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Abstract

Compliant parallel mechanisms/manipulators (CPMs) @arallel manipulators that
transmit motion/load by deformation of their comapli members. Due to their merits
such as the eliminated backlash and friction, redrfer lubrication, reduced wear and
noise, and monolithic configuration, they have beesed in many emerging
applications as scanning tables, bio-cell injectoamo-positioners, and etc.

How to design large-range CPMs is still a challaggissue. To meet the needs for
large-range translational CPMs for high-precisiootion stages, this thesis focuses on
the systematic conceptual design and modellingugietrange translational CPMs with
distributed-compliance.

Firstly, several compliant parallel modules withstdbuted-compliance, such as
spatial multi-beam modules, are identified as bogdlocks of translational CPMs. A
normalized, nonlinear and analytical model is thenived for the spatial multi-beam
modules to address the non-linearity of load-efguidim equations. Secondly, a new
design methodology for translational CPMs is presgnThe main characteristic of the
proposed design approach is not only to replacenkatic joints as in the literature, but
also to replace kinematic chains with appropriatdtiple degrees-of-freedom (DOF)
compliant parallel modules. Thirdly, novel largelqga translational CPMs are
constructed using the proposed design methodologyidentified compliant parallel
modules. The proposed novel CPMs include, for exang1-DOF compliant parallel
gripper with auto-adaptive grasping function, dfrstiss-enhanced XY CPM with a
spatial compliant leg, and an improved modular X¥PM using identical spatial
double four-beam modules. Especially, the propas¥dCPM and XYZ CPM can
achieve a 10mm’s motion range along each axis m ¢hse studies. Finally,
kinematostatic modelling of the proposed transtatioCPMs is presented to enable
rapid performance characteristic analysis. The @sed analytical models are also

compared with finite element analysis.
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Chapter 1 — Introduction

In rigid-body robotics, there are three types ofchamisms: serial mechanisms,
parallel mechanisms and hybrid mechanisms. Seredhanisms use one arm/leg to
manipulate the object (Figure 1.la), while parale¢chanisms use two or more
arms/legs to manipulate the object (Figure 1.1lybridl mechanisms are an integration
of serial mechanisms and parallel mechanisms. floadi mechanisms move by the
motion of traditional joints, and can be used fany applications. However, in some
ultra-precision (macro) or micro-electro-mechanggtems (MEMS) (micro) areas,
traditional mechanisms become inapplicable dueritiidn limitation or small size
requirement, and therefore, the alternative medmasisuch as compliant mechanisms

are needed increasingly.

1.1 Compliant Parallel Manipulators

Recently, McCarthy [1.1] has identifiedAfalysis and Synthesis of Compliant
Linkage Systeiss one of the three research trends of kinematitdse second decade
of the 21st century. As novel mechanisms, complu@nallel mechanisms/manipulators
(CPMs) (Figure 1.1c) transmit motion/load by defation of their compliant members
(namely jointless), and belong to a class of paraflanipulators. They aim to utilize the
compliance to transmit motion/force instead of oahalysing the flexibility effects in
the initial work in the area of kinematics of megizans with elasticity. Unlike the
classical mechanisms, the analysis of CPMs is robaflenging due to requiring both
kinematic analysis and static equilibrium analysidjich is called “kinematostatic

analysis” (or “kinetostatic analysis”).

(a) PPPSerial Rigid-Body Manipulatof(b) 3-FRRR Parallel Rigid-Body Manipulator(c) 3-F?*Compliant Parallel Manipulator
(Source: www.directindustry.com) (Gosselin and Kong, U.S. Patent 2004, (Courtesy of Yue et al, Uni. Shanghai
Courtesyof Gosselil, Uni. Lava) Jiaotong University)

Figure 1.1 Different types of 3-D translational npatators



Chapter 1: Introduction

In comparison with the traditional rigid-body manigtors and/or serial manipulators,
CPMs have the characteristics of both conventigraakllel mechanisms [1.2] and
compliant mechanisms [1.3, 1.4]. CPMs benefit fnrmiany potential merits such as the
eliminated backlash and friction (elimination ofrrdeterministic effects), no need for
lubrication, reduced wear and noise, high precisiogh payloads, more-compact and
monolithic configuration (reduced part count), draing base-mounted/close-to-base
actuators. Tables 1.1 and 1.2 show the detailedpadsons between the compliant
mechanisms and rigid-body mechanisms, and betwkensérial mechanisms and
parallel mechanisms just from the view point of heedsm design. Due to their merits,

CPMs have received much attention over the pastizeades.

Indices Motion
Types Backlash  Lubrication Wear Precision  Friction Noise Assembly range

Compliant mechanisms  Zero No need Reduced High Reduced Reduced No need Small

Rigid-body mechanisms  Existing Needing Existing Low Existing Existing Needing Large

Table 1.1 Comparison between compliant mechanismsigid-body mechanisms

Indices

Rigidity ~ Precision Accumulative Payload Moving  Motion Compactness Actuator Dynamics
Types errors speed range mobility
Paralle i i i Base-mounted
i High High No High Large Small Good Good
mechanisms Iclose to base
Serial L .
Low Low Existing Low Small Large Poor Mobile Poor

mechanisms

Table 1.2 Comparison between parallel mechanismsanal mechanisms

CPMs can be used in a variety of applications micdlg micro and macro scales,
especially where high-precision motion are requirsdch as precision motion
positioning stages [1.5-1.7], precision robotics biomedical applications [1.8],
metrology instruments [1.9], MEMS sensors [1.1Q1},.amplifiers [1.12-1.14], relays
[1.15] and actuators [1.16, 1.17], grippers [1.130), friction force microscopes [1.21],
atomic force microscopes [1.22], adaptive mechasigh23], human assistance
systems, and design-for-no-assembly [1.24] (seer€id.2 for some typical existing
applications).

In the design of CPMs for high-precision (nano-posing) motion stages, good
performance characteristics have been specifiékein [1.6] along with the nanometric
motion quality (<10nm) in terms of motion repeali&piaccuracy (lack of error), and

resolution (minimum incremental motion) [1.84]. Beegood characteristics [1.6]
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defined in this thesis include: 1arge range of motion along the desired directions
(>1mm) (also large desired motidn 2) inherently constrained parasitic error motion
(the minimal undesired motion along the degreesouwistraint), 3)minimal cross-axis
coupling (also output-decoupling [1.25] that is the minimaddesired motion along
other degrees of freedom), daximal actuator isolatiorfalso input-decoupling [1.26]
that is the minimal transverse motion of the adrnat5) minimal lost motion(the
minimal displacement difference between the actuatod the motion stage), 6)
maximal drive stiffnes@he maximal overall stiffness between the pofraciuation and
the motion stage), and Tow thermal and manufacturing sensitivitiele addition,
compactness of the configuratjianinimal number of the geometrical parametéi
example using identical moduledpw cost generally desired dynamic performance
(high bandwidth), andigh payloadsnay be also design indices.

Shock Sensor for Accelerometer
XY Nano-Positioning Motion Stage (Courtesy of B. J., Hansen, Brigham Young UnivgJsit
(Courtesy of Prof. S., Awtar, University of Michigga

} ©K.J.Lu

(kilu@gwu.edu)

Compliant Scissors for No Assembly
(Courtesy of the Compliant Mechanisms
Research Group, Brigham Young University)

.\\— :
Sl

Compliant Gripper for Surgical Tools
(Courtesy of Assistant Prof. K. J. Lu, George
Washington University)

A\
) i Human Assistafice System
Adaptive Compliant Wing (Courtesy of Compliant Systems Design Laboratory,
(Courtesy of Prof. S., Kota, University of Michigan University of Michigan)

Figure 1.2 Typical existing applications for CPMs

1 The motion in the direction of the applied forsetie desired motion, and the other motion is tiesired motion.
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It should be noted that to realize the large rapigeotion is a significant challenge
[1.85, 1.86] for the design of CPMs under relatMarge primary stiffness since CPMs
produce motion by the compliant deformation of thaterial. Compared with lumped
compliant mechanisms (the hinge in lumped-compBamzchanisms is a short-beam
considering the shearing deformation [1.49]), dstied-compliance mechanisms
provide a good option to produce large range ofionotand to reduce stress
concentration. They have relatively simpler anabjtimodels (due to negligible shear
deformation), and their elastic averaging can permexact constraint designs.
However, they often result in 1) load-stiffenindeet [1.5], 2) relatively low primary
stiffness influencing first natural modal frequen8y lost motion affecting precision,
and 4) loss in drive stiffness influencing the dyma performance (mostly associated
with high-order natural modal frequency) of the motsystem. Therefore, if all the
above desired performance characteristics cannatcheeved simultaneously, some

tradeoffs need to be considered among them.

1.2 Existing Design Methodologies for Compliant Mdtanisms

There are several approaches to design complianthanesms: a) the
Pseudo-Rigid-Body-Model (PRBM) approach (Figurdal.[1.25, 1.27-1.33], b) the
continuum structure optimization approach (CSOApY(Fe 1.3b) [1.34-1.37], and c)
the other innovative design approaches such adhstraint-based design approach
(CBDA) (Figure 1.3c) [1.6, 1.38-1.41, 1.105], theresv theory based approach (STBA)
[1.42, 1.43] (Figure 1.3d), the freedom and comstr@pology approach (FCTA) [1.44,
1.45] (Figure 1.3e), and the building-block appfodd.46, 1.47] (Figure 1.3f).
Compliant mechanisms obtained using different desigproaches can be classified
into three categories: lumped-compliance mechanmmsh as that in Li' work [1.30],
distributed-compliance mechanisms such as that imtars work [1.6], and
hybrid-compliance mechanisms such as that in Balitrk [1.32].

The PRBM approach is mainly used to design the edmgpompliance mechanisms,
while the other approaches are mainly used to dethl the distributed-compliance
mechanisms.

Using the PRBM approach, compliant mechanisms étaireed by replacing the
traditional kinematic joints with suitable lumpedrapliance joints based on type
synthesis of rigid-body mechanisms. The performaateCPMs generated by the
PRBM approach largely depends on the selected Idnespenpliance joints (see Ref.
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[1.3] for detailed analysis for a variety of flexuninges).

(a) 6-DOF Micro-Manipulator Obtained by (b) Compliant Gripper Obtained by the CSOA

the PRBM Approach (Courtesy of D. H., (Courtesy of H., Zhou, Tennessee
Chao, Beihang University, China) Technological University)

Under pitches:
h1=h2=1, h3=—1

%35 Hm B880 26/AUG- B4

(c) Six-Axis Small-Scale Nanopositioner (d) The Mechanism Producing Screw Motion
Obtained by the CBDA (Courtesy of S.-C., Chen Obtained by the STBA (Courtesy of H.J., Su,
and M. L., Culpepper, MIT) University of Maryland)

Input f

2 ) ) (f) Specified Mechanism Obtained by the
(e) Rotational Joint Obtained by the FCTA Building Block Approach (Courtesy of C., Kim,
(Courtesy of J.B., Hopkins, MIT) Bucknell Universit)

Figure 1.3 Designs produced by different approaches

The CSOA is to re-consider the design problem asmimal material distribution
problem so that the resulting continuum structuaa ¢ulfil the requirements of a
mechanism [1.37]. The CSOA-based design of a camplinechanism involves three
aspects: (a) topology, i.e. the connectivity of enial, (b) size, i.e. the cross-sectional

area of each segment, and (c) geometry, i.e. ikatations of the connecting segments
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and locations of the junctions [1.8]. However, @80OA generates mechanisms with the
point flexure, and the resulting compliant mecharsisnvolve many parameters, which
are also highly sensitive to manufacture error.

The CBDA uses the fundamental precondition that rtietion of a rigid-body is
determined by the position and orientation of tbastraints, which is well-suited for
the conceptual design of compliant mechanisms [11382]. This approach has
obtained good outcome in designing precision imsémnts [1.6, 1.40, 1.41].

Different from the CBDA, the STBA uses the mathan@texpressions — screw
theory to represent the CBDA and synthesize thestcaints under given motion
requirement based on reciprocity principle, white FCTA employs the geometric
figures to visualize the CBDA. The STBA and FCTAadso be used to synthesize the
mechanisms having screw motion (also helical mdtibat cannot be synthesized using
the CBDA.

The building block synthesis approach is the metbfochpturing kinematic behavior
using compliance ellipsoids, the mathematical modél which facilitates the
characterization of the building blocks, transfotimra of problem specifications,
decomposition into sub-problems, and the abilitgearch for alternate solutions [1.46].
This approach is also intuitive and provides kesight into how individual building
blocks contribute to the overall function [1.46]owever, this approach is currently
focusing on dealing with low order and linear peshk.

In addtion, one can also obtain compliant mechasismth good performance
characteristics such as kinematic-decouplingd reduced primary stiffness (or double
motion stage), respectively, by symmetrical andasarranging two compliant modules.
The kinematic-decoupling is the necessary conditbproducing the kinematostatic
decoupling. However, the realization of kinematostatic-dedimgpfor a CPM is not
intuitive [1.48] since kinematic-decoupling does t nufficiently lead to
kinematostatic-decoupling.

The type synthesis of CPMs is to synthesize tmestraint configuration under given
design objectives. It is an inverse process of yamalfor the degree (s) of freedom
(DOF) or degree (s) of constraint (DOC), and is endifficult. As an example, we
demonstrate how to use the CBDA to analyse the DDFRa spatial compliant

2 Kinematic decoupling can be classified into twpey: complete decoupling and partial decouplinda-1.108].
This thesis only concerns the complete kinematiodpling, which refers to that each independenpuunotion is
controlled by only one input motion.

® Kinematostatic decoupling means that one primanput translational displacement is only affected the
actuation force along the same direction, whickcdiess the relationship between the input force @mgut motion.
This decoupling is also called the output-decoggiiminimal cross-axis coupling in CPMs. Kinematastabupling
may lead to complicated motion control.
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mechanism composed of multiple beams (wires) falgvthe procedure below.

1) Identify the independent ideal constraintg] draw a DOC line going through the
central axis of each beam. Here, a beam is defiseth ideal constraint.

In the case of the spatial non-tilted three-beanduteo shown in Figure 1.4, which
has been proposed before [1.3, 1.5, 1.105], eaaim lie an ideal constraint that allows
five DOF other than the axial motion. Thereforerghare three independent constraints
in this module, i.e. three independent parallel DDEs.

.79 I
- Infinity

I T N

u_} \ « DOC line (dash)

DOF line (dash dot)

Infinity; R«P,P.

Figure 1.4 A spatial compliant mechanism

2) Calculate the number of the DOF using the equati
NF=6-Nc

where N is the number of DOF, andcNs the number of DOC of independent ideal
constraints.

In the case of Figure 1.4, there are three DOFsJimgnich will be determined in the
next step.

3) Determine the orientation and position of eBEF line by making each DOF line
intersect all DOC lines and produce independentanot

In Figure 1.4, each DOF line is parallel to alDO lines to make each F intersect
three DOC lines at the infinity, and therefore ob®F line goes through the
symmetrical centre of the spatial compliant mecéraniand the other two DOF lines
are at the infinity. Moreover, one infinite DOF dins in the XZ-plane, and another
infinite DOF line is in the XY-plane.
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4) Determine the DOF of the spatial compliant hagism by rotating the motion
stage of the spatial compliant mechanism about B&#f line.

In the case of Figure 1.4, the DOF line passmgugh the symmetrical centre of the
spatial compliant mechanism produces a pure rotaltidisplacement, and the two DOF
lines at the infinity produce two independent tfatisnal displacements.

The DOF for the other multi-beam modules can bendoin Figures 3-5 in [1.109]
and/or Figure 2.21 in [1.105]. In addition, a bladheet/leaf flexure module can also be
replaced equivalently with three ideal beam comnstisaTherefore, we can obtain that a
blade/sheet/leaf is able to achieve two rotatiatigblacements and one translational
displacement (see Figure 2.22 in [1.105] for ds}aiking the CBDA.

1.3 Nonlinear Analysis of a Basic Cantilever Beam

Force-displacement relationships of a basic camildoeam are the foundation of
design and/or analysis of compliant mechanismsorter to obtain the accurate
mathematical models for compliant mechanisms, ticagil linear analysis has a limited
application for compliant mechanisms and only pidesgi an initial estimation for
displacements as a reference for more accuratéeanlanalysis.

Non-linearities in force-displacement charactersstiof a basic cantilever beam
(Euler-Bernoulli beam have three sources [1.5]: material non-lineagfigure 1.5a),
geometric non-linearity (Figure 1.5b) and non-liigaof load-equilibrium equations
under small deflections. It is noted that the materon-linearity is ignored throughout
this thesis in order to make the deformed beamabe to come back to the original

undeformed configuration.

Elastic
/ Non-linear area '

Partially plastic —————
R

| .

Linear area

b

Load or stress

| I

Extension or stroin

(a) Typical tensile curve for mild steel [1.52] (b) Large-deflection of a beam [1.72]

Figure 1.5 lllustration for two non-linearities
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Currently, most researchers mainly focus on thealaleformation analysis for a
basic beam as follows.

To capture the non-linearity of force-displacemegations under small deflections,
the load-equilibrium conditions should be appliedthe deformed configuration of
compliant mechanisms (ség@pendix Afor details) [1.5, 1.49, 1.50], which is different
from the configuration before deformation as uselinear load-equilibrium conditions.
There are two main methods of solving force-disphaent equations: a) differential
equation based methods [1.5, 1.51], and b) energthads, such as Castigliano's
theorem [1.52, 1.53] and virtual work principle4,11.54]. Awtar [1.5] has derived the
nonlinear and analytical force-displacement equatiof a basic cantilever beam in
matrix forms under the small deflection assumptiwat the transverse displacement is
less than 0.1 times of the beam length. These meariequations can be directly used to
define the buckling conditions and capture the atéfeof load-stiffening and
elastokinematic nonlinearities, both resulting frarial forces in the beams [1.5, 1.55].
Zelenika et al [1.50] also proposed the nonlinear equations d¢ad spring in the
cross-spring pivot in the deformed configuratioreviertheless, these equations are not
general due to the limitation of derivation, ane tbomplication of solution using
numerical method. Awtaet al [1.51] then analysed the characteristics of a toub
parallelogram flexure module and proposed accuapfgoximations in simple forms.
They further studied the elastic averaging effecimulti-beam parallelogram flexure
mechanisms [1.56]. This body of their work revealldt any difference in the axial
forces acting on the beams will cause an uneqaalstwerse stiffness change in the
beams, and result in rotational yaw.

In addition to considering the non-linearity fronarde-displacement equations,
geometric non-linearity refers to the large deftattof a beam. Therefore, we cannot
use the small deflection hypothesis while analysirggbeam with large deflection. Due
to the complexity, many approaches have been peapiwsfigure out this open issue. In
this subsequent section we will focus on the revaéthe literatures on large deflection
analysis of basic beams. Some selected representagthods for large deflection
analysis of a beam are shown in Table 1.3.

In numerical solution obtained using integratiorgw¢ll et al [1.57] provided an
elliptic integral solution, and Saxeeaal [1.58] solved these equations with numerical
integration using Gauss-Chebyshev quadrature fat®ulGenetic algorithms for large
deflection analysis of beams were also employeflli59]. In numerical differential
solution, Banerjeeet al [1.61] proposed the non-linear shooting method rehte
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boundary value problem is converted to an initialue problem. In other novel
numerical methods, Morscht al proposed a direct nonlinear solution [1.62], and
Banerjeeet al also presented an adomian decomposition meth6d][1.

Since linear problems are much easier to be sothed nonlinear ones, many
linearization solutions have been presented. Agsdnear equivalent system has been
developed by Fertis [1.63] as an attempt to sotwetlie large-deflected shape of a
cantilever beam using a linear approach. Otheraftimation techniques include the
quasilinearization developed by Bellmanal [1.64] and generalized quasilinearization
by Lakshmikanthanet al [1.65]. The global coordinate model with an incesal
linearization approach was presented to turn thdimear problem into a sequence of
linear problems in [1.67], which does not requimgial guesses to assure convergence
in comparison with the numerical approaches.

In the pseudo-rigid-body-model (PRBM), Howell al [1.68] proposed a PRBM 1R
model by introducing a linear spring to approximipedeflection for initially straight
cantilever beams subjected to the combined endefamrd moment, Saxaena and
Kramer [1.58] further modified the PRBM 1R modehg8ere and Kota [1.71] proposed
a finite element model that evenly decomposesablie beam inton (no less than 3)
segments joined by torsion springs with a stiffnedsl/L, which is completely load
independent and can accommodate a wide range ad,|bait approximation accuracy
of this model is determined by the number of sedme’ load independent
pseudo-rigid-body 3R model was further proposedShyet al [1.72] for determining
large deflection of beams, of which good accuraas werified. However, these
PRBMs cannot be used to deal with arbitrary loadiages since each loading case

demands different characteristic parameters.

Approach family Analysis tool

Numerical solution solved with integration [1.5%Q]
Numerical approach Numerical differential solution [1.61]
Other novel solutions [1.62, 1.61]
Linearization approach Linearization solution [:587]
Parametric approximation approach Pseudo-rigid-bradgel [1.68-1.72]
Finite element analysis approach FEA[1.73-1.77]

Experimental approach Experiment [1.78]

Table 1.3 Classified solutions for large deflectanalysis of a beam

10
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In addition, the spatial deformation analysis fdremm can be found in Refs. [1.103,
1.104]. Ref. [1.103] derives the nonlinear anabfticconstraint model for the
three-dimensional symmetrical beams under smabrdedtion assumption, and Ref.
[1.104] deals with the spatial-beam large-deflectmmerical integration and PRBM
for the axisymmetric beams.

Because the beams used in CPMs for high-precisiotiom stages usually work
within small deformation for most applications, tgeometry non-linearity will be

neglected in this thesis.

1.4 Dynamic Analysis

Dynamic analysis is a foundation of the robot colntstructure design and actuator
selection. The dynamic analysis of compliant meddms includes two aspects:
mechanism dynamics and structure dynamics [1.7B¢ fbrmer aims to achieve the
control of compliant mechanisms, and the lattersaionimprove the structure design of
compliant mechanisms to eliminate the effect ofation. Therefore, dynamic analysis
of the compliant mechanisms is more difficult andmgplicated than that of the
rigid-body mechanisms. Therefore the dynamic amalgé compliant mechanism has
received more attention over the past decade [1L.88}

In mechanism dynamics of compliant mechanismsdtmamics modelling is based
on the PRBM [1.80]. Most popular methods to analifs® dynamics of compliant
mechanisms such as the Newton-Euler method anbatpangian method [1.80, 1.82,
1.84] (energy-based method) are well-known. Congareh the Lagrangian method,
the Newton-Euler method needs less calculationienghysical meaning is definite.
However, it is difficult to obtain the standard dynic models. The mechanism
dynamics of compliant mechanisms focus on detengirthe dynamic behavior of
compliant mechanisms like velocity and acceleratio83].

In structure dynamics of compliant mechanisms, tuthe low speed characteristic
of most compliant mechanisms, the dynamic modellmasimplified, which is a large
feature of compliant mechanisms. The structure olyos of compliant mechanisms
focuses on determining the natural characteristeh sas the system natural frequency
and vibration mode, which is a foundation of transidynamic analysis and spectrum
analysis. The compliant mechanisms can be thoughs$ structures made up of elastic

systems and rigid bodies. The natural charactesigif compliant mechanisms can be

obtained by the well-known dynamic equatianX(+ KX =Q), FEA and/or experiment

11
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[1.40, 1.79, 1.81].

This thesis only deals with the structure dynamigs, considers or calculates the
modal frequency for the specified CPMs whereverrayppate, especially the first
natural modal frequency.

In practice, the larger the first natural frequertbg better the dynamic performance
is. However, if the physical first natural frequgnis relatively low, a high-order
controller can be used to achieve a high bandwagttater than this first natural

frequency [1.87].

1.5 Objective and Outline of the Thesis

There is an increasing need for high-precision gpasitioning) motion stages that
produce large range of motion (1~10mm) over mwésa(e.g. XY or XYZ) in a
compact (desktop-size) package [1.87]. Such appits, as detailed in [1.87], exist in
the scanning probe nanolithography [1.88, 1.89hnamg probe microscopy and
metrology [1.90-1.94], memory storage [1.96], hadilive fabrication [1.96],
semiconductor fabrication and wafer inspection{}],.8emiconductor packaging [1.98],
and imaging for stem cell research [1.86].

Some large-range and high-precision motion stah®9{1.102] have been proposed
according to magnetic-levitation/aerostatic strateigowever, due to the attractive
merits of CPMs as mentioned earlielarge-range translational CPMsfor
high-precision motion stages are selected as tbeareh object for this thesis. It is
noted that we limit ourselves to consider a) tHb ftompliant mechanisms, the motion
of which results from the deformation of the corapti members rather than partially
compliant mechanisms throughout this thesis, andhé)fully parallel manipulators
rather than serial or hybrid ones.

In addition, the existing multi-DOF translationaPMs, usingplanar compliant
module$ (most lumped-compliance), cannot well fulfil treguirements of the desired
performance characteristics mentioned previousty. &ample, they produce small
range of motion only capable of several hundredresic[1.85], involve many
geometrical parameters (increase manufacturing),cdstve bulky configurations,

and/or result in relatively large kinematostatiatpling (detailed shortcomings for the

4 Planar compliant joints/modules refer to a clasmodules, the size of which in at least one dinmmss much
smaller than that in the other dimension(s). They loe learnt from Refs. [1.3] and [1.110]. The canytto a planar
compliant joint/module is the spatial compliantjdimodule that has compatible size in three dinmssilt should
be pointed out that these joints/modules capablpraducing only planar motion are called planar iorojoints/
modules, and those capable of producing spatiabmate called spatial motion joints/modules.

12
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existing CPMs will be discussed in the next sevehalpters).

To deal with the above open issues, the objextvehe thesis are:

1) To identify existing or new (especialgpatia) compliant parallel modules with
distributed-compliance, which may be used as bugidilocks of translational CPMs,
and to create nonlinear and analytical model tolyaeathe load-displacement
relationships of spatial modules.

2) To propose a new design methodology for traizsiat CPMs.

3) To propose novel translational CPMs (from 1-D@ to 3-DOF translational
CPMs) with desired performance characteristicse@sfly large range of motionfor
high-precision motion stages using the proposedoagp and the identified compliant
building blocks.

4) To develop kinematostatic modelling of the pregubtranslational CPMs to enable

quick analysis and rapid design synthesis.

The thesis is outlined as follows.

In Chapter 1, the research objectives of this théasige-range translational CPMs are
firstly introduced, and a general research framé&visthen provided. Chapter 2 focuses
on proposing and analysing compliant parallel mesliithat can be used as building
blocks of large-range translational CPMs. Usingphiposed and/or existing compliant
parallel modules in Chapter 2, large-range traimgiat CPMs will be proposed and

modelled in Chapters 3, 4, and 5. Finally, condasiare drawn.

Chapter 1: Introduction Firstly, this chapter briefly introduces the rash
background on CPMs, and then carries out a litezateview on design methodology,
nonlinear analysis, and dynamics analysis. Thectibgs and the organization of the
thesis are finally stated.

Chapter 2:Spatial Compliant Parallel Modules: Multi-Beam Mdesi and Their
Nonlinear AnalysisFirstly, a spatial non-tilted three-beam moddeproposed and a
nonlinear and analytical model for the spatial ¢hlbeam module is obtained using three
nonlinear methods: an approximate analytical methax improved approximate
analytical method and a numerical method. The neali model addresses the
non-linearity of load-equilibrium equations, applien the deformed configuration,
under small deflection and plane cross-sectionmgsan. The nonlinear solutions,
linear solutions and large-deflection FEA soluti@me further analysed and compared.
FEA verifies that the accuracy of the proposed inealr-analytical model is acceptable.

13
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Moreover, a class of spatial multi-beam module$ vigur or more beams is proposed,
and their general nonlinear load-displacement egjstare obtained based on the
approximate load-displacement equations of the iapahree-beam module. The
proposed spatial multi-beam modules and their neali models have potential
applications in the CPM design. Especially, thetigpanulti-beam modules can be
regarded as building blocks of novel CPMs. Finadither compliant parallel modules
with distributed compliance to be used as the mgldlocks of translational CPMs are
listed.

Chapter 3Design and Modelling of 1-DOF Translational CPMsow! Compliant
Parallel Grippers A novel auto-adaptive compliant parallel gripg@PG) for 1-D
large-range translation is proposed using a cyrtyped-amplifier and two parallelogram
modules at first. Then the displacement amplifaratiatio and the force-displacement
equations for the auto-adaptive CPG are derivedcantpared with FEA. Further, the
varied configurations are presented, analysed ascussed. On the one hand, the
auto-adaptive grasping function of the proposed @P@ique in comparison with the
existing CPGs driven by only one linear actuator.te other hand, compared with the
closest prior art, the proposed auto-adaptive C&Gachieve good characteristics such
as large-stroke, no stress-concentration, welldcaimed parasitic rotation of the jaw,
actuator isolation, a simple and compact configanat

Chapter 4Design and Modelling of XY CPMs for High-Precisigdiotion StagesA
novel planar XY CPM and a spatial double four-beawmdule both with distributed
compliance are first proposed for large range oftiono Then, a large-range
stiffness-enhanced XY CPM is proposed by combintiregabove planar XY CPM and
the spatial double four-beam module in an appropriparallel arrangement.
Normalized analytical models for the stiffness-emdel XY CPM are then presented.
As a case study, a stiffness-enhanced XY CPM wattyel range of motion of
10mmx10mm is presented in detail, covering the getooal parameter determination,
performance characteristic analysis, buckling chekand actuation force checking.
The analytical models are compared with the FEA@®d-inally, the dynamic issues,
manufacture and out-of-plane stiffness are discusisas shown that, in the example
case, the stiffness-enhanced XY CPM has the foligwnerits: large range of motion
up to 10mmx10mm, well-constrained parasitic motiapproximate cross-axis
decoupling, approximate actuation isolation, acaelet lost motion, enhanced

out-of-plane stiffness and no friction with ground.

14
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Chapter 5:Design and Modelling of XYZ CPMs for High-Precisigiotion Stages
Firstly, a design methodology for translational C$M proposed. Secondly, applying
the presented design methodology, type synthesionglucted to generate several
large-range XYZ CPMs using different modules inaaiety of ways: (1) using identical
double parallelogram flexure modules, (2) usingemed planar XY CPMs, (3) using
identical spatial modules, (4) using embedded apatiodules, (5) using five legs
composed of spatial modules, (6) using planar dotlib-beam modules. Thirdly, the
improved modular XYZ CPM using identical spatialubte four-beam modules is
selected for normalized-modelling. Fourthly, asaaecstudy, an improved modular XYZ
CPM with large range of motion of 10mmx10mmx10mmpiesented in detalil,
covering the geometrical parameter determinati@enfopmance characteristic analysis,
buckling checking, actuation force checking, anchuafacture. Fifthly, the first natural
frequency for the improved modular XYZ CPM is cad#tad. Finally, the analytical
models are compared with the FEA models. It is shtvat, in the example case, the
improved modular XYZ CPM has the following uniquemts compared with existing
designs: (1) large range of motion up to 10mmx10hdmxm, and (2) reduced number
of design parameters by using identical spatiakirmglam modules.

Chapter 6ConclusionsGeneral conclusions and major contributions througthe
thesis are summarized in this chapter. Some fuiwoeks are identified for further
investigation.
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Chapter 2 — Spatial Compliant Parallel Modules: Muti-Beam Modules
and Their Nonlinear Analysis

A spatial multi-beam module is composed of a mostage and a base connected
using three or more slender beams (wires) [2.1]. 212 addition to being an
independent CPM in its own right, e.g. as a vibsatoow! feeder [2.3, 2.4] and a
compliant assembly system device [2.5], spatialtirinlam module can also be used as
building blocks of spatial CPMs, which will be dissed in Chapters 4 and 5. This
offers an alternative to spatial CPMs composed afumber of planar compliant
modules with distributed compliance, which haverbpeoposed elsewhere [2.6-2.8].
Dai et al [2.3] analysed the compliance of a three-legggitlly connected compliant
platform using screw theory based on lihear compliance matrix for each leg. Dieg
al [2.4] have carried out a dynamic analysis of aatiiry bowl feeder with three spatial
compliant legs based on a characteristic equaRecently, a spatial tilted three-beam
compliant module, producing three pure rotationapkhcements, is studied to define
layouts of actuators using the screw theory [2H@\wever, there has been no analysis of
a spatial module with three or more uniform notetlislender beams.

This chapter mainly investigates the nonlinear nlodgeof spatial compliant parallel
modules with multiple identical and uniforruler-Bernoulli beams under small
deflection and plane cross-section assumption. fitvelinear model addresses the
non-linearity of load-equilibrium equations appliedthe deformed configuration. By
nonlinear analysis, we can identify which spatialdule is better suitable for a building
block of new spatial CPMs. Accordingly, the resbafocuses on spatial multi-beam
modules with uniform non-tilted beams (Figure 2The reasons for this choice are that
the uniform beam is one of the most common flexelements and the non-tilted
arrangement is simple enough to allow for closedifoanalysis in terms of
constraint-based design. In addition, we will Hyiediscuss other compliant parallel
modules: compliant prismatic joints for applicasan new translational CPMs.

This chapter is organized as follows. In Sectioh, Zonlinear load-displacement
equations of the tip of a spatial beam, conditiaisgeometry compatibility and
load-equilibrium conditions of the spatial threeebbemodule are derived. Section 2.2
proposes three methods to solve the nonlinear dicglacement equations for the
spatial three-beam module, and also discussesatidity, application, accuracy and

advantages/limitations of each method, the erratyais and linear method. In Section
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2.3, FEA is conducted to verify the proposed appnate analytical method for the
spatial three-beam module. In Section 2.4, a otdsspatial multi-beam modules is
proposed, and the general load-displacement eaqatior these modules are
summarized. Other compliant parallel modules wistridbuted compliance to be used
as building blocks of new translational CPMs arscdssed briefly in Section 2.5.
Finally, the summary is performed.

2.1 Spatial Three-Beam Module and Its Nonlinear Anlysis

In order to simplify equations and make translalodisplacements and rotational
angles (or forces and moments) comparable, alskational displacements and length
parameters are normalized (divided) by the beargtteh, forces byEI/L? bending
moments byEI/L, andtorques byGly/L (The specific discussions for the normalization
strategy can be found idppendixC). Here,E denotes the Young's modulusdenotes
the second moment of the area of a cross-se&ioapresents the shear modulus, gnd
denotes the polar second moment of the area ofttbss-section. In this chapter,
non-dimensional quantities are represented by enesponding lower-case letters, and
all beams have round cross-sections with the sammeder Do, unless indicated
otherwise.

A three-beam module, which is the simplest forimthee multi-beam modules, is
shown in Figure 2.1. It is composed of a base etdtentical and uniform beams and a
motion stage. The base and the motion stage, warielboth assumed to be rigid, are
connected by the three compliant beams. Here,hitee tbeams are uniformly spaced
around a circle of radiug on the base and on the motion stage, and allreaitkradsp
(axial force),fy, f; (transverse forces)n, (torque),m, and m, (bending moments), are
acting at the centre, 'Oof the motion stage and cause the motion stageaee by
deformation of the three beangs.f, andf, are the forces along the X-, Y- and Z-axes,
respectively;m,, my andm, are the moments about the X-, Y- and Z-axes, ctisady.
For the purpose of simplification, the gravity dfet motion stage (including the
payloads on it) is integrated into the axial foraed the weights of the compliant beams,
which are very small, are neglected.

In the initial configuration, a mobile rigid-bodyardinate system 'e'Y'Z' and a
global fixed coordinate system O-XYZ are coincidantl both origins are at the centre
(reference point), Qof the motion stage (Figure 2.2). All transladbdisplacements of
the new origin, Q are denoted bys (axial displacement) angs and z (transverse
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displacements) along the X-, Y- and Z-axes, respagt All rotational displacements
(angles) of the motion stage are denoted®fytorsional angle)ds, and fs, (bending
angles) about the X-, Y- and Z-axes, respectivEhe objective is to investigate the
translational displacements, ys andz;, and the rotational displacements,, 6sy and
0s;, of the motion stage as a function of the appiedis:p, fy, f, m,, m, andm,.

It should be pointed out that all loads and disptaents shown in Figures 2.1 and 2.2
are represented by the nondimensional quantitigh vaspect to the global fixed

coordinate system O-XYZ.

Motion stage

Top view of
motion stage

The loads acting at the
tip of theig-th beam

Figure 2.2 Free body diagram of the spatial thregaib module

In terms of the constraint-based design [2.10,]2thé three out-of-plane motions,
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Osyand 6s; of the spatial three-beam module are suppressadlits motion stage is
constrained to move within the YZ plane, with z; and fsx as the DORf the pitch
radiusrg of thebeams (hence the motion stage) becomes relatiaedg,| the rotation of

the motion stage about the X-axis will be constdias well.
2.1.1 Nonlinear load-displacement equations of aspl cantilever beam

The centre of the free-end of the cantilever beamsed as the point (tip) at which
the loads and translational displacements are eldkfinHere, the loads,

P, fiys fiy MMM, (=1, 2, 3), denote internal loads acting at the tp, of the

io-th beam, and are the corresponding reactionseaptimtio on the motion stage as

shown in Figure 2.2.p , f, andf  are the forces along the X-, Y- and Z-axes,
respectively; m ,,m , andm , are the moments about the X-, Y- and Z-axes,

respectively. 8 ,,68 ,andg ,are rotational displacements of the free-end of itFth

iox * Zlgy
beam about the X-, Y- and Z-axes, respectiveky., y, andz are translational

displacements of the tip of theth beam along the X-, Y- and Z-axes, respectively.
Under the conditions of linear elasticity and smadiflections, the principle of

superposition [2.11] can be applied straightfordyatd deal with the spatial combined
deformation of a beam. The combined deformationtmnegarded as the combination
of bending deformation in the XY and XZ planes [uating the displacement along the
X-axis), respectively, and torsional deformatioroatbthe X-axis. The bending of a
beam in a given plane can be analysed using thinean load-displacement equations
derived by Awtar [2.2, 2.6]. An alternative deriiat for the nonlinear analysis of planar
deflection of a beam can also be foundppendix A

Equations (A. 12a) and (A. 13a) allow the nonlmead-displacement equations for
theig-th beamip= 1, 2, 3) for bending in the XY and XZ planes towritten as

fiy | [a c| Y, e hlV, ,[-1/700  1/1400 7 Y,
= +p + P, +.-- (2.2)
m, c bjé, ‘Lh g6, °11/1400 -11/6300| &,
and

Fiv a cjz, e hz ,[-1/700  1/1400 T 2,
= +p +p, +(22)
-m, c bj-4, ‘Lh g]|-6, °|1/1400 -11/6300] -4 ,

where the second term on the right-hand side of #aqug2.1) or (2.2) shows the

load-stiffening effect, and the terms after the osec can be neglected for most
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applications. Equations (2.1) and (2.2) are valideurthe assumption that the moment
about the Y(2)-axis acting at any location on tharbeloes not affect the bending in the
XY (XZ) plane, i.e. that the two bending directioase decoupled or are weakly
coupled.

The axial displacement of thgth tip can be obtained by adding Equations (A.12b)
and (A.13b) (contributions from bending in the XdaXZ planes) and deducting one

of the duplicated terms (purely elastic effect):

i kY, roqjl Y o4 K| 1" 9%
pi0+[yi010ioz]|:k J}|:0ioz:|+ pio[yiolgioz]|:q S}l:gioz:|+[zion HiOY]|:k j:||:_9ioy:|+ P2, gioy]|:q S:|{_0ioy:|

) 1/42000 -1/84000| Y, ) 1/42000 -1/84000| z,
0 [yi 6, Tt [Zi '_giy] tee
orTo” 071 —-1/84000 1/18000 Hioz or °’1-1/84000 1/18000 | — Hioy

X =

lo

Q|

(2.3)
where the first term on the right-hand side repres¢he purely elastic effect of the
axial force alone, the second and the fourth tesihmsv the purely kinematic effect, and
the third and the fifth terms show the elastokingen&ffect. For most practical
situations the terms after the fifth can be ignosette they are much smaller than the
former five terms.

The nonlinear load-displacement equation ofigitb beam ig=1, 2, 3) for the torsion
about the X-axis in deformation can be obtainede (8@pendix B for detailed
derivation):

8, =m, +(fy, —,2.)/0=m, ~c6,2 +6,y,)6-p,h6,z +6,y,)5 (2.4)
where6=2G/E. The first term shows the purely elastic effectted torque alone, the
second term shows the purely kinematic effect, amel third term shows the
elastokinematic effect. Due to the very small begdangles, compared with the
transverse displacements and the torsional angleeirspatial three-beam module, we
can also omit the purely kinematic and the elaskkiatic effects in Equation (2.4).

The coefficients, b, ¢, d, e, g, h, i, j, k, g, r andsused earlier are all non-dimensional
numbers and are the characteristic of the unifaumd cross-section beam [2.2]:

a=12,b=4, c=—6, d=16/(Dy/L)*=16/(d0)*;

e=1.2,9=2/15,h=-0.1,

i=-0.6,j=-1/15,k=1/20;

r=1/700,s=11/6300,0=-1/1400.

From Equations (2.1)—(2.4), it can be seen tipat f m , andm ,are all

iy ? fioz’

approximately in the order of 1 (one), amg, is in the order of 0.1 since

29



Chapter 2: Spatial Compliant Parallel Modules: Muteam Modules and Their Nonlinear Analysis

%, Y, 2%, 6x06,andg ,are all in the order of 0.1 under the small deitect

assumption [2.2].

Ref. [2.12] also derives a more accurate nonli@atytical constraint model for the
spatial symmetrical beams under small deformatgsumption. For a spatial beam in
the three-beam module, its nonlinear model propasetthis section can be used to
derive the almost same nonlinear model tioe spatial three-beam modubes that

obtained using the model in Ref. [2.12].
2.1.2 Conditions of geometric compatibility

For small absolute values of rotational anglestfia order of 0.1), the rotation
sequence of thre&uler anglesis insignificant [2.13] and its contribution care b
neglected. Due to the rigidity of the motion staties geometric compatibility of the

rotational angles can be described:

st = Hlx = HZX = 63x ! (25&)
6,=6,=6,=6,, (2.5b)
0,=6,=6,,=6,. (2.5¢)

The translational displacement relationships betvikertip of theip,-th beam and the

centre of the motion stage can be expressed as

n !

Xo | 1% 7% | [X] [ K] | %X
Yio | 5| Yo =Y [F| Vs [F|Y" [F] Vs Y, (2.6)
z, | |Z-2,] &) 5] |z-7
where X , y; and z are the coordinates of the tip of theth beanrelative to the
global fixed coordinate system after only the rotal displacements of the motion

stage (no movement at the poif).Ox , y; and z are the coordinates of the tip the

io-th beamrelative to the global fixed coordinate system e tinitial undeformed
configuration, which are also the local coordinaiethe tip of the-th beanrelative to
the mobile rigid body coordinate system €0, y,=rssin(z/3), and z =r;cose/3) for

tip 1, x,=0, y,=0, and z,=-r3 for tip 2, x;=0, y,=-r3ssin(@/3), and z,=r;cos/3)

for tip 3).

The coordinate’ , y; and z can be further expressed in a rotation matrix fagm
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" !

X, X,
V' [ZR2(E)Ry (6,)Rx (6, ¥, (2.78)
Z, Z,

whereRyx, Ry andRz are the sequential rotation matrices [2.13] akbeatX-, Y- and
Z-axes, respectively.
For small rotational angles, their high order terimghe product of three rotation

matrices above can be neglected, so:

1 - gsz + Hsygsx Hszgsx + gsy 1 - Hsz Hsy
R z (gsz) RY (gsy) R X (gsx) = Hsz 1 - st + gszgsy = 652 1 - st ’ (27b)
- Hsy gsx 1 - gsy gsx 1

Combining Equations (2.5) to (2.7b), the geometrynpatibility conditions can be

re-expressed in matrix form as

Yl 100 0 zZ -y
Yi, 010-z O X | Ys
Z, |_|0 01 vy -x 0z | (2.8)
6,/ 000 1 0 0|6,
g,/ 000 0 1 0|8,
g, 000 0o o0 1 jg,

Substituting the local coordinate values of thestimto Equation (2.8), the

translational displacements of the tips can beesgqad as follows.

X, = X, ~V/3r,8,,12+1,0, 12, (2.9)
X, = Xs — 130, (2.10)

Xy =X +3,0,,12+1,6,,12, (2.11)
Y, =Y~ 1,0,12 (2.12)

Y, =Y, tr6,, (2.13)
Y=Y, 160,12, (2.14)

2, =27 +-/3r,6, 12, (2.15)
z,=1, , (2.16)
z,=2,-3,6,/2. (2.17)

2.1.3 Load-equilibrium conditions

From the free body diagram in Figure 2.2 and simt@ the load-equilibrium
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relationships used in [2.3], the equilibrium comahs of the motion stage in the
deformed configuration can be described:

p | ! 0 0 00 o]b
f, 0 1 0o 0 o offy
Ll gl o 0 1 00 off, (2.18)
m| & 0 -z/0 Yy, /60 1 0 0Ofm,
m, z 0 -x 010 m,,
m, =Y. X 0 00 1) m

where X , y; and z’ can be obtained from the result of substituting Equa(2.7b)

into Equation (2.7a), which can reflect the rotatigffects.s is defined in Equation
(2.4).

Neglecting the contribution of small rotational mlecements, Equation (2.18)

simplifies to:
P=p,+p,+Ps, (2.19)
fo=f, +fy+ o (2.20)
f =1+, + 15, (2.21)
m, =my, +m, +my +(p, + p; —2p,)r, /2, (2.22)
m, =my, +m,, +m,, +(ps = pV3r, /2, (2.23)

mx = rrﬁx + m2x + rTl3x + ( flz - fSZ)\/érS /(25) + [2f2y _(fly + fSy)]rS /(25) ' (224)

2.2 Solution to the Nonlinear Load-Displacement Angsis of the Spatial
Three-Beam Module

The constitutive, compatibility and equilibrium abtions [Equations (2.1)—(2.4),
(2.5), (2.9)—(2.17), and (2.19)—(2.24)] in Sectid permit a solution of the nonlinear
load-displacement equations in terms of the gegnudtthe three-beam module. Three
nonlinear methods of increasing accuracy and coxitplare presented in this section:
an approximate analytical method, an improved apprate analytical method and a

numerical method.
2.2.1 Approximate analytical method

An initial FEA showed that, when forces alone acéng, each of the two bending
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angles is approximately two orders of magnitudelem¢han its corresponding one of
two transverse displacements (o ys, 6syt0 z), and the torsional angle is almost zero.

Therefore, the rotational angles are dropped odrexter appropriate below.

a) Solution for #sy and 6s;,
Substituting Equation (2.2) into Equation (2.22)mbining the result with Equations
(2.15) to (2.17), and again neglecting all thetroteal displacements:

m, +(3c+ ph z
r,/2

(p+p)-2p= (2.25)

Similarly, the substitution of Equation (2.1) inExuation (2.23) and combining the
result with Equations (2.12) to (2.14), yields
m, - (3c+ ph)y,

—p)= 2.26
(P = Py) Jar. 12 (2.26)

From Equations (2.9) to (2.11), one can obtain
(X% +X%5) =2%, = 31,0, (2.27)

Substituting Equations (2.3), and (2.12)—(2.179 iBguation (2.27), and substituting
Equation (2.25) into the result give the rotatiotiaplacement
o, =i2 £ yer +2zZ2r)[m, + (3c+ ph)z] - 26,,y.i . (2.28)
3r, d
Similarly, the rotational displacemefit, can also be obtained from Equations (2.9),
(2.11), (2.3), (2.12), (2.14), (2.15), (2.17) aBd26) as
e, =% :37232% +y2r +22r)[m, - (3c+ ph)y.] -26,zi . (2.29)
b) Solution for ys'and z
Substituting Equation (2.1) into Equation (2.20)darombining Equations
(2.12)—(2.14), we obtain
f, =1, + 1, +f,
=ay, +cb,, + p,(ey, +hb,,) +ay2+cl,, + p,(ey, + h,,) +ay, +cf,, + p;(ey, +hd,,) -
= (@Ba+ pey, + (3c+ ph)b,, +[2p, = (p, + Py)Irs6,8/2
(2.30)
Rewriting Equation (2.30) and replaciflg, with =205,z based on Equation (2.29),

we obtain the transverse translational displacement

1 The bolded symbols are only for the purpose dflighting rather than vectors if not indicated athise.
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— fy -+ ph)(_zesxzsi) +[( Pt ps) B 2p2]r3«95xe/2

231
3a+ pe ( )

S

The transverse translational displacengmian be obtained by substituting Equation
(2.2) into Equation (2.21), combining Equationsl&—(2.17) and replacingsy with
—20sy4 based on Equation (2.28):

_ f,+@c+ ph)(=26,y4) +(ps — p)V3r6,e/2
% 3a+ pe '

(2.32)

Finally, substituting Equations (2.25) and (2.2&p Equations (2.31) and (2.32),
respectively, we obtain the two transverse displesd equations:
_f, =@+ ph)(-26,2

i)+[m, +@c+phz]b,e f,+mo.e

S ! V€ (0.33)
3a+ pe 3a+ pe

, < f, +@c+ ph)(=26,y) +[m, - e+ phy.J6.e _ f,+mb.e (2.34)
3a+ pe 3a+ pe

c) Solution for O
Combining Equations (2.1) and (2.2), and substitutire result along with Equation
(2.4) into Equation (2.24), we have

2

m, =36, +3ar3205x/5+ peL esx/5+£r3(pl - ps)ezs/5+1r3[2p2 —(p.* ps)leys/o.

2 2
(2.35)
Substituting Equations (2.25) and (2.26) into Emumat(2.35), and substituting
Equations (2.33) and (2.34) into the result, we iobthe torsional angle (rotational

displacement):

_ m, 0 +(m,z, +myys)e _ m, 0 +(m,f, +myfy)e/(3a+ pe

o (2.36)
30 +ar? +2er32) 30 +ar? +§er32)
If the torque is normalized bigl/L (rather than byGly/L), the torsional angl@sy
becomes
+(m,f, +m f )e/(3a+ pe
g, =Mt (mf, +m,f,Jei(Sa+ pe) 2.37)
3(0+ar? +ger32)
d) Solution for X
From Equations (2.9) to (2.11), we have
X = (X +X, +%;)/3. (2.38)

Substituting Equations (2.3) and (2.12)—(2.17) imquation (2.38), substituting
Equations (2.25) and (2.26) into the result and timgtsome high order terms of
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rotational angles, we obtain the axial translatiaisplacement:

K= B 2+ Dy ey e+ Briir +20y.0,- 26, k-2 (my, +mz)eus

(2.39)
where the terms withs?ds,® are retained sinag, is the DOF, and they are related to the
radiusrs.

In summary, the approximate displacements of thdomctage for a given set of
loads are obtained as follows:

(1) Calculate the torsional anglg using either Equation (2.36) or Equation (2.37);

(2) Solve forys and z; by substituting the torsional angle into Equati¢283) and
(2.34);

(3) Calculatedsy andds, by substitutinglsy, ys andz into Equations (2.28) and (2.29);

(4) Obtain the axial displacemertusing Equation (2.39).

If mf, =—m/f,, Equation (2.36) simplifies tds=m,d/[3(5+ars*+per’/3)]. This
condition holds when the resultant transverse fasceerpendicular to the resultant
bending moment. In particular, we focus on five csgple cases:m,=m,=0; f,=f,=0;
m,~=f,=0; f, =m,=0; m,=-0.5, and m=0.5,. In the casem,=m,=0, the three DOF
equations [Equations (2.33), (2.34) and (2.36)] mependent, and in the case:
m,=-0.5, andm,=0.5, the three rotational angles [Equations (2.2829pand (2.36)]
are all equal to zero as long as the axial f@re@ andm,=0. Furthermore, according to
Equations (2.28), (2.29), (2.33), (2.34), (2.36) &89), when only a torsional moment
is imposed on the motion stage, two of the tramsiat displacementss andz, and
two of the rotational displacements; andds,, are zero whil®s=m,d/[3(5+ars%)] and
XT 320581 (negative), and this reveals how torsion can redbe axial displacemers
If only the two transverse forces are imposed oe thotion stage, the spatial
three-beam module can be regarded as a good Zif)dtian joint.

It can also be observed from Equations (2.28), {2(2933), (2.34), (2.36) and (2.39)
that:

(a) The axial force affects the transverse displacemeg®dz), which reflects the
load-stiffening effect. Either of the two transvedisplacement equations shows that
the buckling conditiorpein=—3a/e=—30 occurs when the transverse stiffness becomes
zero. The torsional anglé. decreases with the increase of (positipewhich also
shows the load-stiffening effect. The torsional angfjuation shows a second buckling
condition pei=—3(+ars’)/(ers?)=—[30+3/(ers?)] when the torsional stiffness becomes

zero. Therefore, the buckling load for the spatiaéé-beam module (%= maxQcrit1,
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Perit2)=—30.
(b) The axial displacement has three components: purely elastic effect from t

axial force alone, purely kinematic effect such@g +z2)i +r/65j +2(y.0,, - 2,6, )k

3 ¥sx

and elastokinematic effect such gy + z2)r /3+ pr/@2r /3-2(m,y, + m,z,)6,,r /3.

The elastokinematic effect is much smaller thatgheely kinematic effect. Similarly,
the bending anglésy (6s,), is also composed of three components.

(c) The torsional angle has a dominant effect on @beuracy of the previously
mentioned equations in comparison with and 6s,. The smaller s, is, the more
accurate are the previously mentioned force-digphant equations.

(d) All the three rotational angles decreasesascreases. For a typical value 0.6rof
and 65,=0, 6s, and 0sycan be in the order of 1x10f d=40000 (i.e.L/Dy=50). This
reveals the fact that the essence of constrair@gebagsign is a combination of the
effects of large values afand small values af Furthermore, iflsx andys (or z;) are all
relatively large in absolute valu@, (6s,) is affected by purely kinematic effect: s/
(or —295,z4d) dominantly.

(e) The translational displacemew(or z), is weakly dependent an,, m,, m,, p and
f, (orfy) (Maxwell Reciprocity [2.2 and 2.14]), and stropnglependent ofy (or f,). Here,
fy (orf,) is a dominant load in determiniryg(or z5), whereasn,, m,, my, p andf, (or fy)
are non-dominant loads. Furthermore, torsionaleglis weakly dependent an,, m,

fy, fzandp, and strongly dependent am (my is a dominant load in determinidg,).
2.2.2 Improved approximate analytical method

For relatively large absolute valueségf, the dependence of a transverse translational
displacement on the relevant non-dominant loadsrhes significant, particularly if the
absolute values of the relevant dominant load arallsrelative to the non-dominant
ones. Moreover, the purely kinematic effect andelastokinematic effect in Equation
(2.4), the second-order terms in rotational angkeglected in the product of the three
rotation matrices in Equation (2.7b), and the rotattontributions in Equation (2.18)
need also to be retained wherever appropriatedditian, we may approximaté, and
Oszusing Equations (2.28) and (2.29), respectiveltheappropriate derivation below.

Using Equation (2.18), Equations (2.22)—(2.24) fore tmoment-equilibrium

conditions after deformation can be rewritten as
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I
my:rrhy+m2y-'-rr%y"'(ll)l"'pe,_zpz)E3

, 2.40a
V3 1 V3 (2:402)
+ ( P~ ps)? rSHSx + [2 f22 - ( flz + fsz)] E reﬂsy + ( flz - fsz)7 rSHSz
V3
mz = rn.l.z +m22 +rn?zz +(p3 - p1)7r3
, (2.40b)
Iy V3 1
+ [( Py + ps) - 2p2]505x + ( f3y - f1y)7 r303z + [( fly + f3y) -2 fzy]E r363y
V3 1
M= (M, + My, + M)+ (T, = 1)1 +[26, = (B, + )10,
A (2.40¢)
3 1
+ ( f3y - fly)? r‘Eiesx + [2 f22 - ( f1z + f32)] E r‘Sesx
From Equations (2.1), (2.2) and (2.12)—(2.17), cawe obtain
f,, = £, =+/3ar6, +(p, ~ p;)(ez ~h6, ) +(p, + p)ev3r,, /2, (2.414)

2f,, = (f,, + f5,) =3and, +[2p, —(p, + p:)l(ey, +hE,,) +[4p, +(p, + ps)lerd,, /2,
(2.41b)
fy, = fiy =(Ps — P)(eY, +hE,,) +(p, — ps)erd,, /2, (2.41c)
215, = (f,, + £,,) =[2p, = (p, + P;)I(e2, —h8,) +(p, ~ p)eVarb, /2 (2.41d)
wherep;+ps and 4,+(p1+ps) can also be represented bp{Ro:+ps—2p,)]/3 and
2p—(p1+ps—2p2), respectively.

Retaining the bending angles in Equations (2.31) &éh32), the two transverse
displacements are obtained as

1
fy - (3C+ ph)esz +[( P+ ps) - 2p2]§r3esxe

= , 2.42
Ys 3a+ pe (2.42)
J3
fz + (3C+ ph)gsy + ( pS - p1)7r395xe
z, = (2.43)
3a+ pe

where more accurate solutions fop;Hps)—2p, and ps—p: can be obtained by
substituting Equations (2.41a), (2.41b), (2.41a) éh41d) into Equations (2.40a) and
(2.40b) and combining the results with Equation$)42.2) and (2.12)—(2.17):

ooy (e Pz, — (D + P98, ~{m, -[(3o+ Phy, + (B + PYGLI}6,(N-D - (Ba+ pYri6, 8, /2
(Py* o) =2p, = (1, 12)(E2(h-17 +]) :
_m, +[(3c+ ph)z, - @+ pg)d, ] -[m, - @G+ ph)y,16,(h-1)

(r,/2)

(2.44)
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m, —[(3c+ ph)y, + Bb+ pg)d,,] +{m, +[(3c + ph)z, - 3o+ pg)d, 1} b, (h-1) + (3a+ pe)rSb,6,,/2

PP = (J3r, 12)(@2 (h—1)* +1)
_m,—[(3c+ ph)y, + @+ pg)b, ] +[m, + [Bc+ ph)z]b,,(h-1)
B (3, 12)

(2.45)

For relatively large absolute valueséaf, Equation (2.28) is re-written as
3I'.:%Hsy :(X:L +X3)_2X2 a stHsz
+p,)-2 . :
<P PI20: g2t g2y g2 {2 4 20) 222+ A0y, + v, ~2y,) - K6 (2, + 2, ~22,)

d
+[( p:l_yl2 + p3y§)_2p2y§]r +[( p:LZ:I_2 + p3Z§)—2pZZ§]r +2[( pl + p3)_2p2](y5051 Zs sy)q 3r esxesz

+p)-2 :
< (Pt PIZ2P: g yi-606,8,(k+08) (P + )~ 20,07 +2)r —{(py + Po) + 4P,
+(p, = P3O0zl +[(P, + Ps) ~ 2P, 112028 —4( P, + P2) —2P,1(Y.2. — 2,Y,)6,id

+ 2
~(PTPIT2R: g i-3.0,0,4((p,* P5)2BiI(Y2 + ) 4P+ P)=29) =281 0.0
+(p1 - p3)\/§r395xzsr +[( pl + ps) _2p2]r32852x
(2.46)

The substitution of Equations (2.29), (2.44) and%2 into Equation (2.46) produces

s =%[1+(y§ + 22 +1262)r][m,+(3c+ ph)z, ~m,@, (h—1)

3 ¥sx

. (2.47)
322 S0+ 2 +r2)m, + 6, (=116, ~20,, +£r) + 2622,
Similarly, Equation (2.29) is re-written as
\/§r3 sz = + \/>|'3 SX sy
(p3 ) +(y3 yl)i +(Z§_Z12)i +2kesz(y3_yl)_2k95y(z3_zl)+(p3y§_ plylz)r

d
+ (pszz - plzf)r +2(p; = P)(Y.b., — 2.8,)q + V/3r,6,8,,

= {22 P) o 3r,0,2,1 + 2431,0,0, (K + 05) + (py = P(YZ + 221 + (P, = Poyet

- (pl + pS)IrSQSx 5r + (p3 - pl)r32€52x 4( p3 - pl)(yszs - Zsys)esxiq

(p3 d 2\/>r3gsx SI + \/§r3gsx sy + (p3 pl)(ys2 + Zsz)r + (pl - p3)r3esxysr
- 2p * [( pl +3 p3 2 p2] \/>r esxzsr + (p3 - pl)r32952x

(2.48)

Substituting Equations (2.28), (2.44) and (2.4%) iBquation (2.48), we have

2
gsz ~? E+(ys + Z + rs 92 _r3gsxys)r][mz_(30+ ph)ys +my sx(h 1)]
- . (2.49)
+_2 —+ (y32 + Zsz)r][my + mz sx(h 1)] - ngxzs(l +£r) - ngzxysl
3ry d 3

Then, substituting Equations (2.44) and (2.45) imquations (2.42) and (2.43),

respectively, the two transverse displacementdearsbtained as
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S

_ f, =@+ ph)d,, +{m, +[(3c+ ph)z, = o+ pg)6, ] -[m, - B¢+ ph)y,]6,, (h-1)}6,e
- 3a+ pe ’

(2.50)

S~ f, +@c+ ph6,, +{m, —[(3c+ ph)y, + B+ pg)6,,] +[m, + (3c + ph)z]6, (h-1)}6 e
= 3a+ pe

(2.51)
Equations (2.50) and (2.51) can be further singalifas

S

_ f, =@+ ph)(8,, - 20,2) +[m, + (3c+ ph)z,]8,e-m, 65 (h-1)e
_ 3a+pe . (252)
_ (Bc+ ph)g, +m, g5 (h-1)e

3a+ pe

=Ys

S~ f, +@c+ ph)(8,, —26,y) +[m, - Bc + ph)y,]8,e+m,d;(h-De
57 3a+

_ pe (2.53)
(3c+ ph)d,, +m,62(h-De

y < sx

:zs+

3a+ pe

__f,+mbe _ f+mbe -~ 2 .1
where y_ = =,z =2 X G, = [+ (Vi +Z - y.], and
% gavpe 5T sarpe | Uv T gzlg OsrANIMAGer PV

8, =iz 1+(>7§ +22)rl[m,+@3c+ ph)z] .
3ry d

Substituting Equation (2.41) into Equation (2.48n) combining with Equation (2.4),
we have

mXJ = 35HSX + 3C(6SZZS + 6Syy3) + ph(gszzs + 6syys) + 3ar326sx + perSZHSX
V3

#2206, = pa)l(e2 ~h6,) (63, +h6,)6.) 254)

1
+§r3[2 P, = (P, + pPy)ll(ey, +hé,,) +(ez —h6,)d,]

We can further substitute Equations (2.44), (2.48)47), (2.49), (2.52) and (2.53)
into Equation (2.54) and omit some high order tewhgotational angles. Then we
obtain the torsional angle as follows:

6, ={mJ+[m,~(Bc+ ph)¥, - (3 + pg)(@,, - 26,,2)
+[m, + @c+ ph) 2,16, (h-D][( &, —hb,, +2h8, ¥) - &.6,]
+[m,+@c+ ph)z, - (3 + pg)(E,, - 26,.9.i)
~[m, - B¢+ ph) ¥,16,,(h-D][( &, +hb,, - 2hE, i) + &6, ]

- (B3c+ ph)(@,2, +8, 9.} {35 +ar? +§er§ - 2ci(2

(2.55)

n 2phi . N
+y§)—%<z§+y§)l}
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f, +m,8,e-(3c+ ph)g,
3a+ pe

~

fz + mzesxe+ (3C + ph)gsy
where y, = =

3a+ pe

,and 2

. Only one

S

real solution is the desired solution for the palyrial equation of degree 8 with one
unknown@s,. Equation (2.55) can be shown to reduce to EqugBd36) for relatively
small Psy].

In addition, substituting the torsional anglg obtained from Equation (2.55) into
Equations (2.52) and (2.53), the two transversglai®mentsys andzs, can be found.

Oncedbsy, Ys andzs have been obtained, the other two rotational angigandés, can
be obtained using Equations (2.47) and (2.49),thadxial displacememt can then be
obtained using Equations (2.3) and (2.9)—(2.17) as

_1 P 2, 52via P2, 2 2p2: . P22
Xe == (X + X + X)) = ——+(ys + )i+ (ys +Z)r +ry0,0 +—r;65r
S 3(X1 2 3) 3d (ys s) 3 (ys s) 3

3 Ysx 3 Ysx

1
+§[(2p2 - ( p, + ps))rsys + ( P, — ps)\/érszs]esxr
, (2.56)
+ 2(ysgsz - Zsesy)k + (9522 + Hszy) J +§ p(ysgsz - ngsy)q

1
+§[(2p2 - ( P, * ps))rsgsz - ( P, ~ ps)\/§r3esy]esxq +§p(gszz + Hszy)s
Substituting Equations (2.44) and (2.45) into Epuat(2.56) and making further
simplification, we have

X =%+(Y§ +22)i +§|O(y;Z +Z2)r +r 65 +§r292r +2(y 6, ~ 2.6, )k

3 Ysx 3 Ysx ssy

. (2.57)
2 2
—g(myys +m,z,)0,,r -5[(my +(3c+ ph)z,)d,, —(m, - c+ ph)y,)d,, 16,9

Equations (2.47), (2.49), (2.52), (2.53), (2.55)d af2.57) are the improved
approximate analytical load-displacement equatif@ndarge §s., which can capture
more nonlinear effects. It can be shown thgtO for the five special loading cases:
m=m,=m,=0; m,=f, =f,=0; m=m,=f,=0; m,=f,=m,=0; m,=0, m=—0.5, andm,=0.5.

If my or m; in Equations (2.52) and (2.53) and all of the dwami transverse forces
are very small in absolute value, we can obtain emaccurate solutions to the
load-displacement equations. Starting from éhe 6s, andés, obtained above, the two
accurate transverse displacememtsaafidzs) can be obtained from Equations (2.50) and
(2.51). Then, we can obtain more accurate valugkpbsy,, 0s, andxsstep-by-step by
substituting the abowa andz into Equations (2.55), (2.47), (2.49) and (2.57).
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2.2.3 Numerical method

Exact solutions for the nonlinear load-displacemequations can be obtained
numerically without the need for approximationhaligh this has the disadvantage that
the qualitative behavior of the spatial modulesiare difficult to explore.

The numerical scheme involves seven unknown tefpasps)—2p2, Ps—P1, Osx sy, sz
ys and zs that are obtained by solving the seven followingiapns, obtained from
Equations (2.42)—( 2.46), (2.48) and (2.54):

1
y, ={ f, - @c+phd,+[(p, + ps)—ZpZ]ErgﬁsXe} /(3a+ pe), (2.58)
_ J3
ZS _{ fz + (3C+ ph)esy + ( p3 - p1)7r363xe} /(3a+ pe) ' (259)
[(p,+ P;) = 2p,]r; /2=m, +[(3c+ ph)z, - 3+ pg)b,,] . (2.60)

—{m, ~[(3c+ ph)y, + @b+ pg)e,. 1} 6,,(h-1) - Ba+ pe)r;e,. b, /2

3 Ysz7sx

(p; — POV3r; /2=m, —[(3c+ ph)y, + (b + pg)é.,]
+{m, +[(3c+ ph)z, - Bb+ pg)8, 1} 6, (h-1) + (3a+ pe)r/6,6,,/2

3 Ysy’sx

, (2.61)

3I’36’s (p3 + pl) _sz

y =

- 6r395xysi - 6r3gsxgsz(k + 0-5) +[( p, + ps) - 2p2](y52 + Zsz)r
+[(( p, + ps) - 2p2) - 2p]r3gsxysr +(p1 - ps)\/grsgsxzsr +[( p, + ps) - 2p2]r32‘9s2xr ! (2'62)
+ 2[( pl + pS) - 2p2](ysesz - ngsy)q

V30, = PP o310, 21+23,6,0, (k+ 05)+ (p, = PI(Y2 + 20

SXS SXT sy

2P+t P)=2P:) 13 g 4 ¢4 (p, - p)r26Pr , (2.63)

+ ( pl - p3)r395xysr - 3 SXTs

+ 2( p3 - pl)(ysgsz - Zsesy)q

m, 0 =306, + (3c+ ph)(b,,z, + 6.

3
+g r3( pl - pS)[(e% - hesy) - (eys + hesz)esx] . (264)

JYs) + (3a+ perio,,

1
+§r3[2 p2 - ( pl + p3)][(eys + hesz) + (ezs - hesy)esx]

Oonce(p1+pPs)—2P2, Ps—P1. Osx sy, Osz Ys andzshave been obtained using Mafdelve
function with initial set values of all zeros, thegn be substituted into Equation (2.56)
to obtain the axial displacemext We can also obtaip; andp, andps by combining
Equations (2.60), (2.61) and (2.19), which is usifufurther stress analysis.
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2.2.4 Discussions

a) Validity condition of the proposed nonlinear mehods

The nonlinear methods proposed in Sections 2.224.2@8 are valid only for small
deflections (usually all normalized displacemeetsithan 0.1 [2.2]) and large ratios of
length to diameter, i.e. slenderness ratios (ugw#lDo more than 10 [2.15] for slender
beams ignoring shear deformation). If the propasmdinear methods are applied to the
analysis of spatial three-beam modules under thdittons of large deflections or small
slenderness ratios (for Timoshenko beams), erretwden the analytical results and
real results will be unacceptable, but these nealirethods can still capture certain
nonlinear constraint characteristics of the spatiatiules.

Now discuss the range of under given conditions. If we make a rotationaglan
(such asés;) smaller thanoo times (usually> 50) a corresponding transverse
displacement (such gg) in absolute value under only one transverse faotmg (such
asfy), we have the following relationship based on Hgua(2.29):

?232 @/ d+yr)(-3cy) <y, /a,.

The above equation is simplified to determinertireye ofr3:
r;>12a,/d.
It should be emphasized that the analytical ntethas an apparant advantage in

guantitatively determining certain geometrical paeters such as the radius of the pitch
circle of the spatial three-beam module demonstrabove.

b) Application of the proposed methods to spatialiree-beam modules with regular
polygon cross-section beams and generalized beams

It should be noted that the normalized and nealirmethods proposed above are also
applicable for the spatial three-beam modules vatular polygon cross-section beams
(ignoring warping effect under torsion), but thenrsimensional coefficiend should be
modified accordingly. For example, for the squaress-section multi-beam module,
d=12/(T/L)*(T is the thickness of the beam). Here, this modifiedlinear method suits
the layouts of the square cross-section as showhigare 2.3 due to its inherent

symmetry.
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a) Layout 1 b) Layout 2

Figure 2.3 Top view illustrations for the squaress-section layouts in the spatial

three-beam module with same pitch circle radius

In addition, these nonlinear methods can be usedeal with generalized beam
modules by modifying the coefficiengsb, ¢, d, e, g, h, i, J, k, q, r ands based on Ref.
[2.6], and usingy=G/(Eay) and then replacingnd with 2a;mco in Equations (2.36),
(2.55) and (2.64). Here, a generalized beam ofttebhgs composed of two uniform
compliant segments and one rigid segment [2.6],agrdknotes the normalized length

of each compliant segment.

c) Characteristics of three nonlinear methods

In order to illustrate the applicability of thenous solutions, an example spatial
three-beam module is analysed below. The spatiaetheam module is taken to be
made from an aluminium alloy for which Young’s magk) E, is 69,000Nmri¥ and
Poisson’s ratioy, is 0.33. The dimensions aBe=4mm @=2500), R;=30mm ¢3=0.6)
andL=50 mm. All the normalized external transverse désroeed to be approximately
over [-3.6, 3.6] yielding normalized transverseptisements over [-0.1, 0.1]. The
normalized external torque needs to be approximatethe order of 1.8 to limit the
torsional angle to the order of 0.1. Other nornelizxternal loads may be all in the
order of 1.8 or greater compared with the pre-deitezd loads.

In practice, the simpler and more analytical thethoe is, the more useful the
analysis for the design of CPMs is. If each of thmminate forces for transverse
displacements, such §sfor ys, is relatively large (for example, 2 times largiean all
the relevant non-dominant moments in absolute Yatmetwo bending moments are
both zero in,=m,=0), the approximate analytical method should beepiable for
design purposes (the case under the latter condgishown in Figure 2.4). When the
above condition does not hold, a balance needsetondde between accuracy and

complexity.
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0.05

—&— Approximate analytical for any fy and fz
—+— Numerical for any fy=2 and fz=1
“£— Numerical for any fy=2 and fz=2

0.041

oos. And for p=m=m;=0

0.02-

Osx

0.011

-0.01 I I I I I I I I I
0 01 02 0.3 0.4 05 06 07 08 09 1

my

Figure 2.4 Comparison of results obtained usindinear methods fom,=m,=0

Table 2.1 shows the calculated displacementshefmotion stage of the spatial
three-beam module using the approximate and improapproximate analytical
methods and the numerical method under loalgds2, m,=10 (mf, =20) and
p=m=m,=m,=0, i.e. where the torsional angle is relativelgéa

otk Displacements A Z Xs O, Osy Osx
Approximate analytical method 0.00 0.0702 -0.00390 0.0112 -9.518x10 0.0438
'nTeF;L%"ded approximate analytical ; 54 5 00755  -0.00424 0.0131 -1.106%10 0.0607
Numerical method 0.00514 0.0764  -0.00436 00131  1HK10® 0.0609
Error between improved and 100% 7.02 % 7.80% 14.50% 13.94% 28.08%

approximate analytical methods

Table 2.1 Comparison of three nonlinear method®uti large torsion

We can observe from Table 2.1 that, for relativiaisge 6sx, the error (|(improved
approximate analytical result — approximate anedytiresult)/improved approximate
analytical result|x100%) is relatively large anduisacceptably high foys since the
dominant loadfy for ys is zero. Table 2.1 also shows that the approxonatifor the
improved approximate analytical method are readenaleading to very small
differences between the analytical and numerichitisms. If the loading is changed to
f=2, m=5 (mf,=10), ando=m=m, =m, =0, the error in the torsional angle reduces from
the 28.08% in Table 2.1 to 6.40%.

Figure 2.5 shows that the torsional angle errowbeh the numerical, improved
approximate analytical, and approximate analytreallts increases at an accelerating
rate as the ratio df to m,decreases starting at around 1.6, and also vettifeeaccuracy
of the improved approximate analytical method.sltconcluded that the difference

between the solutions obtained using the improvetlagproximate analytical methods
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decreases with the increase of the transverse.loads

0.04

T T
—©S— Approximate analytical
0.038 1 —+— Improved analytical
—4— Numerical

0.036

0.034}
0.032} For m,f,=10, and

Osx

0.03 p=m,=m,=m,=0
0.028}
0.026}

0.024

0.022 -

0.02
0

1 I I
0.5 15 2 2.5

1
f,/m,
Figure 2.5 Comparison of torsional angles obtaingdg three nonlinear methods

for fixed product oim.f,

d) Error analysis of the spatial three-beam module

In this section, error analysis will be implementedanalyse how the beam length
error affects the DOF equations. In turn, the detN\DOF equations can be used to
diagnose the length error.

We only deal with the case that two beams (beawrrsdl3) are of length;, and one

beam (beam 2) is of length (see Figure 2.6).

0,
Beam|2:L,

Beam 1:L, 3L

Figure 2.6 Variation of the spatial three-beam nedu

Let L, is the characteristic length. Then force-displasetequations for beam 1 or
beam 3 remain unchanged, while those for beam agehas follows based on
Equations (2.1)—(2.4).

S T ) o

My | [(L/L)fe (L/L)p |6,y h (L/L)g] -8,
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mzﬁiftii ((LLli//LLZ))ﬂB;}p{(Ll/hLZ)e (Lzthi)g}Bzzj’ (259
| (L (LinYal,
Rt LTI F % e -

*[22"6’2”{“1/;2) R N s e ol

8, L /1L,=m, —c(6,,2,+86,Y,) 6 - p,hb,,2,+6,,)/ 5. (2.68)
LetA=1-1,/L;and be very small, we have
ﬁ:lljfz ~1+A. (2.69)
Further, based on Taylor series expansion, we mobtai
@L+xA)"=1+nA. (2.70)

Therefore, we can re-write the above equations §gns (65)—(68)] as
{fzz }{(ﬂA)Ba @+a)c|z }r ) [(1+A)e h }{zz }
-m, | |[[@+a)c (@+ap |6, | h (1-2)g | -6, (2.71)

Tr % K LN A

RRE R ),
o R ]

SCE RS AP [ S8 Fa el )

AP g RS Pl [ e

LTS LN [ %&( )q o,

o ftD [t e T,

6, A+L)=m, -c(6,,2,+8,,Y,)/ 0 - p,h(E,,2,+6,,Y,)/ J. (2.74)
It is noted that the conditions of geometric coniphity (neglecting the effect of high
order termg A org A) and force equilibrium remain the same.
Retaining the significant terms associated witlorefy, similarly, we obtain the three

approximate analytical DOF equations as follows.
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5 - MO*H(M.F,+m,T,)el(3a+ pe) - 6anr,y, ~[pr ~2m, + @+ pHZ)EAY, (2 75)

3{(1+A/3)d+a@+A)ry? +§ @+A)er? +alr; —gAcizsr3 -2[m, + (3c+ ph)z,]Aer,/3}

f
wherey, = 3a+y o’ and z = 38:'2 -

f, =@+ ph+ 2008, +mg,e+ 3@+ b,

Yy, = (2.76)
31+A)a+ pl+A/3e-2[m, +(3c+ ph)z]Ae/(3r;)
- 2.1 ., _, _
where 6, = —[—+(V; +Z)r][m,—(3c+ ph)y,].
3ry d
f +(3c+ ph+2Ac)é,, +m.6
ZS z ( p C) sy mZ SXe (277)

) 31+A)a+ pL+A/3)e-2[m +(3c+ ph)z]Ae/(3r,)
where 8, =21 +(y2 + Z)rl{m, +(3 + PHZ].
3

Equations (2.75) and (2.76) show that the transveesslational displacement along
the Y-axis,ys, can cause the torsion about the X-axis wher0, vice versa. These
conclusions can help us recognise which beam'stheigydifferent from that of the
other two beams by the following steps:

a) Applying a transverse force, parallel to a @iléhe triangular formed by the three
tips of the three-beam modules, on the centreefithtion stage;

b) If the transverse force causes a transverseléitional displacement and also
brings coupled torsion without any other transversaslation, then the one beam,

separated at one side by the caused translatieriehgth error.

e) Linear analytical method
If the effects of load-stiffening and elastokinemahon-linearities in Equations

(2.1)—(2.4) are all neglected, the linear load-dispment equations of the tip of tizeh

_fioy _ a C yio

m, _[c b} 8,

f. | [a c]z

B e . em
1 i kY, i Kz

Xio_apio-l'[yio’gioz]{k J{gioz:l‘i'[ziy Hioy]{k J{_aoy:l

eiox = mox - C(eiozzio + eioyyio)/a-

beam are:

Using Equation (2.65), and following the solutiprocess in Section 2.2.1, one can
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obtain the linear load-displacement equations efitiotion stage as

mo | 2 _ . 2 B N
g =—>*— . =——(m +3 -26.y.i; 6_,=——(m,-3 -26.7.i
SX 3(5_'_ ar32) sy 3r32d ( y (zs) sxys sz 3r32d ( z WS) sx“s
o fm@epe, T+ (@ P, 2.79)
s 3a ' 3a
X, = oy YA+ 2+ 2y, 0, 260, )K

where y,=f /3a,and Z = f,/3a.

Figures 2.7-2.9 show a comparison of results using linean@michear approximate
analytical methods fom,= my=m,= 0 (in which casefs=0). Figure 2.9 also shows
that Equation (2.79) only captures the effects of dominant ksats asn, fy) upon the
rotational displacements (likés) while the nonlinear equation [Equation (2.29)]
captures the effects of all loads upon the rotational displacenigmis, the linear
equations may be applicable under a very small range of deflection, asuthat

indicated by the rectangular area in Figure 2.9 drawn for 1.65%cemgoared with the
nonlinear analysis.

o.1r Linear for anyp: -----
Nonlinear: ——

0.05

-0.05

0.1k

Figure 2.7 Primary motion in the Y direction

0.015

Linear for anyfy: -----
Nonlinear:
fy=-3,-2,-1,0,1,2,3 _—~

0.01-

0.005

YeYslp=0

-0.005

-0.011

-0.015
-4

Figure 2.8 Load-stiffening effect
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Nonlinear curved

Figure 2.9 Rotational angle about the Z-axis

If the purely kinematic component in Equation (2.3) is alsglewed, the single
beam load-displacement equations are simplified and the approximagar li
load-displacement equations of the motion stage, similar to the wsed in [2.3-2.4]
will be discussed in detail iAppendix Ghat mainly deals with the mobility analysis of

spatial compliant parallel multi-beam modules.

2.3 FEA Verification for the Spatial Three-Beam Modile

The displacements obtained for the example spatial three-beam nusthdgeFEA
method are compared with the three nonlinear methods in Table &&. \We choose
Comsol large-displacement modudte FEA using tetrahedron element with fine mesh,
which has been frequently adopted for verification by other researchées. T
translational displacements obtained using FEA method ween girectly by the
software, and the rotational angles were calculated from the displacevheoists: q,

02, and @ using Equations (2.9), (2.10) and (2.12). The other nonlineattsesere
obtained by first normalizing the loads then substitutings¢hinto the analytical
equations correspondingly to obtain the normalized translattbgplacements and the
actual rotational angles (radians). The actual translational displacerfrent) were
then obtained through multiplying the normalized translatidisgdlacements bly.

Table 2.2 shows that the displacement errors (|(analytical resulEEA
result)/analytical result|x100%) between FEA method and anyone ttfrée nonlinear
methods are within 3.5% and considerably les®§gijanalytical result — FEA result|).
As mentioned earlier, it can be observed from Table 2.2 that thbending angledls;

and 0sy, are approximately two orders smaller than the normalized transverse
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translational displacementy; and z;, respectively, and the torsional angh,, is

3.33x10° small.

isplacements Y Vs Zs Z Xs Xs Osz Osy (radian) O (radian)
Methods (mm) (mm) (mm) (radian)
FEA method 1.0050 0.02010 0.0403 8.0534x10° -0.0120 2.3958x10° 2.5980x10° -1.0802x10°  3.3333x10°
Approxlmate 0.9985 0.01998 0.0400 8.0000x10* -0.0120 2.3958x10" 2.6690x10° -1.0682x10° 0
analytical method
Improved approximate 1.0050 0.02012 0.0403 8.0534x10" -0.0121  2.4279x10° 2.6869x10° -1.0753x10°  6.5715x10%
analytical method
Numerical method 1.0050 0.02012 0.0403 8.0533x10° -0.0121  2.4280x10" 2.6631x10° -1.0658x10° -2.8988x10"
Error between
approximate analytical 0.65 % 0.74 % 0.00 % 2.66% 1.10 % 3.3333x10-6
and FEA methods
Error between
|mpr0\_/ed approximate 0.00% 0.00 % 0.82 % 3.30% 0.65 % 3.3333x10-6
analytical and FEA
methods
Error between
numerical and FEA 0.00 % 0.00 % 0.82 % 2.44% 2.87% 3.3333x10-6

methods

Table 2.2 Comparisons of results between FEA and nonlinear dsefitnd®=10N,

F,=10N, Fy,=249.59N M,=M,=M,=0

Figures 2.10-2.13 show more results obtained using Hwh FEA and the
approximate analytical equations [Equations (2.28), (2.29), X2(234), (2.36) and
(2.39)] without moments acting. It can be learnt from theserdgythat the average

errors between the analytical results and FEA results for a given fa@ceeptable.

This verifies the accuracy of the proposed nonlinear equationsefgpttial three-beam

module.

Displacement along the X-axiX; (mm)

0.01

—&— Analdical result
—+— FEAresult

Fy=249.59N
Fz=10N

0.005-

-0.005
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and (b) against transverse fofge
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Figure 2.13 Torsional angle against transverse féyce

If only the torsional momeni=Gl,/L=1.3069x10 Nmm, is imposed on the motion
stage, the analytical result using Equation (2.36) and the reBdlt of the rotational
angleds, are respectively 0.0495 rad and 0.0494 rad, an error of about 0.2%
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A prototype of a three-beam module, made of engineering plasticebaddbricated
using a 3-D printer for initial qualitative analysis (s&ppendix Dfor details). The
preliminary test results with the prototype comply with thedelling presented in this
chapter.

It should be pointed out that we did not conduct experimenfication for the
derived nonlinear methods due to our current financial limitat@rsidering the costly
manufacture or experimental measurement (relate to sensors etc) accuracy required

although experiment is a better choice.

2.4 Analysis of Spatial Multi-Beam Modules

2.4.1 Approximate analytical method

In this section, we will deal briefly with spatial multi-beamodules, proposed using
the constraint-based design approach, with more than three beamisawirlg three
in-plane DOF, in particular five classes of multi-beam module wiflerént layouts of
beams. As in the case of the spatial three-beam module, the loadkear¢at be acting
at the centre of the motion stage, and the coordinate systemacdisents and loads are
defined in the same way. Figure 2.14 shows spatial six-beaml@sodith a variety of

layouts.

Motion Motion
stage stage Pz

- Motion
stage

7. 77
b) Module of five beams distributed
(a) Module of six beams distributed around agrz,und a regular pentagon with one (c) Module with two three-beam

regular hexagon beam connecting to cere modules in parallel (symmetrical)

Motion Motion stage
stag

Secondary
motion stag

/
(d) Module of six beams distributed around two tagtriangles (e) Module with two three-beam modules in series

Figure 2.14 Spatial six-beam modules with round cross-sectionsbeam
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In the following, we limit ourselves to spatial multi-beamodules, which have an
even number of beams, and in which all identical and uniform beams are uniformly
distributed around a circle [Figure 2.14a].

The approximate analytical load-displacement equations for the nitiges of the
spatial four-beam and six-beam modules can be obtained in a sinajartovthe
approximate analytical method for the spatial three-beam modulealediét Sections
2.1 and 2.2:

_mJ+(m,f, +mf )e/(4a+ pe)
4o+ar] +Zper42)
y. = f,+m@ e
*  da+pe
; = f,+mo.e
*  4da+pe :
1.1 ., ) '
=75 (S ysr +zr)[m +(4c+ ph)z ] -26,,y.
2r, d
L L e e o
== (5 + y2r +220)[m,—(4c+ ph)y,] - 26,2,
2r; d
P 24 2 + P (y2+ 22 202 . P 2p2 1
% z_+(ys * ZS)I +_(y5 * Zs)r + 05X| ton 05Xr +2(ysHsz - ZSHSy)k __(myys + mZZS)Bsxr
(2.80)
_ma+(m,f,+mf, )e/(6a+ pe
B0 +ary + er)
y. = f,+mg.e
°  6a+pe
;7 = f,+m,0 e
°  Ga+pe
PR TP B ' .
b =gz (g T YT HZNIm,+(6c+ ph)z ] =26,y
6
1.1, , ) '
2 = o (5 + Ve +zr)[m,—(6c + ph)y,] - 26,z
3ry d
K= e (e 2+ Dyt e 2 erl02 + Prlein +2(y.0,- 2.8, k-2 (m,y. +m2)or

(2.81)
It is noted that Equation (2.80) can be used to deal Wwélspatial four-beam module

with square cross-section in the following layouts (Figure)2.15
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L / N
Cross-section
Y Y
lZ lZ
u| ] N yd
a) Layout 1 b) Layout 2 c) Layout 3

Figure 2.15 Top view illustrations for the square cross-setaymuts in the four-beam

modules with same pitch circle radius

The general load-displacement equations for spatial multi-beam mocamhede
summarized as follows:

g = md+(m,f, +m f )e/(na+ pe)

SX

n(d+ar? + b er’)
n

y. = f,+mo,e
°  na+pe
L frmae
®  na+pe
1 1 2 2 i
6, = ( +ysr +zr)[m +(nc+ ph)z ] -26,,y.

sy n/2 I T
4z " [cos]?
i=1(odd)

2 1 _
:F(a " ysr * Zgr)[my+(n0+ ph)zs] _zgsxysl

6, ~ 1 &4 y2r + 220)[m,~(nc+ ph)y.] - 26,2

sz n/2 I

ar? [sino—:]z—j()Zrn2

n
io=1(odd)

2 1 _
=z (G yar+zZnim,~(nc+ ph)y.] - 26,24

k=L (v 204 Py Z)r 62+ Pl + 20y,0,- 26, )k~ 2 (my, vmz)es
n n n n
(2.82)

0 for n/4=int
, the beam numbaeris even andn< 2,

: , rndenotes
1 for n/4#int D,/L

where,j, :{

the nondimensional pitch circle radius of the beam tips. Emué®.82) reveals that the
buckling load isp=10n for the spatial multi-beam module composed difeams. If the

torque is normalized bigl/L, the torsional angle becomes

55



Chapter 2: Spatial Compliant Parallel Modules: Melteam Modules and Their Nonlinear Analysis

0, =[m +(m,f, +m f )e/(na+ pe)]/[n(Jd +ar,; +Eern2)].

Apparently, the multi-beam module has better dynamic performancéigbf
band-width and larger buckling load without affecting the makiallowable motion
range with the increase of the number of beams, but in turn résufisge primary
motion stiffness. In addition, with the increase of the beambmu, the bending angle

(such aglsy) does not change if only the transverse force (su€h) ssapplied.
2.4.2 Discussions

In practice, in order to apply the proposed nonlinear methodbeomulti-beam
modules to the analysis of CPMa| moments should be unified to be normalized by
El/L. Therefore, in the derivation for other spatial multi-beam modulgs eifferent
layouts and the later chapters, we all assume that all momentrarained byEI/L.

The system shown in Figure 2.14c is obtained by symméyrieatanging two
three-beam modules as building blocks in parallel. This systerkinematically
decoupled if only transverse forces are applied, but has larger Iffadist) effect if
there is a large transverse motion. The larger load-stiffening etsalts from the
augmentation of transverse stiffness in the presence of gradually incresiséd
tension-force in the configuration of two symmetrical three-beanutasgdas shown in
the transverse displacement equations of the spatial three-beam miBduéions
(2.33) and (2.34)].

The spatial six-beam module shown in Figure 2.14e (also spatidlle three-beam
module) is obtained by connecting two three-beam modules abutilbng blocks in
series. As it will be shown in the following approximate anedytload-displacement
equations, this system has approximately half the primary ssffaad doubles the
motion range of the single three-beam module, and can especiayatdl the
load-stiffening effect compared with the system shown in Figuréc2 In addition, the
spatial double three-beam module can approximately eliminate tedy gunematic
effect upon its axial displacement as the transverse forces and torpased on the
secondary motion stage produce positive axial displacement, thbiteansverse forces
and torque imposed on the motion stage produce negative axiakcdisent. Therefore,
compared with the spatial three-beam module, this spatial dtubke-beam module is
a better option acting as the building block of new CPMs, i@nsuitable for the

symmetrical design.
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We take the one on the right-hand side in Figure 2.14e for etktzoinsideration. Let
Osx1, Osy1, Osz1, %s1, Ys1, Zs1 be the displacement components of the motion stage with
respect to the global coordinate system O-XYZ, which results froen itimer
three-beam module deformation alofige, Osyz, Osz2 Xs2, Ys2, Zs2be the displacements of
the secondary stage with respect to the local coordinate s@st&hY'Z', which results
from the outer three-beam module deformation alone, and the appliece t@qu
normalized byEI/L.

Equations (2.28), (2.29), (2.33), (2.34), (2.37) and (2gB&e

1 e
0., = [m, + (m,f,+m,f )], (2.83a)
3 +ar? +£er32) 3a+ pe y'ly
3
f, +m6, e
<~y Ty 2.83b
Ya= 75+ pe ( )
f,+még, e
A A - 2.83c
0= e ( )
1 1 2 i
O, = 325 +ygr +zgr)(m, + ¢+ ph)zy) —216,,Yq» (2.83d)
3
11 2 i
651!. = ? a + yslr + Zslr)(mz - (30 + ph) ySl) -2 65)0-251’ (2836)
3

X V2D + D (Ve + )1 + 16+ D08l
(2.83f)

2
+ Z(ygesn - Zslgsy.l.)k - 5 (myysl + mzzs1)esx1r

where r3 is the radius of the pitch circle around which the inner three beam a
uniformly spaced.

We use the applied moments acting in the secondary stage idefoemed
configuration to further obtain

1
6,, = S M = DY) o (o = ) (1))
30 +ar? - "er?) be

3 , (2.839)

1 e

__ [m, - (mf,+mf, +f md,e-fmé,e)]
3(J+ar? _gers'z) 3a-pe y Ty 0 vl
—f +[-m +f - o..e
Y., = y [ my z pzsl] SX2 ' (283h)
3a- pe
f +[m +f - 0,.€

7, =2 [m, + £, — PYulbie ' (2.83i)

3a-pe
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1.1 . .
8sﬂ = (? (E + yszr + Z§2r)[_my + fz - pzsl) + (3C - ph)zsz] -2 8S>Qy32' (2831)
3

1 1 ,
6322 = (? (E + yszzr + Zszr)[(mz + fy - pysl) -@c- ph)ysz] -2 QSXZZSZ’ (2.83k)
3

Ko = S+ 2+ P+ 2 02,2 P 0 2y, 2,0,
(2.83I)

2
~5lmy + =z )Y, (M, + 1, = PYa) Z 600!
whererj3' is the radius of the pitch circle around which the outer thesemb are

uniformly spaced.
Then, we have the displacements of the motion stage of the sjpatidé three-beam

module as
0,.=6,-6,, (2.84a)
Ys=VYa~ Vo2 t O (2.84b)
Z,=2,+2,+6,,, (2.84c¢)
0,=0,-0,,, (2.84d)
0,=6,+6,, (2.84e)
PEED T (2.84f)

Substituting Equations (2.83a) to (2.83l) into Equati@84), we obtain the
displacements of the motion stage under applied loads.

If the tosional angle is constrained to be as small as thebemding angles, for
example, the spatial module is used as the building blockeofrémslational CPMs,

Equation (2.84) can be simplified as

f f f

Y5 ——+——= fa e (2.85a)
3a+pe 3a-pe (3a)°-(pe

SN T T — (2.85)
3a+pe 3a-pe (3a)°-(pe

=P ) (P48 p (1F+8) p(IF+f)
(Ba+ep® 3 @a+ep? d @Ba-ep® 3((GBa-ep’
f2 + f2 f2 + f2
( y z) a i 2p ( y z) ((3a)2+(eDZ)r , (285C)

P o2 anze e o
(3" -(ep?) 3 ()" -(ep?)

Py
d
_2p_
d
2p_p 2 L 2\ ai P, 2,2
- ei+—(y2+2)r
3d 3a(ys z) 6(ys z)
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_ 11 (f+1))

2 2(6 vy M @ P
L2, vty -y
32'd (3a-ep? ™ Paas pe P

)
pe . (2.85d)

3a- pe)

3r3

N (fy+ 1) m -
sz i(a (3a+ )2 )(m (3C ph) 3a+ pe) | (285e)
(f7+f1))

_E(H (3a- ep)z)( (m, + 3a+ype_ _p)Sa pe)

1 f, f
O = [m, +(m, +m,——) [g]
35+ar? +Ber32) 3a+pe Y3a+pe
3

1 f -
—_ — + (- + f — y Z
3 +ar? - per'z)[ e Paa+ pe)(3a pe)
3 3 3

F(m— 1+ f, ) f, 8] . (2.85f)
m=t p3a+pe 3a- pe

1 e
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3(5+ar? +—per32) 3a+ pe ’
3

1 e
- [-m, + (m,f,+m,f)]
3(5+ar3'2 _ge%?) 38.— pe y'y

From Equations (2.85d) and (2.85e), we can conclude that wlemly exert two
transverse forces at the symmetric centre of all beams on the motionaditpgeasitic
rotational displacements are eliminated. This action position rafethetcentre of
stiffness[2.16] (see Figure 2.14e). In addition, Equation (2.85c) reuvkalsthe axial
displacement is equal to zero if no axial force is exerted.

Similarly, the approximate analytical load-displacement equatiores $patial double
four-beam module (i.e. spatial eight-beam module) under very sonsibnal angle can

be given as follows.

f, f 8af

~ y y 2
Yo = d4a+ pe+4a pe (4a)® - (pe)? (2.862)
sty o Gl (2.86b)
da+pe 4da-pe (4a)°—(pe
(F2+f5)  p(fi+ f) (f +f7). p(f7+1))
X’E Garen’ 4uarep U 4d Ga—ep’ 4 (a—ep’"
P e () () . (2.86c
2 Piaar - e * 2iaay e D T (2860

T (R D (2 +

2d4a
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(m,f,+m f )]
wherer,' (or ry) is the radius of the pitch circle around which the outer (inner) four
beams are uniformly spaced. The motion stage is supporteé bynér four-beam.

Note that if the spatial double multi-beam modules are used indepinds a planar
motion stage, the large torsional moment acting at matiage doesn’t cause the axial
displacement under the condition of two equal pitch circle radh s$rs'=r4. A CAD

prototype of spatial double four-beam module in this caseoisrsim Figure 2.16.

Motion
> stage

Figure 2.16 A CAD prototype of spatial double four-beam moditle two equal
pitch circle radii

In addition, the analysis of several other multi-beam moduildsdifferent layouts is
also performed i\ppendix E
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2.5 Other Compliant Parallel Modules: Compliant Prismatic Joints

In addition to the spatial multi-beam modules proposed angsathin Sections 2.1
to 2.4, there are other compliant parallel modules that can be ubaddasg blocks of
large-range translational CPMs.

Figure 2.17 shows several other compliant parallel modules: l@mprismatic
joints proposed and studied in detail in [2.6, 2.17 arkB]2 These modules have
distributed compliance to produce large range of motion compangd their
counterparts with lumped-compliance. It is noted that thesaul@®dn Figures 2.17a,
2.17b and 2.17c are planar modules and that in Figure Z1&dpatial module having
planar motion. Here, the module in Figure 2.17c is also dadesment amplifier.

In the following chapters, we will demonstrate how to useethesdules or their

variations to construct new translational CPMs.

Ground

L o
Primary B2
Stage oy . - Y A

e i s

X

m 2w, @

. Secondary
Stage
Ground
b) Double parallelogram module [2.6]

c) Cymbal displacement amplifier d) Large-range prismatic joint [2.17]

Figure 2.17 Compliant prismatic joints

2.6 Summary

The nonlinear and analytical load-displacement equations of a ofasgatial
multi-beam modules, with round or regular polygon cross-sedigams, have been
formulated and analysed by mathematical transformation and substithimethod has
also been presented to analyse the spatial combined deformationpifacdrineams or
mechanisms.

For a set of given payloads exerted on the motion stage dcipthiteal three-beam

61



Chapter 2: Spatial Compliant Parallel Modules: Melteam Modules and Their Nonlinear Analysis

module, one can obtain quickly the displacements usingptioposed nonlinear
methods as compared with FEA or other numerical methods. licyartithe proposed
nonlinear analytical methods can capture the accurate constraint chstiastenhich

can guide the design for the new CPMs, of the spatial three-beamlerfadt, and
enables rapid design synthesis. The larger the pitch circle radibsaoh tips, the
smaller the absolute value of the torsional angle and therefore tlee ancurate the
proposed approximate analytical method. It has been verified the@rigrge-deflection
FEA that the accuracy of the proposed approximate analytical matlacdeptable.

For the spatial multi-beam modules including spatial doublerlayodules (double
three-beam/double four-beam module), the comparisons of some chaiestarising
them are performed to identify the better building blocks. We cacluda that the
spatial double layer modules, such as the spatial double threedrmehspatial double

four-beam modules, are preferred as building blocks of new transiaG&Ms.
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Chapter 3 — Design and Modelling of 1-DOF Translatnal CPMs:
Novel Compliant Parallel Grippers

One specific form of 1-DOF translational CPMs is the complgarallel gripper
(CPG), which is composed of a base, compliant members and tmorerjaws. The
jaws are indirectly driven by a linear actuator to grasp the objHusCPG can be used
in precision engineering/MEMS areas.

In order to grasp the objects firmly, the two jaws of the complgipper should
ideally be parallel all the time. However, in compliant mechanissome parasitic
motion such as undesired rotation of the jaw will always accoyni@nprimary motion
if no suitable measure is taken. Figure 3.1 shows two case®fmabtion forces acting
at the jaws. One shows that when the parasitic rotation ot gxists, a component
of the reaction force will cause the circular object unstable during iggasfinother
case shows that when there is no parasitic rotation of the jawspmponent of
reaction force exists to make the circular object unstable.

In the design of single-DOF CPGs, some desired characteriktige stroke, no
stress-concentration, actuator isolation, and a simple and compé&gucation should

be pursued.

AN

Y

Unstable
morion
\ ‘ \—\ i T | W
a) Unstable grasping b) Stable grasping

Figure 3.1 Reaction force on the jaws [3.1]

Several typical existing designs of CPGs are shown in &3gBi2—3.6. Despite their
characteristics, these CPGs have shortcomings are as followseSigasdin Figures
3.2 and 3.3 can cause the stress-concentration, due to thdws@ed compliance, and

parasitic rotation. The design in Figure 3.4 uses the hybriggkance (integrating
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lumped and distributed compliance) to alleviate the effect of parasi@ation and
improve the dynamics, but there is still the stress-concentratidnnan-negligible
parasitic rotation. The model 2 in Figure 3.4 also causes tlght séictuation
non-isolation of piezoelectric ceramics actuator (PZT) due todbeotilever amplifier.
Figure 3.5 shows a design using distributed-compliance witbtmass-concentration,
but it is obtained using continuum optimization methwtlijch involves many design
parameters and results in slight actuation non-isolation. Iiti@adall these existing

designs (Figures 3.2—3.5) cannot achieve the auto-adaptive gadtarke grasping.

Two Jaws |—’ AxX

Lumped joint Lever

amplifier

Figure 3.2 CPG designed by M. Goldfatal (1999) [3.2]

Driven by PZT

Lumped joint

Figure 3.3 CPG designed by S.K. Nah and Z.W. Zhong (2@03) [
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Flexure Hinge Bias Spring

Lever amplifier

Driven by PZT

Hybrid-flexure

(a) Model 1

Lever amplifier ~ Pre-adjustment screw

Bias'Spring Driven by PZT
(b) Model 2 y

Figure 3.4 CPGs designed by M.N.M. Zueéiral (2009) [3.1]

Distribute
compliance

[\ Tilted

.

Figure 3.5 CPG designed by A.N. Redstyal (2010) [3.4]

Inspired by the above advances, this chapter aims to propose th&@Rfan produce
large-stroke and auto-adaptivgrasping without causing parasitic rotation of its jaws
and actuator non-isolation for macro-/micro-applications.

This chapter is organised as follows: In Section 3.1, theeginal design of a novel
auto-adaptive CPG is presented. Section 3.2 derives the analytidal ar@l analyses
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its performances both using analytical and FEA models. Varied cwafigns for
CPGs are first proposed in Section 3.3, and the manufacture sadigloapplications

for the proposed CPGs are further discussed. Finally, the sunsramyducted.
3.1 Conceptual Design of an Auto-Adaptive CPG

In order to construct a large-stoke auto-adaptive CPG, we waitl with discussing

compliant building blocks in the following sections.
3.1.1 Displacement amplifier

The cymbal-type displacement amplifier with distributed compligm@posed in
[3.5-3.7] is shown in Figure 3.6. In this amplifier,otvequal forces with opposite
direction are exerted at two input ports to cause two output fmnsove, and all
rigid-body parts only have translational motion. Due to thensit symmetry and
limitations in the gripper configuration, the two outpatgs only have the translation
along the X-axis, and the two input ports only have the t@#osl along the Y-axis
(Figure 3.6b). Especially in the case that one output poeldfixed, the other output
port can still achieve the translation along the X-axis, and twatiports have the
translation along the Y-axis and an additional simultaneouddtammsalong the X-axis.

The above statement provides an argument that one can use thal-type
amplifier to construct a large-stoke and auto-adaptive graspinghyR®nnecting the

two output ports of the amplifier to other parts of the CPG.

A:t?motion Instantaneous
centre !

(a) Compliant displacement (b) Pseudo-rigid-body-model
amplifier of the amplifie

Figure 3.6 Cymbal-type displacement amplifier

3.1.2 Parallelogram flexure module
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We can also use the parallelogram flexure module (Figure 3.7) as ttimdpilock
of a CPG as in [3.1-3.3] (Figures 3.1-3.4). This module caie\seharge translation

along the Y-axis, and has large stiffness along the X-axis and t@eozitaxis.

Y Motion stage [, y

g~ 4
X 2w \ 3 »p X

L 2

L S

Figure 3.7 Parallelogram flexure module

The normalized nonlinear load-displacement equations, as didcuis$ection 2.2,
for the parallelogram module are shown below [3.8]:
f

= : 3.1
y 23+ pe (3.1)
11 .,
0=—(+yT)m-yc+ pe], (3.2)
2w° d
X=— 4+ v+ y?r 3.3
2d y 2y (3.3)

wherea=12,c=-6, d=12/(T/L,)? e=1.2,i=-0.6,r=1/700. p, f andm are normalized the
loads acting at the motion stage of the parallelogram modulg.and 6 are the
normalized displacements of the motion stage. All the loads apladements are
relative to the coordinate system in Figure 3.7.

Equation (3.2) shows that, whe@r0 andm=-f/2, the parasitic angle is zero. This
reveals that’=0 if we exert only transverse loddn the motion stage and at the half

position of the beam lengtkéntre of stiffnegs
3.1.3 An auto-adaptive CPG

From the above discussion, we can obtain an auto-adaptive wiiRGeliminated
parasitic rotation of each jaw (Figure 3.8) by connecting the centreeddtiffiness of
one parallelogram module (Figure 3.7) to each output port alrtidifier (Figure 3.6).
Here, the auto-adaptive CPG can be driven by a PZT embedded hesideplifier. It
possesses desired performance characteristics, especially auto-adapttian,fuhe

summarized comparisons of which are shown in Table 3.1.
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o X | Jaw
Ya
Inner top stage

\\ W J
L,/2 “llnner bottom
'stage
Displacemer /Parallelogram
amplifier —T| ,/ module 5 ZS K 5
Beam in-plane thicknesg out-of-plane heiéhﬂ’/
_ (b) Pseudo-rigid-body-model of the
(a) Auto-adaptive CPG CPG with ideal pivots
Figure 3.8 An auto-adaptive CPG
CPGs Goldfard’s Nah’'s Zubir's Reddy’s Proposed
Characteristics design [3.2] design [3.3] design [3.1] design [3.4] CPG
Auto-adaptive grasping - - - - +
Parasitic rotation 0 0 0 0 +
Large-stroke 0 0 0 - +
Maximal actuator isolation 0 0 0 - +
Stress-concentration 0 0 0 + +

Table 3.1 Characteristic comparisons of CPGs (Good: +, Normbd; -)

3.2 Analysis for the Auto-Adaptive CPG

This section will derive the relationships between the inputefand the output

displacement of the jaw and investigate the analytical displacemeififieation ratio.

3.2.1 Modelling of the auto-adaptive CPG

Using PRBM in Figure 3.6b, we can derive the followapgroximate relationships:

L, cosa -9, o

cospf = =cosa ——=*, (3.4)

d, = Ly(sinB -sina) = L (y1-cos’ B -sina) = Ll(\/l—(cosa'—éx/Ll)2 -sina), (3.5)
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o,190,=9, /[Ll(\/l—(cosa—JX/ L,)? —sina)] (3.6)
where J, (output displacement) and, (input displacement) are the actual (not
normalized) translational displacements of the centres of the left jashandner top
stage, respectively.;, L,, anda are the geometrical parameters as indicated in Figure
3.8a. Equation (3.6) defines the displacement amplification ratio.

Using energy conversation principle, we can obtain the follpfonce-displacement
equation:

Fo, /2= K1(5X2+5y2)+K25X2/2 (3.7)

where the term on the left-hand side is the work caused by ooe fomge, and the

terms on the right-hand side are a half of the elastic energy stotkd amplifier and

parallelogram flexure modulesK, =EUT®/L} and K,=2EUT®/L} (T is beam

in-plane thickness, and is out-plane-of height as indicated in Figure 3.8a), which are
the primary translational stiffness of the single beam in thdif@npand that of the
parallelogram flexure module, respectively.is obtained based on Equation (35)s
the Young’s modules for plane stress or plate modules for pleaia. §t is the actual
input force acting at each inner stage.

It is noted that Equation (3.7) is obtained under the assompt material linear
elasticity and small deformation, and therefore it is accurate enouwdgatavith small

displacement cases.
3.2.2 FEA comparisons

As an example, the material can be chosen as AL6061-T6 for Wtictg’s modulus,

E, is 69000Nmm, Possion ratie, is 0.33, and lefT=1mm, U=5mm, L;=15mm,
L,=50mm ando=57/12. Based on these given parameters and Equation (F.6) in
Appendix F we can determine that the each jaw'motion range for the example
auto-adaptive CPG is approximately 0.3mm.

The simulation results obtained using FEA for the propose@ (fRgure 3.8) is
shown in Figures 3.9-3.11. Her€pmsol large-displacement moduie FEA using
tetrahedron element with fine mesh (maximum element size 0.8mm) asenchithe
reference points are chosen to be the centres of the left jaw and thispaege.

Figure 3.9 shows that, if one of the two jaws is fixed eld ixed, the auto-adaptive
grasping function can be also achieved by the proposed desigki¢gsee 3.11b for

example). It is noted that when a fixed object needs to be mlated we need not to
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place the object at the right middle of the two jaws. In the c&®ne jaw being fixed,
another jaw’s displacement 8,2

Figure 3.10 shows the relationship between the inpuilatisment and output
displacement obtained both from FEA and the analytical modelafieou(3.5)]. It is
shown that the slope at any point of the relationship curve stiordthe velocity

amplification ratio of the auto-adaptive CPG.

In deformation o Before In deformation ~ _~Before
‘ deformation

T/deformation

Fixed ' J

(b)

Figure 3.9 FEA models: (a) free-grasping;
(b) auto-adaptive grasping in the case that one jaw is fixed

0.4

Analytical
0.35- —+—FEA

0.3F
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o
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@
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o

Figure 3.10 Relationship between the input displacement apdtalisplacement for
the auto-adaptive CPG

Figure 3.11 shows that the varied displacement amplification odiained using
FEA is smaller than that obtained using the analytical mfi#glation (3.6)]. The
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difference of displacement amplification ratio between two moddistiseen 6.7% and
7.7%.

From FEA or analytical model in Figure 3.11, the relationshgiween the
amplication ratio and output displacment is approximately a tedght line as shown
in Figure 3.11 because the relationship between the inpulackspent and output
displacement is curved. Figure 3.11 also shows that two appatecistraight lines are
parallel.

Figure 3.12 shows that the output displacement obtained BEAgs larger than that
obtained using the analytical model [Equation (3.7)] under a giveat force. The

difference of output displacement between two models is about 13%.

3.95

Analytical model
- —FEA J
3.85F |
3.8+ |
k=l
® 3.75¢ |
c
k=)
© 3.7r
L
EL 3.65F |
< B
3.6 B |
3.45 ‘ | ‘ ‘
0.1 0.15 0.2 o |

Output displacement (mm)

Figure 3.11 Displacement amplification ratio versus output aigphent for the

auto-adaptive CPG
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Figure 3.12 Force-displacement relationship of the auto-adaptive CPG

In addtion, FEA resutls show that the parasitic rotation tabwi Z-axis, and the

parasitic translation along the Y-axis, of the left jaw are less3kaf > mm and 8x10
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rads, respectively.

The above comparisons show that there are certain difference betwdeBAland
the analytical results. This is due to inaccuracy of either analyicdél or FEA model,
and the difference (%) between the analytical model and FEA decreaseshavit
increase of output displacement. Here, the accuracy of analytical modhimty
affected by the assumptions, and FEA model is mainly influebgetie element type
and size. Therefore, experiment verification is further needed to detewntice model

iS more accurate.

3.3 Variations and Discussions

3.3.1 Variations

In order to further eliminate the parasitic translational displacemeahtegaw along
the Y-axis for the auto-adaptive CPG, we can introduce a doublegbagadim module
to replace the above parallelogram module in the compliant grippeo, &ve can
replace the single beam in the above amplifier with a tilted parallelogradule, i.e.
using multi-beam strategy, to guarantee relatively large stiffatssting the dynamic
performance. Thus, we obtained a varied configuration for CPGs as shawgure
3.13.

'17

[

\\" 1 £/

Beam in-plane thickness T, out-of-plane height I7
SIS

Figure 3.13 A varied configuration

We first discuss the double parallelogram module as shown uwrd=ig.14. The

normalized nonlinear load-displacement equations for the doublegbagaim module
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are shown as follows [3.8]:

4af
- s 3.8
Y 2a)* = (pe)? (3:8)
A me— (e phy
2w1 d (2a+ pe? (2a+ pe)
) , (3.9)
G+ i yme e P e Py
2W2 (2a- pe (2a+pe (2a-pe
_ P, . 2rl(2a)° +(pe)’] -8aei
X= ;" + py? 4a)’ (3.10)

where a=12, c=-6, d=12/(T/L,)?, e=1.2, h=-0.1, i=-0.6, r=1/700.p, f and m are the
normalized loads acting at the motion stage of the parallelogr@hlenx, y andé are

the normalized displacements of the motion stage. All the loatisliaplacements are
relative to the coordinate system in Figure 3.14.

Motion stage
T34r X
<N 1I 21 b.

Figure 3.14 Double parallelogram flexure module

&

Nl *L L
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-
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Equations (3.9) and (3.10) show that, wpefl andm=-f/2, the parasitic angle and
parasitic translational displacemenare all zero. This verifies that the varied CPG can
eliminate all the parasitic motions of the jaw including the ptacasianslational
displacement along the Y-axis (Figure 3.13).

Similar to Equation (3.7), we can then obtain the followlngd-displacement
equation for the varied CPG (Figure 3.13):

Fo, /2= K,(07 + 55) +K,02 12 (3.11)
whereK, =2EUT®/L} and K, =EUT®/L}, which are the primary translational
stiffness of the tilted parallelogram module in the amplifier arat tf the double
parallelogram module, respectivedy.is obtained based on Equation (3.5).

In addition, two auto-adaptive planar CPGs (Figure 3.8) can beefurtbed to
construct a spatial CPG (Figure 3.15) with four jaws. This spatial CPG doesn’t

have the auto-adaptive grasping function but still can be entgpldge most
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applications. We may also obtain a CPG without auto-adaptiv@iggaas shown in
Figure 3.16. Here, two additional parallelogram modules are inteadiacdecouple the

transverse motion of the amplifier.

Figure 3.16 Planar CPG without auto-adaptive grasping

3.3.2 Discussions

The proposed auto-adaptive CPG (Figure 3.8) may be usedtin il macro-
(precision engineering) or micro-area (MEMS) for precision manipulatiah,can be
easily fabricated by micro-wire electric discharge machine (EDM). Here, BZT i
employed to produce input force due to its major advantages ¢drtie blocking force,
high stiffness, fast response, compact size and up to nan@piogjt Also, CEDRAT
TECHNOLOGIES company [3.9] has fabricated many cymbal-type amplifier
integrating PZT together from small size to large size (Figuré)3which provides us

with an option that we only need to fabricate two parallelogram tasdand then
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assembly all parts together.

Figure 3.17 An integrated amplifier product with PZT [3.9]

In order to further improve the dynamic performance of the propastdadaptive
CPG (Figure 3.8) without affecting its allowable maximal moti&mge, one can choose
the multi-beam strategy, which has been demonstrated in Figige 3.

In addition to be applied in precision engineering and MEM&as, these above
proposed CPGs (Figures 3.8, 3.13, 3.15 and 3.16) can alsedenuthe areas in which
the precision required is not high such as food industry. Fampbe, the CPG (jointless)
can be used to grasp the chicken drumsticks due to the hygiene remuirem

3.4 Summary

An auto-adaptive CPG has been proposed. Using a cymbal-tgpéacgiment
amplifier, it not only magnifies the small input displacementltesy from PZT to
produce accurate motion, but also can produce auto-adaptive graspapgplications
in complex environment.

The proposed auto-adaptive CPG (Figure 3.8) can ensure adcsaddtion due to no
transverse force acting at the actuator, and firmly grasp the objects due to
well-constrained parasitic rotation of its two jaws. The auto-ada@PG can also
perform large range of motion and has no stress-concentration eféetd thoe use of
distributed-compliance.
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Chapter 4 — Design and Modelling of XY CPMs for Hidp-Precision
Motion Stages

An XY compliant parallel manipulator (CPM) for high-precisiontimio stage is a
mechatronic motion system, which is an integration of complia@chanism
(composed of a base and a motion stage connected by complianteragniibear
actuators, sensors and controller. Its motion stage, indirdathgn by actuators, is
capable of moving along the X-and Y-axes, respectively. XY CPMsifbrrecision
motion stages can be used in a variety of applications sucheaatdmic force
microscope [4.1, 4.2], micro-assembly [4.3], data storage §hd]potential mechanical
in-plane loading device. Their merits and desired performance charactgidssign
indices) have been discussed in Chapter 1.

Many researchers [4.2, 4.5-4.12] have conducted the creative désigh ©@PMs
using the basic parallelogram or double parallelogram modules with
lumped-compliance, distributed-compliance or hybrid-compliance. Toirdbem are
shown in Figure 4.1. Awtaat al [4.5, 4.6] made a pioneering contribution on XY CPMs
(Figure 4.1a) for large-range translation using the identical dis&abcompliance
double parallelogram modules as compliant prismatic (P) jointsrdar to make the
whole configuration more compact and reduce the in-plane parasitiomalangle of
the motion stage, the compliant P joints connected to the bhes arranged in
rotation-symmetry about the centre of the motion stage, and theliaomp joints
connected the motion stage are arranigeshirror-symmetry with respect to the X- or
Y-axis. Choiet al [4.7] also proposed a 4-PP monolithic parallel linear compliant
mechanism with distributed-compliance (Figure 4.1b). They tysednirror-symmetric
double-parallelogram modules as the compliant P joint connectbd tmase in each leg
in order to reduce the input-coupling and the in-plane parasitite. Liet al [4.8]
further proposed a totally decoupled flexure-based XY CPM witlplaisment
amplifiers (Figure 4.1c) using lumped-compliance. This desgmore compact than
Choi's design, and its in-plane parasitic angle and cross-axiplicgucan be
well-constrained.

Despite their characteristics, these existing desigan still be improved as
articulated below. In Awtar’s design, the rotation-symmetryasthe ideal constraint
strategy, and the resulting XY CPM may have a very smallanepparasitic angle and

slight actuator non-isolation (input-coupling). Gisodesign is not compact
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enough due to the simple serial connection of two P jointaddition, it has relatively
small motion range and larger cross-axis coupling due to theotighe basic
parallelogram module (having larger load-stiffening effect). Li's glednas limited
motion range and relatively low transverse stiffness of the amplifiree amplifier also
augments the minimum incremental motion from the actuators. Ther eiisting
designs are also subjected to their own limitations, which ysedmall range of
motion [4.9—-4.12], relatively large in-plane parasitic angl®44.11], relatively large

cross-axis coupling [4.2, 4.12], and/or relatively large inpuiptiog [4.9].

Two Fjoints)r\1 mirro-symmetry w.r.t Zaxis

Fixdd = - 3
g g
=] i Fixed = BN
Y\ Y 3
g
] % 1l
F Motion F... =
e1| stal > X axyl > X N
1= Motion =
g f stage S— P
e i
{ | N
2
o
Fa B E
Two P joints in rotation-symmetry TFay-y
about the centre of the motion stage
(a) Awtar’s Design (b) Choi’s design

Displacement
amplifier

(c) Li’s design

Figure 4.1 Three existing XY CPMs using kinematically decediglonfiguration

Another open issue in XY high-precision motion stages ésftiction between the
motion stage and ground/base. A magnetic-levitation or aerostaiegy [4.13—4.16]
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has been proposed to deal with this issue in the past becaukeirohdn—contact
operation. While in the current XY CPMs, an option to overconmee floblem is to
separate the motion stage and the ground. However, for themstéige under a high
payload or out-of-plane vibration, one needs to increase the olars-fheight of
beams to enhance the out-of-plane stiffness. This strategy wallise
manufacture/machining complexity/difficulty. Therefore, how to rove the
out-of-plane stiffness without increasing the out-of-plane heifjliieams becomes a
key issue. An approach to address this issue was proposedd. iftR] for a multiple
DOF compliant robot using lumped flexure joint but subjectedistown disadvantages
such as small range of motion and relatively large in-plane parasgie .

To deal with the above unsolved issues, especially to increasd-plane stiffness in
the existing designs, this chapter focuses on the design arallimpaf XY CPMs for
large range of motion and enhanced out-of-plane stiffn®¥gkile other desirable
performance characteristics are also taken into consideration. Our strategy
enhancing out-of-plane stiffness is to use a spatial multi-beadule to constrain the
out-of-plane motion.

This chapter is organized as follows. Section 4.1 proposesrarpXY CPM, a
spatial double four-beam module, and a stiffness-enhanced XY ©@F3éction 4.2, the
proposed stiffness-enhanced XY CPM using a linear analytical appreanbdelled
using a normalized and linear analytical approach. Section 4.3 aesdlys material,
actuator and geometrical parameter selection, performance characteristicsgldimd bu
checking and actuation checking for a case stiffness-enhanced XY CPMavgéh
motion range of 10mmx10mm. Section 4.4 compares the proposediGiatyodel
with FEA. In Section 4.5, the dynamics issues, manufaauocdeout-of-plane stiffness

are discussed. Finally, the summary is stated in Section 4.6.

4.1 Conceptual Design of Large-Range XY CPMs

The totally decoupled XY CPMs, with input-decoupling and-a@ecoupling, can be
constructed starting from a rigid-body P-Becoupled parallel mechanism (Figure 4.2).
The 2-FP parallel mechanism is composed of two PP legs in parallel. [Egqaonsists
of two P joints in a serial arrangement. Two P joints connectdtetbased are actuated,
denoted by PHere, the axes of two passive P joints are perpendicular to achieve
kinematic decoupling, which is the necessary condition for crossdegsupling
(kinematostatic decoupling).
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Active P joint Passive P joint

Motion stage

Figure 4.2 Schematic diagram of a P-&ecoupled parallel mechanism

4.1.1 Compliant prismatic joints

The basic parallelogram flexure modules (Figure 2.16a) have been chosen as
compliant P joints frequently in the design of XY CPMsotder to achieve large range
of motion, distributed-compliance mechanisms are employed ircliaigter. However,
the basic distributed-compliance parallelogram module can resuk ireldtively large
load-stiffening effect [4.6, 4.17], affecting cross-axis decoupliangd relatively low
primary motion stiffness, influencing the dynamic performance.

One can obtain a double parallelogram flexure module by connetivog
parallelograms in series in order to double the primary motiogerasf a single
parallelogram module.

Based on the nonlinear analysis in Refs. [4.6, 4.17] (aé®0 Equation (3.3) in
Chapter 3), we learn that the axial displacement for a basic paralleldtranne
module depends on three components: purely elastic effect of thief@de, purely
kinematic effect and the elastokinematic effect (the elastokinematic effeouch
smaller than the purely kinematic effect). Nevertheless, for the elquéniallelogram
module, the purely kinematic effect of axial displacement can be yaagtelnuated as
the transverse forces imposed on the secondary stage produce pasigve
displacement, whereas the transverse forces imposed on the primary retdgee p
negative axial displacement (see Equation (3.10) in Chapter 3)ditoad this double
parallelogram module can alleviate the load-stiffening effect fromatie force (see
Equations (3.1) and (3.8) in Chapter 3). Therefore, when two mirmometric basic
parallelogram modules act as the active P joint, the resultthCRM has very large
load-stiffening effect resulting from the augmentation of transvetd$fmess in the
presence of (a) large proportion of axial tension-force compared tdledou
parallelogram module, and (b) gradually increased axial tension-force en th
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configuration of two mirror-symmetry parallelogram modules. Tloiad-stiffening
effect limits the motion range of the resulting XY CPM.

One can further increase the number of beams [4.18], i.e. msifigbeam strategy
(i.e. the number of beams >2), in each parallelogram module tovmpine primary
motion stiffness without affecting the allowable maximal motiange.

Therefore, we use two mirror-symmetric double three-beam parallelograiuleso
(Figure 4.3a) as the compliant P joint I, and use a double four-lpaaallelogram
modules as the compliant P joint Il (Figure 4.3b). Here, thetheoigeach beam in the
compliant P joint Il is set to be larger (for example 2.2 tidaeger) than that in the
compliant P joint I, and the in-plane thickness of each beaheindmpliant P joint Il is
accordingly set to be larger than that in the compliant R joMWWe may fix the ratio of

length to in-plane thickness to make all beams have same transvéime stiiness.

Compliant beam
Base amm— /

" —}

a) Compliant P joint b) Compliant P joint Il

Figure 4.3 Proposed compliant P joints

Alternatively, we may further increase the beam in-plane thickness asmbkech
more-layer (for example quadruple) strategy for the multi-beam pagi@omodules

to produce a same allowable maximal motion range.

4.1.2 A planar XY CPM

In order to obtain a stiffness-enhanced XY CPM, we start wibipgsing a planar
large-range XY CPM. One can first replace the active/passivenP ijoieach leg in
Figure 4.2 with the proposed compliant P joint I/ll in Fey4.3 to obtain a 2P XY
CPM, and then add two same auxiliary compliant legs to thtsomestage to further
constrain the in-plane parasitic rotation to obtain a planar XY QHiure 4.4). Here,
each compliant P joint | is placed inside its adjacent compRajoint 11 to make the

configuration compact.
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‘ Aplanar leg

Y J—
Xs Base

Figure 4.4 A planar XY CPM

In addition to using the above all-symmetry strategy (4-feg)well constraining
in-plane parasitic rotation, alternatively, we can employ both stnyrand centre of
stiffness based approach to constrain the parasitic rotation anell,thus obtain a
3-legged XY CPM (se@Appendix Lfor an example).

This proposed planar XY CPM (Figure 4.4) has desirable performancactdréstics,
such as large range of motion, well-constrained in-plane parasitation @s,),
approximate actuator-isolation, approximate cross-axis decouplingdexglenhanced
out-of-plane stiffness. It should be noted that the out-of-pldmekness may be
relatively small. In this case, the motion stage of the propplsedr XY CPM can not
only move along the X- and Y-axes, but also may move ouaoepThis means that its
out-of-plane motionZs, 6sx andésy, should be constrained by further strategy.

In order to reach only pure translational displacements along thrdXY-axes for an
XY CPM, we can further add an auxiliary spatial leg, only hgplanar motion, to its
motion stage to constrain its out-of-plane motion. TherefoeeDIF of the spatial leg
to be proposed should follow the set intersection equatiomvbelo

[Xs, Ys (Zs, Osx, Osy)] N [DOF of the spatial leg] =X, Y4]. 4.1)

One of the solutions to Equation (4.1) is that the DOthefspatial leg ar¥,, Ys, and
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Osz Therefore, we can know that the spatial leg is an E (planar mygaiot.

4.1.3 A spatial compliant leg

In Chapter 2, spatial multi-beam modules have been proposed @ydemhin detail.

It has been shown that all the out-of-plane motions of théaspatlti-beam module are
suppressed, which leaves the planar mousnte DOF. This provides a good argument
to choose the spatial multi-beam modules as the needed E legspalsal leg) as
mentioned in Section 4.1.2. It is noted that if the spatigti-beam module is used as a
spatial compliant leg of a new XY CPM, its torsional angleanstrained as well by the
compliant P joints | and II.

In order to a) increase the motion range, b) alleviate the load-stifeifact, c)
approximately eliminate the purely kinematic effect of the axial degghent, d) have a
simple enough configuration and e) improve the dynamic performanpafial slouble
four-beam module (Figure 4.5), obtained by connecting two spatisbeam modules
in series, is used as the spatial compliant leg. Here, the beaarshaare cross-section,
the thickness and length of which are the same as those in théascdarigoint | of the
planar XY CPM.

From Equations (2.86d) and (2.86e), we learn that if only tweswease forces are
exerted at theentre of stiffnesef the spatial compliant leg (Figure 4.5b), all parasitic

rotations,fsxanddsy, are eliminated. Also, the parasitic translatidg,is equal to zero if

no axial force is applied.

Centre of stiffness

> \Q\FV

L /2 Ne

(a) 3-D view (b) Front view (c) Deformation

Figure 4.5 Spatial double four-beam module

4.1.4 A stiffness-enhanced XY CPM

Combining the proposed planar XY CPM (Figure 4.4) and the pezpspatial
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compliant leg (Figure 4.5) in parallel, and making the cerfttbeomotion stage of the
planar XY CPM and the stiffness centre of the spatial complianbvedap, we may
obtain a stiffness-enhanced XY CPM (Figure 4.6).

Y
) | Leg 4
Motion  stage Base e y
Y 4 gisplacements _ 21 | W 2.2T
X v, ! e
S 2H, 2.2 L / Beam X
| | A dimension
ol

i
T
[
i 2
! Motion stage AN ——
1
——— 491 -
Base
i
i
o N el ‘\
. ‘\
I
! N7 ! Leg 3
yia i s
L ; N
L 1] L 1
/ T
X-actuation point = ; T out-of-plane height
Bl Fay - <l T: in-plane thickness
Y-actuation point
’/
=
// ! Beam
]
Leg 2 + dimension
a) Top view

Motion stage
Planar XY CPM
e | |
Spatial leg: Leg 5
= T

b) Front view

d) Sectional view

Figure 4.6 A stiffness-enhanced XY CPM

As it will be shown in the following sections, the Btdss-enhanced XY CPM has
large out-of-plane stiffness in addition to the desired charantsrsuch as large range
of motion, well-constrained parasitic motion, approximate actustdation, and

approximate cross-axis decoupling.
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The summarized comparisons among the existing XY CPMs and the

stiffness-enhanced XY CPM are shown in Table 4.1.

XY CPMs  awtars Choi's design  Li'sdesign ~ Tam's design Stiffness-enhanced

Characteristics design [4.5] [4.7] [4.8] [4.9] XY CPM
Large range of motion + 0 - - +
Constrained in-plane parasitic angle O + + - +
Large out-of-plane stiffness 0 0 0 + +
Minimal cross-axis coupling + 0 + 0 +
Maximal actuator isolation 0 + + - +
Compactness + 0 0 0 -

Table 4.1 Characteristic comparisons of XY CPMs (Good: +, No@n&oor: -)
4.2 Kinematostatic Modelling of the Stiffness-Enhaced XY CPM

Similar to Chapter 2, all translational displacements and lepgthmeters are
normalized by length of the beam in the compliant P joint | (Figure 4.5a) of tlamai
XY CPM, forces byE'l,/L? and moments byE'l/L in order to simplify the
representation and derivation of equations unless indicated otheHeiseE'=E/(1-V?)
denotes plate modulus (usually for out-of-plane thickné/ss-plane thicknes3>10),
andl; denotes the second moment of the area of a rectangle cross-sectioreiznhef b
the compliant P joint | about the Z-axis. All normalizech+tbmensional quantities in

the following sections are represented using the corresponaveg-tase letters.
4.2.1 Modelling of the three-beam parallelogram made

The three-beam parallelogram module in the compliant P jonftthe planar XY
CPM is shown in Figure 4.7. It is assumed t&t10. Based on the linear modelling
approaches for CPMs idppendixC, we can obtain its stiffness matrix that reflects the
relationships between the loads and displacements both defifmedsaine point, £ as

shown in Figure 4.7 as follows:

pi

3
K, =Z4DT.KiDpi (4.2)

whereK; (i=1, 2, 3) is the stiffness matrix of tieh beam for the mobile-end, aridy;

(i=1, 2, 3) is the transformation matrix of the displacementseotémtre of the primary
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stage (neglecting its thickness). We have

d 00
K.,=|0 a c|, (4.3a)
0O cb

1 0 -y’
D,=/0 1 x' (4.3b)

00 1
where non-dimensional numbesse a=12, b=4, c=-6, d=12(1+4)/t>. The relative
coordinates of the tips of the beams with respect to the centhe piiimary stage are

X1'=0, y1'=v1, X2'=0, ¥»'=0, X3'=0, andys'=-v;.

Y Primary A
1 stage —y
N {
A u
2 X m '\ kx t
g 2v, Cp
3 Beam x
dimension

1
XL

Figure 4.7 Three-beam parallelogram module

Then we obtain the corresponding compliance matrix:
_ -1
C,=K . (4.4)
It is noted that the above stiffness and compliance matriceallasymmetrical
matrices, which are affected by the spanning paramgt€he largew, is, the better the

translational performance of this module is.
4.2.2 Modelling of the double three-beam paralletagn module

The double three-beam parallelogram flexure module (Figure 4.8)ymcal serial
system composed of two parallelogram three-beam modules. Thei@orepiatrix of
the double parallelogram module, for the loads and displacements daffittexicentre,

Cp1, of the primary stage, can be expressed based on the approagppsndix Cas
C,=C,,+J,C,pd7 (4.5)

whereC,; andC,, are the local compliance matrices of the first and second three-beam

parallelogram modules, respectively, obtained using Equation. (44#)is the

transformation matrix, obtained based Dg in Equation (4.3b) using the relative
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location (0,v») of the centre, g, of primary stage with respect to the indicated point,

Cs2, on the secondary stage. We have

cosrt —sinm cosr -sinm 0 1 0 -v,
C,.=C,,C,,=|sinm cost OQC,jsint cosr O ,and],=|0 1 1
0 0 1 0 0 1 00 1
Then, we obtain the corresponding stiffness matrix
K.,=C. (4.6)
Secondary stag fy
] Primary
( t
2 m sfage
2v, G 0 "
2 \ T
Csz
L

Figure 4.8 Double three-beam parallelogram module
4.2.3 Modelling of the compliant P joint |

The compliant P joint | (Figure 4.9) consists of two doubtee-beam parallelogram
modules in parallel. Let; represent the rotation angle between two coordinate systems.
We can derive its stiffness matrix for the loads and displacemgefined at the
actuation point, ¢ as

K ps = D-srlK lesl+ D-erK 52D52 (47)
whereKg; andKs, are obtained based on Equation (4.6), Bgcand D, are obtained
based oDy in Equation (4.3b). We have

cosa; 0 sing, coso, 0 sing, |
Kg=| O 1 0 K|/ O 1 0 (i=1, 2),
-sina;, 0 cosg, -sina;, 0 cosy,
1 0 h 1 0 h
D,=/|0 1 -h|,and D_,=|0 1 h|.
00 1 0 0 1

Hereoa;=0 anday=x.
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Actuation £
point: C, \”}%
PN Lt

» Ix

h,

=

Figure 4.9 Compliant P joint | with geometrical @areters and loading representation

Then we obtain the corresponding compliance matrix
Cps =K ps- (4.8)

4.2.4 Modelling of the compliant P joint Il

The compliant P joint Il (Figure 4.10 is composddwo four-beam parallelogram

modules in series.

Y Secondary stage
Y - w ]
7 Primary
W
P! “ stage
Beam X
dimension fy
XF
Cs, m,

4 Q-2 =clowy - = - -
'T L S >
Y Y 5

Figure 4.10 Compliant P joint Il with geometricarpmeters and loading representation

For the first four-beam parallelogram module (outee) with displacements and
loads defined at the poin€,;, its own stiffness matrix with respect the global

coordinate system XYZ can be obtained as
4
K opl = z D10—in K oi Doij (49)
i=1

whereK, (i=1, 2, 3, 4) is the stiffness matrix of each bewith) 2.2 times of the above
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length and thickness, in the compliant P joint dhd Depsi (i=1, 2, 3, 4) is the

transformation matrix of displacements, which dreven as

d O 0
K,=10 a 22c | ifu/(2.2)>10,
0 22c 22%b
d 0 0

K,=|0 a(-v’) 22c(1-v?) | if u/(2.2)<10, and
0 22c(1-v?) 22°b(1-v?)

10 -y
Dw =0 1 O
00 1

Herey;'= witws, Yo'= Wi, Y3'=—W; andy,'=—(w;+ws).
The compliance matrix for the first four-beam pkelalgram module is then obtained

as

Cop =Ko (4.10)

opl-
Similarly, the stiffness matrix for the second fdngam parallelogram module (inner
one) with displacements and loads defined at thet,[f©.,, with respect to its own local
coordinate system X'Y'Z', is

4
K op2 = Z Dszi K oi Dopz (411)
i=1
where
10 -y’
Dy =|0 1 O
00 1

Herey;'= Wotws, Yo'= Wa. Y3'=—W, andy,'=—(W,+ws).
Thus, the compliance matrix for the second foumigmarallelogram module, with

respect to the global coordinate system XYZ, igias

cost —sint 0 cost —sinm 0"
Coe =| SinTT  cos O|K_,sinm cosm 0] . (4.12)
0 0 1 0 0 1

OnceCyp1 andCoyp, are obtained based on Equations (4.10) and (4Ad2pbtain the

compliance matrix of the compliant joint 1l follomg the derivation of Equation (4.5) as
Cos =Cop tI,,C ZJZp (4.13)

op—op

whereJ,, is obtained based on Equation (4.3b) using ttagivel location (2.2, 0) of the
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centre of primary stage with respect to that of $bkeondary motion stage, which is

shown below:

10 0
J,=[0 1 22
00 1

4.2.5 Modelling of a planar leg

Base on the above compliant matrices of compligotris, we can further derive the
compliance matrix of a planar leg, for the loadd displacements defined at the virtual

action point of the primary stage (Figure 4.11), as

CIeg = Cpsl+cos (414)
cosrr/2 sinm/2 0 cosrr/2  sinm/2 O
where C'=|-sin/2 cosm/2 0|C| —sin/2 cosm/2 0
0 0 1 0 0 1

Then, the corresponding stiffness matrix for thenpt leg is

Ko =Cr

leg leg "

(4.15)

\ﬁbrimary

stage

\irtual action
point at primary
stage

Figure 4.11 A planar leg

4.2.6 Modelling of the stiffness-enhanced XY CPM

Using Equation (4.15), the stiffness matrices df ghnar PP legs in the local
coordinate system are obtained by appropriate auated transformation. The stiffness
matrix, Kspaias Of the spatial compliant leg (Figure 4.5a) untier planar loads can be
obtained based on the results of subtracting tfextsfof the out-of-plane loads from
Equations (2.86a), (2.86b) and (2.86f), and themadization conditions mentioned

earlier, which is given below:
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2at(L-v®)/u 0 0
0 2at(l-v*)/u 0

0 0 ta-vA) [—2 Y
d=v) [4(5+ ar’) 4o+ arf)]_

K

spatial —

wherev is the Possion’s ratio, and= 1/(1+v). r4' andr,' are the two pitch circle radii,
around which inner and outer four beams in theiglpampliant leg are spaced.

Then the stiffness matrix of the stiffness-enhank&dCPM (Figure 4.6), for the
loads and displacements defined at the centrecafibtion stage of the planar XY CPM,
can be obtained accordingly as

4

Z DK teg D + K spatal (4.16)

whereK g4 is the stiffness matrix for each leg, which iswhdelow

cosa; -sina, 0O cosa, -sina, 0]
sing; cosa; O|Ksina; cosa; O
0 0 1 0 0 1

KIegi =
Here 0,=0, ap,=n/2, az=n, anda,=3r/2. Dy is the displacement transformation matrix,
which is defined as

— yi'

D X'
1

10
w=10 1

00
Let s denote the normalized distance between the cettke motion stage and the
actuation point. We havwg'=-s, y1'=0, X'=0, y»'==S, X3'=S, y3'=0, X;'=0, andy,'=s.

It is noted that all the above modelling buildssonall deformation assumptions, and
the material non-linearity has been ignored. Thehmemaller the motion range is, the
more accurate the liner model is due to small deé&btion assumptions. All these
equations can be programmed udifgple

Then, we have the load-displacement equations

F=K,X, (4.17)

where F=[f m,]"and X =[x.,Y..,6,]", which are the load and displacement

o Ty
vectors at the center of the motion stage of taagrl XY CPM, respectively.

In practice, two actuation forces should be exeatetthe actuation points (Figure 4.6a)
rather than the centre of the motion stage of tlamgr XY CPM. The difference
between the two actuation ways is due to the acaahpression deformation of the

beams in the compliant P joint Il (for details, gggendix G.
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Similar to the derivation of Equation (4.17), thead-displacement equations
capturing the effects for loads acting at both dbtiation points and the centre of the

motion stage are

C.F (4.18)

F = K mxs - D-r;lK Cpleax - D;ZK leg2™~ps’ ay

legl
where F, =[f, . f,, . m.1"and F, =[f, ., f, ,.m, 1", which denote the actuation

load vectors at the X- and Y-actuation points, eesipely. fa.x and fa.y denote the
forces acting at the X-actuation point along theaRd Y-axes, respectively.
It is noted that whelfrax andF,y are all zero vectors, Equation (4.18) can be regluce
to Equation (4.17).
WhenF is equal to a zero vector, Equation (4.18) carfubder simplified to obtain
the displacement vector as
X, =K (D! K

m.

Iegles'Fax + D;ZK Ieg2CpsFay) ' (419)
Using the result of Equation (4.19), we can deribe displacements at the
X-actuation point (the connecting centre betweenXkactuator and the XY CPM) as

xax = Cpsl [K (Dmlxs - C:psI Fax) + Fax] (420)

legl
where X_ =[x, Y...0.,]"» Which is the displacement vector at the X-actrapoint.

Xax andYax denote the translational displacements of the t§adion point along the X-

and Y-axes, respectively.
4.3 Case Study of a Stiffness-Enhanced XY CPM
4.3.1 Material, actuator and geometrical parametitermination

As an example, the material for the stiffness-enbhdnXY CPM is chosen to be an
aluminium alloy, AL6061-T651, for which Young’'s maids, E, is 69,000 Nmrif and
Poisson’s ratioy, is 0.33, due to the material's low internal ste=s good strength and
phase stability [4.6] suitable for precision engineg application.

The objective of 10mmx10mm’s motion range requadarge-range linear actuator.
Because of the merits such as large-range nanapuwsg (the large range of motion
and high nanometric resolution)jnear model and force-control along with
hysteresis-free, frictionless and cog-free motiome can choose the linear voice coil
actuator from BEI Kimco Magneticd A28-22-000A, which provides a total stroke of
11.43mm and a relatively large peak force of 268,8%ith dimension:® 69.85
mmx55.88 mm, for the stiffness-enhanced XY CPM.
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Based on maximal shear stress theory, the actaatlformalized) transverse motion
range for the beams both in the compliant P joirdad Il should meet the following
conditions based oAppendix F

2
'Sé%% , (4.21)
2 2
A <i$—(2'2|‘) :2$L (4.22)

""3E 22T HET
whereA, andA, are the actual transverse motion range of the béarhe compliant P
joints | and Il, respectivelyos =276Mpa, which is the yield strength of the chosen
material, andy is the safety coefficient.

Equations (4.21) and (4.22) show that the allowabéximal motion range of the
compliant P joint Il is larger than that of the qaant P joint I. Therefore, we may
further increase the in-plane thickness of the beathe compliant P joint Il to let it
produce the same allowable maximal motion rangd@asompliant P joint I. But this
will enlarge its primary stiffness, which leadstorse actuator isolation performance.

To achieve a 10mm’s motion range along each axs,twice of the beam'’s
transverse motion range, for the stiffness-enhaxcé@€PM, we obtain from Equation
(4.21)

%%L?zzlomm. (4.23)

According to Equation (4.23), the actuator mougize and minimum manufacture
requirements, the dimension for a beam in the c@amplP joint | is L=50mm,
T=0.66mm {=0.0132), andJ=10mm (1=0.2), and the other geometric parameters in the
planar XY CPM (Figure 4.6a) ar¥;=20.66mm Y;=0.4132), V,=52mm {,=1.04),
W;=127.726mm1=2.5545) W,=107.726mm \{,=2.1545), W5=8.548mm {;=0.1510),
H;=43mm £;=0.86),H,=27.01mm ,=0.5402), an5=149 mm £=2.98).

In order to make the spatial compliant leg (Figdr8a) produce the same motion
range as that of the compliant P joint I, the theds and length of the beam in the
spatial compliant leg are 0.66mm and 50 mm, respEygt Two pitch circle radiues in
the spatial leg, are, respectively, set up to Re56.1069mm 1;=1.1220) and
Ry=71.1774mm 1(;'=1.4235), accordingly. Herdy, is set to be comparable with the
beam length in order to reduce the parasitic motind R,' is obtained based on the
motion range requirement and the predetermiRed

The overall dimension for the above stiffness-exckdnXY CPM with base frame is

540 mmx540mmx75mm.
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4.3.2 Input load-output displacement equations

Substituting the above geometrical dimensions Edmation (4.19), we obtain the

displacements for the motion stage under only tetaation forcesfay.xandfay.y:

[x..v..6.,]" =[0.0086078 0.0086078 of . (4.24)

ax-x? ay-y?
Equation (4.24) shows that the stiffness-enhanc& CPM has no cross-axis
coupling. It also reveals that if no moment actdvad actuation points, no in-plane

parasitic rotation exists.
4.3.3 Lost motion

Substituting the geometrical dimensions of thefregs-enhanced XY CPM into

Equation (4.20) under only two actuation fordgs,andfay.y, we have

[ X Vars On, ] = [8.6134x107° f 2.995x10°° f -9.8927x10° f, 1",
(4.25)
The linear lost motion percentage can be obtaireskdb on Equations (4.24) and

(4.25):

ax-x1 ay-y?

Xax =X 2 100% = (0.0086134-0.008607§ _ 0.065% (4.26)

X 0.0086078

S
4.3.4 Actuation isolation performance

From Equation (4.25), we can obtain the input cmgpfor the X-actuator, which is

reflected by the transverse motion of the X-actrapoint, as follows

Yax = 2995%10° f, _ . (4.27)

4.3.5 Buckling checking

The conditions for no buckling to occur in the beamboth the compliant P joint Il

and compliant P joint | are

3 3 3
10% (K = kbm)im =10x%(11614-359859 EUT2 < 40EY (22T )2 , (4.28)
12(1-v9)L 12(1-Vv?)L 12(22L)
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Knga = 2Kiegrs = Kpag 3 3 3
(Kmts = 2Migts ~Kopmand) __EUT  =5(11614-2x359854-14115— 2 <601
120-v3)L* T 12-vA)L

2 12(1-V?)L
(4.29)

where k1, Kegi1 and kpatians denote the elements (entries) in the first row &rst

10x

column of the matricesK, [Equation (4.16)],Kieq [Equation (4.15)], andKspatia
[Equation (4.16)], respectively. The term on th&-kand side in Equation (4.28),

EUT®

2T denotes the actual axial load acting at the c@mpP joint
-V

10>< (kmll - klegll)

I when producing 10 mm’s motion range. The termtloa right-hand side in Equation

(28), 4om, denotes the actual buckling load for the complRupint Il in the

leg 1 or 2 obtained from [4.6]. The term on the-fend side in Equation (4.29),

(kmll - 2kleg11 - kspatiall]) EUT3

> TReTE denotes the actual axial load acting at the
-V

10x

compliant P joint | in any leg when producing 10 immotion range. The term on the

right-hand side in Equation (4.29)50LT3

, denotes the actual buckling load for
12(1-v?)L?
the compliant P joint | obtained from [4.6].
It is verified that the above inequalities [Equago(4.28) and (4.29)] are satisfied

under the given conditions. Therefore, no buckbogurs in the compliant P joints.
4.3.6 Actuation force checking

In order to ensure the voice coil actuator to war&emally, the actual actuation force
must be not greater than the peak force of thectsglevoice coil actuator. In the case
studied above, we have

1 EUT

10x >3 =172.4N< 2669N (4.30)
0.0086078 12(1-v-)L

where the term on the left-hand side is the achctliation force to produce 10mm’s
primary motion obtained using Equation (4.24), #mel term on the right-hand side is
the peak force of the selected voice coil actu@ts28-22-000A

4.4 FEA Comparisons

Figures 4.12—-4.16 show the performance charadts;isiuch as primary compliance,

lost motion, and actuation isolation, of the seffs-enhanced XY CPM (Figure 4.6)
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based on FEA and the proposed analytical modelse,Hae chooseComsol
large-displacement moduldéor FEA using tetrahedron element with fine mesh
(maximum element size 0.2mm). The reference psithe centre of the top surface of

the motion stage of the stiffness-enhanced XY CBMranslational displacements.

b) 10mm'’s translational displacements along bothXhand Y-axes

Figure 4.12 FEA illustrations in deformation foetlarge range of motion

Figure 4.12 illustrates the large range of motiontivo cases obtained using FEA

under static elastic domain: a) 10mm’s translatdong the Y-axis, and b) 10mm’s
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translations along both the X- and Y-axes.
a) Primary motion comparison

Figure 4.13 shows that the nominal X-axis compkan@X,/dF,,_, for zero

Y-actuation) obtained using the linear analyticabdel [Equation (4.24)] is slightly
lower than that obtained using FEA, with an acdelptdifference of 4.8%.

—+ FEA
—&— Linear Model

12 T
*
o

10

e

-
e

Xs (mm)
@
\\\
\

Faxx (N)

Figure 4.13 Primary motion in the X-direction

b) Cross-axis coupling comparison

It is noted that FEA (Figure 4.14) can captueerigligible cross-axis coupling effect
(for instance the effect ¢,,., uponXs) that the linear analytical model [Equation (4]24)
cannot. This input coupling effect results in alstireduction of the primary stiffness.
FEA results reveal that the maximal cross-axis togperror in the X-direction is

1.56% of the primary motiorXs, underfay.,~0.

— FEA
0161 Fax>=170 N Linear Model | ~
y

Xs=(XFay4=0) (mm)
o
8

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
20 4 60 80 100 120 140 160 180
Fay'y ( N )

Figure 4.14 Cross-axis coupling error: X-displacatregror affected b¥ay.y
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c) Input-coupling comparison

Figure 4.15 shows that the input coupling obtainsthg the linear analytical model
[Equation (4.27)] is much smaller than that obtdinsing FEA. FEA also reveals that
the input-coupling takes on a nonlinear relatiopshther than a linear one, and thgt
is less than 1.52% of the primary motiori, which may be acceptable for most

applications.

x10°
16

— FEA
14+ —
Fayy=170N Linear Model/ ’

121 -

101

Yax/Ys
\

Faxx (N)
Figure 4.15 Input coupling percentage of the aaunagtoint producing X-axis primary
motion caused bfax«

d) Lost motion comparison

Figure 4.16 shows that the comparison of therto®ion in the X-direction. It shows
that the ratio of the lost motion to the primarytman obtained using FEA is less than
4.45%, which can be also tolerated for most apging, but much larger than 0.065%,
obtained using the linear analytical model [Equat{d.26)]. In addition, FEA shows

that the lost motion has a nonlinear relationshtper than a linear one.

0.05

—
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——

-
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Figure 4.16 Lost motion percentage in the X-di@cti
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e) Parasitic rotation comparison

FEA results also show that, over the motion ranfd@mmx10mm, the parasitic
translational displacement along the Z-axis is Wekx10“* mm (4x10° for normalize
value), the parasitic rotation about the X-/Y-aigsbelow 2x10° and the parasitic
rotation about the Z-axis is below 1xi0while all the corresponding analytical results
are equal to zero. All these parasitic rotationaplhcements can be tolerated in this

paper considering the accuracy of FEA.
f) Remarks

The above comparisons show that there are ceriffémeshces between the FEA and
the analytical results. These differences are dugdccuracy of either linear analytical
model or FEA. The results obtained from FEA arg@earthan that obtained from the
analytical model since all elements are considaee@lastic bodies in FEA. It is also
noted that the lost motion and input coupling d@Hediffer the most. This is probably
because these characteristics are very small aAdhBE relatively large inaccuracy in
dealing with very small deformation/displacements.

Although FEA can be used to analyse the propossijnieand even capture more
accurate nonlinear characteristics than the amalytnodel, it cannot enable rapid
analysis and quick design synthesis as compardu tvé proposed linear analytical
models.

In addition, it is noted that the large-range ttatisn of the stiffness-enhanced XY
CPM can be achieved through using distributed-c@anpé modules. The smaller the

translational displacement is, the more accuraditiear model is.
4.5 Discussions
4.5.1 Dynamics issues

To improve the dynamic performance of an XY CPM, mway reduce the mass or
increase the stiffness to raise the modal freqasndiherefore, we can further increase
the beam number in the double multi-beam paraltelmgmodules (Figure 4.3) to raise
the primary stiffness (therefore the first natdrafuency) of the stiffness-enhanced XY

CPM without affecting the maximal motion range. Wiy also increase the beam

100



Chapter 4: Designh and Modelling of XY CPMs for Higtecision Motion Stages

number in the spatial double four-beam module (fFEgd5) to improve its primary
stiffness and out-of-plane stiffness along with Ibkuiekling load.

If the primary stiffness needs to be increasedghdr-performance linear voice coil
actuator with large range of motion andhmher-peak force(therefore bulkier) is
accordingly required.

In addition to the above measures, one may alseowepdynamic performance by
using a high-order controller to achieve a highdvadth greater than the first natural

frequency [4.19].

4.5.2 Manufacture

The stiffness-enhanced XY CPM can be fabricatethenfollowing ways. Firstly,
fabricate monolithically the XY CPM without the dj@ leg from an AL6061-T651
plate of 10 mm thickness using the electric disghanachining (EDM). Then, fabricate
the spatial leg (spatial double four-beam modui@nfan AL6061-T651 block using the
EDM (which will be discussed in Chapter 5 in detaiHere, the spatial double
four-beam module is composed of several partsdatad separately. By assembling the
spatial leg and the XY CPM without the spatial lege can get the stiffness-enhanced
XY CPM.

However, the above manufacturing process inducssnadsly error, and results in
increased number of parts. Advances in manufagutacthnologies, such as rapid
prototyping, may provide an appropriate method faoricating monolithic spatial

compliant mechanisms in the future.

4.5.3 Out-of-plane stiffness

It should be pointed out that FEA results shows ¢halanar XY CPM without the
spatial compliant leg should have approximately #r2es higher beams than the
associated stiffness-enhanced XY CPM of the casdysih order to have the same
normal stiffness in the Z-direction. In other wartiee stiffness-enhanced XY CPM has
approximately 7.1 times larger normal stiffnessntlita planar XY CPM without the
spatial compliant leg.

Compared with the planar XY CPM having 2.2 timegyher beams, the
stiffness-enhanced XY CPM benefits from reduceddmactuator cost due to smaller
primary stiffness.
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4.6 Summary

A stiffness-enhanced XY CPM for large translati@s lheen proposed. The analytical
modelling has been derived. The analytical and F&gults have shown that, in the
example case, the stiffness-enhanced XY CPM hage laange of motion up to
10mmx10mm, well-constrained parasitic motion, agpnate actuator-isolation,
approximate cross-axis decoupling, acceptable ostion, and especially enhanced
out-of-plane stiffness.

Nonlinear modelling of the stiffness-enhanced XY MPdeserves further
investigation in order to capture accurate constratharacteristics. Experiment
verification is also needed to compare with theital models and/or FEA results.

It is emphasized that the stiffness-enhanced XY @RMbe used as a building block

of new spatial translational CPMs which will bediad in the next chapter.
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Chapter 5 — Design and Modelling of XYZ CPMs for Hgh-Precision
Motion Stages

In addition to XY CPMs studied in Chapter 4, alYZ CPM for high-precision
motion stage is a mechatronic motion system, wligclan integration of compliant
mechanism (composed of a base and a motion stageded by compliant members),
actuators, sensors and controllers. Its motionesiggapable of translating along the X-,
Y- and Z-axes actuated by three actuators indyretkpectively. XYZ CPMs can be
used in various applications such as the scanainlg,tbio-cell injector, nano-positioner,
adjustable mounting [5.1-5.4], and potential 3-Dchamical loading device. Their
merits and desired performance characteristicigaesdices) have mentioned in the
Chapter 1. One of popular stable 3-DOF translatisteges on the market is the Elliot
Gold™ series XYZ flexure stage invented by Martock Design [5.8ut this serial
XYZ flexure stage has some shortcomings such asngpaaccumulation of errors
compared with CPMs.

XYZ CPMs belong to a class of spatial mechanisarsd their synthesis and
modelling are more complicated than planar CPMseReresearch advances on the
type synthesis of (rigid-body) translational paghlimanipulators (TPMs) provide a
starting point for the conceptual design of XYZ C#M3-DOF translational CPMs. A
number of XYZ CPMs using lumped compliance, suchtres 3-RRRR [5.5, 5.6],
3-PPPR [5.7], 3-RC [5.8, 5.9], 3-PU [5.10], 3-F7° [5.11] and 3-PP [5.12] CPMs,
have been proposed on the basis of the PRBM agprétere, R, C, U and®Rlenote
revolute, cylindrical, revolute, universal jointscaspatial motion four-bar parallelogram
with four spherical lumped-compliance joints, regpely. In addition, hybrid motion
CPMs (partially CPMs) combining macro motion (dnvey DC motor) and micro
motion (driven by PZT actuator) have been develapemtder to achieve large range of
motion and high resolution [5.13, 5.14]. Typicalistxg designs for XYZ CPMs are
shown in Figure 5.1.

Despite their characteristics, these existing X¥BMs have several drawbacks.
Firstly, planar (no spatial currently) and lumpeamnpliance joints/modules [5.5-5.12]
are used in the CPMs. This may result in stress@umation and especially small range
of motion (10@um~1mm). Secondly, the CPMs are input-output couppted], which
causes complicated control. Thirdly, the CPMs mayehthebulky configuratior5.12],

3. In addition, the resolution of hybrid motion CBNb.13. 5.14] depends on the

resolution of macro motion and the motion rangenafro motion. If the macro motion
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resolution is larger than the motion range of migrotion, high resolution cannot be
reached by the compensation of micro motion con#tdo, hybrid motion CPMs may
have more bulkier systems including the mechan&nuator, driver and controller.

Endplate

Chain 3
End
zffector

Base

(c) 3-FF° CPM [5.11] (d) 3FP CPM [5.12]

Moving Platform

A

Flexure Hinge

PZT Actuator

Micro motion

Sliding Block

wMac ro Mation

e) 3-RJPU partially CPM [5.13]

Linear Guide Rail

Figure 5.1 Typical existing designs for the XYZ C®M

To overcome the small-range-of-motion drawback tloe existing designs, this
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chapter focuses on design and modelling of XYZ CRdi$arge range of motiomsing
(spatial) distributed-compliance modules, and also deals with other desired
performance characteristics such as well-conswaiparasitic motion, minimal
cross-axis coupling and maximal actuator isolation.

This chapter is organized as follows. In Sectidn &.general design methodology for
translational CPMs is introduced. In Section 5ypetsynthesis of XYZ CPMs is then
conducted to generate several large-range XYZ CBMsg the proposed approach
through the use of: 1) identical double paralledmgiflexure modules, 2) inverted planar
XY CPMs, 3) identical spatial modules, 4) embeddedtial modules, 5) five legs
composed of spatial modules, and 6) planar dowdebieam modules. In Section 5.3,
the kinematostatic modelling of the improved moduw&'Z CPM using identical
spatial double four-beam modules is implemente&dation 5.4, the material, actuator
and geometrical parameter determination, performaharacteristic analysis, buckling
and actuation force checking, and manufacture dson are performed for a case
improved modular XYZ CPM with a motion range of 10xL0Ommx10mm. In Section
5.5, the first natural frequency is calculated Skection 5.6, the analytical models are

compared with FEA. Finally, the summary is conddcte

5.1 Design Methodology for Translational CPMs

In Chapters 3 and 4, we have studied 1-DOF and BE-08PMs. For 1-DOF
translational CPMs, the design approach is insigubr brainstormed due to the very
straightforward configuration (see Figure 3.8 fastance). For 2-DOF translational
CPMs, the design approach has been observed thaamweeplace the traditional P
joints with lumped or distributed compliance P jsibased on the type synthesis of
rigid-body parallel mechanisms (see Figure 4.4ristance).

XYZ CPMs are more complicated than 1-DOF and 2-DCH#Ms, a new design
methodology is therefore to be presented in omlebtain the desired XYZ CPMs.

XYZ CPMs can be designed following the procedurewe

(1) Determine the design objective for CPMs suchraXYZ CPM.

(2) Identify proper rigid-body parallel mechanismsach as the 3#PR TPM, based
on the type synthesis of rigid-body parallel medétas in a way similar to the PRBM
approach [5.5-5.12].

(3) Replace the traditional kinematic joints or éamatic sub-chains (such as the
passive PPR kinematic chain in the BFRR TPM) with suitable lumped joints or
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distributed-compliance building-block modules (swhthe spatial double four-beam
parallel module). Here, the building-block moduheay be existing ones or those to be
proposed based on the actual requirement.

(4) Check if the resulting CPMs meet the desigrectdje, if not, go back to the first
step.

(5) Take further measures to constrain the pacasitiotion, make whole
configuration compact, and/or address certain §peeiquirement.

It should be noted that the proposed design appr@also suitable for designing
1-DOF and 2-DOF translational CPMs. Unlike the itiadal PRBM approach in which
the traditional joints are replaced with lumped ptiance joints, the proposed approach
to synthesize translational CPMs involves both aeiplg kinematic chains with
appropriate multi-DOF compliant parallel modulesl aaplacing traditional joints with
lumped compliance joints. Therefore, this approeam produce more and better CPMs
and make the configuration more compact.

In the next section, the proposed design methogoblaly be illustrated by designing
several XYZ CPMs.

5.2 Type Synthesis of Large-Range XYZ CPMs

The works on 3-DOF rigid-body TPMs [5.15-5.17] doweva basis to construct the
XYZ CPMs. Based on these works, we can obtain tholesses of kinematically
decoupled 3-DOF TPMs (Figure 5.2) as follows:

(1) 3-FPP TPMs;

(2) 3-F°PPR TPMs (equivalent to 3RRR, 3-FPRR, and 3-RC TPMs in some cases);

(3) 3-FPPRR TPMs (equivalent to PER, 3-RJU and 3-F° TPMs in some cases).

Here, as pointed out in [5.15fhe three planes associated with the passive
PP/PPR/PPRR kinematic chains are orthogonal tougedhe kinematic decoupling,
and all the R joints in the second or third class iaactive. Each active P joint is
arranged to be perpendicular to the passive PPHHRR plane in each leg so that the
configuration of the resulting 3-DOF TPMs can bedigo construckinematostatically
decoupled XYZ CPMs. This is because the motion BMS depends on the acting of
loads which is completely different from that oéthgid-body parallel manipulators.

In the subsequent sections, we will rest on thevabidentified three classes of
3-DOF TPMs to desigrarge-rangeXYZ CPMs withdistributed compliancesing the

design approach proposed in Section 5.1, and fgeatisting or new spatial compliant
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modules, which can be used as building blocks cZXCPMs.

) ~ ¥ passive P
Passive joint
R joint

"\Passive
C (PR)
Passive joint(s)

(c) 3-FPPRR (3-PCR) TPM

Figure 5.2 Three classes of kinematically decoudxDF TPMs
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5.2.1 XYZ CPMs based on 3#P TPMs

(1) XYZ CPMs using identical double parallelogram fexure modules

It is well known that a double parallelogram fleeumodule (Figure 5.3a) is a
compliant P joint when its out-of-plane heightasge enough. Therefore, we can obtain
an XYZ CPM (Figure 5.3b) by replacing the activ@iat in each leg in the 3fP TPM
(Figure 5.2a) with two mirror-symmetry double p&tmgram flexure modules, and
replacing each passive P joint in each leg in HR°B TPM (Figure 5.2a) with a double

parallelogram flexure module.

a) Parallelogram module

Figure 5.3 XYZ CPM with three legs using identiparallelogram modules

In order to further reduce the parasitic rotaiomlisplacements, we can use
symmetrical design approach to obtain an XYZ CPMhwgix legs using identical
parallelogram modules (Figure 5.4a) by adding thaeeiliary legs to the above
proposed XYZ CPM (Figure 5.3b).
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b) FEA illustration under three-axis loading

Figure 5.4 XYZ CPM with six legs using identicalrglelogram modules

However, these designs (Figures 5.3 and 5.4) adp be applicable under the
precondition of relatively small range of motion targe out-of-plane height of
parallelogram module, which may result in manufaoty complexity/difficulty. Also,

the design in Figure 5.4 has a bulky configuration.

(2) XYZ CPMs using inverted planar XY CPMs

Awtar [5.18] proposed an interesting planar XYNC®r nanopositioning application
with desired performance characteristics such rsnkatostatic-decoupling.
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By replacing the two passive P joints (PP chaineath leg of the 3#P TPM
(Figure 5.2a) with an inverted Awtar’s planar maaken (Figure 5.5a), and replacing
the active P joint in each leg in the B TPM (Figure 5.2a) with a large-range
compliant P joint (Figure 5.5b), similar to Treaseéesign [5.19], we obtain an XYZ
CPM (Figure 5.5c).

Motion stage

Primary
motion

b) Large-range compliant P joint

UZ (mm)
1 2608002
I 1452e-002
L 10452002

. 8377003

. B304e-003

. 723e.003

d) FEA illustration under the action of
c) XYZ CPM single axis force along the Z-axis

Figure 5.5 XYZ CPM using inverted Awtar's XY CPM

Due to the relatively low out-of-plane stiffnesg the planar XY CPM (inverted
Awtar's XY CPM) used in the XYZ CPM, which leads tmdesired out-of-plane
deformation (see Figure 5.5d), so we can furtheosh the XY CPM (Figure 5.6a) with
enhanced out-of-plane stiffness, similar to theigitesn Chapter 4, to replace the
passive PP chain in each leg in theRPPTPM (Figure 5.2a). Accordingly, we obtain a
new XYZ CPM (Figure 5.6b) using inverted stiffnesshanced XY CPM.

112



Chapter 5: Design and Modelling of XYZ CPMs for iigrecision Motion Stages

However, these designs (Figures 5.5 and 5.6) cedumanufacturing

complexity/difficulty and bulky configurations.

I 2 |l 1L

Double three-beam
module

Base planar XY CPM

a) Planar XY CPM with enhanced stiffn

Base frame

[=2=3

b) XYZ CPM

Figure 5.6 XYZ CPM using inverted stiffness-enhahis& CPM

5.2.2 XYZ CPMs based on 3F#PR TPMs

(1) Building blocks: spatial multi-beam modules andheir combinations

In this chapter, we use the spatial four-beam neduob the spatial double four-beam
module (Figures 5.7a and 5.8a) as the buildingksie¢ new spatial translational CPMs
since they have relatively high modal frequencylafree to the spatial three-beam
module and spatial double three-beam module, réspB) and simple enough
configuration. From the analysis in Chapter 2, warh that we can decrease the
cross-section size of the beam and increase thesratithe circle, which the beams are
spaced around, to constrain the parasitic rotatidisplacements under constant beam
length.

In terms of the constraint-based design [5.20], $yatial four-beam modules (Figure
5.7a) connected in parallel and having two orthadigrianes, each plane of which is

associated with two translational displacements @ameltorsional angle of each spatial
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four-beam module, can construct a compliant P jdtigure 5.7b).

Motion stag
X

Motion stage

pliant beam

Base|:>

(a) Spatial four-beam module (b) Compliant P joint

Figure 5.7 A compliant P joint

Similarly, two spatial double four-beam modulesg(Ffe 5.8a) can also construct an
improved compliant P joint (Figure 5.8b).

Motion stage pgge
Motion stage X

(@) Spatial double four-beam module (b) Compliant P joint

Figure 5.8 An improved compliant P joint
The above compliant P joint or improved complianjpidt can also be obtained by
replacing each planar RRR kinematic chain in thé-kvewn Sarruslinkage with the

proposed spatial compliant module having planaiendgiFigure 5.7a or 5.8a).

(2) XYZ CPMs using identical spatial modules

A modular and compact XYZ CPM (Figure 5.8%ing identical spatial modulgsan
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be obtained by replacing the active P joint andphssive PPR chain in each leg of the
3-PPPR TPM (Figure 5.2b) with a compliant P joint (g 5.7b) and a spatial
four-beam module (Figure 5.7a), respectively, araking an appropriate arrangement
for the configuration. Here, the R joint of the giae spatial four-beam module in each
leg is constrained by the other two adjacent l@gsilséaneously.

In order to further increase the range of motianglthe desired direction, minimize
cross-axis coupling, and maximize actuator isofatfpe. reduce input-coupling), an
improved modular XYZ CPM (Figure 5.10) can alsoob¢ained by replacing the active
P joint and the PPR chain in each leg of thePBRR TPM (Figure 5.2b) with the
improved compliant P joint (Figure 5.8b) and a mpatlouble four-beam module
(Figure 5.8a), respectively.

It should be noted that the parasitic rotationabtiicements of motion stage of the
designs of Figure 5.9 and 5.10 can be reduced breasing the size of the pitch
circle(s), which all beams are spaced around, ucaolestant beam length.

In addition, the XYZ CPM composed of identical splamodules can be turned into
an XY CPM by removing the compliant active P jaimtthe Z-direction. An example

can be found iM\ppendix H

A ive sive
n active Ule

module

Base ™ Base

Figure 5.9 A modular XYZ CPM with three legs usidgntical spatial modules
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Figure 5.10 An improved modular XYZ CPM with thregs using identical spatial

modules

(3) XYZ CPMs using embedded spatial modules

In order to alleviate the parasitic rotational téggments of the motion stage and
input-coupling effect, we can use thenter-of-stiffness-baseapproach to re-arrange
the spatial modules in Figures 5.9 and 5.10, i.e.need make centres of stiffness,
associated with the spatial modules, overlap atiat phat applied input force(s) can go
through. Also we must malambedded arrangemetat integrate the spatial modules.

For example, two centres of stiffness of two gpawodules in each compliant P joint
in Figure 5.9, are set up to overlap at a sameaeentyield a new embedded compliant
P joint (Figure 5.11a) at first. Then three cenwéstiffness of three spatial modules,
passive modules that are directly connected tonbion stage, in Figure 5.9, are set up
to overlap at a same centre to produce a new embdadtegrated block (Figure 5.11b).
Here, the new centre of stiffness is the interseg@int of three symmetrical planes.
Ultimately, we connect three new embedded complifaints to the new embedded
integrated block to obtain an embedded (more cothpa¢Z CPM (Figure 5.11c) with
well-constrained parasitic rotational displacemesutsl reduced input-coupling effect
based on the design in Figure 5.9.

Based on the characteristics of spatial double-lb@am modules, the design in

Figure 10 can also be transformed into an impraratiedded XYZ CPM (Figure 5.12c)
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with well-constrained parasitic rotational displamnts and reduced input-coupling,
which has better characteristics than that embeddedas shown in Figure 5.11c.

a) Embedded
of two spa

b) Embedged integration of three spatial
our-beam modules

Linear actuato|

Base frame

| —tinear
actuators

Base frame

¢) XYZ CPM

Figure 5.11 An embedded XYZ CPM with three legs aedl-constrained parasitic
rotational displacements
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double fou-beam module

Fazz

¢) XYZ CPM

Figure 5.12 An improved embedded XYZ CPM with thiegs and well-constrained
parasitic rotational displacements

(4) XYZ CPMs with five legs

Another approach to approximately eliminate theapiic rotational displacements
for the design in Figure 5.10 is to use both symynand centre-of-stiffness-based
strategy.

An XYZ CPM (Figure 5.13b) with well-constrained paitic rotational displacements
can also be obtained by 1) replacing the activari® and the passive PPR chain in each
leg of the 3-PPR TPM (Figure 5.2b) with a large-range complRupint (Figure 5.5b)
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and a spatial double four-beam in Figure 5.13apeevely, 2) adding two same
auxiliary compliant legs (no auxiliary leg is addedthe Z direction in order to save
space for the motion stage and operation spacsuch a way that two legs in the
X/Y-direction are symmetric, and 3) making the ieghe Z-direction in an embedded
arrangement in a way that the acting line of thgliag input force along the X/Y-axis
passes through the centre of stiffness of theapdauble four-beam module in this leg.
Here, the reason for using the large-range compRajoint (Figure 5.5b) is to better
guarantee the actuator isolation and to make th@endonfiguration compact.

More variations for the XYZ CPM with five legsrcae found inPAppendix |

a) Spatial double
four-beam modul

Motion stage _

b) XYZ CPM

Figure 5.13 XYZ CPM with five legs and well-constrad parasitic rotational
displacements

5.2.3 XYZ CPMs based on 3PPRR TPMs

Base on the configuration of 3FPRR TPM in Figure 5.2c, we can obtain an XYZ
CPM, similar to Delta robot, by replacing the aetR® joint and the passive PPRR chain

119



Chapter 5: Design and Modelling of XYZ CPMs for lgrecision Motion Stages

in each leg with a large-range compliant P joinig@Fe 5.5b) and a planar double
two-beam module (each two-beam module is a spatgion parallelogram having two
rotational displacements and two translational ldsgments) in Figure 5.14a,
respectively. Here, the double two-beam module acheleg should be arranged
appropriately so that its two R joints are consedi by the other two adjacent legs,
respectively. Therefore, the parasitic rotationaphcements for the XYZ CPM (Figure
5.14) are not better-constrained compared witld#ggns in Figures 5.9-5.13.

a) Double two-beam module - ==
(Replacing passive PPRR chain) = 4 b) XYZ CPM

Figure 5.14 XYZ CPM using planar double two-beanduoies

The XYZ CPMs proposed in this chapter and the #ipiexisting kinematically

decoupled designs are generally compared in Table 5

- Large Constrained  Minimal Maximal Minimal
haracteristics range of parasitic Cross-axis actuator Compactness number of
XYZ CPMs . . . . geometrical
motion angle coupling isolation
parameters
Li's design [5.7] - 0 + 0 0 0
Yue's design [5.11] - 0 0 0 0 0
Tang's design [5.12] - - + 0 - 0
Design in Figure 5.3 0 - 0 + 0 +
Design in Figure 5.4 0 + 0 + - +
Design in Figure 5.5 0 - 0 0 - 0
Design in Figure 5.6 0 + + 0 - 0
Design in Figure 5.9 0 0 - 0 0 +
Design in Figure 5.10 + 0 0 0 0 +
Design in Figure 5.11 0 + 0 0 + +
Design in Figure 5.12 + + + + + +
Design in Figure 5.13 + + + + 0 0
Design in Figure 5.14 + - 0 0 0 0

Table 5.1 Characteristic comparisons of XYZ CPMed& +, Normal: 0, Poor: -)
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Considering the comprehensive performance charsiitecomparison from Table
5.1, we can conclude that the proposed designsigarés 5.10-5.13 are desired
designs.

5.3 Kinematostatic Modelling of the Improved Modula XYZ CPM

In the followings, we only concern the modelling tbhie improved modular XYZ
CPM (Figure 5.10) using identical spatial doublarfbeam modules due to its better
manufacturability than those in Figures 5.11-5.1Boagh this design has worse
parasitic rotational displacements. The simplifieddelling of the improved embedded
XYZ CPM (Figure 5.12) can also be foundAppendix J

Similar to Chapters 2 and 4, aApgpendix Cwe use the normalization-based strategy
and convention to represent loads and displaceméis®, we will adopt linear

analytical approaches for modelling the improvediaoiar XYZ CPM.

5.3.1 Modelling of the spatial double four-beam madd

For a single four-beam module in Figure 5.7a waiddls and displacement defined at
the centre of the bottom-plane of its motion stagel with its pitch circle radius of,
we obtain its stiffness matrix based on the modgllimethod of spatial three-beam

module inAppendix Cas follows:

4
K=Y D/KD (5.1)
i=0
where
1 00 0 z' -y d 0 0 0O 0 O]
010 -z O X' 0 12 O 0O 0 -6
001 y' —-x" 0 0 0 12 0 6 O
D, = % % ,and K = 1
000 1 0 0 0 0 0o — 0 O
1+v
000 O 1 0 0O 0 6 0O 4 O
ooo o 0 1] 0 -6 0 0 0 4

x'=0, y1'=2"%42, and z'=2"%42; %'=0, y,=2"%42, and z'=—2"%42; x3=0,
y3=—2%r 42, andzz'=2%% 4/2; x4'=0, y4'=—2*"r4/2, andz'=—2r4/2. d=12/¢)*for square
cross-section with normalized thicknessor d=16/(do)? for round cross-section with
normalized diameted. v is the Poisson’s ratio of the material.

Using Equation (5.1) and the modelling approachspétial double three-beam
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module in Appendix C we can obtain the compliance matrix for the spatiouble
four-beam module (Figure 5.8a), with loads and ldsgment defined at the centre of
the bottom-plane of its motion stage, and withntser pitch circle radius af, and outer
pitch circle radius of4', as shown below

Cdm :Cm1+‘Jm(RmC R;l)‘]-r; (52)

m2

where C,, =K and C_, =K. It is noted thaK, is obtained based on Equation

(5.1) using the parametef instead of 4.

1000 0 O
01000 1
; /0010 -10f
"0 001 0 0
0000 10
0000 0 1]

which is obtained based @ in Equation (5.1), and

[ cosEm) 0O sin(-nm) 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 cos@r) -sin(zm) O 0 0
R = —sin(-1) 0 costm) 0 0 0 0 sin(r) cos@r) O 0 0
" 0 0 0 cosm) 0 sin-m||0 O 0 1 0 0
0 0 0 0 1 0 0 0 0 0 cos@r) -sin(m)
| O 0 0 —-sin(-77) 0 costm) |0 0 0 0 sin(rr)  cos() |

5.3.2 Modelling of the compliant P joint

The stiffness matrix of the compliant P joint (Figu5.8b) in the leg 2 of the
improved modular XYZ CPM (Figure 5.10), for the disaand displacement defined at
the centre of the stage 2 (the centre of the cabedd by the stage 2), can be obtained
as

K p = (‘]dmlcdm'J gml)_l + ['JdmZ(RdmCdch;1 )‘]gmz]_l (53&)

m

whereCyn, is directly obtained from Equation (5.2).

1 000 0 0 1 00 0 u+w/2 0]
0100 0 u+w/2 01 0 —-u—-w/2 0 0
0 01 0 —-u-w/2 0 0 01 0 0 0
‘Jdmlz "Jdm2= !
0 0 01 0 0 0 0O 1 0 0
0 00O 1 0 0 0O 0 1 0
|10 00O 0 1 | |0 00 0 0 1]

which are both obtained on a basi®pfn Equation (5.1), and
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_ o ;
cosg) 0 sm(z) 0 0 0 "cos@) —sin(z) O 0 0 01
0 T 1 0 0 0 0 sin(z;y cosgr) O 0 0 0
_— —Sin(z) 0 COSg) 0 0 0 0 0 1 0 0 0l-
dm — .
0 0 0 cosg) 0 sin(g) 0 0 0 CF)SW) ~sin(m) 0
A PR e B
0 0 0 —sin(l—T) 0 cosg) - -
L 2 2"
Here,u andw are normalized geometrical parameters as showigure 5.8.
Thus, the compliance matrix of the compliantiRtjcs
—_ -1
C,=K,. (5.3b)

5.3.3 Modelling of a leg

When the loads and displacements for the leg 2lefired at the centre of the motion
stage of the improved modular XYZ CPM (the cenfréhe cube formed by the motion
stage), we can obtain the compliance matrix forege2:

CIegz = Jde(RppCdmR;;)‘]gm3 + ‘] pCp'J:; (54a)
where
1 00 0 0 -u-w/2] 1 00 0 0 —(s+w)]
010 0 0 0 010 0 O 0
J_001U+W/20 0 J_0018+W0 0
™0 00 10 o |"™looo0o 1 0 o |
00O 0 1 0 000 0 1 0
000 0 O 1 o000 0 0O 1 |
which are both obtained based@nn Equation (5.1), and
[cos@r/2) -sin(z/2) 0O 0 0 0]
sin(7r/2) cosg) O 0 0 0
S 0 1 0 0 0
L B 0 0 cos@/2) -sin@z/2) O
0 0 0 sin(r/2) cos@/2) O
0 0 0o 0 0 1)

Cam and C, can be directly obtained from Equations (5.2) #BdBb). Here,s is
normalized geometrical parameter as shown in FigLge

Thus, the stiffness matrix of leg 2 is

K eeo = Crs

leg2 leg2*

(5.4b)
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5.3.4 Modelling of the improved modular XYZ CPM

In the modelling of the improved modular XYZ CPMegetloads and displacements

are defined at the centre of its motion stage {he.centre of the cube) and denoted,
respectively, byF =[f . f ,f,,m,m ,m]", and X, =[x,,v.,z.6,.6,,.6,]".

Following the modelling of leg 2, the stiffness aztainpliance matrices for legs 1 and
3 can be obtained by appropriate coordinate tramsfoon since the improved modular

XYZ CPM is composed of three identical legs,
Based on Equation (5.4b), the stiffness matrixhefitnproved modular XYZ CPM is

_ -1 -1
K cpm RIeglK IegZR legl +K leg2 +R Ieg3K IegZR leg3 (553)
where
I o T T . o B}
cosez) sin( 2) 0 0 0 0 cos(—E) 0 sin( E) 0 0
sin-2) costZ) 0 0 o o ©°_ 1 0 ,
5 0 0 1 0 0 0 —sm(—E) 0 cosez) 0 0 0
legl
i 0 0o 0 coseg) —sin(-g) of o o o cos(-g) 0 sin(—g)
0 sin(—g) coseg) 0 0 0 0 _0 o 1 0 -
I 0 0 0 1) 0 0 0 —sm(—E) 0 cos(—E)_
and
i T T T I
cosg) 0 sm(E) 0 0 cosg) —sm(E) 0 0 0 0
_0 e 1 0 sin(g) cosg) 0 0 0 0
I —sm(E) 0 cosg) 0 0 0 0 0 1 0 0 ol
leg3 ™ T . TT T
0 0 costl) O sin-7)| O 0 0 cosg) -sin;) 0
0 T 1 0 T 0 0 0 sin(’—T) cosg) 0
0 0 0 -sinCZ) 0 costo) 2 2
L 2 2" 0 0 0 1]

Accordingly, the compliance matrix for the impeavmodular XYZ CPM is obtained

as
Com =K ;;m. (5.5b)
Then, we have the load-displacement equations
F =K X (5.6)

In order to capture the effects of loads actinda@th the actuation points and the
centre of the motion stage, we derive the followeammation by generalizing Equation
(5.6):

F=K cpmxs -K IeglR Iegl(‘:J pCp‘J;)R;e]él‘J :;alFax

-K |992(J PCPJ;)J:J-&ZFay -K Rleg3(‘] pCp‘]:)-)R_l J o F

leg3 leg3" pa3' az

(5.7)
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where

Fax = faxo Ty oo M Mucy My 170 oy =0 foy fopmyomy omy 17, and

Foo = [ fa Fary faz_z,rnaz_x,ngz_y,rnaz_z]ﬂ which denote the actuation load vectors at the
X-, Y- and Z-actuation points, respectivelly.,, faxy andfa., denote the forces acting at
the X-actuation point along the X-, Y-, and Z-axespectivelyJ,, is the displacement

transformation matrix for each leg, which can bevahn below according t®; in
Equation (5.1):

100 0 2z -y
010 -z 0 x
T R A R WP X )
0 00 1 0 0
000 O 1 0
000 0 0 1|

Here, x;'=—(-wy+s+1.5w), y;'=0, andz'=0; X,'=0, y»'=—(—-w;+s+1.5n), andz'=0; x3'=0,
y3'=0, andz'=—(-w;+s+1.5w). w; is normalized geometrical parameter as shown in
Figure 5.10.

It is noted that wherFa, Fayand Fy, are all zero vectors, Equation (5.7) can be
reduced to Equation (5.6).

WhenF is equal to a zero vector, Equation (5.7) canupgnér simplified to obtain the
displacement vector of the motion stage as

X5 = CopmlK iegiR g2 (I 5CpJ p )R g parFae
+K|eg2(JpCpJg)JT F,+K Rlegs,,(JpCpJ;)R‘1 JTF ]

pa2' ay leg3 leg3" pa3' az

legl (58)
Using the result of Equation (5.8), we can furtderive the displacements at the

Y-actuation point (the connecting centre betweenactuator and the XYZ CPM) as

X,y = J;[K,egz(xs—J cJJT F )+J;a2Fay] (5.9)

papr p~pYp"pa2 ay

. o :
oy Yayr Zays Ony s Ony 1 B,y ,1' Which is the displacement vector at the

where X, =[x
Y-actuation point.xay, Yay, and zy denote the translational displacements of the
Y-actuation point along the X-, Y- and Z-axes, exdjvely. Based om; in Equation

(5.1), we have

1 00 0 0 —-(w,-w/2)]

010 0 0 0

001 (w-w/2) O 0
‘]pev:

00O 1 0 0

00O 0 1 0

0 00 0 0 1 |
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5.4 Case Study of an Improved Modular XYZ CPM

In this section, an example improved modular XYZMCRith a motion range of

10mmx10mmx10mm is presented in detalil.

5.4.1 Material, actuator and geometrical parametitermination

The material for the improved modular XYZ CPM issalselected to be an
aluminium alloy, AL6061-T651, for which Young’'s malds, E, is 69,000 Nmrif and
Poisson’s ratioy, is 0.33, due to the material's low internal ste=s good strength and
phase stability suitable for precision engineeapglication [5.18].

The objective of 10mmx10mmx10mm’s motion range aksguires a large-range
linear actuator. As mentioned in Chapter 4, oneatenose the linear voice coil actuator
from BEI Kimco Magnetics (LA28-22-000A), which proles a total stroke of
11.43mm and a relatively large peak force of 268,8%ith dimension:® 69.85
mmx55.88 mm, for the modular XYZ CPM. This actuatmas merits such as
large-range nanopositioning (the large range ofionand high nanometric resolution),
linear model, and force-control along with hysteydsee, frictionless and cog-free
motion.

Based on Equation (F.6) iAppendix F the actual (non-normalized) transverse
motion range for a beam in the spatial double fmeam module (Figure 5.8) should

meet
A< Ts (5.10)

where A, is the actual transverse motion range of a begrR76Mpa is the material
yield strength T is the actual thickness of the beam with squasesssection, ang is
the safety coefficient.

Since A,=10mm, we have

%%L?szmm. (5.11)

According to Equation (5.11) and the actuator mimgnsize requirement, we select
the dimension of a beam with square cross-seatidret=100mm,T=2.6mm {=0.026).
The other geometric parameters aR=68.8722mm 1;=0.6887), R,/= 89.5197mm
(r4=0.8952), U=20mm (=0.20), S=140mm §=1.40), W=163.20mm \{=1.632), and

W;=153.20mm \(»1=1.532). The overall dimension for the improved miad XYZ
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CPM without the base frame is 466.40mmx466.40mm>asem.

5.4.2 Input load-output displacement equations

Substituting the above geometrical dimensions mtmation (5.8), we derive the

displacements for the motion stage of the improwembtular XYZ CPM under the

action of three actuation forcdg,., fay.y, andfa,-z

"x.] [ 0010547, , - 0000066976, , —0.0000669786,, , |
y. | |-0.000066976,,, +0010547,_ - 0000066976, ,
z, | _| ~0000066976,,, ~0.000066976,, , +0.010547,,, | (5.12)
6, ~0.000070591, _, +0.000070591,,
6, 0.000070591,,_, —0.000070591,, ,
6, | - 0.000070591,,_, +0.000070591, |

Equation (5.12) shows that the cross-axis couplfog,example the effect dfy.y
uponxs, is acceptable because the coefficienf,pf is 157 (=0.010547/0.000066976)
times less than that &f;.x. In addition, the parasitic motion caused by gutractuation
force is also 150 (=0.010547/0.000070591) times than the corresponding primary

motion caused by the same force, which can beateldr

5.4.3 Lost motion

Substituting the above geometrical dimensions Eqoation (5.9), under the action

of three actuation forcegu.y, fay-y, andfa,., we have

[ %, | [ 44965¢10°f,  -3.7916x10°f,,  -45270<10°f,,,
Yo | | —6.6940¢10°f,  +10561x107f,  —6.6940x10°f,,,
Zy | _|~45270<10° f,,, ~37916<10°f,  +4496510°f,.,|  (513)
By -5.3069%%10° f, +5.3033«10°f,,,
Oy 6.4743x10°f,_ -64743%x10°f__,
Oyt | -5.3033<10° f,,, +5.3069x10°f,._,

Based on Equations (5.12) and (5.13), the linesr mootion percentage along the
Y-axis can be obtained as
yay_ys

0.010561- 0.010547% f. . — (6.6940-6.6976x10°(f, _ + f
x100% = ( -6 ay-y ( — Q ( ax-x az—z) x100% - (514)
Y, 0.010547f,_ ~6.6976x10°(T, + f,)

If only one actuation forchy.y is applied, Equation (5.14) can be simplified as

Yoy ~ Vs 100 = 0.010561 0'010547x 100% = 0.13%% .

Yo 0.010547

Similarly, the lost motion long the X- or Z-axisrcalso be obtained as follows
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- 0.0105610.010547 f,_, — (6.6940-6.6976 x10°(f, + f

X X w100 = 9 s = ( 6 8107 (fayy * fard) 0 0
X 0.010547f,,, - 6.6976x10°(f,,, + f,,,)
- 0.010561 0.010547 f,, , - (6.6940- 6.6976 x10°(f,_, + f

22~ Zs 1000 = ( Yo, = ( 6 9 (fax ay_y)xloc%.
z, 0.010547f,, , — 6.6976x10°(f ., + f,,,)

5.4.4 Actuation isolation performance

From Equation (5.13), we can obtain the input cimgpfor the Y-actuator, which is
reflected by the transverse motion of the Y-actrapoint, as
Xay=4.4965x1Ffaxx —3.7916%10f,y.,~4.5270x 10, 5 (5.15a)
Zay=—4.5270x 10y —3.7916x10 fay.,+4.4965x10faz 5 (5.15b)
Similarly, the input coupling for the X- or Z-actoacan be obtained as follows:
Ya=4.4965x10f .y —3.7916%10f 2 x—4.5270x 104, 4
Zay=—4.5270x10ay.y —3.7916X10 fay+4.4965x10f oz,
Xa=4.4965x1Cf oy x —3.7916%10f,, ~4.5270%x10f .,
Yar=—4.5270%10f 1 x —3.7916%10 5, #+4.4965x 101y

5.4.5 Buckling checking

Since the passive double four-beam module in é&aghindergoes larger axial force
than the active double four-beam module if theyehtlne same transverse translational
displacements, we only consider the non-bulkinglddem for the passive module:

4 4 4
where gpm22 and Gg22> denote the elements (entries) in the second rawvsacond

(1/Ccpm22 - 1/CIe9222) (5 16)

column of the matrice€,m andCieq2 [Equations (5.5b) and (5.4a)], respectively. The
term on the left-hand side is actual axial forcénacat the passive double four-beam
module to produce required motion range. The term tbe right-hand side,

40ET*/(12L%), denotes the actual buckling load for the spatialible four-beam

module obtained based on Equation (2.82).

5.4.6 Actuation force checking

In order to ensure the voice coil actuator to wookmally, the actuation force must

not be larger than the peak force of the selectace\coil actuator. In the case studied
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above, we have

1 XET“
0.01054° 1213

where the term on the left-hand side, obtained gu&quation (5.12), is the actual

10x

=24912< 26689 (5.17)

actuation force to produce the 10mm’ primary matiand the term on the right-hand
side is the peak force of the selected voice atilaor (A28-22-000A

5.4.7 Manufacture

Due to impossible fabricating monolithic XYZ CPMsing EDM as one part, a
possible manufacturing option is to fabricate setsdy all the parts for the spatial
double four-beam modules from an AL6061-T651 blegkh thickness 163.20 mm,
width 163.20mm and length 140mm at first using EDMen, one may assemble all
these parts by screws, clamps and self-constraifidbrin a spatial double four-beam
module (Figure 5.15). Meanwhile, one fabricates stages 1, 2 and 3 (intermediate
stages), and motion stage separately as showigune=b.16. Finally, one can obtain the
improved modular XYZ CPM (Figure 5.17) by assemiplatl the parts (spatial modules,

intermediate stages and motion stage).

4 2 ? -

- > 1
5 =
7 2
6 = = - 3

a) Spatial double four-bear
module assembly

]
b) Part 1: inner double
four-beam modul

d) Part 3: outer double
four-beam module

€) Part 4frame Il ‘
) f) Part 5: frame Il h) Part 7: clamp Il

Figure 5.15 CAD models for the spatial module assgmnd its compositional units
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163.20

(a) Intermediate stage (b) Motion stage

Figure 5.16 CAD models for stages

Centre of
motion stage

oting thatthe [*fias a square cross-section,
and its normalized thickness is denoted by

Figure 5.17 Virtual prototype model for the imprdwaodular XYZ CPM

5.5 Modal Frequency

As discussed in Chapter 4, in order to improwe dignamic performance of CPMs,
we can either further increase the number of baamspatial multi-beam modules (see
Appendix Kfor details) to raise the primary stiffness anddeefirst natural frequency,
or use a high-order controller to achieve a highdwadth greater than this first natural
frequency. In the former case, a higher-performdimear voice coil actuator with large
range of motion and a higher-peak force (therelbailkier) is accordingly required. As a
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result, a trade-off needs to be considered betwbengood dynamics and bulkier
actuators.

Based on Equation (F.2), the normalized linear 4diaglacement equation for amy
location on a beam, in the improved modular XYZ CRIformed in the XOY plane is

approximately expressed as

{y(x)}:r/s mz}{fy } (5.18)
g,x) ] [x*/12 x | f,@-x)-05f,

wherey(x) is the transverse displacement of arlgcation on the beam along the Y-axis.
When x=1, the transverse displacement of the tiye#/(1)=f,/12. f, is the transverse
force acting at the tip.

Using Equation (5.18), the normalized transverspldcement at the location can

be further obtained as
Y(X) =y . x*(3-2X). (5.19)
According to Equation (5.19), we have the kinenergy of the XYZ CPM (Figure
5.10) along the Y-direction:
8 j;o.s,oTzL(\’(sx2 (3-2x)/2)*dx+8 j:o.s,oTzL(\’(sx2 (3-2x)/2+Y,/2)%dx
+2x05[M _, +M _,/2]Y?+05M_,+M_+M_,+M_,+M_,+80T2L]Y.” (5.20)
= 05M.Y,”
where the first two terms on the left-hand captheekinetic energy from the compliant
beams in the Y-directiorM,1, Mm2 and M3 are the actual mass of the motion stage,
secondary motion stage and base of the doublebfeaim module (Figure 5.8, is
the actual mass of the stageM is the actual mass of the motion stage of the XYZ
CPM.p is the density of the materid¥l, is the actuaéquivalent masalong each axis.
Ys is the actual primary motion along the Y-axis.
Equation (5.20) can be further simplified as
1088

Me—EpT2L+5Mm1+3Mm2+Mm3+MS+M32. (5.21)
Therefore, we can obtain the following dynamictim equation:
MY, +(KEI/L)Y, =F,., (5.22)

wherek' is the nominal Y-axis stiffness (for zero X- adehctuation), which can be
obtained from Equation (5.8).

Then, the first natural frequency along each axapiproximately estimated using

JKEIL®)IM,
2 '

f o (5.23)
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5.6 FEA Comparisons

FEA (Figures 5.18-5.26) is conducted to analysep&dormance characteristics,
primary motion, cross-axis coupling, lost motiorctuation isolation, and parasitic
rotational displacements, for the improved modaiZz CPM (Figure 5.10), and is
compared with the above proposed analytical maddiete, we choose COSMOSWorks
for FEA using solid mesh (tetrahedral element) it global element size of 4.6 mm,
opened automatic looping for solid and other sebligefault. The reference point is
the centre of the motion stage of the improved nadXYZ CPM for translational
displacements.

Figure 5.18 illustrates the deformations for wases obtained using FEA under static

elastic domain.

Reference
point

b) 10mm’s translational displacements along tl-, Y- and z-axes

Figure 5.18 Displacement illustrations in FEA (Bbowing the clear colour difference

in figures, the reader is referred to the electramirsion)
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a) Performance characteristics analysis

Figure 5.19 shows that the nominal primary comgiawobtained using the linear
analytical model [Equation (5.12)] is slightly lowthan that obtained using FEA, with

an acceptable difference of 3.64%.

12

Linear Model
o
10} A
=
/,,,,/
8 5/ g
e -
£ .
E 6 = 7
p 4/,
X =
.
4 Z il
7
2 e i
O L L L L
0 50 100 150 200 250
Faxx (N)

Figure 5.19 Primary motion along the X-axis

Figures 5.20 and 5.21 show the cross-axis couplorgparisons between FEA and
linear analytical models, with an acceptable d#fere. FEA results illustrate that the
cross-axis couplingysor Zs, caused by .« is less than 1% of the primary motion along
the direction ofF..x. Both FEA and linear models show with the increa$ethe

actuation forcd-,x., the cross-axis displacemenYsandZs, decrease linearly.

\ Linear Model
-0.02 N~ g
\ ~
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—~ \ ‘
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%) ~ R
> ~
0.08} ~ 1
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Figure 5.20 Cross-axis coupling: Y-displacemerne@td byFax-«
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\ Linear Model
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Figure 5.21 Cross-axis coupling: Z-displacemerg&fd byF .«

Figure 5.22 shows the lost motion in the X-diretiti can be observed that the ratio
of the lost motion to the primary motion obtainesing FEA model is negligible 0.3%,
but much larger than 0.132% obtained the linealyinal model [Equation (5.14)].

Figure 5.23 shows that the input coupling obtainsithg the linear analytical model
[Equation (5.15)] is smaller than that obtainechgsFEA. However, it reveals that the
maximal FEA resultXy, (Xa) is approximately 0.65% of the corresponding pryna

motion, Xs, which can still be acceptable for most appliaadio

0.4 T T T
Linear Model
— - FEA
0.351 B
03— - — - — - — - — - — - — - — - — - -

(Xax-Xs)/Xs %
o
N
(92
L

0.2+ B

I I
50 100 150 200 250
Faxx (N)

Figure 5.22 Lost motion percentage along the X-axis
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Figure 5.23 Input-coupling of the Y- or Z-actuataused by«

Figure 5.24 illustrates that parasitic rotation @bthe X-axis, obtained using FEA
under only the acting dfa., is in the order of 1.4xI6 which is very close to zero
obtained using linear model [Equation 5.12)]. Therifies that an actuation force

cannot produce the parasitic rotation about the abing the force direction.
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Figure 5.24 Parasitic rotation about the X-axisseubyF ax-x

Figures 5.25 and 5.26 show the parasitic anglesutatiee Y- and Z-axes. The
maximal parasitic angles obtained using FEA mosléhithe order of 1.2x18, larger
than that obtained using the linear analytical nhddeaddition, both FEA and the linear
analytical models show tha&k;, linearly decreases, whilés, linearly increases as the

actuation forcd-,,.« increases.
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Figure 5.25 Parasitic rotation about the Y-axisseubyF ax-x
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Figure 5.26 Parasitic rotation about the Z-axissealbyFax.«

The comparisons in Figures 5.19-5.26 only take amtwount the case of single-axis
loading. For the more complicated multi-axis loadaase, comparisons can be found in
Table 5.1.

isplacements
;{;ls\ XS (mm) Ys (mm) ZS (mm) (Xax_xs)/xs (Yay_Ys)/Ys (Zaz_zs)/zs HSX QSX HSX

Linear model 3.963 3.963 3.963 0.135% 0.135% 0.135% 0 0 0

FEA 4.077 4.077 4.075 0.30% 0.31% 0.32% 0 0 0
Comparisons 2.88% 2.88% 2.83% 122% 130% 137% 0 0 0

Table 5.1 Comparisons between the linear modeF&# under multi-axis loading:
Faxo=Fayy=Faz-~100N
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Table 5.1 shows that that the primary motion al@agh axis and the parasitic
rotation about each axis obtained using the limeadel comply with those obtained
using FEA well, and the differences in the lost imotpercentage are relatively large.
Also, FEA results verify that two equal actuatioorces cannot contribute to the
parasitic rotation about the direction parallethe normal of the plane associate with
the two equal actuation forces, which is reflecteBquation (5.12).

In addition, the first natural frequency resultaibed using FEA is 11.03 Hz, a little
bit bigger than that, 10.99Hz, obtained using Eiguai5.23).

b) Remarks

From the above comparisons, it is observed thaetaee certain difference between
the FEA and the analytical results, which are daeinaccuracy of either linear
analytical model or FEA. In addition, the resultganed from FEA are larger than that
obtained from the analytical model since all pams considered as elastic bodies in
FEA. It is noted that the cross-axis coupling, legition, input coupling and parasitic
motion differ much. This is probably because thelsaracteristics are relatively small
and FEA has relatively large inaccuracy in dealingith very small
deformation/displacements.

As compared with the FEA approach, the proposedatimnalytical models may

enable rapid analysis and quick design synthesis.

5.7 Summary

A design methodology has been proposed for traostCPMs. Type synthesis has
been conducted to generate several large-range @RMs using the proposed design
approach. The improved modular XYZ CPM using ideadtspatial double four-beam
modules has been selected for normalization maodeléind analysing. It has been
shown that, in the example case, the improved namdXiYZ CPM has the following
unique merits compared with existing designs: @jgé range of motion up to
10mmx10mmx10mm, and (2) reduced number of desiganpeters due to the use of
identical spatial multi-beam modules.

It is noted that there are several open issue$y asananufacture and dynamics of

CPMs composed of spatial multi-beam modules.
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Chapter 6 — Conclusions

6.1 General Conclusions

The large range of motion is one of the critichallenges for the design of CPMs
since CPMs transmit motion/load only by the defdioraof their compliant members.
Nevertheless, there is an increasing need fordaagge translational CPMs due to their
merits such as eliminated backlash and frictionnaed for lubrication, reduced wear
and noise, and monolithic configuration.

In order to meet the need of the large-range tadiosl, this thesis has proposed a
design methodology for translational CPMs at fiestd then presented and modelled
large-range translational CPMs. Distributed-comm& modules have been proposed
and then employed to construct CPMs from 1-DOFsietion up to 3-DOF translation
using the proposed design methodology. Especitily, spatial multi-beam modules
have been nonlinearly modelled and creatively usedonstruct spatial translational
CPMs with good performance characteristics. In @oldi kinematostatic modelling of
the proposed large-range translational CPMs has lmeplemented to analyse the
performance characteristics.

Considering the analytical and FEA results, theydatange translational CPMs
proposed in Chapters 3, 4, and 5 have good perfareneharacteristics as follows.

1) The auto-adaptive CPG possesses some advantagjading auto-adaptive
grasping function driven by only one linear actuwatolarge-stroke, no
stress-concentration, well-constrained parasitiation, actuator isolation, and a simple
and compact configuration.

2) The stiffness-enhanced XY CPM with the overalimehsion of
540mmx540mmx75mm in the example case has

(a) a large range of motion up to 20mmx10mm,

(b) well-constrained parasitic motion with the [stia translation along the Z-axis
less than 2xI6mm, the parasitic rotation about the X-/Y-axis éethan 2x10, and
the parasitic rotation about the Z-axis below 1%10

(c) approximate actuator-isolation with input-cdogl of the actuator smaller than
1.52% of the primary motion along the same direxttio

(d) approximate cross-axis decoupling with crosis-agupling error less than 1.56%
of the primary motion along the same direction,

(e) acceptable lost motion below 4.45% of the primmotion along the same
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direction, and

() enhanced out-of-plane stiffness approximataiye as that of the planar XY CPM
having 2.2 times higher beams.

3) The improved modular XYZ CPM with the overall ndinsion of
466.40mmx466.40mmx466.40mm in the example case has

(a) a large range of motion up to 20mmx10mmx10mm,

(b) well-constrained parasitic motion with all tharasitic rotations below 1.2x£0

(c) approximate actuator-isolation with input-cdogl of the actuator smaller than
0.65% of the primary motion along the same dirextio

(d) approximate cross-axis decoupling with cross-aoupling less than 1% of the
primary motion along the direction of the actuatimnce that causes the cross-axis
coupling,

(e) acceptable lost motion below 0.3% of the prynamotion along the same
direction, and

() reduced number of design parameters by usdmntical spatial multi-beam

modules.

6.2 Contributions

The major contributions for the thesis are showfolsws.

1) A design methodology for translational CPMs bagn proposed. The proposed
design approach to synthesize translational CPManiextension of the traditional
PRBM approach. Unlike the traditional PRBM approachvhich the traditional joints
are replaced with lumped compliance joints, theppsed approach involves both
replacing kinematic chains with appropriate mul®b compliant parallel modules and
replacing traditional joints with lumped compliarjoets.

2) The normalized, nonlinear and analytical loasptiicement equations for the
spatial three-beam module have been solved usinge ttmethods: approximate
analytical method, improved approximate analytio&thod and numerical method. In
addition, a class of multi-beam modules with foummore beams has been proposed,
and their general nonlinear load-displacement égumthave been obtained based on
the approximate analytical load-displacement equatiof the spatial three-beam
module.

3) A novel auto-adaptive compliant parallel gripp@PG) for 1-D large-range
translation has been proposed using a cymbal-typgliter and two parallelogram
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modules. The analytical model for the auto-adap@i?® has also been derived.

4) A large-range stiffness-enhanced XY CPM has h@@posed by combining a
planar XY CPM and a spatial double four-beam moduolean appropriate parallel
arrangement. Normalized analytical models for ttigness-enhanced XY CPM have
been further presented to analyse performance cieaistics.

5) Several large-range XYZ CPMs have been propbasdd on the proposed design
methodology through the use of: (a) identical deyidrallelogram flexure modules, (b)
inverted planar XY CPMs, (c) identical spatial mbady (d) embedded spatial modules,
(e) five legs composed of spatial modules, andlidnar double two-beam modules.
The improved modular XYZ CPM using identical splatauble four-beam modules
has been modelled and analysed using a normalizagiproach.

6) The normalization-based mobility analysis foatsgd multi-beam modules has
been studied to deal with the inconsistence of dsion for displacements and loads,
and the determination of the magnitude of loadsFD spatial multi-beam modules
can be identified from their normalized compliamoatrices by direct observation and

screw representation.

6.3 Suggestions of Future Works

The research on CPMs is still a challenging issseveral future works under

investigation are identified as follows.

a) Experimental verification

Experiment is very costly considering the mantufee or experimental measurement
(relate to sensors etc) accuracy required. Dubdcctirrent experiment conditions and
available finance limitations, we only employ ComSosmosworks commercial
software to carry out the comparison between ttaytinal model and FEA instead of
experiment.

However, experiment should be carried out inrikar future in order to verify the
proposed analytical models or FEA models for tlangtational CPMs. In this way,
various issues related to manufacturing, assentblgrances, testing, etc can be

addressed.

b) Accurate nonlinear modelling
Although linear modelling has been presentedHterproposed translational CPMs, it
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ignores some nonlinear constraint characterissiash as cross-axis coupling. Therefore,
a more accurate nonlinear model should be developedder to capture all nonlinear

characteristics for the proposed designs.

¢) Dynamics modelling
Lagrange equation can be used to deal with the msato accurately capture
high-order natural frequencies in order to deteemirarious vibration modes and

facilitate the control.

d) High-performance control system

In order to achieve large range of motion, distiéobcompliance modules have been
used to construct translational CPMs in this thediswever, such CPMs suffer from
relatively low primary stiffness, which leads tdatevely low first natural frequency.
Thus a high-order controller should be used toeahia high bandwidth greater than
the first natural frequency by averting the res@meadomain along with large range of

motion.

e) Optimization

In order to obtain more reasonable and reliablastedional CPMs, optimizations
should be implemented. Such optimizations may fasuatigue consideration, layouts
and layer amount of multi-beam modules, beam lerntgibkness and pitch circle radii

under given design indices such as motion rangedgndmic performance.

f) Rapid design synthesis

The proposed analytical models throughout théesigimay be further used to enable
rapid design synthesis. This means that one cathese models to analyse the effect of
parameters upon the performance characteristipsopiosed designs, and then choose

appropriate parameters according the desired peaioce characteristics.

g) Manufacturing and material

For planar compliant mechanisms/manipulators, ECdd been proved to be a good
manufacturing approach to obtain monolithic confegion. Whereas for spatial
modules/mechanisms/manipulators, it is very haralitain monolithic configuration
using EDM. Over recent years, 3-D printing techggldias been developed rapidly.
Various base materials can be used such as engiggaastics, ceramics and metal.
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But 3-D printing technology may lead to limited wmdesired performance of material
because of no traditional heat treatment. Thishess proved by testing our prototype,
made of engineering plastic, obtained using a 3-intgr. Therefore, better
manufacturing approaches for spatial mechanismdation are eagerly needed.
Another shortcoming for large-range CPMs using riisted-compliance is the
relatively large lost motion compared with CPMsngslumped-compliance. If we can
find a good anisotropic material (like timber) sibie for precision motion stages, such

issue can be solved accordingly.

h) Novel sensor design

The proposed XY/XYZ CPMs can also be used as awrekters and force sensors
and in other applications. In the former case,imealr actuators are used to generate the
motion of the motion stage. By measuring the ti@imh of the motion stage along each
axis, one can calculate the inertial force, ana therk out the acceleration along each
axis. In the latter case, the external forces appbn the motion stage need to be
measured. One can measure the primary translatieach input port to work out the

external force along each axis.
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Appendix A — Nonlinear Analysis of a Beam for Bendig in a Plane

Figure A.1 shows a deformed beam for the bendirgiarthe XY plane.

v v Afy X -
1. sy,
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X »

d 1
<« L

Figure A.1 Deformation of a beam.

Based on the Euler's formula and load equilibritondition after deformation, we
can obtain the differential equation of a beam wrated normalization strategy and
small deflection as

Y'(X) =m,+ f 1+ % = X) = p[Ye — Y(X)]
wherey(X) is the transverse displacement of arigcation on the beam along the Y-axis.

y'(X) is the secondary-order derivative of the transverglisplacement.
m,+ f, L+ x, —X) - ply. — Y(X)] is the bending moment acting at anlpcation of the

beam about the Z-axist.e fy andp are, respectively, the bending moment about the
Z-axis, the transverse force along the Y-axis dedaixial force along the X-axis acting
at the free-end of the beamw and x. are, respectively, the transverse displacement
along the Y-axis and axial displacement along thexis of the free-end of the beam; In
the case shown in Figure AX,is negative. The subscriptdenotes the free-end.

The above equation can be rewritten as

Y'(X) = py(x) =m, + f, L+ X%, = X) — py,. (A.1)
The boundary conditions for Equation (A. 1) are
y=0 whenx=0,
y' =0 whenx=0 (A.2)

wherey'(x ) is the first-order derivative of the transversgpticement of anylocation
on the beam.

Awtar [2.2] used a homogeneous 4th-order diffeengquation, obtained by
differentiating Equation (A.1) with respect to twice, to solve load-displacement

equations.
This appendix presents an alternative solutiondaaon (A.1) (non-homogeneous

2nd-order differential equation) directly by combigp the general solution to the

corresponding homogeneous differential equation #oed particular solution to the
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non-homogeneous differential equation.
The general solution to the corresponding homogesedifferential equation
(Y'-py=0)is
y= A" +B™ (A.3)
wherek?=p.
The particular solution to the non-homogeneoustkfitial equation is assumed as
y=Cx+D. (A.4)
Substituting Equation (A.4) into Equation (A.1), w&n obtain
-k*(Cx+D)=m, + f (1+x.)—k’y, - f x.
Then we have

—K’C=-f,
~k?D=m,, + f(L+x,) -k,

C=f,/K’
_ M+ f A x)-KPY,
= 2
Combining Equations (A.3), (A.4) and (A.5), we calotain the general solution to

(A.5)

the non-homogeneous 2-order differential equatfon a

f m,, + f, L+x,) —k?
yerkx+B—kx+k7>2/X_ ze y(k2 e) ye_ (A.6)

Substituting the boundary condition, Equation (A.@to Equation (A.6), we can
obtain

_ mze + fy (1+ Xe) - kzye

% =0,

A+B

f
Ak-Bk+—L=0.
k2

Solving the above equations, we then obtain

¥

m, + f (L+x)—-k? f
A:E( ze y( e) ye_

2 k? k" (A.7)
o l(Met fAFX) =K, T,
2 K’ k®

Substituting Equations (A.5) and (A.7) into Equati@\.6), the general solution to
Equation (A.1) is obtained as
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M+ f, 0+ %) Koy, e +e™  f, e f —m.+f@1+x)-K,

y(x) % ( 2 ) % 2 ) 2 % (AB)
m,_+f (L+x)—-k? f m,_+f (L+x)-k?
—_ 2z y( . e) ye COSH(X_%Sinth"'%X_ ze y( . e) ye
k k k k

An analogous solution can also be obtained mgeaf trigonometric functions rather
than the above hyperbolic functions for negativiei@s ofp.
Whenx=1, the transverse displacemgpand the rotational angl about the Z-axis

of the free-end can be obtained using Equatior8jAas

mze+f —|.(2ye f _ f mze+f _kzye
ye:yG):4————57444—coshk—1§smhk+;%~—44447§5444ﬂ
i.e.
f (k—tanhk) m _(coshk -1
ye -_Y - + ze(2 ) . (A9)
k k? costk
1 M, + fy _kzye y
,=y@D= sinhk - —% coghk,
i.e.
g = fy(costk=1) m, tanhk (A.10)

‘ k? costk k
Equations (A.9) and (A.10) are the same as thatsederived in [2.2, 2.6].
As in [2.2], the axial displacement can be didida two parts: a purely elastic

component and a kinematic component as
X, =X+ X (A.11a)
where xZand x¢ are the purely elastic component and the kinentaisponent of the

free-end’s axial displacement, respectively. Arfl= p/d .

The kinematic component can be further obtairsefbdows:
ds=dx/cosd = (L+tan’ &)"*dx =1+ y'*)"?dx = (1+%y'2)dx, (A.11b)

wheres is the length of arc elements on the beam.

Then we obtain

1+ x5 _lxe 1 2
jo ols_j0 (1+§y )dx, (A.11¢)

e e k 1n 12
1+xe~1+(xe+xe)+§J'Oy dx.

Then Equation (A.11c) can be rewritten as
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1
X" :—%jy'zdx. (A.11d)
0

Substituting Equation (A.8) into Equation (A.lld)dacombining with the purely

elastic component, we can obtain the axial disphecg [2.2].

P fr T |l Ye
X, =——[VY.,0, Alle
e g [Ye ]Ll fzj[é’j ( )
where
. k?(coslt k +coshk — 2) — 3k sinhk(coshk —1)
t 2(k sinhk — 2coshk + 2)2 !
__k?(coshk —1) + k sinhk(coshk —1) — 4(coshk —1)*
r12=r21= . 5 , and
4(k sinhk —2coshk + 2)
— k® +k? sinhk(coshk + 2) — 2k (2 cosIt k — coshk —1) + 2k sinhk(coshk —1)
22— .

4k (k sinhk — 2 coshk + 2)*

Then making approximations for all load-displacemequations of the free-end of
the beam based on the Taylor series expansionptaendrom Awtar’s work [2.2]

fol -
vy |_|@ ¢ VYe £p e hjy, . p? 1/700 1/1400 |V, oo, (A12a)
m c bjg, h g & 1/1400 -11/6300| 6,

ze_| z

1 (i k. roqly. , 1/42000 -1/84000] y,
=—"p+ .8 ] + N + 6 +.oen
% =g Pl j}[@} . Z]{q s}[e} P8~ ga000 1118000 | 6,

z z

(A.12b)
Similarly, the load-displacement equations of tleefend of a beam for the bending

only in the XZ plane can be obtained as

f, a clz e hz [-1/700 1/1400 |z
= +p +p +..-, (A.13a)
-m.| |[c b|-6, h g|-6, 1/1400 -11/6300| -6,

cedontacad) N[5 aecady o [olicol s, e, -
(A.13b)
where my, f, and p are, respectively, the bending moment about thaxi¥: the
transverse force along the Z-axis and the axiatefamlong the X-axis acting at the
free-end of the beanz, xcand 6y are, respectively, the transverse displacememigalo
the Z-axis, the axial displacement along the X-afsd the rotational angle about the

Y-axis of the free-end of the beam.
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Appendix B — Torsion of a Deformed Beam about the >Axis

Following the discussion in Chapter 2, we will derthe torsional angle formula for
a beam under spatial combined deformation. Dubdcimall deflection hypothesis, we
can assume
dg, =m, (x)dx (B.1a)
where m, (x) =m,, + f [y, - y(X)]/d - f [z, —2(x)]/J, which is the torque acting at

anyx location on the beam about the X-axis in deform@afiguration;0=2G/E; mye, f,,
and f, are, respectively, the torque about the X-axis, ttansverse force along the
Z-axis and the transverse force along the Y-axim@at the free-end of the beam;
and z. are the transverse displacements of the free-énldeobeam along the Y- and
Z-axes, respectively(x) andz(x) are the transverse displacements of atpcation on
the beam along the Y- and Z-axes, respectively.

Equation (B.1a) can be rewritten as
dg, ={m, + f.[y, = y(¥)1/ 0~ f,[z, — z(x)]/ o}dx. (B.1b)

Based on Equation (A.8)(x) andz(x) can be expressed respectively as

m,, + f —kzye f, . f m,, + f —kzye
y(X) = kyz coshkx—k—gsmhkx+k—§x— ky2 ,
- + f _k2 _ + f _kz
z(x) = Me kzz Zecoshkx—%sinhkx+%x— e kzz % (B.2)

wherek?=p. p, mye and m,e are, respectively, the axial force along the Xsaxithe
bending moment about the Y-axis and the bending embrabout the Z-axis acting at
the free-end of the beam.

The torsional angle of the free-end can be obtayeidtegrating Equation (B.1b) as
1
8, = [ {me + f.Iy. = Y1/ 3 - f,[2, = 2(x)]/ S}ax
=m,, +(f,y, - fyze)/J—J':[ f,y(x)/ - f,z(x)/d]dx

Substituting Equation (B.2) into the earlier eqoafiwe obtain

m, + f, -k i fom+f, -k
6, =m,+(1,y. - 1,2)/5-[] fz[%ﬁcoshkx—k—gsinhkx+k—§x—%ﬁ]/5
—mye+ fz _kzze fz . fz _mye+ fz _kzze
- f,[ 2 coshkx—Fsmhkx+Fx— 2 1/ o}dx
(B.3)

We take the third term in Equation (B.3) for funtlsamplification as follows:
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m_+f —k? f f m+f —k2
[zt T e coshiox- L sinhioct % x— e TE Yey 5
0 k k® k K
_mye+ fz —kzze fZ ) fZ f _k2
_ fy[TCOSth_FSInthPX k—]/a-}d
-f,m,-f Kz —f.m '
:(fzye )/5+I{[%fkyecoshkx_ fzkn;ze]/d_[ y yek yi “e COSth—%]/J}dx

2
2y —f,m, - fk*z -fm
fk Ye _ "y yek2 y e]COSth/5+[%_%]/5}dX
f m ~f,m, - f,m
=(fYe - )/5+[(%+ f,z, - f,y.)/ 3]sinhk/k + (—25—2-")/&

= (Y.~ f,2)16+ [l foMee
K2
(B.4)
According to the Taylor series expansion, we have
e =1+k+k? /24 +K"/nl+--.
Thus, we have

KoA+k+k?/2+-)-(@A-k+Kk?/2+--)
2k 2k
Substituting Equation (B.5) into Equation (B.4),dasubstituting the result into

k
sinhk/k =<

=1. (B.5)

Equation (B.3), we obtain

f

zmze+f my
Hx:mxe+(fzye_ fyze)/d_{( fzye_ fyze)/5+[(T+f Z, - f ye)/a__|+( ) 5} .

- fm,.
k
=m,+(f,y,-f,2)/0+0
(B.6)
Equation (B.6) can also be explained qualitayivad follows. When we calculate the
torsional angledy, the beam can be assumed as a straight beam tibiemaing

deformation (Figure B.1).

Rigid-body beam

Compliant
beam

(a) Real configuration in  (h) Equivalent configuration
deformatiol

Figure B.1 Equivalent transformation for the tormbangle calculation.
Therefore, the torsional momeng(x), with respect to central axis of the undeformed

beam, at any location on the beam may be regarded as
m, +(f,y.-f,z)/d
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and therefore the torsional angle can be also rddaas

8, = [[[m.+(f,y.~ f,2.)/dldx=m +(f,y, - f,2,)/3.
Based on the mentioned principle of superpositoiséction 2.1, we can substitute
Equations (A.12a) and (A.13a) into Equation (Bdbpbtain

6, =m.+(fy,-fz)/0o
=m,+(az + pez)y./o-(ay, + pew)z./0-c(0,z. +6,y.)/ 0 - ph(b,z, + 6,y.)/ O
=m,-c(6,z,+6,y.)/d-ph(6,z, +6,y.) /1 &
(B.7)
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Appendix C — Mobility Analysis of Spatial Multi-Beam Modules

Mobility analysis of spatial multi-beam modulesaiasic issue in the analysis and
design. This appendix will analyse the mobilitydifferent types of spatial multi-beam
modules using the approximate linear analyticalraagh. Except the class of spatial
non-tilted multi-beam modules discussed in Chagernonlinear and analytical
modelling of the spatial tilted multi-beam moduigestill an open issue.

The DOF of traditional rigid-body mechanisms candsntified and calculated using
formulas proposed in the literatures. But for tleenpliant mechanisms, there is no
apparent boundary to identify the DOF or the DOEfeiRence [C.1] determined the
DOF of compliant mechanisms especially the plamengliant mechanisms using the
PRBM concept. References [C.2, C.3] proposed amnsigew-based method to
determine the DOF or compliance of compliant me@mas. In addition, as discussed
in the Chapter 1, the CBDA, the STBA and the FCa&dbeen proposed to analyse the
DOF or DOC of compliant mechanisms.

However, all the above proposed approaches ferDB®F analysis of compliant
mechanisms do not take into account the effectirokdsion, loads or motion range in
detail.

When analysing the DOF of a compliant mechanismnugpadively, we need to
compare output displacements to identify the DOBPOC. If a displacement is much
larger than another displacement under the samendiion, then larger one can be
regarded as the DOF. If two displacements, suabnastranslational displacement and
one rotational angle, are not under the same dimenthen the DOF identification
becomes very difficult. In order to make transla#ib displacements and rotational
angles (or the forces and the moments) comparablenormalization strategy
(non-dimensional/homogeneous measures) is necessarynify dimension for
compliant mechanisms. Normalization technique hesnbemployed in the modelling
and design of compliant/flexural mechanisms [C.8-@.20]. It has been shown that
this strategy can also simplify equations and d@eidwv in compliant mechanisms. In
rigid-body manipulators/mechanisms, such strategg hlso been employed. For
example, Ref. [C.9] proposed a characteristic kerfgr normalizing the rigid-body
displacements.

In addition, the DOF of some compliant mechanisswg;h as the linear motion

flexure [C.10, C.11] composed of two parallelograradules in mirror-symmetry, can
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also degenerate into the DOC when they achieve legge of motion. This is caused
by the load-stiffening effect [C.10, C.11]. Undéetsmall deflection assumption, this
issue can be neglected. It should also be notedthigalocation and magnitude of
applied loads may affect the identification of th®F and DOC. For example, for a
cantilever beam, it is well known that the axiabplacement of the tip is usually
thought of as the DOC, and the transverse displaneof the tip is usually regarded as
the DOF. However, if the axial force acting at tipeof the beam is much larger than the
exerted transverse force, the resulting axial disgrhent will be able to be much larger
than the transverse displacement. Thus, in theysisabf compliant mechanisms, we
may assume all loads to be in the same order ohimatp and comparable under the
same dimension.

In this appendix, we focus on a normalization-basggroach to the mobility analysis
of spatial multi-beam modules. The multi-beam medwdre composed of identical and
uniform beams with symmetrical cross-sections, Whican be used in many
applications either independently or as a compmsali unit of a compliant manipulator.
This appendix is organized as follows. Sectioni@trbduces the normalization strategy
by normalizing the force-displacement equations docantilever beam. Section C.2
analyses spatial non-tilted multi-beam modulesudicig a three-beam module and a
double three-beam module. Section C.3 discussesalspied multi-beam modules
including a three-beam module and a double threeabmodule, which also introduces
a screw theory to reflect the DOF straightforwardiging the compliance matrix.
Section C.4 discusses the mobility of multi-sheetodoles using the
normalization-strategy. Finally, a summary are ienpénted.

C.1 Normalization Strategy

As in Chapter 2, normalizing the beam-based nmexlid recalled briefly as follows
(see Chapter 2 and [C.4] for details).

All translational displacements and length paranseare divided by the beam length
L, forces byEI/L? and moments bfl/L to get their non-dimensional valuésere, E
and| (zDo"/64) denote, respectively, the Young’s modulus tredsecond moment of
the area of a round cross-section with a diamdté&ydor the beam. The normalized
beam is equivalent to a beam with unit length, uvoung’s modulus and unit
cross-sectional moment. Throughout this appendon-dimensional quantities are
represented by the corresponding lower-case letters
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Undeformed

Figure C.1 Spatial deformation of a basic cantitdyeam

For the basic cantilever beam (Figure CR)F,, F;, Mye, Mye and M, denote the
actual loads acting at the centre of the free-Bn#, andF, are the forces along the X-,
Y- and Z-axes, respectively, aile, Mye andM,e are the actual moments about the X-,
Y- and Z-axes, respectivel¥e, Ye and Z. are the translational displacements of the
centre of the free-endlong X-, Y- and Z-axes, respectivelg;, 6y and 6, are the
rotational displacements of the free-end abouXthé/- and Z-axes, respectively.

The linear load-displacement equations of the-&ed centre without normalization,

similar to the ones used in [C.12, C.18], are

whereG denotes the shear modulus of material.

B 2
E7D, 0 0 0 0 0
I o
= 0 12|3£| 0 o o —62EI X,
F L L=y
y 12E| 6EI e
F 0 0 — > 0 |z
I\/Iz ; 2GI ; He (€.1)
xe 0 0 O — O 0 X
Mye 6EI AE| %
0 0 — 0
_M ze | L2 L _52
o & o o o %
L L L

Using the above normalization procedure, EquatiGrl) can be re-written in a

normalized form as:
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p Xo d 0O 0 0 0 0O|X%
f, Y.| |[00a 0 0 0 c|VY.
f, _K Z, _ 0 0O a 0 -c 0|z (C.2)
m, 6|10 0 0 5 0 08,
m, 0, 0 0 -c 0 b 0}¢,
m,, 6, ] 0c 0 O O b__é?z_

where all the loads and displacements are the nizedaguantities (scalar), which are

corresponding to the non-normalized loads and aggphents in Equation (C.1):

— P f —_ Fy f — I:z
P EI/L2"Y EI/LP* EI/E]
M M M

rnx_ xem_ yemz_ ze
e

CEI/LTC EI/LT O EN/L

X, =X /Ly, =Y, /IL,z,.=Z_/L.
All the non-dimensional numberm=12, c=—6, d=16/(Dy/L)?, b=4, andd=2G/E=1/(1+v)
(v is the Possion ratio of the material), are therattaristics of the uniform round
cross-section beam.

It is shown that Equation (C.2) obtained from Equa{C.1) is the exactly same as

the one obtained using the approximate linear iadlacement equations as indicated
in Section 2.2.4 in Chapter 2. Equation (C.2) isuaate enough under small deflection

condition for the purpose of mobility analysis.
C.2 Spatial Non-Tilted Multi-Beam Modules

In this section, we will investigate the modelliafjcompliance matrices of a spatial
three-beam module and a spatial double three-beaahuley and also analyse their DOF
using these obtained compliance matrices.

C.2.1 Analysis of a spatial three-beam module

A spatial three-beam module is shown in Figure Bsldetailed quantitative analysis

will be explained in the subsequent sections.
a) Modelling of the spatial three-beam module
The modelling of a spatial three-beam module reder to the stiffness modelling of

flexure parallel structure [C.13]. The detailed idations of the approximate linear
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analysis for the spatial three-beam module are srasifollows.
The geometry compatibility conditions, between thebile end, connected to the
motion stage, of each beam and the motion stagebeae-written in a matrix form

based on Equation (2.8) as

X x| 100 0 2z -y|x%
yi ys O 1 O _Zil O Xil ys
Z Z|_|1001 vy -x" 0%

=D. = C.3
8, g, [0 00 1 0 0 |6, (©3)
8, 6,0 000 0 1 0|6,
6, | 6,] 000 0 0 1 |g,]

whereDpgiis the transformation matrix of the displacemerftthe motion stage centre.
X, i andz (i=1, 2, 3) are the translational displacements efcéntre (tip) of the mobile
end of thei-th beamalong the X-, Y- and Z-axes, respectivefy;, 8y and 6, are the
rotational displacements of the mobile end ofittle beamabout the X-, Y- and Z-axes,
respectivelyx’, yi' andz' (i=1, 2, 3) are the local coordinates of the tiph&fitth beam
relative to mobile rigid body coordinate systexqg<0, yi1'=rssin(z/3), z1'=rscos/3) for
the tip 1,x,'=0, y,'=0, z,'=—r3 for the tip 2,x3'=0, ys'=—r3sin(z/3), z5'=rzcose/3) for the
tip 3).

Based on Equation (C.2), the load-displacementateans for the tip of theth beam

in the spatial three-beam module can be furtheaiobtl as

P; X; d O 0 0 0 O0O|X%
fy Yi 0Oa 0 O O c|VY
f, _K. z; _ 0 0 a 0 -c 0|z (C.4)
m, '8, 0 0 0 o 0 06
m, 6, 0 0-c 0 b 06
m, 6,] [0 c 0 0 O bjeg,

whereK; is the stiffness matrix of thieth beamp, fiy, fi,, myx, my andm (i=1, 2, 3),
denote the internal loads acting at the tip ofittlebeam, of whiclp;, fiy andf;, are the
forces along the X-, Y- and Z-axes, respectivehy ay, my andm; are the moments
about the X-, Y- and Z-axes, respectively.

Using the transformation matriDg in Equation (C.3), the load-equilibrium

conditions for the motion stage are shown as fatlow
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P P; 1 O O O O O||BW
f, fy 0o 1 0 00 0f
f,l =& 0f, | &8 0 0 1 00 0ff,
:szi = , , (CS)
mx i=1 mx i=1 O _Z| yi l O O mx
m, m, y2 0 0 01 0m
m, m, | -y 0 0 00 1jm,|
where D; is the transformation matrix of the loads actinghat centre of the end of the

i-th beam.
Substituting Equation (C.4) into Equation (C&)d then substituting Equation (C.3)
into the result, we have
F=K_X (C.6)

p/Ns
where X, =[x, Y., Z,6,.6,,6,]",and F=[p, f , f,,m, m m,]",
and K, =D;K,D,,+D K,D,+D;K,D, . The latter is the stiffness matrix of the
spatial three-beam module.
The load-displacement relationships for the mositage can also be expressed as
X,=C,F (C.7)
where C, =K', which is the compliance matrix of the spatiaettbeam module.

Equations (C.7) and (C.6) are the forward load{ldgment equations and inverse
load-displacement equations of the motion stagehef spatial three-beam module,
respectively.

Substituting all the values of the non-dimensionanbers and local coordinates into
the compliance matrix in Equation (C.7), and lgttthe CPM be made from aluminium
alloy for which Young’s modulug, is 69,000 Nmrit and Poisson’s rati@, is 0.33, we

have
[1/3d a 0 0 0 0 0
0 w 0 0 0 %
36(r;d +2) 3(r;d +2)
2 —
0 0 M 0 271 0
36(r, d +2) 3(ryd +2) (C.8)
C, = 625 '
»7| 0 0 0 . 0 0
9(2500r2 +157)
0 -1 0 2
3(rd +2) 3(rid +2)
I S 0 o 2
3(ryd +2) 3(ryd+2) |

whered>10000 forL/Dg>25, andrz should usually be comparable with the beam length

L, which may be larger than 0.5. This compliancerxa a symmetrical matrix.
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Equation (C.8) shows that=0 if m,=-f,/2, andds,=0 if m=f,/2. This reveals that we
can exert two transverse forces on the motion stageat the symmetric centre of all
beams to eliminate the parasitic bending angles. M@éw action position refers to the

centre of stiffnesgC.5].

b) DOF analysis of the spatial three-beam module

When multiplying the compliance matrix [Equati@8)] by a load vector [1, 1, 1, 1,
1, 1J' to generate the displacements, each compliancg ienthe compliance matrix
can be thought of as the product of the compliaendey times a relevant unit load. In
Equation (C.8), the highlighted diagonal compliamsdries associated with the two
transverse displacements and the torsional anglenach larger than those compliance
entries associated with the axial displacementthedwo bending angles under lagje
Therefore, both the two transverse displacements tha torsional angle are DOF,
whereas both the two bending angles and the axgplatement are DOC. Equation
(C.8) also shows how the size parametgrand d influence the compliance matrix.
Whend orr3 increases, the three rotational angles all deereas

We assume that the parameters &g¢2mm @=10000), R;=30mm (3=0.6) and

L=50mm. From Equation (C.8), we obtain

(00333 0 0 0 0 0
0 27824 0 0 0 00925
|0 0 27824 0 -00925 O
C, =1x10 (C.9)
P 0 0 0 65700 O 0
0 0 -00925 0 01851 O
0 00925 O 0 0 01851

If some entries in Equation (C.9), which are vemyall (approximately in the order of
0.01 of the dominant (diagonal) compliance entayg assumed to be zero, Equation
(C.9) is further simplified as

0 o 0 0 00
0 27824 O 0 00
JO 0 27824 0 00
C,=1x10 (C.10)
P 0 o 0 65700 0 O
0 o 0 0 00
0 o 0 0 0 0]

The above simplified matrix shows that only tia® ttransverse displacements and
the torsional angle about the X-axis are the DOF.

If there is no normalization applied in the abastéfness modelling [Equations
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(C.3)—(C.8)], the compliance matrix of the spatihiree-beam module can be

re-expressed as

(00769 O 0 0 0 0
0 64178 0 0 0 00043
4 0 0 641788 0 -00043 O
C, =1x10 . (C.11)
P 0 0 0 00606 O 0
0 0 -00043 0O 00002 O
| 0 00043 0 0 0 00002

Different from Equation (C.9), the compliance enargsociated with the torsional
angle in Equation (C.11) is as small as that aasetiwith the axial displacement so
that it may mislead us into that the torsional anglthe DOC rather than the DOF. This
shows that one may to identify the DOF using thermadization method
straightforwardly.

C.2.2 Analysis of a spatial double three-beam meul

A spatial double three-beam module, connecting $patial three-beam modules as

two building blocks in series, is shown in FigurC

Motion
stage U, 8

x YS%
74
Y yo74
Secondary &
| motion stage
(a) CAD mode (b) Schematic mod

Figure C.2 A spatial double three-beam module

The modelling of the spatial double three-beam nedkigure C.2) can be derived
as the stiffness modelling of flexure serial chd®4 3].

Since the displacements of the motion stage irsgia¢ial double three-beam module
are caused by both the inner spatial three-beanulaateformation and outer spatial
three-beam module deformation, we have

X, = AX +AX,, (C.12)

whereX, =[x, Y., Z,6.6,,,6,,]" is the displacement vector of the motion stagésiis

X7

the displacement vector component of the motiogestasulting from the inner spatial
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three-beam module deformation alons,is the displacement vector component of
the motion stage resulting from the outer spaltisde-beam module deformation alone.
From Equation (C.7), we obtain
AX,=CJF (C.13)

whereC,, shown in Equation (C.8), is the local compliamcatrix of the inner spatial

three-beam module. F =[p, f,, fz,mx,my,mZ]T, which is the load vector acting at the

motion stage.

Similar to Equation (C.3), we further have
AX, = JAX,, (C.14)
where AX, is the displacement vector of the secondary maosiage, and is the

transformation matrix of the center displacemeritthe secondary motion stage. The
latter is obtained based @y, in Equation (C.3) using the relative location @1,0) of
the centre of the motion stage with respect toah#te secondary motion stage.

Based on Equation (C.7), we obtain

AX, = C..F (C.15)

whereC,,, obtained using Equation (C.8), is the local caemgle matrix of the outer
spatial three-beam module with a pitch circle radifirs. F,=J'F, obtained using
Equation (C.5), is the load vector acting at theoselary motion stage.

Combining Equations (C.12)—(C.15), the load-dispiaent equations for the motion

stage can be obtained as
X, :CpF+JCp2JTF:(Cp+JCp2JT)F. (C.16)
Thus, the compliance matrix for the spatial doutileee-beam module can be
expressed as

O Cs33 O Cs35 O

0

— T — O

C,=C,+IC,3"=| | (C.17)
0

O CSSB O C355 O

whereCy2andJ are shown in detail as follows:
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-1 0 00 00 [-1 00 0 0 0"
0 -10 0 0O |0 -100 00
0 010 000 010 00
Cp= B C, B
0 00-1007" 0 00-100
0 000 -10 |0 00O -10
0 000 01 |0 0 0 0 0O 1
/3 0 0 0 0 0 ]
m 0 0 0 v_l
36(r,%d +2) 3(r.2d +2)
2
0 0 w 0 ‘21 0
36(r.2d +2) 3(r2d +2)
Tl o 0 0 8 0 0
9(2500,2 +157)
o0 0 i 0
3(r7d +2) 3(r2d +2)
o - I 0 0 0 2 |,
| 3(r2d+2) Ar2d+2) |
1 000 0 O]
0100 0 1
j_|0010-10
0001 0 O
0O000OO0 1 O
0000 0 1]
The entries irCg are
_2 _ (r2d+8) | (r’d+9) _ 1 1 _ (r2d+8)  (r?d+8)
Ca1= 57 1Cs0 = 2 + 2 "C26 =2 22 "Cs33 = 2 * 2 ’
3d 36(rd +2)  36(r,2d +2) (ryd+2) 3(r7d+2) 36(rfd +2) 36(r77d +2)
. S SR 625 . 625 S S
BUr2d+2) 3r2d+2) M 925002 +157)  9(2500.2 +157) 0 3(r2d+2) 3(r2d +2)
2 2 1 1 2 2
Csss + 526 + 66 +

Ta2d+2) a2+ P a2de2) a2d+2) *° 2d+2) 3(Pd+2)

Equation (C.17) shows that, under layéfor example>10000), the spatial double
three-beam module is still a 3-DOF CPM, but it ha# primary stiffness of a spatial
three-beam module. Under the conditions of largeughrz andrjs', the spatial double

three-beam module can also be regarded as a 2-D@pliant module without torsion.

C.3 Spatial Tilted Multi-Beam Modules

In this section, we will investigate the modelliafjcompliance matrices of a spatial
tilted three-beam module and a double tilted tHream module, and also analyse their
DOF.

C.3.1 Analysis of a spatial tilted three-beam moelul

A spatial tilted three-beam module is shown in F&gG.3, which has been presented

elsewhere [C.14, C.19]. It is composed of thredspar base, three tilted beams and a
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thin motion stage. The base and motion stage areetted by the tilted three beams.
Here, the three beams are uniformly spaced aromacircles of radiuss andrs' (rs <

rs3) on the motion stage and base, respectivelytlare@ central axes of the three beams
intersect at one point (named theoretical virtuidhtional centre: C)f is the angle
between the tilted beam and the X-axis.

Based on the type synthesis of CPMs in [C.15, QC169], the mechanism in Figure
C.3 is a 3-DOF rotational CPM, and all the thretational displacements are with
respect to the theoretical virtual rotational centt. The external applied loads,
displacements of the motion stage and global fomatdinate system are defined in the
same way as before. We further establish thred mmardinate systems ¢€X1Y 173,
Ox-X2Y 2Z,, and @-X3Y 3Z3) at the tips of the three beams (Figures. C.3b&AB4d).

(a) CAD model (b) Top view of motion stage
Theoretical
. . virtual
Theoretical rotation /%%, rotation
radius ry/tang "2 cenreC

(c) Schematic mod

Figure C.3 A spatial tilted three-beam module

a) Modelling of the spatial tilted three-beam modus

Similar to the modelling in Section C.2.1, the getme compatibility relationships
between the centre displacements of the motioresdagli-th tip displacements, with
respect to the £X;YZ; (i=1, 2, 3), can be obtained as
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x| %, ] [cosB 0 sing 0O 0 0 ]
Yi Ys 0 1 0 0 0O O
z Z -sin 0 cosf 0 0O O
a, =Ry (AR« (7D, 6., 0o o0 o cosf 0 sing
6, 6, o 0 0 0 1 0
8, g, | O 0 0 -sinB 0 cosf| (C.18)
1 o 0 0 O 0Jto00 0 Z -y[x]
0 cosay singg 0 O 0 (010 -2 0 x|V
|0 —sina; cosy; 0 0 0 jO0o01 y -x 0]z
0o o0 o 1 0 0O [00O0 1 0 0 |6
0 0 0O O cosgy sing;|0 00 O 1 0|6,
10 0 0O O -sing, cos; [0 00O 0O O 186,

wherex, Vi, z, Oix, iy anddi; (i=1, 2, 3) are the displacements of itk tip with respect
to O-X;YiZ. x', yi' andz' are the relative location parameters ofithie tip with respect
to the centreQ’, of the motion stagen=27/3, 0,=0, az=—27/3.

Then, the load-displacement equations forittietip with respect to @X;YZ; is

'p] [x][do o 0 0 Ofx]
fy Y, 0Oa 0 0 O c|V
f,, “K, zZ _ 0O 0 a 0 -c 0z (C.19)
m, 6,| |10 0 0 5 0 0|8,
m, 6,] |10 0 -c 0 b 08§,
m, g,] [0 c 0 0 0 bjg,

wherep, fiy, fiz, myx, my andm (i=1, 2, 3), denote the loads acting at the tip efiith
beam with respect t0;€X;YZ;.

Further, the load-equilibrium conditions for thetina stage can be obtained as

p B

fy fiy

" :nfD-TR "a)R, () (C.20)
m| S Y m, '
m, m,

|m, | LM |

whereDi, Rx(-ai) and R, () (i=1, 2, 3) are those matrices shown in Equationg§)C.1

Combining Equations (C.18)—(C.20), we have the ddiaglacement equations for
the motion stage:

X, =K F=CF (C.21)

where X, =[x, Y,,%,6,.6,,6,,]",and F=[p, f , f,,m,m, m,]".

X1
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3
Ko =Y DRy (=a)Ry (K Ry (B)Rx (=0;)D;, Which is the stiffness matrix of the
i=1

spatial tilted three-beam moduleC, =K

i » Which is its compliance matrix,

symmetrical matrix, accordingly.

b) DOF analysis of the spatial tilted three-beam naule

Let p=n/4, L=50 (mm),r3=0.6 and d=10000, &;'=0, yi'=rssin(z/3), z;'=rzcos/3) for
tip 1, X'=0, y»'=0, z'=-r3 for tip 2, x3'=0, y3'=—r3sin(z/3), z5'=rzcosf/3) for tip 3). The
material of the module is detailed in Section C.2.Erom Equations (C.18)—(C.21), we

obtain the compliance matrix

(00666 O 0 0 0 0
0 6983 O 0 0 -11504
C, =1x10° 0 0 6983 0 11504 0 | (o
0 0 0 28277 0 0
0 0 11504 0 19320 O
| 0  -11504 © 0 0 19320 |

If ignoring some insignificant entries @y;, Equation (C.22) can be re-expressed as

0 0 0 0 0 0
0 6.983 0 0 0 -11.504
C,= 1x10°2 0 0 6.983 0 11504 0 ' (C.23)
0 0 0 28277 0 0
0 0 11.504 0 19.320 0
|10 -11.504 0 0 0 19.320 |

From Equation (C.23), it is observed that
Y~—(6.893/11.504)s~—(11.504/19.32@): ~—[0.6/tanf)] 05,
Z:~(6.893/11.504)5,~(11.504/19.32®)s,~[0.6/tan()] bsy.

l.e. two transverse displacements are not indepgnafethe rotations. Therefore, the
tilted three-beam module has three DOF, which camelpresented by three rotational
angles as discussed below. Here, the differench asc|6.983/11.504-0.6|=0.007 or
|11.504/19.320-0.6|=0.0046 is the well-knogemtre-drift[C.17]. Equations (C.22) or
(C.23) also shows that=0+~0 if m=0.6y, andz=60s~0 if m=-0.6,. From the above
analysis, one can further learn that two transvenses, exerted on the motion stage, at
the theoretical virtual rotational centre can reige any motion.

Alternatively, we can also treat the compliancerirat,; as a matrix composed of
six screws [C.3], which can reflect motion charastees more straightforwardly than
the above observation method.
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Equation (22) can be expressed in a screw form as

0 v, Vv, Vv, Vg vﬁ} (C.24)

Cp1 = [5:5,,5,,50,5,5] = {0 v W W w. W
where
s (i=1, 2,..., 6) is the screw, arsgc0, which means no motion.
Wz is the rotation vector along the —Z-axis.
w;3is the rotation vector along the Y-axis.
w, is the rotation vector along the X-axis.
Wsis the rotation vector along the Y-axis .
Wgis the rotation vector along the Z-axis.
vi (i=1, 2,..., 6) is the translational displacement veatdich can be expressed as
V2 :rZXWZ + p2W2’
V3 =3 XW3+ PgWy,
V,=Ir,Xw,+p,w,,
Vg =T XW, + pW,
Vg =Tg XWg + PgWe .
pi (i=1, 2,..., 6) is the pitch of the screw.
ri (i=1, 2,..., 6) is the position vector of any point thhe corresponding screw axis
with respect to the fixed coordinate system.

All the pitches can be obtained as

:ﬂ:o’ :ﬁ:o’p :V4[W4 :0,
2w, v, * w0, Yow, v,
V. W
po= s Ws g p = VelWe _g (C.25)
WSWVS W6EW6

Each rotation radius (the magnitude of the minipadition vector) of the center of
the motion stage with respect to the relevant sesdw axis (Figure C.4) can be further
obtained as

r,=1Yel —0607= 06,1, = V2l = 0607~ 06,r, = V2l =
[w, | |w; | |w, |

re _lvsl_ 0.5954= 06T Vel 0.5954= 06. (C.26)
|we | |we |
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Theoretica
three screw .~
axes ’
Motion
., stage

Figure C.4 lllustration for real screw axes andtleéical screw axes

Figure C.4 shows that the real screw amigws) is very close to the corresponding
theoretical screw axis which goes through the pGirind is parallel to the Y-axis. The
distance between the two axes is 0.007(or 0.004égyligible compared with the
theoretical rotation radius of 0.6. Therefore, thal screw axisvs (ws) can be thought
of as overlapping with the theoretical axis patalte the Y-axis. Similarly, the real
screw axisw;, (wg) can be thought of as overlapping with the thecaétxis parallel to
the Z-axis. These approximations reveal that thaiaiptilted three-beam module is a
3-DOF rotational CPM.

The above analysis shows that only the indepdnplere rotational displacements
about the X-, Y- and Z-axes are the DOF.

If there is no normalization applied in the abov#freess modelling [Equations
(C.18)—(C.21)], the compliance matrix of the spatiiéed three-beam module can be

re-expressed as follows:

(01536 0 0 0 0 0
0 16107 O 0 0 -0531
L 0 0 16107 O 0531 O
C,, =1x10 (C.27)
P 0 0 0 00261 O 0
0 0O 0531 0 00178 O
| 0 -0531 0 0 0 00178

In the compliance matrix of Equation (C.27), withowrmalization, the compliance

entry associated with the translational displacdnaéang the X-axisx) is larger than

that associated with the rotation about the X-#&&ig, which may mislead us into that
Xs is the DOF, andsy is the DOC.

An inverted spatial tilted three-beam module isvaman Figure C.5. The coordinate

system, loads and displacements are all defindéaeisame way.
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Figure C.5 An inverted spatial tilted three-beanduie

Similar to the derivation of Equation (C.21), thampliance matrix for the inverted

spatial tilted three-beam module is given as
3
Cpe =D DR (=)Ry, " (-B)K Ry (-8R (=)D, ™. (C.28)
i=1

Let L=50 (mm),d=10000,p=x/4, r3=0.6 andrs'=r 3+sinp=1.307(x;'=0, y1'=r3'sin(z/3),
z'=r3'cos@/3) for the tip 1,x'=0, y»'=0, z'=-r3 for the tip 2,x3'=0, y3'=—r3'sin(z/3),
Z3'=r3'cos/3) for the tip 3). We have

[0.0666 O 0 0 0 0
0 32912 0 0 0 25166
C, =1x10° 0 0 32912 0 -25166 O | (€.29)
0 0 0 28277 0 0
0 0 -25166 O 19320 O
| 0 25166 O 0 0 19320

From Equation (C.29), it is observed that
y~[0.6/tanf)+cosf)] Os; =1.300s,
z~—[0.6/tanf)+cosf)] 0s,=—1.300sy.
This reveals that the motion stage of this invegpdtial tilted three-beam module can
produce large-range translation than the origine ander same rotation since the
theoretical rotational radius, 1.307 of the inveérteodule is larger than that, 0.6, of the

original module.
C.3.2 Analysis of a spatial double tilted three-lbeanodule

Similar to the generation of the spatial double-titted three-beam module (Figure
C.2), we can combine two spatial tilted three-bemwdules as two basic building

blocks in series to obtain a spatial double tite@e-beam module shown in Figure C.6.
This module has approximately double range of nmodiad half stiffness of a single
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spatial tilted three-beam module.
Based on Equations (C.17), (C.21) and (C.28), wainkihe compliance matrix for
the spatial double tilted three-beam module:

C.=C, +JCp2JT (C.30)
where
1 0 00 0 0 ]
0100 0 - 2r,/tanf —cosp
3= 0 01 0 2r,/tanB+cosf 0
0 001 0 0
0 00O 1 0
0000 0 1 |

Substituting all the geometric parameters intodigpn (C.30), we obtain

[0.1332 0 0 0 0 0
0 141744 0 0 0 —-231833
C =1x10° 0 0 141744 0 231833 0 (C.31)
° 0 0 0 56.5540 0 0
0 0 231833 0 38.6400 0
| 0 —-231833 0 0 0 386400 |

Compared with Equation (C.22), Equation (C.31) shtat the spatial double tilted
three-beam module is also a 3-DOF rotational CPM, lhas approximately half
rotational stiffness of a spatial tilted three-bearndule [for example, the compliance

entry in the sixth-row and second-columnGyf, Equation (C.22), is approximately half

that of Cs, Equation (C.31)].
\ /Motion
stage|
rgjtan(ﬂW-.— = B

e p— Vi — ——

Rotafion "5&
gentre (I
cosf)
I3
L |
(a) 3-D view of (b) Front view of
CAD model CAD model

Figure C.6 A spatial double tilted three-beam medul

The normalization—based strategy can be also useddeal with the DOF
identification of other multi-beam modules (see fibngr-beam module shown in Figure
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C.7 for example).

stage

Figure C.7 A double tilted four-beam module

C.4 Other Multi-Sheet Modules

Following the mobility analysis of the spatial mideam modules in the previous
sections of this appendix, we will discuss the ralrpation method for compliant
modules composed of identical and uniform sheedsglly long-side length/ short-side
length of a rectangular cross-secttd®). Here, all the definition for the global
coordinate system, loads and displacements is énstiime way. All translational
displacements and length parameters are dividatieogheet length, forces byE'l/L?,
and moments bi'l/L. Here,E'=E/(1-%) and| denotes, respectively, the plate modulus
and the second moment of the area of a rectangrdas-section of the sheet about the

axis parallel to its long side.

C.4.1 Analysis of a parallelogram module with twbests

We first analyse the parallelogram module (Figur8)@ common use. Similar to
the formulation of Equation (C.2), the stiffnesstrixafor each sheet with respect to the

coordinate system O-XYZ can be derived as

[120-v¥)/t? 0 0 0 0 0
0 12 0 0 0 -6
K = 0 0 12u/t)*@L-v?) 0 6(u/t)*(L-v?) 0 (C.32)
0 0 0 2/(1-v) 0 0
0 0 6(u/t)’@-v?) 0 4u/t)>@-v?) O
0 -6 0 0 0 4 |

whereu andt are the normalized spacing parameters of a sBest@avn in Figure C.8.
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It should be pointed out that therepgkane stress in the XZ planand there igplane

strain in the XY plane.

Motion stage

(a) 3-D view of CAD model (b) Dimension the a she

Figure C.8 Parallelogram module with two sheets

Then, the transformation matrices of the centrpldeements of the motion stage are
represented as

100 0 0 -w/2] 100 0 0 w2
010 0 0 O 010 0 0 O
Dpl2001w/2o 0 ,Dp2=001_W/20 0 (©.33)
000 1 0 O 000 1 0 O
000 0O 1 O 000 0 1 O
000 0 0 1 | 000 O 0 1

wherew is the normalized geometrical parameter as shaviaigure C.8.
Therefore, the compliance matrix for the motiongstaentre is obtained using
Equations (C.32) and (C.33) as follows.
C, =(DyK,D,; + DK ,D,,) ™. (C.34)
As an example, 1dt=50 (mm),W=50 (mm),T=1 (mm),U=20 (mm) and/=0.3. The
substitution of all these normalized values inta&igpn (C.34) yields

00167 O 0 0 0 0
0 |416833 0O 0 0 00333
4 0 0 04579 0 -06868 O
C,=1x10 . (C.35)
0 0 0 04567 O 0
0 0 -06868 0 13736 O
| 0 00333 0 0 0 00667

Equation (C.35) shows that the translation alomg¥taxis is the only DOF since the
highlighted element associated with the transvelisplacement along the Y-axis is

much larger than the other elements, which complisthe qualitative analysis.
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C.4.2 Analysis of a four-sheet rotational module

The four-sheet module is shown in Figure C.9.

V’dl%—:iiﬁmme \féigzzi®

(b) Dimension the a sheet

axis

(c) Top view of CAD model:
’ inner dash circle intersecting
(a) 3-D view of CAD model  with the centres of the

Figure C.9 Four-sheet rotational module

This module proposed as a rotational joint [1.&5Jcomposed of four non-tilted
sheets in parallel. Here, the neutral surface ohesheet, associated with the bending
about the long side of its cross-section, contiiescentral axis of the module.

Similar to the derivation of Equation (C.2), théfsess matrices for the sheets with

respect to the coordinate system O-XYZ can be ddras

[12(1-v?)/t? 0 0 0 0 0
0 12u/t)*@-v?) 0 0 0 -6(u/t)>*@-v?)
K - 0 0 12 0 6 0
9 0 0 0 2/(1-v) O 0 ’
0 0 6 0o 4 0
i 0 -6(u/t)*’@-v?) 0 0 0 4(u/t)*@-v?) |
[120-v¥)/t> 0 0 0 0 0|
12 0 0 0 -6
K e = 0 0 12u/t)*@-v?) 0 6(u/t)y>@-v?) 0 (C.36)
0 0 0 2/(1-V) 0 0
0 0 6(u/t)>@1-v?) 0  4u/t)’d-v®) O
0 -6 0 0 0 4

whereu andt are the normalized parameters of a sheet as simoligure C.9.
Then, the transformation matrices of the centrpldeements of the motion stage are

represented as
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100 0 0 -w/2] 100 0 -w/2 0]
010 0O O O 01 0w?2 0 O
001 w20 0 001 O 0 O

Dy = "Dy, = ’
000 1 0 O 1o 00 1 0 O
000 O 1 0O 000 O 1 0
000 0O 0 1 | 000 O 0 1
1 00 0 0 -w/2] 1 00 0 w/2 0]
010 0O O O 010 -w/2 0 O
001 w20 O 001 O 0 O (C.37)

D3: ’Dp4: .
P1loo0 1 0 O 000 1 0 O
000 O 1 O 000 O 1 0
000 0 0 1 | 000 O 0 1]

wherew is the normalized spacing parameter as showngur€&€iC.9.
Therefore, the compliance matrix for the motiongsetaentre is obtained using

Equations (C.36) and (C.37) as follows.
C,= (D;KlDpl + DZZK Dt D;K sDps t D;4K 4Dp4)‘1. (C.38)
As an example, leL=50 (mm), W=50 (mm), T=1 (mm), U=20 (mm) andv=0.3.

Substituting all these normalized values into ExquefC.38), we have

[0.0083 O 0 0 0 0
0 01300 O 0 0 00318
0 0 01300 0O -00318 0
C,=1x10 . (C.39)
0 0 0 | 426829 | 0 0
0 0 -00318 0 00636 0
| 0 00318 0 0 0 00636

Equation (C.39) shows that the rotation about thaxis-is the only DOF since the
highlighted element associated with the rotationutlihe X-axis is much larger than
the other elements, which complies with the quialitaanalysis.

Similar to the design in Section C.3.2, we can abtain a better rotational joint:
double four-sheet rotational joint as shown in FégG.10. It doubles the rotation range
without rotation centre-drift, and alleviates thdah translational displacement along

the X-axis.
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a) Type 1 b) Type 2

Figure C.10 Double four-sheet rotational module

C.5 Summary

This appendix has analysed the mobility of spatialtiibeam modules. By using a
normalization strategy, rotational angles and ttemdiational displacements (or the
forces and moments) can be compared reasonablyefdherthe derived compliance
matrices for the spatial multi-beam modules calecethe DOF straightforwardly.

It should be noted that the normalization condgidior complicated compliant
mechanisms, such as compliant modules composedaoh$ with different length, are

still an open issue.
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Appendix D — Prototypes of Spatial Multi-Beam Modués

A prototyped spatial three-beam module under thwraof f,and my is shown in
Figure D.1. It is made of engineering plastics, aiicated using a 3-D printer. Under
the action of the above payloads, the spatial thesen module has two primary motion
displacementsz; andésx [Figure D.1a]. In addition, the parasitic rotatibaagle of the
motion stage about the Z-axis is dominated bys2[see Equation (2.29) for details],

which can be roughly verified by the experimenshswn in Figure D.1b.

Figure D.1 Prototype of a spatial three-beam modubeformation

In addition, a spatial double three-beam modiigure D.2) is prototyped for motion

= Motion Stage _
Base

demonstration purpose.

Figure D.2 Prototype of a spatial double three-beardule
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Appendix E — Analysis of Spatial Multi-Beam Moduleswith Different
Layouts

Following the approximate nonlinear-analytical miidg of the spatial three-beam
module in Chapter 2, we can obtain the load-digsteent equations for the spatial
six-beam module on the left-hand in Figure 2.14tb4sws.

m, +(m,z +myys)e

oo+ 2 (r 1)+ pe(r12+r %) 3d(rf —1r2) fole]

6. =

SX

f m@e

~ Y sx
Y= ea+ pe

~ fZ + ngsxe
6a+ pe

o =+ v?’r + Z2°r)[m, +(6¢c+ ph)z.] - 26 v.i
sy 3(rﬂ)(d ysr +zr)[m +(6¢+ ph)z] - 26,y

2
0. =——— r+zr m,—(6¢c+ ph 26,
2 = AZ+r, )(d A )[m,—(6¢c+ ph)y,] -

X = +(ys+zs)l+p(ys+zs)r+( Zr)ﬁil DU goy

6
+2(y0,, — 2.0, )k - (myys+mzzs)6’sxr

(E.1)

where all moments are normalized Bi/L. r3 andrs' are the radii of the pitch circles
around which the inner three-beams and the outeetheams are uniformly spaced ,
respectively. It is noted that this equation isoatiitable for the spatial six-beam
module on the right-hand in Figure 2.14d.

From the torque equation in Equation (E.1), we leann that the torsional stiffness
increases with the increaseof the torsional angke td the introduction of the added
term: —3d(r/ —r,”)*&%ie /12 in comparison with Equation (2.81). Furthermorerif
approachess', Equation (E.1) is equivalent to Equation (2.81) agnately.

Then, we can analyse a module of eight beams distidbaround two regular squares
as shown in Figure E.1. Here, two layouts have saumer and inner pitch circle radii.
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a) Layout 1 b) Layout 2

Figure E.1 Top view for spatial eight-beam modulthvaeams distributed around two

regular squares

Similarly, the load-displacement equations of tighebeam module for both two
layouts are

b - m, +(m,z, +m,y,)e
> 8[5+ (r +r )+ dr4 +r42) 4d(r4 r42) Hslee]
16 16

f + SX

Ys = —my
8a+ pe

~ fZ + ngsxe
8a+ pe

1 )
a =+ y2r + Z2r)[m, +(8c + ph)z.] - 26. v.i
sy 2(r4 +r4 )(d Ys Zs )[ y ( p ) s] sxYs

1
0, =~—F——— r+zr m,—(8c+ ph 20z i
=50 +r)(d Yir +Zr)[m,~(8c+ ph)y,] -

(r42 ';I’f) QSZXi + P (r42 + rf) eszxr

X =t RS+ 2+ 5

+20y,0, - 28,k ~ 5 (MY, +m2)0,r

(E.2)
where all moments are normalizedBYL, andr,' (orr,) is the radius of the pitch circle
around which the outer (inner) four beams are umifp spaced. .

We can further analyse a spatial four-beam neduth the layouts that four beams

distributed around a regular triangle with one beamnecting to centre (Figure E.2).
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Motior;ag/

Figure E.2 Spatial four-beam module with beamsibisted around a regular triangle

with one beam connecting to centre

Similarly, its load-displacement equations carléeved as

m, +(m,f, +myfy)e/(4a+ pe)

O = 3 3per’ —3dr; 6 je
40+ =ar + )
4 16
y. = f,+md.e
°  da+pe
~ fZ + rr]ZQSXe
4a+ pe

st = 3722(% + yszr + zfr)[my+(4C +phz]-26,y.
r3

gsz = %(E + yfl' + zszr)[mz—(4c + ph)ys] - ngxzsl
3ry d

3p-3dr28ii)/4 . (3p-—3dr?gZi)/4 . (Bp-—3dr?63i)/4
X, = @p 3; ) +(y52+232)|+( p 33 a)) (y52+zsz)r+rszgsle+( p 33 A)) rszgszxr

2
+2(y6,, — z2.60,)k - g(myys +m,z)6,r

(E.3)

where all moments are normalizedByL, andr; is the radius of the pitch circle around
which the outer three beams are uniformly spaced .
From the torque equation in Equation (E.3), we ako learn that the torsional

stiffness increases with the increase of the toediangle due to the introduction of the

term, —3dr;'62ie /16 that Equation (2.80) has not.

X
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Appendix F — Maximal Transverse Displacement of thé&ree-End of a
Beam without Free-End Rotation

For a deformed beam for the bending only in the p{&he as shown in Figure A.1,
Equation (A.12a), load-displacement equation forftee-end, can be simplified to the
linear load-displacement relationships as

L;j {2 EM (F.1)

If the free-end rotation is constrained to be zem have
m,e=—0.5y, (F.2a)
fy=12ye. (F.2b)
Then we can obtain the maximal bending moment aetilge beam, which occurs at
the fixed end:

rlemaX: fy_o.aty . (F.B)
Therefore, the maximal shear stress theory gives
_ M ElL /L < (F.4)

Omc =T uD,12) S0
whereomax IS the maximal stress at the fixed engljs the yield stress of materidl,
denotes the second moment of the area of the beaioss-section about the Z-axis,
denotes the length of the beam, &yddenotes the diameter of a round cross-section of
the beam.

Substituting Equation (F.2b) into Equation (F.3) démeh substituting the result in to
Equation (F.4), we obtain

3 E D, . (F.5)
If a beam has a rectangle cross-section with tkeskm (Figure F.1), we have the

following relationship similar to Equation (F.5)

1o, L
Y, S-——.
SET (F.6)

Y

o) ]

Figure F.1 Rectangle cross-section with thickrieéson-normalization)
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Appendix G — Demonstration of Different Actuation Arrangements for
an Elastic System

For an elastic system shown in Figure G.1 belowwitedemonstrate that different
actuation arrangements may have different loadkigment equations under static

balance.

a) Force exerted on stage 1

— —
X1 Xs

b) Force exerted on stage 2

Figure G.1 Two actuation arrangements for an elagstem

For the actuation arrangement in Figure G.1a, we ha

F =KX, +K,X,
: (G.1)
KZXS = Ka(xl - Xs)
From Equation (G.1), we can solve
+
F = (K 2 )X, > (K, +K,) X, G2)
For the actuation arrangement in Figure G.1b, we ha
F=KX, +K,X
1 1 2 S ] (G.B)
KX, = Ka(xs - Xl)
From Equation (G.1), we can solve
F=(K Ks + KX, < (K, +K,)X (G.4)
1 Ka + Kl 2 S 1 2 s )

The difference between Equation (G.2) and EquatioB) (8ows the distinction of
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two actuation arrangements.Kfapproaches to infinity, the two actuation arrangame

are same.
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Appendix H — XY CPM Composed of Identical Spatial Mbdules

An XY CPM, composed of identical spatial double rfbeam modules, originating
from the improved modular XYZ CPM (Figure 5.10) skown in Figure H.1. It is
obtained by removing the compliant P joint in theligection of the improved modular
XYZ CPM.

In addition, a varied XY CPM (Figure H.2) can bedabed. It is composed of four
PPPR legs and an E leg. Each compliant P joint coeddo the base consists of three
spatial double four-beam modules.

\| /7777777

INNNEN|

a) 3D view b) Top view

Figure H.1 An XY CPM composed of identical spatlauble four-beam modules

N I
U

11

a) 3-D view b) Top view

Figure H.2 Variation for the XY CPM composed ofntieal spatial double
four-beam modules
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Appendix | — Variations for the XYZ CPM with Five L egs

Figures 1.1 and 1.2 show two variations for the ZXWith five legs (Figure 5.13). The
first one uses the double three-beam modules ddifyblocks, and has no embedded
arrangement for the leg in the Z-direction. The pbtbee also use thquadruple
three-beam modules, and make the embedded arrangaméhe leg in the Z-direction
to approximately eliminate the parasitic rotatiodeplacements based on the stiffness
centre strategy.

Double three-beam module

(a) XYZ CPM without embedded
arrangement for the leg in the Z-direction

£ AT
L0
,

il
Tt
iy

(b) Configuration in deformation

Figure 1.1 Variation | of 5-legged XYZ CPM
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z Motion
stage

Z A-A section

o= Quadruple three-bea
Bas ) - module

(b) XYZ CPM using quadruple

b) Sectional vie
three-beam modules (b)

Figure 1.2 Variation Il of 5-legged XYZ CPM
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Appendix J — Nonlinear Modelling of the Improved Enbedded XYZ
CPM

For the improved embedded XYZ CPM (Figure 5.12),car derive its approximate
nonlinear model in order to capture the nonlinegass-axis coupling effect — primary
stiffness changes in presence of other actuatiocefs) based on Equations (2.86a),
(2.86b), (2.86¢) and Equation (G.2):

f f
X = S = X : (J.1a)
K, + (Kyy + Ky 3
(Kay + Ko) ;y P22+ (k, +k,) 8a- 5 (f2,+f2,)
f f
Ys = 2 = Y : (J.1b)
s k, +(k,, +K,) 3
(Kot i) = P (k) Ba o (fo + )
y
— faz—z ~ faz—z
z = K+ (K, +K) (J.1c)

} - 3
(Ko +Kyy) lz + (K +K,,) 8a_7256a(f oox T )

Z

where
X.2a2d y.2a2d z.2a2d
4a)? — (25580 y2 2 4a)? — (== 2g? 4a)’ - (=)
K O Gavad K G anck O Gaad ’
o 8a Y 8a & 8a

which are the transverse stiffness of the activéiap#ouble four-beam modules.

,and k

= G- (R4 | (4a)° - (V.4a)%€’ _ (4a)” - (z49)°¢’
P 8a Lo 8a e 8a
which are the transverse stiffness of the passiagamouble four-beam modules.

_i_i—z —2-1——2 52 :i_i—z —2-1-—2 52
l&—ll[Zd 4a(ys+zs)el+8(ys+zs)r], K, 1/[20I 4a(>g+zs)el+8(>g+zs)r],and

K, =1/[2_Tj —4—2()‘(52 +y§)ei+%(>‘g2 +y2)r], which are the axial stiffness of the passive spati

f
double four-beam modulesiszﬁ,ysz Y 7 = far-s , Which are the initial
8a 8a 8a

estimations for the output displacements of theionastage centres, ys andzs are the

translational displacements of motion stage aldnvayX-, Y- and Z-axes, respectively,
faxx fayy @ndfa,, are the input actuation forces from the actuasdosig X-, Y- and
Z-axes, respectively.

Equations (J.1), (J.2) and (J.3) show that theseaxis actuation forces can reduce
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the primary stiffness.
Based on Equation (G.1) and the above results, we otdain the lost motion

percentage along each axis:

(kpy + kpz)

Xaxx_‘xs x100% = ” x100%, (J.2a)
- k. +k

Yay = Yo 009 = Ko T Kex) x100%, (J.2b)
y k
s Yy
_ k. +k

%xlocp/o =(pxk—py)x100)/o. (J.2¢)
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Appendix K — Stiffness and Motion-Range AdjustableSpatial
Multi-Beam Modules

In order to improve the dynamic performance of igpatulti-beam modules, we can
increase the number of the beams to raise the pristdfness without affecting the
maximal allowable motion stage. Figure K.1 shows #ns8s adjustable spatial
multi-beam module. Its primary stiffness is chargedy simply adding/removing the
beams.

c) Spatial eight-beam module d) Spatial sixteen¥beeodule

Figure K.1 A stiffness adjustable spatial multi-beaodule

In order to raise the motion range of spatial rdo#am modules, a more-layer
strategy can be employed. Figure K.2 shows a matoge adjustable spatial
multi-beam module. Its motion range is changealylenbreasing/decreasing the layer

number.
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a) Spatial single sixteen-beam module b) Spatiabtosixteen-beam module

c) Spatial triple sixteen-neam module

Figure K.2 A motion-range adjustable spatial muéiain module

189



Appendix L — A 3-Legged XY CPM with Well-Constrained Parasitic
Rotation

Figure L.1 shows a 3-legged XY CPM with well-coasted parasitic rotation about
the Z-axis based on the partial-symmetry and gtf$ncentre strategy. It is composed of
two types of parallelogram flexure modules with idesdt beams to produce
approximate equal primary motion stiffness alongheaxis. Note that the applied force
along the Y-axis passes through the centre ofnssf of the passive parallelogram

module having primary translation along the Y-axis.

Base

Centre of
L St'ﬁne\ Motion stage

E —\ L/ . —
X ; if . PPleg
—_— ; i

y PP leg
15

(a) CAD model

(c) Prototype made of engineering plastic
and fabricated using laser cutting

(b) Deformed configuration in FEA

Figure L.1 A 3-legged XY CPM with well-constrainedrasitic rotation
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