 2.3) are combined for testing

the CAFP performances in terms of rotational stiffness, parasitic shift and maximum stress,

with different combinations of geometrical aspect ratios and contact extensions. Numerical

results are then compared to experiments for validation purpose. As an output of the para-

metric studies, different performance maps are produced to enable designers to visualize the

advantages/limits of the joint.

6.2. Pivot Geometrical Configurations

The proposed device, whose principle schematic is represented in Fig. 6.2, is composed

of two disconnected independent beams located in parallel planes. Such beams are mod-

eled with constant rectangular cross section in order to respect the CBCM requirements (see

Tab. 2.2). Therefore, the pivot geometry is completely defined by h, L, w1, w2, b and t,

namely the pivot height, the flexure length, the lower and upper width, and the cross sec-

tion dimensions. The semi-angle between flexures is given by the following trigonometric

formula:

β = arcsin((w1 + w2)/2L) (6.1)
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Figure 6.2: Contact-aided parametric CAFP.

According to Figs. 6.2(a) and 6.2(b), and to Eq. 6.1, given w1, the aspect ratio, defined as

AR = w2/w1, can be varied by assuming a constant angle (i.e. β = const) or a constant flex-

ure length (i.e. L = const). As evident from Fig. 6.2(b), the second option is characterized

by a minor variation range.

To include the contact in the analysis, a purposely shaped contact member [191], shown

in Figs. 6.2 and 6.3, is introduced at the base of the pivot. The primary effect is the increment

of the total CAFP stiffness. As visible in Figs. 6.3(a) and 6.3(b), a pure moment M applied

on the upper rigid body provides a deflection θ′
< θ whenever the contact is considered,

due to an evident reduction, in the order of Lc, of the flexure (Beam 2) free length. Also the

parasitic shift, identified by module s = PP0 and phase φ, as in Fig. 6.3, is influenced by the

presence of the contact.

6.3. Overview of the Performance Study

The behavior of the contact-aided pivot is investigated for different combinations of AR

(by considering β = const or L = const) and Lc. The DOE+RSM techniques are used to

map the design domain with a limited number of sampling points. Three load conditions are

tested:

1. a pure rotation applied to the output link;

2. a horizontal force applied to the output link;
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Figure 6.3: Effect of the contact member on the pivot deflection.

3. a rotation applied to a constrained point placed in the initial intersection between the

flexures (i.e. P0 in Fig. 6.3).

As a result of the parametric studies, different performance maps for joint stiffness, para-

sitic shift and maximum stress are provided. As previously introduced, the numerical data

are obtained via the frameworks C and D allowing the use of CBCM and 1D FEA. To en-

sure consistency between the data, the ANSYS penalty-based contact formulation is used

to analyze the interaction between the bodies in both the models. To validate the numerical

methods, two experimental setups are implemented, providing the rotational stiffness and

the parasitic shift respectively.

6.4. CBCM Formulation

6.4.1. Static Modeling Under Planar Loads

Following the work reported in [22], a CAFP’s flexure can be discretized intoN elements

of equal length Lel = L/N , each of them locally described by BCM equations [21, 94].

Assuming a constant rectangular cross section, defined by b and t, the load-deflection char-
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acteristic of the i-th element, shown in Fig. 6.4, is given by the following relations: fi
mi

 =

12 −6

−6 4
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where δxi, δyi and αi are the displacements and rotation of the i-th element at node i (referred

to the local i-th coordinate system, placed in the node i-1 as shown in Fig. 6.4(b)) normalized

with respect to Lel, and pi, fi and mi are the forces and moment normalized with respect to

EJ/L2
el and EJ/Lel, where E is the material Young’s modulus and J = bt3/12 is the cross

section moment of inertia. The first terms of Eqs. 6.2 and 6.3 define the linear approximation,

which is valid for describing the behavior of a cantilever beam under tip loads in case of

small deflections. The CAFP’s behavior is well captured in the middle range of deflections

by applying the BCM equations on the flexures, i.e. by using a unique element Lel = L for

each of the beams, as proved by [74, 76]. The modeling of two series of N elements for the

whole CAFP’s structure leads to a remarkable increment in the number of variables. With

reference to Fig. 6.4(a), being known any combination of three parameters among the global

external loads (i.e. Fx, Fy and M ) and the global displacements (i.e. ∆x, ∆y and θ), the total

number of variables to be determined for solving the CBCM problem is 12N+7, namely:

• δxi, δyi, αi, pi, fi, mi, for i = 1, .., 2N (12N entities);

• the remaining set containing the undefined global loads and/or displacements (3 enti-

ties);

• the coordinate of point A (xA, yA) and point B (xB, yB) with respect to the coordinate

systems ON+1xN+1yN+1 and O1x1y1 respectively (4 entities).

Therefore, to ensure a closed-form solution for the problem, 12N+7 relations between the
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Figure 6.4: CBCM - details about the model.

aforementioned variables have to be defined. Besides the 6N BCM load-deflection charac-

teristics (3 for each of the 2N CAFP elements), expressed by Eqs. 6.2 and 6.3, the remaining

relations refer to the local and global equilibrium and to the geometrical constraints.

By analyzing the free-body diagram proposed in Fig. 6.4(b), the following local static

equilibrium equations for the i-th element hold:
f ′i−1

p′i−1

m′i−1

 =


1 0 0

0 1 0

(1 + δxi) −δyi 1



fi

pi

mi

 (6.4)

where p′i−1, f ′i−1, m′i−1 are the loads applied by the (i-1)-th element to the i-th element at

node i-1, mathematically obtained by applying a vectorial rotation of αi−1 (i.e. the angle

between Oixiyi and Oi−1xi−1yi−1) to the tip loads pi−1, fi−1 and mi−1:
fi−1

pi−1

mi−1

 =


cosαi−1 − sinαi−1 0

sinαi−1 cosαi−1 0

0 0 1



f ′i−1

p′i−1

m′i−1

 (6.5)

By considering the angle θi =
∑i−1

1 αi betweenOixiyi andO1x1y1, the equilibrium equation
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of the i-th element can be re-written as follows:
f1

p1

mi−1

 =


cos θi − sin θi 0

sin θi cos θi 0

(1 + δxi) −δyi 1



fi

pi

mi

 i = 2, .., N (6.6)

and, for the second CAFP’s flexure, which refers to ON+1xN+1yN+1 as visible in Fig. 6.4(a),

the following relation holds:
fN+1

pN+1

mi−1

 =


cos θi − sin θi 0

sin θi cos θi 0

(1 + δxi) −δyi 1



fi

pi

mi

 i = N + 2, .., 2N (6.7)

Equations 6.6 and 6.7 form 6(N -1) relations of the CBCM system. The global equilibrium

can be defined by taking into account the external loads Fx, Fy and M applied at point C,

as well as the tip loads of the elements N and 2N , which can be expressed in the coordinate

system O1x1y1 and ON+1xN+1yN+1 respectively, being:
f ∗N

p∗N

m∗N

 =


f1

p1

mN

 =


cos θN − sin θN 0

sin θN cos θN 0

0 0 1



fN

pN

mN

 (6.8)


f ∗2N

p∗2N

m∗2N

 =


fN+1

pN+1

m2N

 =


cos θ2N − sin θ2N 0

sin θ2N cos θ2N 0

0 0 1



f2N

p2N

m2N

 (6.9)

Therefore, with reference to Fig. 6.5, by rotatingO1x1y1 andON+1xN+1yN+1 of−(π/2−β)

and −(π/2 + β) respectively, the following 3 equilibrium relations can be added to the
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Figure 6.5: CAFP global equilibrium.

system:Fx
Fy

 =
EJ

L2
el

sin β − cos β

cos β sin β

p1

f1

+
EJ

L2
el

− sin β − cos β

cos β − sin β

pN+1

fN+1

 (6.10)

M =
EJ

Lel
mN +

EJ

Lel
m2N + w2

EJ

L2
el

[
sin θ − cos θ

]− sin β − cos β

cos β − sin β

pN+1

fN+1

+

0.5w2

[
sin θ − cos θ

] [
−Fx −Fy

]
(6.11)

For both the pivot’s flexures, the overall displacements and rotation at the extremities A and

B (see Fig 6.4(a)) are related to the local entities δxi, δyi and αi. Consequently, 6 constraint

geometric equations must be enforced in the model. For the first flexure, which refers to

O1x1y1, it is possible to write:xB
yB

 =
N∑
i=1

cos θi − sin θi

sin θi cos θi

Lel(1 + δxi)

Lelδyi

 θN + αN = θ (6.12)
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and, for the second beam, by considering ON+1xN+1yN+1, becomes:xA
yA

 =
2N∑

i=N+1

cos θi − sin θi

sin θi cos θi

Lel(1 + δxi)

Lelδyi

 θ2N + α2N = θ (6.13)

Note that, for i=1 and i=N+1, the local reference coincides with the fixed coordinate sys-

tems,O1x1y1 andON+1xN+1yN+1, and thus θ1 = 0 and θN+1 = 0. The global displacements

of the output link during the pivot deflection, ∆x and ∆y, can be expressed with respect to

OXY by the following 2 equations:∆X

∆Y

 = 0.5

− sin β − cos β

cos β − sin β

xA
yA

+ 0.5

sin β − cos β

cos β sin β

xB
yB

 (6.14)

The last 2 equations of the model provide the geometric loop closure, written as:w1 + w2 cos θ

w2 sin θ

 = −

− sin β − cos β

cos β − sin β

xA
yA

+

sin β − cos β

cos β sin β

xB
yB

 (6.15)

The overall nonlinear system of 12N+7 equations can be numerically solved in Matlab en-

vironment resorting to a fsolve routine. The algorithm provides, as a result of the single

analysis, a matrix containing the values of the 12N+7 variables for a series of r incremental

substeps.

6.4.2. Contact Force

Focusing on Figs. 6.2 and 6.3, the interaction between the Beam 2 and the contact triangu-

lar member can be modeled at nodal level by two approaches. The first approach introduces

the effect by adding, on the basis of Lc, some additional constraints (i.e. δyi = 0) to the nodes

in the range [N + 1, N + round (N(Lc/L))], where “round” defines an operator that returns

the integer number of the argument. However, two main issues arise:

1. the bonded condition on those nodes does not allow to capture the real behavior of

the beam during the anti-clockwise deflection. In fact, in the contact area, the beam

should manifest a limited, but not negligible, curvature. Similar results can be achieved

by modeling a CAFP composed of flexures with different length, i.e. L1 = L and
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L2 = L− Lc;

2. the convergence is reached after a large number of numerical iterations and thus the

CBCM computational efficiency is considerably decreased.

The second approach operates on nodal forces instead of nodal displacements. Taking as a

reference the Augmented Lagrangian algorithm from the ANSYS contact library, the contact

normal and tangential forces, to be expressed in the CBCM nodes, can be written as follows:

fcn,i = −kδyi, i = N + 1, .., N + round (N(Lc/L)) (6.16)

fct,i = µfcn,i, i = N + 1, .., N + round (N(Lc/L)) (6.17)

where k is the contact stiffness and µ is the static friction coefficient. Note that Eq. 6.16 rep-

resents a simplified version of the penalty class algorithms [190], in which dynamic effects

(e.g. damping) are usually considered. The proposed contact presents a friction force that is

almost null during the CAFP deflection, and thus only Eq. 6.16 is considered in this work.

From a practical standpoint, for i = N + 1, .., N + round (N(Lc/L)), Eq. 6.2 becomes:

 fi
mi

 =

12 −6

−6 4

δyi
αi

+ pi

 6/5 −1/10

−1/10 2/15

δyi
αi

+

p2
i

−1/700 1/1400

1/1400 −11/6300

δyi
αi

+

fcn,i
0

 (6.18)

In the reported CBCM model, the element length, Lel, is constant along the beams and

thus round (N(Lc/L)) is used to ensure the stability of the problem, i.e. to select a precise

nodes interval to be considered for the contact. To achieve a major sensibility in the contact

analysis, i.e. to study slight variations of Lc, a fine mesh can be defined in the model by

choosing a high value forN or by adopting the unequal discretization method [65]. However,

both these solutions increase the computational cost, since:

• for the single candidate, the total number of equations to be solved is 12N +7 for each

of the r substeps;

• a variable element length Lel(i), i = 1, .., 2N would complicate the software structure
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because several additional subroutines (e.g. for loops and if-else statements) must be

added.

After a series of preliminary tests, in this work, N = 10 is used to ensure good accuracy and

high computational efficiency (note that in [22], large deflections without contact analysis

are solved with N = 4).

6.4.3. Performance Indexes Estimation

As previously introduced in Sec. 6.3, three different outputs are considered for the study

of the contact-aided CAFP, namely the pivot stiffness, parasitic shift and maximum stress

in deflected state. These performance indexes are derived from the aforementioned re-

sults matrix. Considering a quasi-linear torque deflection law for medium/large deflections

(i.e. θ < 0.883 rad), the stiffness, to be calculated in case of Fx = Fy = 0, can be directly

obtained as the mean value of K = ∂M(θ)/∂θ.

Then, by considering a rigid segment CP = C0P0 = (w2/2)/ tan β as in Fig. 6.3, the

position of point P with respect to a coordinate system placed in P0 and oriented as OXY ,

is given by:

xP = ∆x + ((w2/2)/ tan β) sin θ (6.19)

yP = ∆y − ((w2/2)/ tan β) cos θ − (w1/2)/(tan β) (6.20)

and thus the parasitic shift module and phase can be calculated as:

s =
√
x2
P + y2

P


φ = arctan

(
yP
xP

)
, xP > 0

φ = π/2, xP = 0

φ = arctan
(
yP
xP

)
+ π, xP < 0

(6.21)

Lastly, the stress acting on the i-th element can be viewed as a superposition of two compo-

nents:

σi(xi) = σb,i(xi) + σax,i (6.22)

where σb,i(xi) is the bending stress along the x-coordinate of Oixiyi, whereas σax,i is the
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tensile stress related to the stretch of the i-th element under the axial force pi, such that:

σb,i(xi) =
M(xi)t/2

J
σax,i =

piEJ/L
2
el

bt
(6.23)

While σax,i is uniform along the i-th element, σb,i(xi) requires the knowledge of M(xi),

namely the dimensional moment acting along the i-th element:

M(xi) =
EJ

ρ(xi)
(6.24)

The curvature is estimated for xi ∈ [0, 1] resorting to the following equation [22]:


1

ρ(xi)
= 1

Lel

(
tanh(

√
pi) cosh(xi

√
pi)−sinh(xi

√
pi)√

pi
fi +

cosh(xi
√
pi)

cosh(
√
pi)

mi

)
, pi ≥ 0

1
ρ(xi)

= 1
Lel

(
tan(
√
−pi) cos(xi

√
−pi)−sin(xi

√
−pi)√

−pi fi + cos(xi
√
−pi)

cos(
√
−pi) mi

)
, pi < 0

(6.25)

At each analysis substep, the maximum stress σMax acting on the CAFP is then found as

follows:

σMax = max(σi, i = 0.., 2N) (6.26)

6.5. Design Tool - Frameworks C and D

6.5.1. Software Architecture

The mechanical models are solved employing CBCM method, following the procedure

reported in Sec. 6.4, and then verified by means of the FEA approach. In particular, 1D

FEA is used to test the CBCM performance both in terms of results accuracy and simulation

time. A full factorial selection criteria [98] is used to perform a bi-dimensional DOE (being

the parameters AR and Lc), allowing the generation of the performance maps. Following

Tab. 2.3, frameworks C and D are combined in a single integrated environment to allow

the use of both the modeling techniques. Based on the schematic depicted in Fig. 6.6, the

framework is guided by a Matlab file, which is organized in four sections as follows:

1. In the first section, the user defines the Input Parameters, which comprise geometrical

dimensions (L or β, w1, b and t), material properties (E and ν), external loads (Fx, Fy

andM ) or displacements (∆x, ∆y and θ), number of elements (N ), number of substeps
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Figure 6.6: Framework C-D used for the parametric studies.

(r) and DOE spacing (number of points to be tested for each parameter, i.e. AR and

Lc);

2. In the second section, a for loop allows to perform the DOE CBCM by singularly

testing each of the candidates, i.e. the AR − Lc combinations, thanks to an external

Matlab function (CAFP CBCM.m), which implements all the equations discussed in

Sec. 6.4. Once the numerical results of the single simulation are available, two addi-

tional functions (CAFP Shift.m and CAFP Stress.m) are launched for the evaluation of

the performance indexes described in Sec. 6.4.3. The stiffness evaluation is performed

in the main script by means of a simple numerical derivative followed by a mean value

calculation.

3. In the third section, a for loop is used for the DOE FEA. In particular, by leveraging the

ANSYS interfacing capabilities, a multi-software routine that can automatically solve

all the candidates is implemented. For each analysis, Matlab exports the parameters

vector (composed of the entities defined at point 1) into an external file (FEA Input.txt)

and provides the ANSYS batch launching. The parametric FE model, updated on the

basis of the information stored in the previous file, exports the results of the nonlinear

(NLGEOM option) analysis into FEA Output.txt, which is then processed by Matlab.
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Table 6.1: CAFP parameters considered in this work.

Parameter Value(s)

N 10
t 1.6 mm
b 5 mm
w1 30 mm
r 10

β = const
β π/4 rad
AR [0.5, 3]
Lc [0, 30] %L

L = const
L 50 mm
AR [0.8, 1.3]
Lc [0, 30] %L

4. In the last section, a Results Comparison is provided.

The Matlab and APDL scripts used in this work are reported in Appendix F.

6.5.2. Parametric FE model

The FE model, whose geometry is automatically re-defined for each candidate, is com-

posed of two identical beams connected by a rigid segment, characterized by a larger cross

section. The lowest node set, composed of nodes 0 in Fig. 6.4(a), is fixed to the ground.

A second rigid segment is placed in proximity of the Beam 2 so as to model the contact.

To ensure consistency with the CBCM models, the number of elements N is automatically

imported in ANSYS. Each of the flexible beams is discretized with N Beam 188 elements

with quadratic shape functions, whereas Conta 176 and Targe 170 elements are used for the

contact interaction. Furthermore, the Augmented Lagrangian contact formulation is enforced

(Key-option(2)=0) in all the simulations. Then, in line with the CBCM, the external loads

are applied in a series of r incremental substeps. The performance indexes are computed

resorting to the relations presented in Sec. 6.4.3, except for the maximum Von Mises stress,

which is directly provided by ANSYS.
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6.6. Results - Numerical Characterization of the Pivot

This section reports the DOE results achieved on the pivot via the proposed numeri-

cal framework. Recalling Sec. 6.2, several combinations (AR, Lc) are tested for both the

configurations reported in Figs. 6.2(a) and 6.2(b). All the candidates are guided in a pure

rotation θ = 0.7 rad. Other load scenarios are discussed in Sec. 6.7. The adopted mate-
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Figure 6.7: DOE results for β = π/4 rad in a pure rotation θ = 0.7 rad.

rial for the current application is Glycol-Modified Polyethylene Terephthalate (PETG). The

Young’s modulus and Poisson’s ratio are, respectively, E = 1400 MPa and ν = 0.4, whereas

the flexural yield strength is assumed equal to σs = 45 MPa. Parameter set and allowed

range of variation for each geometrical parameter are summarized in Tab. 6.1. Figures 6.7

and 6.8 provide a comparison between the results obtained via CBCM and 1D FEA for the

β = const and L = const configurations respectively. The data show a good agreement for
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Figure 6.8: DOE results for L = 50 mm in a pure rotation θ = 0.7 rad.

each of the performance indexes, confirming the suitability of the CBCM for the analysis of

large deflections and contact pairs. Moreover, as it may be seen in Fig. 6.8(a), the stiffness

shows a remarkable variation in the design domain. This output highlights the possibility

to exploit the L = const configuration (see Fig. 6.2(b)) for designing a rotational variable

stiffness joint.

As discussed in Sec. 6.4.2, restricted ranges of Lc can be investigated by changing the

value of N or by adopting the unequal discretization method [65]. The major source of

discrepancy between the numerical results, obtained when Lc = 30%L, may be attributed to

the adopted contact algorithm. In the penalty algorithms, the amount of penetration between

bodies depends on the normal stiffness k. Higher values of k reduce the penetration but can

lead to convergence problems. To overcome this issue, ANSYS refines the value of k during

the simulations [192]. On the contrary, in the current framework, the CBCM is solved with a
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constant value for k, causing differences in terms of penetration, that influence the processed

results. To avoid this problem, k may be forced to be constant in ANSYS by means of

a specific Real Constant, even though the problem convergence would be compromised,

especially since r (i.e. the number of substeps) is kept constant. Alternatively, an iterative

process that aims at refining the value of k can be implemented in the CBCM algorithm. In

both cases, the computational efficiency of the proposed framework would be considerably

decreased.

6.7. Experimental Validations

PETG physical prototypes of the configuration in Fig. 6.2(a), namely the one with a

constant value of β, have been manufactured via 3D printing and tested resorting to two

experimental setups. The tests aim at validating the accuracy of the proposed simulation

framework for two different load scenarios: i) a rotation θ applied to a constrained point P0

of the workspace that forces the CAFP to follow a circular deflection path; ii) a horizontal

force Fx applied to the output link at point C.

6.7.1. Rotational setup

As visible from the results reported in Figs. 6.7(c), 6.7(d), 6.8(c) and 6.8(d), and in [93],

the CAFP is subjected to an evident parasitic shift when a pure torque (or rotation) is applied

to the outer link. The error between the resulting deflection path and an ideal circular path

increases with the rotation. From a practical standpoint, this issue limits the use of a pure

torque (or rotation) to the simulations. On the basis of these considerations and similarly to

the previous literature [18, 67, 90], in this work, the experiments have been conducted via

a standard moment-deflection test rig. The same measurement equipment as in Sec. 5.8.2

is used to conduct the experiments. The system, shown in Fig. 6.9(a), is equipped with a

worm-wheel gearset that acts on a main shaft, an Omega TQ103-50 socket calibrated torque

sensor, and a US Digital E2-500-375-IE-H-D-B optical encoder. A LabView interface is used

to acquire the data from the sensors. The shaft is supported by bearings and is connected to

the CAFP via a shape coupling, as shown in Fig. 6.9(b). Each candidate, characterized by

a specific combination of AR and Lc, is fixed to the ground through a connection member

(shown in blue) and it is deflected by the shaft. The experimental load scenario is depicted
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Figure 6.9: Experimental setup for stiffness evaluation.

in Fig. 6.9(c): a moment M∗ is applied by the shaft to the constrained point P0, i.e. the

initial intersection point between the CAFP beams. A rigid connection member between P0

and C enforces a circular deflection path. As a direct consequence of the applied boundary

conditions, the CAFP is not allowed to manifest the characteristic parasitic shift. The same

results would be obtained by applying a set of forces Fx and Fy and moment M at point C,

as shown in Fig. 6.9(c). For a deflection θ, the following relations hold:

Rx = Fx Ry = Fy M∗ = M − FxCP0 cos θ + FyCP0 sin θ (6.27)

To comply with the new load scenario, both CBCM and FEA models have been modi-

fied. In particular, a rigid segment connecting the output link to P0 is used in the FE model,

whereas a new global moment equilibrium, previously described by Eq. 6.11, has been de-
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Figure 6.10: Experimental and numerical results with an imposed rotation θ = 0.52 rad.

fined in the CBCM with respect to P0:

M∗ =
EJ

Lel
mN +

EJ

Lel
m2N+

EJ

L2
el

[
−(YA − (w1/2 tan β)) XA

]− sin β − cos β

cos β − sin β

pN+1

fN+1

+

EJ

L2
el

[
−(YB − (w1/2 tan β)) XB

]sin β − cos β

cos β sin β

p1

f1

 (6.28)

where, by reference to Fig. 6.5(a), XA, YA, XB and YB are the coordinate of points A and B

with respect to OXY :XA

YA

 =

− sin β − cos β

cos β − sin β

xA
yA

+

w1/2

0

 (6.29)

XB

YB

 =

sin β − cos β

cos β sin β

xB
yB

−
w1/2

0

 (6.30)

The total deflection, θ = 0.52 rad, is manually imposed to the CAFP in a series of static

increments. The geometric dimensions refer to the values reported in Tab. 6.1. Figure 6.10

shows the results of the study for AR = [1, 2] and Lc = [0, 30]%L. The experimental

stiffness, evaluated for each candidate as the mean value of K = ∂M∗(θ)/∂θ, shows a good

agreement with the numerical models. In line with the study presented in [193], the point
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at which the flexures cross in the undeformed state, defined by AR, strongly affects the

joint stiffness. The influence of Lc is limited due to the applied boundary conditions, that

guide the CAFP in an unnatural deflection, in which the contact is partially involved. Also

the maximum stress, plotted in Fig. 6.10(b), shows a good overlap between CBCM and 1D

FEA.

6.7.2. Vertical setup

A vertical setup [194] is used to validate the framework in case of a single force load. By

considering the sameAR and Lc combinations of Sec. 6.7.1, the parasitic shift is evaluated in

the deflected state. As shown in Figs. 6.11(a) and 6.11(b), the CAFP, fixed to the ground via

a pair of screws, is vertically loaded by means of a cable and a calibrated mass m = 0.4 kg,

resulting in a planar force equal to Fx = 3.92 N. The geometry of the output link has been

designed to apply the force at point C (see also Fig. 6.5(a)). A rigid member that connects

the output link to the initial center of rotation has been used as a simple way to trace the

parasitic shift during the deflection of the pivot. Two separate images, acquired by a Canon

EOS Rebel T6s equipped with EF-S 18-135 mm IS STM Lens Kit, are scaled and overlapped

in CAD environment (PTC Creo), allowing the evaluation of the shift module s and phase

φ. The results of the experimental activity are reported in Fig. 6.12 for each combination of

AR and Lc. In particular, Figs. 6.12(a) and 6.12(b) show a comparison between numerical

and experimental data, whereas Fig. 6.12(c) reports the maximum numerical stress acting on
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Figure 6.12: Experimental and numerical results with a pure force Fx = 3.92 N.

the pivot. Note that, as predicted by the numerical calculations providing σMax < σs, the

structural integrity of each specimen has been preserved during physical testing. In line with

the previous scenarios, the experimental assessment confirms the validity of the proposed

numerical framework and underlines the accuracy of the CBCM for the modeling of contacts

in large deflection problems.

6.8. Summary

This chapter demonstrates the suitability of the CBCM for the modeling of contact-aided

CMs undergoing large deflections. A simple system comprising a standard CAFP and a

purposely shaped contact member, that acts on a single flexure, is used as a test case. The

contact affects several functional aspects of the CAFP. In particular, the interaction between

bodies limits the free length of the flexure, allowing a remarkable increment of the overall
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stiffness. The parasitic shift is also affected by the presence of the contact, as well as the

stress acting on the pivot, which is an important aspect to be considered for design purposes.

Different planar load cases are investigated via an integrated software environment com-

bining Matlab and ANSYS APDL (i.e. frameworks C and D in Tab. 2.3). Performance maps

for the pivot under a pure rotation are provided, showing a good matching between CBCM

and 1D FEA results for different combinations of aspect ratios and contact extensions.

By meshing each beam with 10 elements, the CBCM model is solved in Matlab in 1.5 s,

whereas a single APDL batch simulation takes 5− 7 s to be completed. The limited compu-

tational time required to solve a single simulation confirms the suitability of the CBCM for

parametric optimization studies.

At last, 3D printed specimens of the contact-aided CAFP have been tested experimentally

by means of two special purpose test rigs. The acquired data show good agreement with the

behavior predicted by CBCM and 1D FEA.
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Chapter 7

Conclusions

This work has explored design strategies and modeling techniques for beam-based CMs.

In the last decades, many impressive theories have been developed to accurately model large

deflections and satisfy challenging functional requirements. The validity of such theories

has been validated with numerous examples, which became standard concepts to be used

for the synthesis of new mechanisms. Theoretical models provide fast and accurate results,

limiting the use of FEA to the final design steps, in other words for validation purposes.

Designers can resort to a wide selection of modeling techniques for analyzing and design-

ing relatively simple CMs, characterized by straight beams with uniform cross sections and

subjected to typical loads and constraints. More complex scenarios involving curved beams,

variable cross sections, hybrid flexures or self/mutual contacts between the members may be

approached by means of 3D FEA, though its low computational efficiency makes it inappro-

priate for parametric studies or optimizations. Fast behavioral models are always desirable

in the initial design steps for characterizing existing concepts or synthesizing new ones.

This work compares the benefits of a selected group of computationally efficient tech-

niques among the most used in literature (1D FEA, PRB method and CBCM) for the mod-

eling of nonstandard beam-based CMs. Furthermore, to meet the need of a general design

optimization tool, a modular multi-software environment is proposed and described. The

framework exploits dedicated commercial CAE solvers that allow code-based simulations

and batch run mode. These features ensure an easy linkage with Matlab and high applica-

bility to a large variety of problems. As a result of the study, Chap. 2 reports comparative

tables for the selection of the appropriate modeling technique(s) and software framework(s)

on the basis of specific design requirements and intents.

In the next chapters, the considered scenarios (geometrical features or contacts between

bodies) have been treated singularly by adopting specific case studies. To generalize the

approaches, each demonstrative example analyzes a set of properties and proposes a design
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procedure. Chapters 3, 4 and 5 describes the shape optimization of flexible members with

nonstandard geometries, respectively identified by hybrid flexures, variable section beams

and spline beams. The chapters illustrate possible design strategies for achieving optimal re-

sults by leveraging on computationally efficient models. The PRB method is discussed and,

when possible, directly employed for design purposes. The CMs have been optimized to ful-

fill prescribed behaviors in terms of motion or force-deflection characteristics. Furthermore,

Chaps. 4 and 5 introduces novel concepts in the field of constant force CMs and statically

balanced CMs.

Chapter 6 reports the performance study carried out on a contact-aided CAFP. The pro-

posed device can be useful for systems requiring different behaviors when deflecting clock-

wise or anti-clockwise. The chapter has two significant contributions. At first, it demon-

strates the efficiency of the CBCM for the analysis/design of contact-aided CMs. Secondly,

it provides useful performance maps that help designers in visualizing the potentialities of

the concept and the influence of the geometrical parameters on the CAFP behavior.

To facilitate the reproduction of the reported results, detailed descriptions of the design

tools are given throughout the thesis and many codes are reported in the Appendix. Chapters

4, 5 and 6 are also supported by experimental activities carried out with custom test equip-

ment. The measured data is used to verify the accuracy of the predicting models. Much work

has been done regarding the design and implementation of the setups as well as for the fabri-

cation of physical prototypes and for the materials characterizations. Many details about the

testing are not included in the text, which instead emphasizes the design procedures.
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Appendix

In all the appended scripts, the red arrows are used to indicate that the command con-
tinues on the next line. All arrows should be removed from the file and the commands
consolidated in a text editor so they are all on one line. This will enable the scripts to run
correctly.

A. ProcessNet Code Used for the Automatic Model Generation (Chap. 3)

The proposed C# script has to be integrated in ProcessNet and then linked to the main
RecurDyn environment in order to run the automatic procedure. The name of the parts (“...”)
must be updated to match the model. Note that the reported results (see Chap. 3) cannot
be replicated without a specific set of simulation files. Therefore, the code is appended to
facilitate the users with similar design problems. Users may refer to the ProcessNet manual
for a detailed assistance and more examples.

A.1. Main Function

public void RegisterFunction()
{

// Import CAD file

string szPathName = @"C:\PhD\CAD_modification\hybrid_flexure.
↪→ x_t";

if (false == File.Exists(szPathName))
{application.PrintMessage("File_not_found:" + szPathName);
return;}

refFrame1 = modelDocument.CreateReferenceFrame();
refFrame1.SetOrigin(0, 0, 0);

IBody HYBRID_SX = model.CreateBodyGeneral("HYBRID_SX");
HYBRID_SX.FileImport(szPathName);
IGeometry HYBRID_SX_geom = HYBRID_SX.GetEntity("HYBRID_SX")

↪→ as IGeometry;

IBody FRAME = model.GetEntity("frame_body") as IBody;

IBody PLATFORM = model.GetEntity("platform_body") as IBody;

IBody MOTOR = model.GetEntity("motor_body") as IBody;
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IBody ROD = model.GetEntity("rod_body") as IBody;

IBody CRANK = model.GetEntity("crank_body") as IBody;

// Modeling (B.C., mesh, material, etc.)

refFrame2 = modelDocument.CreateReferenceFrame();
refFrame2.SetOrigin(8.5, 0, -31);

refFrame3 = modelDocument.CreateReferenceFrame();
refFrame3.SetOrigin(8.5, 500, -31);

IJointFixed jointFixed1 = model.CreateJointFixed("FixedJoint1
↪→ ", HYBRID_SX, PLATFORM, refFrame2);

IJointFixed jointFixed2 = model.CreateJointFixed("FixedJoint2
↪→ ", HYBRID_SX, FRAME, refFrame3);

IFFlexToolkit fflexToolkit = model.FFlexToolkit as
↪→ IFFlexToolkit;

IMeshMode meshMode = fflexToolkit.MeshMode as IMeshMode;
meshMode.Start(HYBRID_SX);

IMesherAssistModeling assistModeling = meshMode.
↪→ AssistModeling(HYBRID_SX_geom);

assistModeling.TargetBody = HYBRID_SX_geom;

assistModeling.UsePreserveConstraint = true;
IAssistConstraintCollection constCollection = assistModeling.

↪→ ConstraintCollection;

foreach (IAssistConstraint constraint in constCollection)
{

string strName = constraint.Name;
if (strName == "FixedJoint1")
{
constraint.UseFDR = true;
String[] strFaces = assistModeling.OriginalBodyFaces;
String[] arrFaceGeo = { strFaces[5], strFaces[9] };
constraint.SetGeometries(arrFaceGeo);
constraint.UseSelection = true;
}
else if (strName == "FixedJoint2")
{
constraint.UseFDR = true;
String[] strFaces2 = assistModeling.OriginalBodyFaces;
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String[] arrFaceGeo2 = { strFaces2[11], strFaces2[15] };
constraint.SetGeometries(arrFaceGeo2);
constraint.UseSelection = true;
}
}

IMesherMeshOption meshOption = meshMode.MeshOption(
↪→ HYBRID_SX_geom);

meshOption.MeshType = MeshType.MeshType_Solid8;
meshOption.FFlexProperty = meshOption.PropertyCollection["

↪→ PSolid1"];
meshOption.MaxElementSize = 1.5;
meshOption.MinElementSize = 1;
meshOption.UseStructublackOutput = true;
meshOption.StructublackOutput = StructublackOutputType.

↪→ StructublackOutputType_SimplePattern;
meshOption.UseCloseGaps = true;
meshOption.UseIncludeAssistModeling = true;
meshMode.Mesh();

IFFlexBody fflexBody1 = meshMode.End();

IFFlexBody HYBRID_SX_FE = model.GetEntity("HYBRID_SX_FE") as
↪→ IFFlexBody;

IFFlexMaterialIsotropic Mat_3 = HYBRID_SX_FE.GetEntity("
↪→ Mat_Property_3") as IFFlexMaterialIsotropic;

Assert.AreEqual("Mat_Property_3", Mat_3.Name);

Mat_3.IsotropicType = IsotropicType.NU;
Mat_3.Density.Value = 0.00000775;
Mat_3.DampingRatio.Value = 0.0001;
Mat_3.YoungsModulus.Value = 207000;
Mat_3.PoissonsRatio.Value = 0.33;

Assert.AreEqual(0.00000775, Mat_3.Density.Value);
Assert.AreEqual(0.0001, Mat_3.DampingRatio.Value);
Assert.AreEqual(207000, Mat_3.YoungsModulus.Value);
Assert.AreEqual(0.3, Mat_3.PoissonsRatio.Value);
Assert.AreEqual(IsotropicType.NU, Mat_3.IsotropicType);

}

// Start the MFBD Simulation
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string szFilename = @"C:\PhD\CM\parametric_model.rdyn";

modelDocument = application.OpenModelDocument(szFilename1);

modelDocument.SettingSolverPriority(SolverPriority.
↪→ AboveNormal);

modelDocument.ModelProperty.DynamicAnalysisProperty.
↪→ SimulationStep.Value = 100;

modelDocument.ModelProperty.DynamicAnalysisProperty.
↪→ SimulationTime.Value = 4;

modelDocument.Analysis(AnalysisMode.Dynamic);

// Export the Maximum Von Mises Stress

modelDocument = application.ActiveModelDocument;
model = modelDocument.Model;
IFFlexToolkit fflexToolkit2 = model.FFlexToolkit as

↪→ IFFlexToolkit;
IContour contour = fflexToolkit.Contour;
contour.EnableView = true;
IContourTypeOption type = contour.TypeOption;
type.Type = ContourType.CT_STRESS;
type.Component = ContourComponent.CC_SMISES;
type.ContactSurfaceOnly = false;
contour.MinMaxOption.Calculation();
type.VectorDisplay = true;
type.VectorDisplayArrowSize = 3.0;
type.VectorDisplayArrowSizeUniformFlag = false;
contour.UpdateLegend();

IContourMinMaxOption minmax = contour.MinMaxOption;

minmax.Type = ContourMinMaxType.MM_Display;
minmax.Calculation();
double dMin = minmax.Min;
double dMax = minmax.Max;
minmax.Type = ContourMinMaxType.MM_UserDefined;
minmax.UserDefinedMin = dMin + 1;
minmax.UserDefinedMax = dMax - 1;
minmax.ShowMinMax = true;
minmax.UserDefinedMaxColor = true;
minmax.EnableLogScale = true;
application.PrintMessage(minmax.Max.ToString());
System.IO.TextWriter file = new System.IO.StreamWriter(@"C:\

↪→ PhD\CM\VMISES_MAX.txt");
file.WriteLine(minmax.Max.ToString());
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file.Close();

// Delete the Hybrid Flexures and Close RecurDyn

IFFlexBody del1 = model.GetEntity("HYBRID_DX_FE") as
↪→ IFFlexBody;

IFFlexBody del2 = model.GetEntity("HYBRID_SX_FE") as
↪→ IFFlexBody;

modelDocument.DeleteEntity(del1);
modelDocument.DeleteEntity(del2);
modelDocument.FileSave(szFilename1, true);
application.CloseModelDocument(modelDocument);
System.Diagnostics.Process.Start(@"C:\PhD\CM\

↪→ RecurDyn_Shutdown.bat");

}

A.2. Batch File

The following command must be included in the batch file (“RecurDyn Shutdown.bat”)
to provide the automatic software shut down.

taskkill/F/IM RecurDyn.exe

B. Matlab Code Used for the PRB Optimization and the Flexural Hinges
Dimensioning (Chap. 4)

These Matlab scripts have to be stored and run in a single folder.

B.1. Main Matlab Script

Save this code in a single Matlab file.

%% Simulation Settings
clear all
clc

% Geometrical Parameters
e=60e-3; % Eccentricity [m]
xt=100e-3; % Initial x-position [m]
rif=1.5; % Target force [N]

lm=sqrt(eˆ2+xtˆ2); % Maximum mechanism length (crank+rod)

% Lower/Upper Bounds
K1t=1; % Spring 1: max stiffness [Nm]
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K1b=0; % Spring 1: min stiffness [Nm]
K2t=1; % Spring 2: max stiffness [Nm]
K2b=0; % Spring 2: min stiffness [Nm]
K3t=1; % Spring 3: max stiffness [Nm]
K3b=0; % Spring 3: min stiffness [Nm]
r1t=0.9*e; % Max crank length
r1b=e/5; % Min crank length
t10t=pi/2; % Max theta10
t10b=asin(e/lm); % Min theta10

% Simulation Parameters
t1t=1*pi/2; % Max theta1
t1dp=deg2rad(.1); % Additional angle

nc=100; % Number of steps for the force evaluation
nd=3; % Number of points for each of the design variables

% Material
E=1800; % Young’s Modulus [MPa]

%% #Step 1a: Optimal PRB Model Derivation
warning off
tic

dom=[linspace(K1b, K1t,nd)’,linspace(K2b, K2t,nd)’,linspace(
↪→ K3b, K3t,nd)’,linspace(r1b, r1t,nd)’,linspace(t10b +
↪→ t1dp, t10t,nd)’];

par=zeros(ndˆ5,5);
val=zeros(ndˆ5,1);

cost.e=e;
cost.xt=xt;
cost.rif=rif;
cost.nc=nc;
cost.t1dp=t1dp;
cost.t1t=t1t;

for i=1:nd
for k=1:nd
for j=1:nd
for w=1:nd
for u=1:nd
% Research of the minimum for each initial point
[par((i-1)*(ndˆ4)+(k-1)*(ndˆ3)+(j-1)*(ndˆ2)+(w-1)*nd+u,:),val

↪→ ((i-1)*(ndˆ4)+(k-1)*(ndˆ3)+(j-1)*(ndˆ2)+(w-1)*nd+u)
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↪→ ]=...
fmincon(@(p)slider_optfun(p,cost),[dom(i,1),dom(k,2),dom(j,3)

↪→ ,dom(w,4),dom(u,5)],[],[],[],[],...
[K1b,K2b,K3b,r1b,t10b+t1dp],[K1t,K2t,K3t,r1t,t10t],

↪→ @slider_nonlcon,optimoptions(’fmincon’,’Display’,’off’)
↪→ );

end
end
end
end
end
toc

% Sorting of the Results
val=val(:,1);
mi=find(val==min(val));
[val, si]=sort(val);
par=par(si,:);

% Final Values
K1f=par(1,1);
K2f=par(1,2);
K3f=par(1,3);
r1f=par(1,4);
r2f=lm-r1f;
t10f=par(1,5);
t30f=pi-asin((r1f*sin(t10f)-e)/r2f);
t20f=t30f-t10f;
[˜, ˜,xs,˜,tm]=slider_optfun(par(1,:),cost);
dx=max(xs)-min(xs);
[res,t1,xs,obj,˜]=slider_optfun(par(1,:),cost);

% Display Results
disp([’Target force: ’,num2str(rif),’ [N]’])
disp([’Obtained force (RMS value in the whole range of

↪→ displacements): ’,num2str(res),’ [N]’])
disp(’The optimal PRB parameters are as follows:’)
disp([’K1: ’ , num2str(K1f) , ’ [Nm]; K2: ’ , num2str(K2f) ,

↪→ ’ [Nm]; K3: ’ , num2str(K3f) , ’[Nm];’ ])
disp([’r1: ’ , num2str(r1f) , ’ [m]; r2: ’ , num2str(r2f) , ’

↪→ [m];’ ])
disp([’t10: ’ , num2str(rad2deg(t10f)) , ’ [Â°]; t20: ’ ,

↪→ num2str(rad2deg(t20f)) , ’ [Â°]; t30: ’ , num2str(
↪→ rad2deg(t30f)) , ’ [Â°];’ ])

disp([’dx: ’ , num2str(dx*1000), ’ [mm];’ ])
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%% #Step 1b: FLexures Hinge Dimensioning
L1_tb=min([r1f r2f].*1000)/5;
L2_tb=L1_tb;
L3_tb=L1_tb;
h1_tb=(4*1000*K1f*L1_tb/E)ˆ(1/4);
h2_tb=(4*1000*K2f*L2_tb/E)ˆ(1/4);
h3_tb=(4*1000*K3f*L3_tb/E)ˆ(1/4);
b1_tb=3*h1_tb;
b2_tb=3*h2_tb;
b3_tb=3*h3_tb;

disp( ’Final hinges dimensions as follows:’ )
disp([’ #1 (base) h: ’ num2str(h1_tb) ’ [mm]; b: ’ num2str(

↪→ b1_tb) ’ [mm]; L: ’ num2str(L1_tb) ’ [mm];’]);
disp([’ #2 (int.) h: ’ num2str(h2_tb) ’ [mm]; b: ’ num2str(

↪→ b2_tb) ’ [mm]; L: ’ num2str(L2_tb) ’ [mm];’]);
disp([’ #3 (fine) h: ’ num2str(h3_tb) ’ [mm]; b: ’ num2str(

↪→ b3_tb) ’ [mm]; L: ’ num2str(L3_tb) ’ [mm];’]);

B.2. Objective Function (Behavioral Model)

Save this code in a single Matlab file and name it “slider optfun.m”.

function [res,t1,xs,obj,tm ]=slider_optfun(par, cost)

% Constant
xt=cost.xt;
e=cost.e;
rif=cost.rif;
t1dp=cost.t1dp;
t1t=cost.t1t;
nc=cost.nc;

% Design Variables
K1=par(1);
K2=par(2);
K3=par(3);
r1=par(4);
t10=par(5);

% Behavioral Model (Lengths and Angles)
lm=sqrt(eˆ2+xtˆ2);
r2=lm-r1;
t1b=asin(e/lm);
t1=linspace(t1b+t1dp,t1t,nc);

t3=pi-asin((r1.*sin(t1)-e)./r2);
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t30=pi-asin((r1*sin(t10)-e)/r2);
t2=t3-t1;
t21=pi-t2;
tm=[max(t1)-min(t1),max(t21)-min(t21),max(t3)-min(t3)];

xs=r1.*cos(t1)-r2.*cos(t3);
alpha=atan(e./xs);

% Springs Deflections
psi1=t1-t10;
psi2=t3-t30-t1+t10;
psi3=t3-t30;

% Objective Function
F1=K1.*psi1.*cos(t3)./(r1.*sin(t3-t1));
F2=K2.*psi2.*cos(alpha)./(r1.*sin(t1-alpha));
F3=K3.*psi3.*cos(t1)./(xs.*sin(t1)-e.*cos(t1));

obj=-(F1+F2+F3);
res=sqrt(sum((obj-rif).ˆ2 ));

end

B.3. Optimization Constraint

Save this code in a single Matlab file and name it “slider con.m”.

function [c,ceq]=slider_con(par)

c(1)=abs(par(2)-par(1))/par(1)-0.25;
c(2)=abs(par(3)-par(1))/par(1)-0.25;
ceq=[];

end

C. ANSYS Code Used for the Analysis of the Beam-Based Constant Force
CM (Chap. 4)

This APDL script simulates the optimal beam-based configuration (i.e. the one found
through GA optimization). Simple changes can be made to the script for modeling the
lumped compliance configuration.

fini
/cle

eps=1e-6
mm=1e-3
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MPa=1e6
pg=acos(-1)

xS1=0*mm $ yS1=0*mm
xS2=8.37*mm $ yS2=6.36*mm
xS3=43.64*mm $ yS3=31.78*mm
xS4=52.85*mm $ yS4=37.41*mm
xS5=99.10*mm $ yS5=60.75*mm
xS6=108.74*mm $ yS6=65.61*mm

B=5.14*mm

t1=0.997*mm
t2=0.929*mm
t3=1.356*mm
t4=1.339*mm
t5=0.996*mm
t6=0.920*mm
t7=1.440*mm
t8=1.434*mm
t9=0.968*mm
t10=1.046*mm
Tin=0.927*mm
Tfin=0.947*mm

a1 =0.285
a2 = 0.803
a3 = 0.582
a4 = 0.851
a5 = 0.254
a6 = 0.842
a7 = 0.578
a8 = 0.798
a9 = 0.231
a10 = 0.765

E=1800*MPa
nu=0.4
siz=0.5*mm
deltax=20*mm
substeps=10

/prep7

xp1=xS1+a1*(xS2-xS1)
yp1=yS1+a1*(yS2-yS1)
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xp2=xS1+a2*(xS2-xS1)
yp2=yS1+a2*(yS2-yS1)

xp3=xS2+a3*(xS3-xS2)
yp3=yS2+a3*(yS3-yS2)

xp4=xS2+a4*(xS3-xS2)
yp4=yS2+a4*(yS3-yS2)

xp5=xS3+a5*(xS4-xS3)
yp5=yS3+a5*(yS4-yS3)

xp6=xS3+a6*(xS4-xS3)
yp6=yS3+a6*(yS4-yS3)

xp7=xS4+a7*(xS5-xS4)
yp7=yS4+a7*(yS5-yS4)

xp8=xS4+a8*(xS5-xS4)
yp8=yS4+a8*(yS5-yS4)

xp9=xS5+a9*(xS6-xS5)
yp9=yS5+a9*(yS6-yS5)

xp10=xS5+a10*(xS6-xS5)
yp10=yS5+a10*(yS6-yS5)

k,1,xS1,yS1
k,2,xp1,yp1
k,3,xp2,yp2
k,4,xp3,yp3
k,5,xp4,yp4
k,6,xp5,yp5
k,7,xp6,yp6
k,8,xp7,yp7
k,9,xp8,yp8
k,10,xp9,yp9
k,11,xp10,yp10
k,12,xS6,yS6

*do,i,1,11
l,i,i+1

*enddo

et,1,188
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keyopt,1,3,2
keyopt,1,7,2
keyopt,1,9,2

mp,ex,1,E
mp,nuxy,1,nu

sectype,1,beam,rect
secdata,Tin,B

sectype,2,beam,rect
secdata,t1,B

sectype,3,beam,rect
secdata,t2,B

sectype,4,beam,rect
secdata,t3,B

sectype,5,beam,rect
secdata,t4,B

sectype,6,beam,rect
secdata,t5,B

sectype,7,beam,rect
secdata,t6,B

sectype,8,beam,rect
secdata,t7,B

sectype,9,beam,rect
secdata,t8,B

sectype,10,beam,rect
secdata,t9,B

sectype,11,beam,rect
secdata,t10,B

sectype,12,beam,rect
secdata,Tfin,B

sectype,13,taper
secdata,1,xS1,yS1
secdata,2,xp1,yp1
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sectype,14,taper
secdata,2,xp1,yp1
secdata,3,xp2,yp2

sectype,15,taper
secdata,3,xp2,yp2
secdata,4,xp3,yp3

sectype,16,taper
secdata,4,xp3,yp3
secdata,5,xp4,yp4

sectype,17,taper
secdata,5,xp4,yp4
secdata,6,xp5,yp5

sectype,18,taper
secdata,6,xp5,yp5
secdata,7,xp6,yp6

sectype,19,taper
secdata,7,xp6,yp6
secdata,8,xp7,yp7

sectype,20,taper
secdata,8,xp7,yp7
secdata,9,xp8,yp8

sectype,21,taper
secdata,9,xp8,yp8
secdata,10,xp9,yp9

sectype,22,taper
secdata,10,xp9,yp9
secdata,11,xp10,yp10

sectype,23,taper
secdata,11,xp10,yp10
secdata,12,xS6,yS6

*get,nli,line,,num,max

*do,i,1,nli
lsel,s,line,,i
lsum

*get,lun,line,0,leng
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lesi,i,,,lun/siz
secnum,i+12
lmesh,i
alls

*enddo

nsel,s,loc,x,0-eps,0+eps
d,all,all
alls

ksel,s,kp,,12
nslk,s

*get,nvinc,node,,num,max
d,all,ux,-deltax
d,all,uy,0
d,all,rotz,0
alls

fini

/solu
nlgeom,on
autots,off
nsubst,substeps
outre,all,all
solve
fini

/post1

*get, nstep,active,,solu,NCMSS

*dim,res,table,nstep+1,3

set,first

*do,i,1,nstep

*get,force,node,nvinc,rf,fx

*get,disp,node,nvinc,ux

*get,sigma,secr,,s,eqv,max

res(1,1)=0
res(1,2)=0
res(1,3)=0
res(i+1,1)=-disp*1000
res(i+1,2)=-force
res(i+1,3)=sigma/MPa
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set,next

*enddo

*cfopen,FEA_CF_Output,txt

*vwrite,res(1,1),res(1,2),res(1,3)
(F8.3,’ ’,F8.3,’ ’,F8.3,’ ’)

*cfclose

/eshape,1
set,last
plns,s,eqv,2,1

D. ANSYS Code Used for the Analysis of the Torsional Springs (Chap. 5)

This APDL script simulates the optimal CTE (i.e. the one found through GA optimiza-
tion) for the antagonistic VSA. By changing the input parameters (refer to the results in
Chap. 5), also the nonlinear compensation spring can be simulated.

fini
/cle

eps=1e-6
mm=1e-3
MPa=1e6
pg=acos(-1)
RTOD=180/pg

Rin=10*mm
Rext=41*mm

b_Sb=3.41*mm
t_Sb=1.00*mm

Rp1=11.33*mm
Rp2=23.19*mm
Rp3=25.50*mm
Rp4=35.36*mm

phi_p1=1.33
phi_p2=1.70
phi_p3=1.37
phi_p4=1.71

phi_p_in=1.27
phi_p_ext=1.73

151



E=1800*MPa
nu=0.4
siz=Rin/50
theta=15
substeps=5

/prep7

csys,1

k,1,Rin,phi_p_in*RTOD,0
k,2,Rp1,phi_p1*RTOD,0
k,3,Rp2,phi_p2*RTOD,0
k,4,Rp3,phi_p3*RTOD,0
k,5,Rp4,phi_p4*RTOD,0
k,6,Rext,phi_p_ext*RTOD,0

bspli,1,2,3,4,5,6

mp,ex,1,E
mp,nuxy,1,nu

et,1,188
keyopt,1,3,2

sectype,1,beam,rect
secdata,t_Sb,b_Sb

esiz,siz
lmesh,all

et,2,184
keyopt,2,1,1
keyopt,2,2,1
type,2

*get,Numax,node,,num,max
n,Numax+1,0,0

ksel,s,kp,,1
nslk,s,1

*get,slave,node,,num,max
alls

e,Numax+1,slave
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ksel,s,kp,,6
nslk,s,1
d,all,all
alls

d,Numax+1,ux,0
d,Numax+1,uy,0

fini

/solu

antype, static
nlgeom,on
autots,off
nsubst,substeps
outre,all,all

d,Numax+1,rotz,theta/RTOD
solve

fini

/post1

*get,nstep,active,,solu,NCMSS

*dim,res,table,2*nstep+1,3

set,first

*do,i,1,nstep

*get,rot,node,Numax+1,rot,z

*get,Mom,node,Numax+1,rf,mz

*get,sigma,secr,,s,eqv,max

res(nstep+1-i,1)=-rot
res(nstep+1-i,2)=-4*Mom/mm
res(nstep+1-i,3)=sigma/MPa

set,next

*enddo

res(nstep+1,1)=0
res(nstep+1,2)=0
res(nstep+1,3)=0
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fini

/solu

antype, static
nlgeom,on
autots,off
nsubst,substeps
outre,all,all

d,Numax+1,rotz,-theta/RTOD
solve

fini

/post1

set,first

*do,i,1,nstep

*get,rot,node,Numax+1,rot,z

*get,Mom,node,Numax+1,rf,mz

*get,sigma,secr,,s,eqv,max

res(nstep+1+i,1)=-rot
res(nstep+1+i,2)=-4*Mom/mm
res(nstep+1+i,3)=sigma/MPa

set,next

*enddo

*do,i,1,nstep

*cfopen,FEA_VSA_Output,txt

*vwrite,res(1,1),res(1,2),res(1,3)
(F8.3,’ ’,F8.3,’ ’,F8.3,’ ’)

*cfclose

/eshape,1
set,last
plns,s,eqv,2,1
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E. ANSYS Code Used for the Analysis of the Zero Torque CM (Chap. 5)

This APDL script simulates the overall zero torque CM (combination between negator
and compensation spring).

fini
/cle

eps=1e-6
mm=1e-3
MPa=1e6
pg=acos(-1)
RTOD=180/pg

Rin=10*mm
Rext=50*mm

b_N=2.12*mm
t_N=0.26*mm
L_N=0.2*(Rext-Rin)

b_Sb=3.81*mm
t_Sb=0.80*mm

Rp1=13.29*mm
Rp2=25.00*mm
Rp3=28.21*mm
Rp4=35.00*mm

phi_p1=1.61
phi_p2=1.56
phi_p3=1.40
phi_p4=1.13

phi_p_in=1.77
phi_p_ext=1.75

ESteel=190000*MPa
nuSteel=0.33
EPlastic=1450*MPa
nuPlastic=0.4
siz=Rin/50
theta=40
substeps=10

/prep7
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n,1,0,0
n,2,-Rin,0,0

k,1,-Rin,0,0
k,2,-(Rext+L_N)/2,0,0
k,3,-(Rext+L_N),0,0

csys,1
n,3,Rin,phi_p_in*RTOD,0

k,4,Rin,phi_p_in*RTOD,0
k,5,Rp1,phi_p1*RTOD,0
k,6,Rp2,phi_p2*RTOD,0
k,7,Rp3,phi_p3*RTOD,0
k,8,Rp4,phi_p4*RTOD,0
k,9,Rext,phi_p_ext*RTOD,0

csys,0

l,1,2
l,2,3

bspli,4,5,6,7,8,9

mp,ex,1,ESteel
mp,nuxy,1,nuSteel

mp,ex,2,EPlastic
mp,nuxy,2,nuPlastic

et,1,188
keyopt,1,3,2

sectype,1,beam,rect
secdata,5*t_Sb,b_Sb

sectype,2,beam,rect
secdata,t_N,b_N

sectype,3,beam,rect
secdata,t_Sb,b_Sb

mat,2
secnum,1
e,1,2
e,1,3
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esiz,siz

mat,1
secnum,2
lmesh,1
lmesh,2

mat,2
secnum,3
lmesh,3

et,2,184,6
keyopt,2,4,1

sectype,4,JOIN,REVO,REVO
type,2

nsel,s,loc,x,-Rin-eps,-Rin+eps
nsel,r,loc,y,0-eps,0+eps

*vget,Nodesel,node,,nlist
alls

secnum,4
e,Nodesel(1),Nodesel(2)

csys,1
nsel,s,loc,x,Rin-eps,Rin+eps
nsel,r,loc,y,phi_p_in*RTOD-eps,phi_p_in*RTOD+eps
numm,all
alls

ksel,s,kp,,2
nslk,s,1

*get,NodePerturb,node,,num,max
alls

dk,3,uy,0
dk,3,uz,0
dk,3,roty,0
dk,3,rotx,0

d,1,ux,0
d,1,uy,0
d,1,uz,0
d,1,roty,0
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d,1,rotx,0

dk,9,all

fini

/solu
nlgeom,on

outre,all,all

dk,3,ux,0.1*L_N
f,NodePerturb,fy,3
d,1,rotz,0

solve

dk,3,ux,L_N
f,NodePerturb,fy,0
solve

autots,off
nsub,substeps
d,1,rotz,theta/RTOD
solve
fini

/post1

set,3,

*get,nsub,active,,solu,NCMSS

*dim,res,table,nsub+1,2

res(1,1)=0
res(1,2)=0

set,3,1

*do,i,1,nsub

*get,rot,node,1,rot,z

*get,Mom,node,1,rf,mz

res(i+1,1)=rot*RTOD
res(i+1,2)=Mom/mm

set,next
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*enddo

*vplot,res(1,1),res(1,2)

*cfopen,FEA_Output,txt

*vwrite,res(1,1),res(1,2)
(F8.3,’ ’,F8.3,’ ’)

*cfclose

F. Code Used for the Analysis of the Contact-Aided CAFP (Chap. 6)

This package allows to simulate the contact-aided CAFP. To simplify the implementation,
the following Matlab/APDL codes must be stored and run in a single folder. To avoid issues
with the batch analysis, the paths have to be updated in the Matlab and in the batch files.

F.1. Main Matlab Script

Save this code in a single Matlab file.

%% Simulation Settings
clear all
clc

global t L Beta w1 w2 L_el E I N N_step Lc Numc K

%Geometrical Parameters

%%% The script accepts ’L’ OR ’Beta’ as input. Please comment
↪→ one of

%%% the following rows and modify the script in the next
↪→ sections

%%% (where specified by **) according to the selection.
↪→ Please modify also

%%% the APDL script in the initial section.

%L=45; % Flexure length [mm]
Beta=45*pi/180; % Semi-angle between flexures [rad]
t=1.6; % Flexure thickness [mm]
b=5; % Flexure width [mm]
w1=30; % Ground link width [mm]

%DOE Settings
AR_min=1; % Min. Aspect Ratio
AR_max=2; % Max. Aspect Ratio
Lc_min=0.0; % Min. Contact Extension
Lc_max=0.3; % Max. Contact Extension
AR_intervals=3; % DOE intervals for AR variable
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Lc_intervals=4; % DOE intervals for Lc variable

%Material Properties
E= 1400; % Young’s Modulus [MPa]
nu=0.4; % Poisson’s Ratio [-]

%Additional Parameter
N=10; % Number of elements in each flexure

%Load Case Scenario

%%%In case of negative rotations (i.e. with Mmax<0 and/or
↪→ Fxmax>0) please

%%%deactivate the contact by imposing Lc=0

N_step=10;
Fxmax=-3.92; % External x Force [N]
Fymax=0; % External y Force [N]
Mmax=0; % External Moment [Nmm]

if (Fxmax ˜=0)
Fx=(0:Fxmax/N_step:Fxmax);
else
Fx=zeros(1,N_step+1);
end

if (Fymax ˜=0)
Fy=(0:Fymax/N_step:Fymax);
else
Fy=zeros(1,N_step+1);
end

if (Mmax ˜=0)
M=(0:Mmax/N_step:Mmax);
else
M=zeros(1,N_step+1);
end

fullfac=fullfact([AR_intervals,Lc_intervals]);
matrix_AR_Lc(:,1)=(fullfac(:,1)-1)/(AR_intervals-1);
matrix_AR_Lc(:,2)=(fullfac(:,2)-1)/(Lc_intervals-1);
size_fullfac=size(fullfac);
N_sampling=size_fullfac(1,1);
vect_AR=zeros(1,N_sampling);
vect_Lc=zeros(1,N_sampling);
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for y=1:1:N_sampling
vect_AR(y)=AR_min+(AR_max-AR_min)*matrix_AR_Lc(y,1);
vect_Lc(y)=Lc_min+(Lc_max-Lc_min)*matrix_AR_Lc(y,2);
end

figure (’Name’,’Tested Samplings’)
plot(vect_AR,vect_Lc,’MarkerSize’,10,’Marker’,’x’,’LineWidth

↪→ ’,1,’LineStyle’,’none’,’Color’,[1 0 0])
str1=sprintf(’Number of samples = %d’, N_sampling);
xlim([AR_min, AR_max]);
ylim([Lc_min, Lc_max])
xlabel(’AR [-]’,’FontSize’,15,’FontWeight’,’bold’,’FontName

↪→ ’,’Cambria Math’);
ylabel(’L_{c} [%L]’,’FontSize’,15,’FontWeight’,’bold’,’

↪→ FontName’,’Cambria Math’);
title(str1)
%% DOE With CBCM Technique
tic
disp(’Starting DOE with CBCM technique’)
Theta_CBCM = zeros(N_sampling,N_step+1);
Stiff_CBCM = zeros(N_sampling,N_step);
Stiffness_CBCM=zeros(N_sampling,1);
MaxVon_CBCM = zeros(N_sampling,1);
MaxShift_CBCM = zeros(N_sampling,1);
PhaseShift_CBCM = zeros(N_sampling,1);
Thetamax_CBCM = zeros(N_sampling,1);

I=b*(t)ˆ3/12;

for i=1:1:N_sampling
disp(i)

AR=vect_AR(i);
Lc=vect_Lc(i);
w2=AR*w1;

%%%** Please comment one of the following rows according to
↪→ the previous

%%%input **

%Beta=asin((w1+w2)/(2*L)); % "L" INPUT
L=((w1+w2)/2)/(sin(Beta)); % "Beta" INPUT

L_el=L/N;
Numc=round(N*Lc);
K=1000;
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CollectRes=zeros(12*N+7,N_step+1);

IP=1;
for j=1:N_step+1

Loads=[Fx(1,j);Fy(1,j);M(1,j)];

if IP==1
InitialPoints=zeros(12*N+7,1)+0.01;
else
InitialPoints=CollectRes(:,IP-1);
end

options=optimset(’Display’,’off’,’MaxFunEvals’,1e20,’MaxIter
↪→ ’,1e20,’TolFun’,1e-8,’TolX’,1e-20);

[Res,exitflag]=fsolve(@CAFP_CBCM,InitialPoints,options,Loads)
↪→ ;

CollectRes(:,IP)=Res;
IP=IP+1;
end

Theta_CBCM(i,:) = CollectRes(12*N+7,:);

if (Mmax ˜=0)
Stiff_CBCM(i,1:N_step) = diff(M(1,1:N_step+1))./diff(

↪→ Theta_CBCM(i,1:N_step+1));
Stiffness_CBCM(i,1)=mean(Stiff_CBCM(i,:));
end

StressCAFP=CAFP_Stress(CollectRes);
MaxVon_CBCM(i,1)=max(StressCAFP);

indexmax=find(StressCAFP(1,:) == max(StressCAFP(1,:)));
Thetamax_CBCM(i,1)= Theta_CBCM(i,indexmax);

ShiftCAFP=CAFP_Shift(CollectRes);
MaxShift_CBCM(i,1) = max(ShiftCAFP(3,:));
PhaseShift_CBCM(i,1) = max(ShiftCAFP(4,:));

end
toc
%% DOE With Batch FEA Technique
tic
disp(’Starting DOE with batch FEA technique’)

162



Theta_FEA = zeros(N_step+1,N_sampling);
Moment_FEA = zeros(N_step+1,N_sampling);
Stiff_FEA = zeros(N_step,N_sampling);
Stiffness_FEA=zeros(N_sampling,1);
MaxVon_FEA = zeros(N_sampling,1);
MaxShift_FEA = zeros(N_sampling,1);
PhaseShift_FEA = zeros(N_sampling,1);
Thetamax_FEA = zeros(N_sampling,1);

for i=1:1:N_sampling
disp(i);

AR=vect_AR(i);
Lc=vect_Lc(i);

%%%** Please comment one of the following rows according to
↪→ the previous

%%%input **

%input = [E;nu;AR;L;w1;t;b;Lc;Fxmax;Fymax;Mmax;N_step;N]; % "
↪→ L" INPUT

input = [E;nu;AR;Beta;w1;t;b;Lc;Fxmax;Fymax;Mmax;N_step;N]; %
↪→ "Beta" INPUT

dlmwrite(’FEA_Input.txt’,input,’precision’,’%.4f’,’newline’,’
↪→ pc’,’delimiter’,’ ’);

[sta, cmd] = dos(’CAFP_FEA.bat’,’-echo’);

filename = ’FEA_Output.txt’;
formatSpec = ’%8f%9f%9f%9f%9f%9f%9f%[ˆ\n\r]’;
fileID = fopen(filename,’r’);
dataArray = textscan(fileID, formatSpec, ’Delimiter’, ’’, ’

↪→ WhiteSpace’, ’’, ’TextType’, ’string’, ’ReturnOnError’,
↪→ false);

fclose(fileID);
FEAOutput = [dataArray{1:end-1}];
clearvars filename formatSpec fileID dataArray ans;

siz=size(FEAOutput);

Theta_FEA(1:siz(1),i) = FEAOutput(:,1);

if (Mmax ˜=0)
Moment_FEA(1:siz(1),i) = FEAOutput(:,2);
Stiff_FEA(1:siz(1)-1,i) = diff(Moment_FEA(1:siz(1),i))./diff(

163



↪→ Theta_FEA(1:siz(1),i)*pi/180);
Stiffness_FEA(i)=mean(Stiff_FEA(:,i));
end

MaxVon_FEA(i) = max(FEAOutput(:,3));
MaxShift_FEA(i) = max(FEAOutput(:,6));
PhaseShift_FEA(i) = max(FEAOutput(:,7));

indexmax=find(FEAOutput(:,3) == max(FEAOutput(:,3)));
Thetamax_FEA(i)= FEAOutput(indexmax,1);

delete(’FEA_Input.txt’);
delete(’FEA_Output.txt’);

end

delete(’file.DSP’);
delete(’file.esav’);
delete(’file.ldhi’);
delete(’file.mntr’);
delete(’file.rdb’);
delete(’file.rst’);
delete(’file0.err’);
delete(’file0.esav’);
delete(’file0.full’);
delete(’file0.log’);
delete(’file0.r001’);
delete(’file0.rst’);
delete(’file0.stat’);
delete(’file1.err’);
delete(’file1.esav’);
delete(’file1.full’);
delete(’file1.out’);
delete(’file1.r001’);
delete(’file1.rst’);
delete(’cafp_fea.out’);

toc
%% PLOT RESULTS
warning off;

%Stress
ft = ’cubicinterp’;
[xstressC, ystressC, zstressC] = prepareSurfaceData( vect_AR,

↪→ vect_Lc*100, MaxVon_CBCM );
fitStressCBCM = fit( [xstressC, ystressC], zstressC, ft, ’
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↪→ Normalize’, ’on’ );

[xstressF, ystressF, zstressF] = prepareSurfaceData( vect_AR,
↪→ vect_Lc*100, MaxVon_FEA );

fitStressFEA = fit( [xstressF, ystressF], zstressF, ft, ’
↪→ Normalize’, ’on’ );

figure( ’Name’, ’Von Mises Stress’ );
p1=plot( fitStressCBCM, [xstressC, ystressC], zstressC );
hold on
colormap(jet);
p2=plot( fitStressFEA, [xstressF, ystressF], zstressF );
xlabel(’AR [-]’,’FontSize’,15,’FontWeight’,’bold’,’FontName

↪→ ’,’Cambria Math’);
ylabel(’L_{c} [%L]’,’FontSize’,15,’FontWeight’,’bold’,’

↪→ FontName’,’Cambria Math’);
zlabel(’{\sigma}_{Max} [MPa]’,’FontSize’,15,’FontWeight’,’

↪→ bold’,’FontName’,’Cambria Math’);
grid on
view([-22.3 11.2]);

set(p1(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(p1(2), ’MarkeblackgeColor’, ’black’,’Marker’,’x’,’

↪→ MarkerSize’,10,’LineWidth’,1);
set(p2(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(p2(2), ’MarkeblackgeColor’, ’black’,’Marker’,’*’,’

↪→ MarkerSize’,10,’LineWidth’,1);

legend( [p1(1) p2(1)], ’CBCM’, ’FEA’ );
set(legend,’Location’,’north’,’FontWeight’,’bold’,’FontSize

↪→ ’,10,’FontName’,’Calibri’);

%Shift Module
[xshiftC, yshiftC, zshiftC] = prepareSurfaceData( vect_AR,

↪→ vect_Lc*100, MaxShift_CBCM );
fitShiftCBCM = fit( [xshiftC, yshiftC], zshiftC, ft, ’

↪→ Normalize’, ’on’ );

[xshiftF, yshiftF, zshiftF] = prepareSurfaceData( vect_AR,
↪→ vect_Lc*100, MaxShift_FEA );

fitShiftFEA = fit( [xshiftF, yshiftF], zshiftF, ft, ’
↪→ Normalize’, ’on’ );

figure( ’Name’, ’Shift Module’ );
h1=plot( fitShiftCBCM, [xshiftC, yshiftC], zshiftC );
hold on
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h2=plot( fitShiftFEA, [xshiftF, yshiftF], zshiftF);
xlabel(’AR [-]’,’FontSize’,15,’FontWeight’,’bold’,’FontName

↪→ ’,’Cambria Math’);
ylabel(’L_{c} [%L]’,’FontSize’,15,’FontWeight’,’bold’,’

↪→ FontName’,’Cambria Math’);
zlabel(’s [mm]’,’FontSize’,15,’FontWeight’,’bold’,’FontName

↪→ ’,’Cambria Math’);
grid on
view([-22.3 11.2]);

set(h1(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(h1(2), ’MarkeblackgeColor’, ’black’,’Marker’,’x’,’

↪→ MarkerSize’,10,’LineWidth’,1);
set(h2(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(h2(2), ’MarkeblackgeColor’, ’black’,’Marker’,’*’,’

↪→ MarkerSize’,10,’LineWidth’,1);

legend( [h1(1) h2(1)], ’CBCM’, ’FEA’);
set(legend,’Location’,’north’,’FontWeight’,’bold’,’FontSize

↪→ ’,10,’FontName’,’Calibri’);

%Shift Phase
[x1shiftC, y1shiftC, z1shiftC] = prepareSurfaceData( vect_AR,

↪→ vect_Lc*100, PhaseShift_CBCM );
fit1ShiftCBCM = fit( [x1shiftC, y1shiftC], z1shiftC, ft, ’

↪→ Normalize’, ’on’ );

[x1shiftF, y1shiftF, z1shiftF] = prepareSurfaceData( vect_AR,
↪→ vect_Lc*100, PhaseShift_FEA );

fit1ShiftFEA = fit( [x1shiftF, y1shiftF], z1shiftF, ft, ’
↪→ Normalize’, ’on’ );

figure( ’Name’, ’Shift Phase’ );
h1=plot( fit1ShiftCBCM, [x1shiftC, y1shiftC], z1shiftC );
hold on
h2=plot( fit1ShiftFEA, [x1shiftF, y1shiftF], z1shiftF);

xlabel(’AR [-]’,’FontSize’,15,’FontWeight’,’bold’,’FontName
↪→ ’,’Cambria Math’);

ylabel(’L_{c} [%L]’,’FontSize’,15,’FontWeight’,’bold’,’
↪→ FontName’,’Cambria Math’);

zlabel(’{\phi} [rad]’,’FontSize’,15,’FontWeight’,’bold’,’
↪→ FontName’,’Cambria Math’);

grid on
view([-22.3 11.2]);
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set(h1(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(h1(2), ’MarkeblackgeColor’, ’black’,’Marker’,’x’,’

↪→ MarkerSize’,10,’LineWidth’,1);
set(h2(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(h2(2), ’MarkeblackgeColor’, ’black’,’Marker’,’*’,’

↪→ MarkerSize’,10,’LineWidth’,1);

legend( [h1(1) h2(1) ], ’CBCM’, ’FEA’ );
set(legend,’Location’,’north’,’FontWeight’,’bold’,’FontSize

↪→ ’,10,’FontName’,’Calibri’);

%Stiffness
if (Mmax ˜=0)
[xstiffC, ystiffC, zstiffC] = prepareSurfaceData( vect_AR,

↪→ vect_Lc*100, Stiffness_CBCM );
fitStiffCBCM = fit( [xstiffC, ystiffC], zstiffC, ft, ’

↪→ Normalize’, ’on’ );

[xstiffF, ystiffF, zstiffF] = prepareSurfaceData( vect_AR,
↪→ vect_Lc*100, Stiffness_FEA );

fitStiffFEA = fit( [xstiffF, ystiffF], zstiffF, ft, ’
↪→ Normalize’, ’on’ );

figure( ’Name’, ’Stiffness’ );
s1=plot( fitStiffCBCM, [xstiffC, ystiffC], zstiffC );
hold on
s2=plot( fitStiffFEA, [xstiffF, ystiffF], zstiffF);
colormap(jet);
xlabel(’AR [-]’,’FontSize’,15,’FontWeight’,’bold’,’FontName

↪→ ’,’Cambria Math’);
ylabel(’L_{c} [%L]’,’FontSize’,15,’FontWeight’,’bold’,’

↪→ FontName’,’Cambria Math’);
zlabel(’K [Nmm/rad]’,’FontSize’,15,’FontWeight’,’bold’,’

↪→ FontName’,’Cambria Math’);
grid on
view([-22.3 11.2]);

set(s1(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(s1(2), ’MarkeblackgeColor’, ’black’,’Marker’,’x’,’

↪→ MarkerSize’,10,’LineWidth’,1);
set(s2(1), ’FaceColor’, ’white’,’edgecolor’,’black’);
set(s2(2), ’MarkeblackgeColor’, ’black’,’Marker’,’*’,’

↪→ MarkerSize’,10,’LineWidth’,1);

legend( [s1(1) s2(1)], ’CBCM’, ’FEA’ );
set(legend,’Location’,’north’,’FontWeight’,’bold’,’FontSize

167



↪→ ’,10,’FontName’,’Calibri’);
end

F.2. Matlab Script for the CBCM Equations

Save this code in a single Matlab file and name it “CAFP CBCM.m”.

function Eq=CAFP_CBCM(Unknown,Loads)
global t Beta w1 w2 L_el E I N Numc K

Fx=Loads(1);
Fy=Loads(2);
M=Loads(3);

p = Unknown(1:6:end-7);
f = Unknown(2:6:end-7);
m = Unknown(3:6:end-7);
delta_x = Unknown(4:6:end-7);
delta_y = Unknown(5:6:end-7);
alpha = Unknown(6:6:end-7);

xA = Unknown(end-6);
yA = Unknown(end-5);
xB = Unknown(end-4);
yB = Unknown(end-3);

Delta_X = Unknown(end-2);
Delta_Y = Unknown(end-1);
Delta_theta = Unknown(end);

Eq=zeros(12*N+7,1);
j = 1;

% CBCM Eqs.(3N)x2
for i=1:(2*N)

if (N<i) && (i<=N+Numc)
Eq(j) = [12 -6]*[delta_y(i);alpha(i)] + p(i)*[6/5 -1/10]*[

↪→ delta_y(i);alpha(i)] + p(i)ˆ2*[-1/700 1/1400]*[delta_y(
↪→ i);alpha(i)] - K* delta_y(i)- f(i);

else
Eq(j) = [12 -6]*[delta_y(i);alpha(i)] + p(i)*[6/5 -1/10]*[

↪→ delta_y(i);alpha(i)] + p(i)ˆ2*[-1/700 1/1400]*[delta_y(
↪→ i);alpha(i)] - f(i);

end
Eq(j+1)= [-6 4]*[delta_y(i);alpha(i)] + p(i)*[-1/10 2/15]*[

↪→ delta_y(i);alpha(i)] + p(i)ˆ2*[1/1400 -11/6300]*[
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↪→ delta_y(i);alpha(i)] - m(i);
Eq(j+2)= tˆ2*p(i)/(12*L_elˆ2) - 0.5*[delta_y(i) alpha(i)

↪→ ]*[6/5 -1/10;-1/10 2/15]*[delta_y(i);alpha(i)]- p(i)*[
↪→ delta_y(i) alpha(i)]*[-1/700 1/1400;1/1400 -11/6300]*[
↪→ delta_y(i);alpha(i)] - delta_x(i);

j = j+3;
end

% Static equilibrium Eqs. between 1st and i-th elements (
↪→ first beam, i=2,..,N) 3(N-1)

th1=zeros(N-1,1);
xx1=zeros(N-1,1);
yy1=zeros(N-1,1);
for i=2:N
if i==2
th1(i) = alpha(1);
else
th1(i) = sum(alpha(1:i-1));
end
Eq(j) = [cos(th1(i)) -sin(th1(i))]*[p(i); f(i)]*(E*I/L_elˆ2)

↪→ - p(1)*(E*I/L_elˆ2);
Eq(j+1) = [sin(th1(i)) cos(th1(i))]*[p(i); f(i)]*(E*I/L_elˆ2)

↪→ - f(1)*(E*I/L_elˆ2);
Eq(j+2) = m(i)*(E*I/L_el) + (1 + delta_x(i))*f(i)*(E*I/L_el)

↪→ - delta_y(i)*p(i)*(E*I/L_el) - m(i-1)*(E*I/L_el);
j = j + 3;
% For the next step, i.e. Geometric constraint Eqs.
xx1(i) = cos(th1(i))*(L_el*delta_x(i)+L_el)-sin(th1(i))*L_el*

↪→ delta_y(i);
yy1(i) = sin(th1(i))*(L_el*delta_x(i)+L_el)+cos(th1(i))*L_el*

↪→ delta_y(i);
end

% Static equilibrium Eqs. between 1st and i-th elements (
↪→ second beam, i=N+2,..,2N) 3(N-1)

th2=zeros(N-1,1);
xx2=zeros(N-1,1);
yy2=zeros(N-1,1);
for i=(N+2):(2*N)
if i==N+2
th2(i) = alpha(N+1);
else
th2(i) = sum(alpha(N+1:i-1));
end
Eq(j) = [cos(th2(i)) -sin(th2(i))]*[p(i); f(i)]*(E*I/L_elˆ2)

↪→ - p(N+1)*(E*I/L_elˆ2);
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Eq(j+1) = [sin(th2(i)) cos(th2(i))]*[p(i); f(i)]*(E*I/L_elˆ2)
↪→ - f(N+1)*(E*I/L_elˆ2);

Eq(j+2) = m(i)*(E*I/L_el) + (1 + delta_x(i))*f(i)*(E*I/L_el)
↪→ - delta_y(i)*p(i)*(E*I/L_el) - m(i-1)*(E*I/L_el);

j = j + 3;
% For the next step, i.e. Geometric constraint Eqs.
xx2(i) = cos(th2(i))*(L_el*delta_x(i)+L_el)-sin(th2(i))*L_el*

↪→ delta_y(i);
yy2(i) = sin(th2(i))*(L_el*delta_x(i)+L_el)+cos(th2(i))*L_el*

↪→ delta_y(i);
end

% Geometric constraint Eqs. (first beam) (3)
th1(1) = 0;
xx1(1) = L_el*(delta_x(1)+1);
yy1(1) = L_el*delta_y(1);
Eq(j)=sum(xx1)-xB;
Eq(j+1)=sum(yy1)-yB;
Eq(j+2)=th1(N)+alpha(N)-Delta_theta;
% Geometric constraint Eqs. (second beam) (3)
th2(1) = 0;
xx2(1) = L_el*(delta_x(N+1)+1);
yy2(1) = L_el*delta_y(N+1);
Eq(j+3)=sum(xx2)-xA;
Eq(j+4)=sum(yy2)-yA;
Eq(j+5)=th2(2*N)+alpha(2*N)-Delta_theta;

% Output link Displacements (2)
XA=[-sin(Beta) -cos(Beta)]*[xA;yA]+w1/2;
YA=[cos(Beta) -sin(Beta)]*[xA;yA];
XB=[sin(Beta) -cos(Beta)]*[xB;yB]-w1/2;
YB=[cos(Beta) sin(Beta)]*[xB;yB];
Eq(j+6)=Delta_X-(XA+XB)/2;
Eq(j+7)=Delta_Y-(YA+YB)/2;

% Loop closure (2)
Eq(j+8)=[sin(Beta) -cos(Beta)]*[xB;yB]-[-sin(Beta) -cos(Beta)

↪→ ]*[xA;yA]-w1-w2*cos(Delta_theta);
Eq(j+9)=[cos(Beta) sin(Beta)]*[xB;yB]-[cos(Beta) -sin(Beta)

↪→ ]*[xA;yA]-w2*sin(Delta_theta);

% Global Equilibrium Eqs.(3)
Eq(j+10)=[sin(Beta) -cos(Beta)]*[p(1);f(1)]*(E*I/L_elˆ2)+[-

↪→ sin(Beta) -cos(Beta)]*[p(N+1);f(N+1)]*(E*I/L_elˆ2)-Fx;
Eq(j+11)=[cos(Beta) sin(Beta)]*[p(1);f(1)]*(E*I/L_elˆ2)+[cos(

↪→ Beta) -sin(Beta)]*[p(N+1);f(N+1)]*(E*I/L_elˆ2)-Fy;
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Eq(j+12)=m(N)*E*I/L_el+m(2*N)*E*I/L_el+w2*[sin(Delta_theta) -
↪→ cos(Delta_theta)]*[-sin(Beta) -cos(Beta);cos(Beta) -sin
↪→ (Beta)]*[p(N+1);f(N+1)]*(E*I/L_elˆ2)+0.5*w2*[sin(
↪→ Delta_theta) -cos(Delta_theta)]*[-Fx;-Fy]-M;

F.3. Matlab Script for the Shift Evaluation

Save this code in a single Matlab file and name it “CAFP Shift.m”.

function y=CAFP_Shift(IN)
global Beta w1 w2 N_step

Delta_X = IN(end-2,:);
Delta_Y = IN(end-1,:);
Delta_theta = IN(end,:);

for j=1:1:N_step+1

X=Delta_X(1,j);
Y=Delta_Y(1,j);
Theta=Delta_theta(1,j);

xloc= (w2/2)/(tan(Beta));
%yloc=0;
xlocrot=xloc*sin(Theta);
ylocrot=-xloc*cos(Theta);
xICR(1,j)=xlocrot+X;
yICR(1,j)=ylocrot+Y-(w1/2)/(tan(Beta));

if j==1

Dev(1,j)=0;
Phi(1,j)=0;

else
Dev(1,j)=(xICR(1,j)ˆ2+yICR(1,j)ˆ2)ˆ0.5;

if xICR(1,j)>0
Phi(1,j)=atan(yICR(1,j)/xICR(1,j));
end

if xICR(1,j)==0
Phi(1,j)=pi/2;
end

if xICR(1,j)<0
Phi(1,j)=atan(yICR(1,j)/xICR(1,j))+pi;
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end

end

end
y=[xICR; yICR; Dev; Phi];

F.4. Matlab Script for the Stress Evaluation

Save this code in a single Matlab file and name it “CAFP Stress.m”.

function y=CAFP_Stress(x)
global t L_el N_step N E Numc

p = x(1:6:end-7,:);
f = x(2:6:end-7,:);
m = x(3:6:end-7,:);

for j=1:N_step+1
for i=1:(2*N)

P=p(i,j);
F=f(i,j);
M=m(i,j);

k=1;
for x=0:0.1:1
if (N<i) && (i<=N+Numc)
Stb(k)=0;
else
if P<0
r=sqrt(-P);
Stb(k)=[(tan(r)*cos(r*x)-sin(r*x))/r cos(r*x)/cos(r)]*[F;M];
else
r=sqrt(P);
Stb(k)=[(tanh(r)*cosh(r*x)-sinh(r*x))/r cosh(r*x)/cosh(r)]*[F

↪→ ;M];
end
end
k=k+1;
end
Stress_bend(i,j)=max(Stb);
Stress_tot(i,j)=Stress_bend(i,j)*t*E/(2*L_el) + abs(P)*E*t

↪→ ˆ2/(12*L_elˆ2);
end
Stress_max(j)=max(Stress_tot(:,j));
end
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y=Stress_max;

F.5. ANSYS Script

Save this code in a single text file and name it “CAFP FEA.txt”.

fini
/cle

!** 1 Constants

eps=1e-6
mm=1e-3
MPa=1e6
pg=acos(-1)

!** 2 Simulation Selector

BATCH=1 !1-->Batch input 0-->Manual input
CONT=1 !1-->Contact Aided 0-->No Contact Aided

!** 3 Parameters Definition

!%%%%%%%%%%%%%%%%%%%%%%%%%

*if,BATCH,eq,1,then
CONT=1

*DIM,input_data,array,13,2

*VREAD,input_data,FEA_Input,txt,,,13,1
(1F7.3)

E=input_data(1,1)*MPa $ nu=input_data(2,1)

!************Please comment one of the following rows
↪→ according to the input imposed in Matlab************

!AR=input_data(3,1) $ L=input_data(4,1)*mm
AR=input_data(3,1) $ Beta=input_data(4,1)

w1=input_data(5,1)*mm $ t=input_data(6,1)*mm
b=input_data(7,1)*mm $ Lc=input_data(8,1)
Fx=input_data(9,1) $ Fy=input_data(10,1)
M=input_data(11,1)*mm $ substeps=input_data(12,1)
N=input_data(13,1)

*else !Manual input
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E=1400*MPa $ nu=0.4
AR=1.5 $ Beta=45*pg/180 !or L=__*mm
w1=30*mm $ t=1.60*mm
b=5*mm $ Lc=0.2
Fx=0 $ Fy=0
M=0 $ substeps=10
N=10

*endif
!%%%%%%%%%%%%%%%%%%%%%%%%%

!%%%%%%%%%%%%%%%%%%%%%%%%%

*if,Lc,eq,0,then
CONT=0

*endif
!%%%%%%%%%%%%%%%%%%%%%%%%%

w2=AR*w1

!************Please comment one of the following rows
↪→ according to the input imposed in Matlab************

!Beta=asin((w1+w2)/(2*L))
L=((w1+w2)/2)/(sin(Beta))

L_el=L/N
L_el2=L/(N+1)
LCA=Lc*L
tblo=3*t
bblo=b
Erig=1000*E
dx=0.0001*w1

!** 4 FE Model Definition

/prep7
x1=0
y1=0
x2=w1
y2=0
x3=(w1/2)+(w2/2)
y3=((w1/2)/tan(Beta))+((w2/2)/tan(Beta))
x4=(w1/2)-(w2/2)
y4=((w1/2)/tan(Beta))+((w2/2)/tan(Beta))
xLoad=(w1/2)
yLoad=((w1/2)/tan(Beta))+((w2/2)/tan(Beta))
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xICR=(w1/2)
yICR=((w1/2)/tan(Beta))

k,1,x1,y1
k,2,x2,y2
k,3,x3,y3
k,4,x4,y4
k,5,xLoad,yLoad

l,1,3
l,3,5
l,5,4
l,4,2

*if,CONT,eq,1,then
xCI=w1-((t/2)/(cos(Beta)))-dx
yCI=-((t/2)/(sin(Beta)))
xCF=w1-((t/2)/(cos(Beta)))-LCA*sin(Beta)-dx
yCF=LCA*cos(Beta)-((t/2)/(sin(Beta)))

k,6,xCI,yCI
k,7,xCF,yCF

l,6,7

*endif

et,1,188
keyopt,1,3,2

mp,ex,1,E
mp,nuxy,1,nu

mp,ex,2,Erig
mp,nuxy,2,nu

sectype,1,beam,rect
secdata,t,b

sectype,2,beam,rect
secdata,tblo,bblo

mat,1
esiz,L_el
secnum,1
lmesh,1
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esiz,L_el2
lmesh,4

secnum,2
lmesh,2
lmesh,3

!%%%%%%%%%%%%%%%%%%%%%%%%%

*if,CONT,eq,1,then
mat,2
secnum,1
lmesh,5

et,2,170

r,1,

et,3,176
keyopt,3,2,0
keyopt,3,3,0
keyopt,3,5,3
keyopt,3,6,2
keyopt,3,9,1

type,2
real,1
tshape,line
lsel,s,line,,5
nsll,s,1
esln
esurf
esurf,,reverse
alls

type,3
real,1
tshape,line
lsel,s,line,,4
nsll,s,1
esln
esurf
alls

*endif
!%%%%%%%%%%%%%%%%%%%%%%%%%

ksel,s,kp,,1
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ksel,a,kp,,2
nslk,s,1
d,all,all
alls

*if,CONT,eq,1,then
ksel,s,kp,,6
ksel,a,kp,,7
nslk,s,1
d,all,all
alls

*endif

ksel,s,kp,,5
nslk,s,1

*get,NodeLoad,node,,num,max

*if,Fx,ne,0,then
f,all,fx,Fx

*endif

*if,Fy,ne,0,then
f,all,fy,Fy

*endif

*if,M,ne,0,then
f,all,mz,M

*endif

alls

fini

!** 5 FEA Simulation

/solu
antype, static
nlgeom,on
autots,off
nsubst,substeps
outre,all,all
solve
fini

!** 6 FEA Post-Processing and Results Export
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/post1

*get,nstep,active,,solu,NCMSS

*dim,res,table,nstep+1,7
res(1,1)=0
res(1,2)=0
res(1,3)=0
res(1,4)=0
res(1,5)=0
res(1,6)=0
res(1,7)=0

set,first

*do,i,1,nstep

*get,rot,node,NodeLoad,rot,z

*get,sig,secr,,s,eqv,max

*get,ux,node,NodeLoad,u,x

*get,uy,node,Nodeload,u,y

xShift=(((w2/2)/tan(Beta))*sin(rot))+ux
yShift=(-((w2/2)/tan(Beta))*cos(rot))+uy+((w2/2)/tan(Beta))

Dev=((xShift)**2+(yShift)**2)**0.5

*if,xShift,gt,0,then
phi=atan(yShift/xShift)

*endif

*if,xShift,eq,0,then
phi=pg/2

*endif

*if,xShift,lt,0,then
phi=atan(yShift/xShift)+pg

*endif

mom=i*M/nstep

res(i+1,1)=rot*180/pg
res(i+1,2)=mom/mm
res(i+1,3)=sig/MPa
res(i+1,4)=xShift/mm
res(i+1,5)=yShift/mm
res(i+1,6)=Dev/mm
res(i+1,7)=phi
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set,next

*enddo

*cfopen,FEA_Output,txt

*vwrite,res(1,1),res(1,2),res(1,3),res(1,4),res(1,5),res(1,6)
↪→ ,res(1,7)

(F8.3,’ ’,F8.3,’ ’,F8.3,’ ’,F8.3,’ ’,F8.3,’ ’,F8.3,’ ’,F8.3,’
↪→ ’)

*cfclose

!set,last
!*vplot,res(1,1),res(1,2)
!plns,s,eqv,2,1
!/contour,,,0,,50*MPa

F.6. Batch File

Save this code in a single batch file and name it “CAFP FEA.bat”.

SET KMP_STACKSIZE=2048k
"C:\Program Files\ANSYS Inc\v193\ansys\bin\winx64\MAPDL.exe"

↪→ -p aa_t_a -dis -mpi INTELMPI -np 2 -lch -dir "C:\Users\
↪→ Pietro Bilancia\Documents\PhD_USA\BYU_Research\CBCM\PB\
↪→ DOE" -j "file" -s read -l en-us -b -i "C:\Users\Pietro
↪→ Bilancia\Documents\PhD_USA\BYU_Research\CBCM\PB\DOE\
↪→ CAFP_FEA.txt" -o "C:\Users\Pietro Bilancia\Documents\
↪→ PhD_USA\BYU_Research\CBCM\PB\DOE\CAFP_FEA.out"
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