12,588 research outputs found

    Automatic creation of tile size selection models using neural networks

    Get PDF
    2010 Spring.Includes bibliographic references (pages 54-59).Covers not scanned.Print version deaccessioned 2022.Tiling is a widely used loop transformation for exposing/exploiting parallelism and data locality. Effective use of tiling requires selection and tuning of the tile sizes. This is usually achieved by hand-crafting tile size selection (TSS) models that characterize the performance of the tiled program as a function of tile sizes. The best tile sizes are selected by either directly using the TSS model or by using the TSS model together with an empirical search. Hand-crafting accurate TSS models is hard, and adapting them to different architecture/compiler, or even keeping them up-to-date with respect to the evolution of a single compiler is often just as hard. Instead of hand-crafting TSS models, can we automatically learn or create them? In this paper, we show that for a specific class of programs fairly accurate TSS models can be automatically created by using a combination of simple program features, synthetic kernels, and standard machine learning techniques. The automatic TSS model generation scheme can also be directly used for adapting the model and/or keeping it up-to-date. We evaluate our scheme on six different architecture-compiler combinations (chosen from three different architectures and four different compilers). The models learned by our method have consistently shown near-optimal performance (within 5% of the optimal on average) across the tested architecture-compiler combinations

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    UMDA/S: An Effective Iterative Compilation Algorithm for Parameter Search

    Get PDF
    The search process is critical for iterative compilation because the large size of the search space and the cost of evaluating the candidate implementations make it infeasible to find the true optimal value of the optimization parameter by brute force. Considering it as a nonlinear global optimization problem, this paper introduces a new hybrid algorithm -- UMDA/S: Univariate Marginal Distribution Algorithm with Nelder-Mead Simplex Search, which utilizes the optimization space structure and parameter dependency to find the near optimal parameter. Elitist preservation, weighted estimation and mutation are proposed to improve the performance of UMDA/S. Experimental results show the ability of UMDA/S to locate more excellent parameters, as compared to existing static methods and search algorithms

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Master of Science

    Get PDF
    thesisThe advent of the era of cheap and pervasive many-core and multicore parallel sys-tems has highlighted the disparity of the performance achieved between novice and expert developers targeting parallel architectures. This disparity is most notiable with software for running general purpose computations on grachics processing units (GPGPU programs). Current methods for implementing GPGPU programs require an expert level understanding of the memory hierarchy and execution model of the hardware to reach peak performance. Even for experts, rewriting a program to exploit these hardware features can be tedious and error prone. Compilers and their ability to make code transformations can assist in the implementation of GPGPU programs, handling many of the target specic details. This thesis presents CUDA-CHiLL, a source to source compiler transformation and code generation framework for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs. This system uniquely uses a complete scripting language to describe composable compiler transformations that can be written, shared and reused by nonexpert application and library developers. CUDA-CHiLL is built on the polyhedral program transformation and code generation framework CHiLL, which is capable of robust composition of transformations while preserving the correctness of the program at each step. Through its use of powerful abstractions and a scripting interface, CUDA-CHiLL allows for a developer to focus on optimization strategies and ignore the error prone details and low level constructs of GPGPU programming. The high level framework can be used inside an orthogonal auto-tuning system that can quickly evaluate the space of possible implementations. Although specicl to CUDA at the moment, many of the abstractions would hold for any GPGPU framework, particularly Open CL. The contributions of this thesis include a programming language approach to providing transformation abstraction and composition, a unifying framework for general and GPU specicl transformations, and demonstration of the framework on standard benchmarks that show it capable of matching or outperforming hand-tuned GPU kernels

    Master of Science

    Get PDF
    thesisScientific libraries are written in a general way in anticipation of a variety of use cases that reduce optimization opportunities. Significant performance gains can be achieved by specializing library code to its execution context: the application in which it is invoked, the input data set used, the architectural platform and its backend compiler. Such specialization is not typically done because it is time-consuming, leads to nonportable code and requires performance-tuning expertise that application scientists may not have. Tool support for library specialization in the above context could potentially reduce the extensive under-standing required while significantly improving performance, code reuse and portability. In this work, we study the performance gains achieved by specializing the sparse linear algebra functions in PETSc (Portable, Extensible Toolkit for Scientific Computation) in the context of three scientific applications on the Hopper Cray XE6 Supercomputer at NERSC. This work takes an initial step towards automating the specialization of scientific libraries. We study the effects of the execution environment on sparse computations and design optimization strategies based on these effects. These strategies include novel techniques that augment well-known source-to-source transformations to significantly improve the quality of the instructions generated by the back end compiler. We use CHiLL (Composable High-Level Loop Transformation Framework) to apply source-level transformations tailored to the special needs of sparse computations. A conceptual framework is proposed where the above strategies are developed and expressed as recipes by experienced performance engineers that can be applied across execution environments. We demonstrate significant performance improvements of more than 1.8X on the library functions and overall gains of 9 to 24% on three scalable applications that use PETSc's sparse matrix capabilities
    • …
    corecore