
IMPROVING HIGH-PERFORMANCE SPARSE

LIBRARIES USING COMPILER ASSISTED

SPECIALIZATION: A PETSC (PORTABLE,

EXTENSIBLE TOOLKIT FOR SCIENTIFIC

COMPUTATION) CASE STUDY

by

Shreyas Ramalingam

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

May 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276265156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Shreyas Ramalingam 2012

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Shreyas Ramalingam

has been approved by the following supervisory committee members:

Mary Hall , Chair 3/13/2012

Date Approved

Matthew Might , Member 3/14/2012

Date Approved

Martin Berzins , Member 3/15/2012

Date Approved

and by Alan Davis , Chair of

the Department of School of Computing

and by Charles A. Wight, Dean of The Graduate School.

ABSTRACT

Scientific libraries are written in a general way in anticipation of a variety of use cases

that reduce optimization opportunities. Significant performance gains can be achieved by

specializing library code to its execution context : the application in which it is invoked, the

input data set used, the architectural platform and its backend compiler. Such specialization

is not typically done because it is time-consuming, leads to nonportable code and requires

performance-tuning expertise that application scientists may not have. Tool support for

library specialization in the above context could potentially reduce the extensive under-

standing required while significantly improving performance, code reuse and portability. In

this work, we study the performance gains achieved by specializing the sparse linear algebra

functions in PETSc (Portable, Extensible Toolkit for Scientific Computation) in the context

of three scientific applications on the Hopper Cray XE6 Supercomputer at NERSC.

This work takes an initial step towards automating the specialization of scientific li-

braries. We study the effects of the execution enviroment on sparse computations and design

optimization strategies based on these effects. These strategies include novel techniques that

augment well-known source-to-source transformations to significantly improve the quality

of the instructions generated by the back end compiler. We use CHiLL (Composable

High-Level Loop Transformation Framework) to apply source-level transformations tailored

to the special needs of sparse computations. A conceptual framework is proposed where

the above strategies are developed and expressed as recipes by experienced performance

engineers that can be applied across execution environments. We demonstrate significant

performance improvements of more than 1.8X on the library functions and overall gains of

9 to 24% on three scalable applications that use PETSc’s sparse matrix capabilities.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

CHAPTERS

1. INTRODUCTION . 1

1.1 Overview . 1
1.2 Motivation . 2
1.3 Libraries for Scientific Computations . 3

1.3.1 Low-Level Libraries . 3
1.3.2 High-Level Libraries . 3

1.4 Library Specialization . 3
1.5 Compiler-Assisted Specialization . 4

1.5.1 CHiLL Compiler Framework . 4
1.5.2 Motivation: NEK5000 . 5
1.5.3 Specialization Approach for Libraries . 5

1.6 Contributions . 6

2. SPARSE LINEAR ALGEBRA: PETSC CASE STUDY 7

2.1 Introduction . 7
2.2 PETSc Library . 7

2.2.1 Sparse Linear Algebra . 7
2.3 Applications for this Study . 9

2.3.1 PFLOTRAN . 9
2.3.2 Uintah . 9
2.3.3 UNIC . 10

2.4 Performance Analysis . 10
2.5 PETSc Functions . 11

2.5.1 Matrix-Vector Multiplication . 11
2.5.2 Other Functions . 12

2.6 Summary . 14

3. OPTIMIZATION APPROACH . 15

3.1 Introduction . 15
3.2 Overview . 15
3.3 Optimizing Sparse Code . 17
3.4 Optimizing the Applications . 19

3.4.1 Profiling . 19

3.4.2 Code Variants . 19
3.4.3 Code Transformations in CHiLL . 23
3.4.4 Original vs Gather (Memory Level) . 23

3.5 Examples . 24
3.5.1 Example 1 . 24
3.5.2 Example 2 . 25
3.5.3 Example 3 . 25
3.5.4 Postprocessing . 26
3.5.5 Autotuning . 27

3.6 Summary . 28

4. RESULTS . 30

4.1 Introduction . 30
4.2 Experiment Workflow . 30
4.3 Modification in Application Code . 32
4.4 Impact on Performance of PETSc Functions . 33
4.5 Impact on Performance of Applications . 35
4.6 Impact of Backend Compiler . 35
4.7 Summary . 37

4.7.1 Degree of Automation . 38
4.7.2 Research Contributions . 39

5. RELATED WORK AND CONCLUSION . 40

5.1 Related Work . 40
5.1.1 Library-Based Autotuning . 40
5.1.2 Compiler-Based Autotuning . 40
5.1.3 Optimizing Linear Algebra . 41

5.2 Conclusion . 42

REFERENCES . 43

v

LIST OF FIGURES

2.1 Representation of Blocked Sparse Matrices in Physical Memory 8

2.2 AIJ- Matrix-Vector Multiplication . 11

2.3 BAIJ - Matrix-Vector Multiplication . 12

2.4 SBAIJ: Matrix-Vector Multiplication . 12

2.5 BAIJ: MatSolve . 13

2.6 SBAIJ: Matrix Relax . 13

3.1 Compiler-assisted approach to specialization . 16

3.2 Sparse Block Multiplication (Non-Gather Operation) . 20

3.3 Sparse Block Multiplication (Gather Operation) . 21

3.4 MatMult SeqAIJ- ELL . 21

3.5 MatMult SeqAIJ- ELL with Gather . 22

3.6 Banded Matrices in PETSc . 22

3.7 Original vs Gather : Varying Block Sizes . 23

3.8 Original vs Gather : Varying Distance . 24

3.9 MatMult-BAIJ - CHiLL Transformation Recipe . 25

3.10 MatMult - BAIJ - Unrolling with Postprocessing (Xcalar Rep + Prefetch) . . 25

3.11 MatMult-AIJ - CHiLL Transformation Recipe . 26

3.12 MatMult - BAIJ - Gather + loop splitting with Postprocessing (Prefetching) 26

3.13 MatMult-SBAIJ - CHiLL Transformation Recipe . 27

3.14 MatMult - SBAIJ - Gather + Unrolling + with Postprocessing (Prefetching) 27

3.15 Specialized Code for MatMult for SBAIJ . 29

4.1 Experiment Workflow: Phase 1 . 30

4.2 Experiment Workflow: Phase 2 . 31

4.3 Banded Matrices in PETSc . 33

4.4 PFLOTRAN: Speedup of PETSc Functions . 34

4.5 Uintah: Speedup of PETSc Functions . 35

4.6 UNIC: Speedup of PETSc Functions . 36

4.7 Application Speedups . 38

LIST OF TABLES

2.1 Specialization in PETSc . 9

2.2 Application Performance Analysis . 11

3.1 Transformations and pragmas for optimizing sparse matrix code. 17

3.2 PFLOTRAN: nonzero blocks per block row. 19

3.3 Uintah: nonzero elements per row . 19

3.4 UNIC: Nonzero elements per row. 20

4.1 Application Setup . 32

4.2 Speedup of PETSc Functions using PGI Compiler: Summary 37

4.3 Speedup of PETSc Functions using Intel Compiler: Summary 37

CHAPTER 1

INTRODUCTION

1.1 Overview

Scientific libraries are written in a general way in anticipation of a variety of use cases

that reduce optimization opportunities. Savvy application programmers are sometimes able

to achieve much higher performance than library implementations of the same computation

by taking the entire execution context into account while writing code. The process of

specialization through low-level manual tuning takes significant time and expertise, and

leads to nonportable, arcane code, reducing the productivity of application scientists. The

process of context-specific manual library tuning can be burdensome on the application

programmer who must understand not only the application and its algorithms, but also

the library implementations, the architecture, the compiler and run-time mapping of the

software to the architecture. The steep learning curve makes specialization an unfavorable

option to improve performance.

Tool support for specializing libraries for a specific application context could combine

the best of both worlds: high performance through optimizations tailored to the execution

context and software reuse through libraries. This work takes an important step towards

this goal, using a semi-automated and systematic process for generating specialized source

code through compiler transformations. We focus our optimization system on a specific

library, PETSc (Portable, Extensible, Toolkit for Scientific Computation), used by more

than 200 high-end applications [3]. PETSc contains high-level PDE solvers that call lower

level supporting operations like BLAS functions for both dense and sparse matrices. We

specialize the library in the context of three applications: PFLOTRAN, Uintah and UNIC.

We demonstrate significant performance improvements of more than 1.8X on the library

functions and overall gains of 9 to 24% on three scalable applications that use PETScs

sparse matrix capabilities.

2

1.2 Motivation

Large-scale scientific applications are deployed over a large number of processors and

their lifetime spans into years. For example, Uintah (discussed in this thesis) has been

producing useful results for more than 10 years and uses about 40,000 production hours

per year. These applications use both high-level and low-level scientific libraries to improve

performance and productivity. The performance of these scientific libraries depends on the

entire execution context: application, input data, algorithms, data structures, processor

architecture, back end compiler, operating system etc.

Specialization is the process of optimizing code specific to frequent use cases (problem

size, matrix structure etc.). Specialization has been a successful technique in improving

the performance of production code. This requires careful analysis and knowledge about

the software architecture. A programmer must be able to answer these questions before

specializing.

• What library functions must be specialized?

• What variables can be specialized?

• What values can the variables be specialized for?

• How is the specialized code inserted into the current software architecture?

• What is the impact of the execution environment on the specialized code?

The process requires a steep learning curve and can lead to nonportable code if not done

correctly. Due to its drawbacks, context-specific tuning is only approachable by an elite

group of performance programmers -“Stephanie Programmers” [2]. This makes it difficult

for the the application developer (also known as the “Joe Programmer”) [2], who typically

would be an expert in the domain but lacks in-depth knowledge about performance, since

the execution context cannot be accessed by a “Stephanie Programmer”. This essential

disconnect can be addressed through tools and technology that aid application program-

mers to leverage knowledge that is currently available only to “Stephanie Programmers”.

In this work, we propose the use of source-to-source compilers to reduce this gap. We

envision a system where “Stephanie Programmers” encapsulate optimization strategies for

specific computations as transformation recipes well understood by the source-to-source

compilers. These recipes would then be shipped along with the libraries to the application

developer, who can then apply these transformation recipes specifically to his/her execution

environment.

3

1.3 Libraries for Scientific Computations

Application developers use libraries extensively to solve their problems. These high-

performance libraries developed by experienced programmers reduce production time sig-

nificantly. Application developers typically use two types of libraries.

1.3.1 Low-Level Libraries

BLAS is a set of routines that perform the most basic set of computations required in

scientific programs. Applications spend a lot of their time on matrix operations. These

computations usually consist of vector operations (BLAS-1), matrix-vector multiplication

(BLAS-2) and matrix-matrix operation (BLAS-3). These libraries are provided by third

parties, usually by HPC vendors, and are highly optimized kernels written at a very low level

to take advantage of all the features of the architecture. All the versions share a common

interface and hence, application developers can link to a version they prefer, improving

portability and performance of applications. BLAS libraries are highly tuned in the context

of the architecture.

1.3.2 High-Level Libraries

Application developers typically use optimized higher-level scientific libraries to improve

productivity and performance. Libraries like PETSc and HYPRE offer a high-level abstrac-

tion to linear and nonlinear solvers. They also provide data structures for different sparse

and dense representations. In this work, we focus on PETSc as it is used by more than 200

applications and has built-in support for specialization.

We specifically focus on the sparse linear algebra support, since automatically tuning

dense linear algebra has been extensively studied by the authors and others [6, 16, 13, 4,

27, 26] and sparse linear algebra is known to achieve very low percentage of peak due to

irregular memory access patterns. Prior work on tuning sparse linear algebra has focused

on a few key aspects of their implementation, including capitalizing on matrix structure,

optimizing dense blocks and auto-tuning [32, 34].

1.4 Library Specialization

PETSc developers have already written an extensive set of specialized library routines

for the sparse linear algebra capabilities, which provide different matrix representations,

different expressions of the code, and reflect different manual optimization strategies de-

signed to trigger appropriate responses back-end compilers. PETSc’s manual specialization

approach has disadvantages.

4

• Code is optimized for values of input parameters. These values are determined by

the application developer and hence, the library developer is forced to anticipate the

expected values at design time across all applications.

• Performance depends on the architecture and compiler which is unknown at design

time and changes with new hardware and compiler generations.

• Library code is written in fairly low level C, including pointer arithmetic for address

manipulation, which makes the code less readable and might make it difficult for a

compiler to prove aliases are false, leading to loss in optimization opportunities.

• Writing many different versions of code manually is time-consuming and error-prone.

The library also ends up being larger than necessary. The compiler can easily generate

different versions of the code, and can only generate those that are needed by a specific

application.

• Specialization with more knowledge about an application and its execution context

can achieve much higher performance.

1.5 Compiler-Assisted Specialization

The focus of this work is to present a compiler-based framework that applies source-to-

source optimizations on high-level sources that perform optimizations during application

assembly that are much lower level than would be reasonable for portable software but lead

to much higher performance. We envision this system to be used by Stephanie programmers

to build libraries of PETSc optimization strategies that can be applied to application code

once the execution context is known. Encapsulated into transformation recipes, these

optimization strategies along with the high-level code could be shipped with the library

or used directly by the application developers so that Joe programmers can automatically

map the higher-level expression of the code to specialized implementations.

1.5.1 CHiLL Compiler Framework

To find the best implementation of a computation, we require a source-to-source compiler

that is capable of generating different codes rapidly. To facilitate this, the framework

provides a clean interface that can encapsulate all the optimizations the user wants to make.

CHiLL [7] is a polyhedral loop transformation and code generation framework that applies

high-level loop transformations with a script interface to describe the transformations. Poly-

hedral representation of loops facilitates compilers to compose complex loop transformations

5

in a mathematically rigorous way to ensure code correctness. CHiLL employs design features

such as iteration space alignment and auxiliary loops to greatly expand the capability of a

polyhedral framework. Further, its high-level script interface allows compilers or application

programmers to use a common interface to describe parameterized code transformations to

be applied to a computation.

1.5.2 Motivation: NEK5000

In previous work, CHiLL was used to specialize a matrix-matrix multiplication library at

the source level specifically for matrix sizes used by NEK5000, a spectral element code from

Argonne National Laboratory used to simulate a variety of applications in nuclear energy,

astrophysics, ocean modeling, combustion and bio fluids [27, 26]. Nek5000 spends close

to 75% of its time in dgemm calls (Matrix Multiplication). Autotuning and specialization

improved the applications overall performance by 2.2x on a single node, and by 1.26X on

256 nodes of the jaguar Cray XT5 system at Oak Ridge National Laboratories. The original

application used BLAS that was highly tuned for large matrices, different from the sizes used

by this application. CHiLL in combination with autotuning was used to generate different

implementation and selecting the best performing version. Autotuning is the process of

systematically evaluating different implementations of a computation and selecting the best

performing implementation. In this work, only one function was specialized for different

sizes to replace BLAS. We want to extend our experience and encapsulate the methodology

into a framework to optimize.

1.5.3 Specialization Approach for Libraries

Given that PETSc already incorporates specialized implementations, the compiler gen-

erated implementations can be easily integrated into an application without significant

impact on its build process. Using the results of performance measurement on the target

architecture, the optimization process consists of four phases:

1. Providing additional implementations of a computation to exploit matrix structure,

improve data layout or simplify indirect array accesses common to sparse linear algebra

functions

2. Source-to-source code transformation using the CHiLL polyhedral code generation

and transformation framework [7].

3. Postprocessing to guide architecture-specific optimizations such as prefetching and

SIMD parallelism in the multimedia extensions.

6

4. Autotuning to explore a collection of parameterized implementation variants and

identify one that is best-suited for the current execution context.

1.6 Contributions

The work in the thesis is an initial step towards automating the generation of specialized

libraries for scientific computing using compiler technology. The contributions of the work

are as follows.

1. Approach: We outline an approach to specialize sparse computations in general and

for PETSc in particular. The approach is implemented for three applications using

different sparse representations. The generality of the approach has not been examined

but we believe that it can be extended to other functions and libraries.

2. Case studies: A study on the effect of the execution environment on well-known

transformations on PETSc functions is presented. We show that strategies depend

on the back end compiler and introduce pre- and postprocessing optimizations that

significantly improve the quality of the instructions generated. We also discuss some

of the challenges in inserting specialized code into PETSc and the limitations in

specialization.

3. Framework: We propose a framework that encapsulates the transformations, pre- and

postprocessing strategies into recipes. These function-specific recipes can then be used

in other execution environments to generate specialized computations.

CHAPTER 2

SPARSE LINEAR ALGEBRA: PETSC

CASE STUDY

2.1 Introduction

In this chapter, we briefly introduce PETSc and different sparse matrix representations

that the library provides. We also discuss briefly the different applications used in the case

study for which PETSc is specialized. We finally present an analysis of the application and

the PETSc functions they invoke.

2.2 PETSc Library

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of matrix

representations and routines for the scalable solution of scientific applications modeled by

partial differential equations [3]. The PDE solvers employed support dense and sparse linear

algebra functions, and the sparse functions are the topic of this work. The library is used

by more than 200 applications and provides built-in support for specialization.

2.2.1 Sparse Linear Algebra

Sparse linear algebra relies on compact representations of a sparse matrix that, to the

extent possible, only store the nonzero elements of the matrix. Auxiliary data structures are

used to determine the rows and columns corresponding to the nonzero elements. In general,

the more structure that can be exploited in the sparse matrix without significantly increasing

computation, the better the performance of the code. Therefore, as with other sparse linear

algebra libraries, PETSc supports a number of different sparse matrix representations that

may be more appropriate for particular sparse matrix inputs.

• AIJ: The default sparse matrix representation is the common Compressed Sparse Row

(CSR), typically used for unstructured sparse matrices. The matrix representation

consists of a vector of 4, another vector of the same length that provides the column

8

associated with the nonzero and an additional auxiliary vector giving the index of the

first element of each row.

• BAIJ: Blocked sparse matrices, as depicted in Figure 2.1,contain dense square blocks

of fixed size that include all nonzero elements, and the blocks are padded where

necessary with zero values. Using a dense block, the interior computations can use

dense BLAS libraries or benefit from much better compiler optimization results on

dense codes.

• SBAIJ: Symmetric blocked sparse matrices are similar to BAIJ, but for symmetric

matrices.

• MAIJ: This matrix representation is used for restriction and interpolation operations

for multicomponent problems, interpolating or restricting each component the same

way independently.

For these four different matrix representations, PETSc provides library functions specific

to them and common libraries such as sparse matrix-vector multiplication. In this work, we

focus on the sequential implementations of these library functions that are invoked within

the context of MPI applications. We optimize this code for three applications that use the

first three of the four matrix representations,AIJ, BAIJ, and SBAIJ.

For this work, it is important to see how much specialization is already used in PETSc

(version 3.0), as shown in Table 2.1.The first column shows the four representations, the

second is the number of distinct functions (linear algebra and solvers) that were specialized

and the third is the total number of provided implementations across all these functions,

Figure 2.1: Representation of Blocked Sparse Matrices in Physical Memory

9

Table 2.1: Specialization in PETSc

Matrix Type No of Specialized Total Number
Functions of Manually-Written

Functions

AIJ 0 0

BAIJ 15 115

MAIJ 4 52

SBAIJ 10 75

Total 29 242

indicating the degree of specialization.While AIJ has just one implementation of each of its

functions, each of the other matrix representations has several specialized implementations

for each function. There are 20 different implementations of sparse matrix multiply; both

BAIJ and SBAIJ have implementations specialized for specific small block sizes and a default

implementation when the block is unknown, and MAIJ has 13 distinct implementations.

Overall, there are 29 distinct functions specialized in PETSc described by a total of 242

implementations, an almost order of magnitude increase in code size due to the specialization

employed manually by PETSc developers. In the remainder of this document, we will

describe a system that can reduce this specialized code to a number of implementations

that is much closer to 29 than 242 and also capable of achieving significant performance

gains.

2.3 Applications for this Study

2.3.1 PFLOTRAN

PFLOTRAN is a highly scalable subsurface simulation code that solves multiphase

groundwater flow and multicomponent reactive transport in three-dimensional porous me-

dia, and is used to study the effects of geological sequestration of CO2 in deep reservoirs

and migration of other environmental contaminants in ground water [19]. PFLOTRAN

spends about 30% of its time in PETSc routines. It uses a BAIJ block sparse matrix

representation, and the block size is fixed to 15 throughout the application.

2.3.2 Uintah

The Uintah Problem Solving Framework (Uintah) was designed to provide a general

framework in which a wide variety of large scale, massively-parallel simulations can be

conducted [9]. The specific problem that has driven its creation is the modeling of the

interactions between hydrocarbon fires, structures and high energy materials (explosives and

10

propellants). In this work, we consider a specific application developed using Uintah called

MPMARCHES, a finite-volume large eddy simulation code used to predict the heat-flux

from large buoyant pool fires with potential hazards immersed in or near a pool fire of

transportation fuel. It couples a Material Point Method (MPM) description of a solid

object to include stationary solids with and without conjugate heat transfer [11]. MPM is

a particle method that Uintah uses particles to represent solids and the arches fluid flow

solver for liquids and gasses. Uintah uses the AIJ matrix representation.

2.3.3 UNIC

UNIC is a 3D unstructured deterministic neutron transport code that solves a second-

order form of transport using FEM (PN2ND and SN2ND) and a first-order form by method

of characteristics [17]. The neutron transport code enables researchers to obtain a highly

detailed description of a nuclear reactor core.The application spends more than 50% of its

time on PETSc routines. It uses an SBAIJ matrix representation, but with a block size of

1, meaning that it is really just a symmetric AIJ matrix.

2.4 Performance Analysis

The results of performance analysis for the three applications are given in Table 2.2.

These results were obtained by running HPCToolkit [1] on a single node of hopper, a Cray

XE6 system at NERSC. In the table, each application is listed in the first column. The

second column gives the PETSc function names for the key computations in the application,

and the third column is the percentage of overall execution time. The function names

incorporate the matrix representation and the function to be applied. For Uintah, the

PETSc functions in parentheses invoke the lower-level routines. All three applications

spend significant time in sparse matrix multiplication, along with additional routines. We

focus our study on five out of the seven routines in Table 2.2. We omit the sparse matrix

multiplication invoked by ApplyFilter because of its modest impact on execution time and

the need for a different specialization than the other implementation. We also omit the LU

Factorization from consideration in PFLOTRAN, since a previous study of this code on

Jaguar, a Cray XT5, using PAPI, determined that it was already achieving 20% of peak

performance, while the other two functions were performing below 5% of peak [28].1

1Access to PAPI is not provided by HPCToolkit on hopper.

11

Table 2.2: Application Performance Analysis

Application PETSc Function % Exec. Time

PFLOTRAN
MatLUFactorNumeric SeqBAIJ N 10%

MatSolve SeqBAIJ N 9.8%
MatMult SeqBAIJ N 9.8%

Uintah
MatMult SeqAIJ (PetscSolve) 23%
MatMult SeqAIJ (ApplyFilter) 3%

UNIC
MatMult SeqSBAIJ 1 39.7 %
MatRelax SeqBAIJ 46.9%

2.5 PETSc Functions

In this section, we outline the codes optimized in Table 2.2 and briefly explain their

behavior.

2.5.1 Matrix-Vector Multiplication

All three applications invoke Matrix-Vector Multiplication and the code for the three

version of matrix types (AIJ,BAIJ and SBAIJ) is shown in Figure 2.2, Figure 2.3 and

Figure 2.4. In each function, variable i iterates over the rows (AIJ) or blocked rows 2

(BAIJ,SBAIJ) and calculates the number of nonzero elements (variable n) at each iteration.

Once calculated, the codes perform vector dot product for each row for their respective

matrix types. The code for BAIJ differs a bit from the code displayed here. The original

code performs a gather operation (discussed in the next section) and uses BLAS to perform

Matrix-Vector multiplication for each block. The code for SBAIJ is for block size of 1 and

performs operations for matrix data on both sides of the diagonal.

2Blocked Row: The number of rows in a Blocked Row is equal to the size of the block

for(i=0;i<m;i++){

/* Calculate Number of Non Zero Elements */

n=ii[i+1] - ii[i];

y[i]=0.0;

/* Vector Product - Column Major */

for(j=0;j<n;j++)

y[i]+= aa[ii[i]+j]*x[aj[ii[i]+j]];

}

Figure 2.2: AIJ- Matrix-Vector Multiplication

12

for(i=0;i<m;i++)

//Initialization of Pointers

/* Calculate Number of Non Zero Blocks */

n = ai[1] - ai[0];

for(k=0;k<bs;k++)

z[k]=0.0;

/* Matrix-Vector Multiplication for Blocked Row */

/* Row Major */

for (k=0; k<n; k++){

xb = x + bs*(*idx++);

for(l=0;l<bs;l++)

for(j=0;j<bs;j++)

z[l]+= v[l*bs+j]*xb[j];

v+=bs*bs;

z+=bs;

}

Figure 2.3: BAIJ - Matrix-Vector Multiplication

for (i=0; i<mbs; i++) {

//Initialization of Pointers

/* Calculate Number of Non Zero Blocks */

n = ai[1] - ai[0];

/* Vector Dot Product for Row */

for (j=jmin; j<n; j++) {

cval = *ib;

z[cval] += *v * x1;

z[i] += *v++ * x[*ib++];

}

}

Figure 2.4: SBAIJ: Matrix-Vector Multiplication

2.5.2 Other Functions

The other two functions are MatSolve for PFLOTRAN and MatRelax in UNIC. Both

functions perform a forward sweep and then a reverse sweep. The core computation is very

similar to that of Matrix-Vector multiplication but performs a subtraction. The code is

outlined in Figures 2.5 and 2.6. At each iteration i, the number of nonzeros are calculated

and the matrix operations are performed. Just as in the case of MatMult in BAIJ, the

innermost (l,j) loops are replaced by a BLAS call in the real code but no gather operation

is performed.

13

/* Forward solve the upper triangular */

for (i=1; i<n; i++) {

/* Calculate Number of Non Zero Blocks */

n = ai[i+1] - ai[i];

//Initialization of pointers

for(k=0;k<n;k++){

double* ptr=t+bs*vi[k];

for(l=0;l<bs;l++)

for(j=0;j<bs;j++)

s[j] -= v[i*bs+j]*ptr[i];

v += bs2;

}

}

/* backward solve the upper triangular */

ls = a->solve_work + A->cmap->n;

for (i=n-1; i>=0; i--){

/* Calculate Number of Non Zero Blocks */

n = adiag[i] - adiag[i+1]-1;

//Initialization of pointers

for(k=0;k<n;k++){

double* ptr=t+bs*vi[k];

for(l=0;l<bs;l++)

for(j=0;j<bs;j++)

ls[j] -= v[i*bs+j]*ptr[i];

v += bs2;

}

Kernel_w_gets_A_times_v(bs,ls,aa+bs2*adiag[i],t+i*bs);

/* *inv(diagonal[i]) */

PetscMemcpy(x+i*bs,t+i*bs,bs*sizeof(PetscScalar));

}

Figure 2.5: BAIJ: MatSolve

for (i=0; i<m-1; i++){ /* update rhs */

//Initialization of Pointers

/* Calculate Number of Non Zero Blocks */

n = ai[i+1] - ai[i] - 1;

while (n--) t[*vj++] -= x[i]*(*v++);

}

for (i=m-1; i>=0; i--){

//Initialization of Pointers

/* Calculate Number of Non Zero Blocks */

n = ai[i+1] - ai[i] - 1;

sum = t[i];

while (n--) sum -= x[*vj++]*(*v++);

x[i] = (1-omega)*x[i] + omega*sum/d;

}

Figure 2.6: SBAIJ: Matrix Relax

14

2.6 Summary

In this chapter, we discussed the different matrix types and their associated special-

izations supported by PETSc. We also discussed in brief the applications and the PETSc

functions they invoke. It is important to note that a majority of sparse computations need

to dynamically calculate the number of nonzero elements for each unit row. This is one of

the variables apart from matrix properties (block size) that we employ for specialization.

CHAPTER 3

OPTIMIZATION APPROACH

3.1 Introduction

In this chapter, we give a brief overview of the optimization approach used in this work

to gain performance. We discuss some of the challenges in optimizing sparse computations

and techniques that we used to overcome these challenges. Finally, we study the functions

and their specializations in more details for the applications in this section.

3.2 Overview

In our optimization of the three applications, we used the following general approach

depicted in Figure 3.1.

1. Profiling: Since the performance of the sparse codes is heavily dependent on matrix

structure, a profiling pass needs to collect dynamic information about the PETSc

functions within the application and overall execution context. This pass identifies

PETSc functions that comprise a significant fraction of the application’s execution

time. It also measures the number of nonzeros per row of the matrices invoked by

these functions, to determine whether some matrix structure can be exploited. This

profiling information is described in Section 3.4.1.

2. Code variants: For each application, we provide an additional implementation of its

main computations to exploit matrix structure and perform gathers of sparse data to

improve data layout (in memory or registers) for the indirect array accesses common

to sparse linear algebra functions, as described in Section 3.4.2. The code variants are

specific to the functions of PETSc.

3. Source-to-source code transformation: We use the CHiLL polyhedral code generation

and transformation framework to perform the code transformations in Table 3.1 and

described in Section 3.4.3 that are useful for sparse matrix computations. CHiLL may

also generate specialized variants of a computation, and these are integrated into the

16

Figure 3.1: Compiler-assisted approach to specialization

application implementation.These transformations are expressed with transformation

recipes, which are maintained in a repository with the application (or possibly PETSc

itself).

4. Architecture-specific postprocessing: We apply architecture-specific pragmas and addi-

tional modifications in a post-processing stage, as described in Table 3.1 and discussed

in Section 3.5.4.

5. Autotuning: In conjunction with CHiLL’s code generation, we employ autotuning to

search the possible implementations of a computation and identify the best-performing

17

Table 3.1: Transformations and pragmas for optimizing sparse matrix code.

Name What it does Benefit to sparse code

CHiLL Transformations and Data Specialization

unroll applies unroll and unroll-and-jam exposes ILP and SIMD parallelism,
to inner two loops register reuse, and reduces branches

split splits the iteration space exposes opportunities for
of loops into separate loops SIMD parallelism

distribute distributes a loop across permits finer control
statements in its body of statement ordering

fusion fuses multiple loops permits finer control
into a single loop of statement ordering

known adds integer constraints provides bounds on variable
to loop iteration spaces values to be used in specialization

Post-processing

prefetch load data into cache library call inserted
prior to its use into the code

vector always pragma for SSE SIMD code force Intel compiler to
generate SIMD SSE code

scalar copy array variables force PGI compiler
replacement into scalars to use more registers

solution in the context of the application, as described in Section 3.5.5.

3.3 Optimizing Sparse Code

Several properties of sparse codes impact their performance and make it challenging for

the backend compiler to generate high-quality code.

• Unknown loop bounds: When the loop bounds are unknown, specializing according to

loop bounds is not possible. It also makes the decision as to whether it is profitable

to use SIMD instructions difficult for the backend compiler. Therefore, when possible

we employ dynamic data to determine loop bounds.

• Small loop bounds: Even when loop bounds are known, if they are small as is usually

the case with inner loops iterating over nonzeros in a row, the backend compiler is

often overly conservative in employing SIMD SSE instructions.

• Indirect indexing expressions: Indirect indexing expressions present a number of

challenges to compilers. Compiler transformations are most successful in the affine

domain, where loop bounds and subscript expressions are linear functions of the loop

indices. Indirect accesses are not affine, but some optimizations can still be performed

as long as there are no dependences. Additional optimizations may be possible by

18

reducing the indirection or moving it to a different position in the code (i.e., a gather

discussed below).

• Limited data reuse and impact on memory bandwidth: In sparse code, there is very

little reuse of data in cache. The number of floating point operations performed

per memory load is relatively low and therefore, memory bandwidth becomes a key

limiting factor to performance.

Compiler optimizations for sparse codes must therefore be very different than for dense

codes. For large dense matrices, for example 1024− by−1024, dense linear algebra libraries

can achieve close to peak performance. They incorporate aggressive memory hierarchy

optimizations such as data copy, tiling and prefetching to reduce memory traffic and hide

memory latency. Additional code transformations improve instruction-level parallelism

(ILP). Several examples describe this general approach [6, 33, 8, 12, 36].

In previous work, we showed that dense BLAS libraries do not perform well for small

dense matrices [27]. Since these matrices fit within even small L1 caches, the focus of

optimization should be on managing registers, exploiting ILP in its various forms and

reducing loop overhead. For these purposes,we can use loop permutation and aggressive loop

unrolling for all loops in a nest. To the backend compiler, unrolling exposes opportunities for

instruction scheduling, scalar replacement, and eliminating redundant computations. Loop

permutation may enable the backend compiler to generate more efficient single-instruction

multiple-data (SIMD) instructions by bringing a loop with unit stride access in memory to

the innermost position, as required for utilization of multimedia-extension instruction set

architectures. This approach was used to specialize a dense BLAS library for nek5000.

In considering how to optimize the sparse functions in PETSc, we need to perform these

and additional optimizations that were not needed for the small dense codes. We still must

perform aggressive loop unrolling to expose instruction-level-parallelism and register reuse.

Due to the chosen loop order in PETSc and differences in sparse code, loop permutation

is not useful. Specializing code for particular matrix sizes is much more difficult, as the

number of nonzeros is often nonuniform, but we will describe how to do this with dynamic

data. Exploiting SIMD code generation is far more difficult due to the small loop bounds,

which the backend compiler may determine are too small to be profitable. In addition, for

loop iteration counts that are irregular or simply just odd, the backend compiler avoids

SSE instructions due to concerns about alignment to boundaries. Finally, to recognize SSE

instructions, the compiler may look for code with a certain structure (e.g., a dependence-free

statement in a loop with unit stride). Therefore, loop splitting in combination with pragmas

19

is used to force SSE code generation when profitable. To preload data into cache and

improve memory latency and bandwidth, we include prefetch instructions. This set of

transformations is described in Table 3.1.

3.4 Optimizing the Applications

We describe the optimization approach of the previous section using concrete examples

from the three applications.

3.4.1 Profiling

In addition to gathering the execution frequency data previously shown in Table 2.2,

a profiling phase must also derive the frequency of numbers of nonzeros per row for the

matrices accessed by the PETSc routines. We show this information in Tables 3.2, 3.3 and

3.4, and we will use it subsequently to optimize the code.

3.4.2 Code Variants

We describe the code variants used in our experiment, which improve known performance

issues with sparse code and could be integrated into PETSc itself and used by other

applications.

• Gather Operations (Memory Level): We modified the functions to use two very

different gather operations, in PFLOTRAN and UNIC. The gather in PFLOTRAN

was actually present in some but not all of the specialized PETSc routines provided by

the PETSc developers, as previously described by Table 2.1. Recall that PFLOTRAN

Table 3.2: PFLOTRAN: nonzero blocks per block row.

MatMult SeqBAIJ N MatSolve SeqBAIJ N

n frequency n frequency

5 4% to 8% 1 0% to 1%

6 30% to 45% 2 15% to 20%

7 50% to 75% 3 75% to 85%

Table 3.3: Uintah: nonzero elements per row

n Frequency

7 85.7%

6 13.5%

5 0.7%

20

Table 3.4: UNIC: Nonzero elements per row.

n Frequency

27 12%

25 10%

18 10%

49 8.5%

28 4.3%

32 3.7%

14 3.7%

uses the BAIJ blocked sparse matrix representation, as shown in Figure 2.1. In the

code without gather, for each blocked row, the code iterates through each block,

multiplying the block with its corresponding data are the vector. The vector data are

therefore accessed through indirection, which may lead to poor memory performance,

as shown in Figure 3.2. Some BAIJ functions in PETSc instead perform a gather

operation which collects the vector data for each block into a contiguous array. The

array can then be multiplied with the blocked row as a whole, as shown in Figure 3.3.

In the gather version, the code accesses the vector from a contiguous array and

can then invoke a BLAS library to perform a Matrix-Vector multiplication for a

rectangular block. While the quality of the code for the multiplication is going to be

far superior to the original code that includes indirection, the overhead of performing

the gather means that it is not always profitable, and therefore should be evaluated

in the application context. By having two variants, one with gather and one without,

we can evaluate the benefit in conjunction with the other compiler optimizations.

Figure 3.2: Sparse Block Multiplication (Non-Gather Operation)

21

Figure 3.3: Sparse Block Multiplication (Gather Operation)

• Gather Operation (Register Level): While this gather is used to improve data layout in

memory, we used another gather operation in the AIJ MatMult in Uintah to perform

a gather in a register and expose opportunities for increased compiler optimization.

The code for AIJ MatMult (modified for the ELL format below) is shown in Figure

3.4, and the code that performs the gather is found in Figure 3.5. The benefit

of rewriting the code in this way is that it separates the non-affine array index

expression aj[i*n+j] from the array access. The modified code gathers the values of

x[aj[i*n+j]] into temporary array colVal[j]. The gather version, in conjunction

with the optimizations below, can improve the mapping of data to registers, and for

sufficiently large loop bounds, can expose opportunities for SIMD SSE instructions.

A similar gather modification is included in the SBAIJ code for UNIC.

• Matrix Representation: Uintah uses the AIJ matrix representation, which is designed

for unstructured sparse matrices. However, it does in fact have a structure we can

exploit; it is a diagonal banded matrix, meaning that all nonzeros fall on a band around

the diagonal. Such matrices (Figure 3.6) can be viewed as descriptions of the coupling

between the problem variables. The bandedness corresponds to the fact that variables

for(i=0;i<m;i++){

for(j=0;j<n;j++)

y[i]+= aa[i*n+j]*x[aj[i*n+j]];

}

Figure 3.4: MatMult SeqAIJ- ELL

22

for(i=0;i<m;i++){

//Load into temporary arrays

for(j=0;j<n;j++){

col[j] = aj[i*n+j];

colVal[j] = x[col[j]];

y[i]+= aa[i*n+j]*colVal[j];

}

}

Figure 3.5: MatMult SeqAIJ- ELL with Gather

1 2

3 4 6

8 9

10

7

Figure 3.6: Banded Matrices in PETSc

are not coupled over arbitrarily large distances. As a result of profiling, from Table 3.3

we see that the number of nonzeros per row is fairly uniform and small (no more than

7), and we can use a fixed number of nonzeros nz = 7. A sparse matrix with a fixed

number of elements per row is known as an ELL representation [24]. Since we are

minimizing impact to the existing code, we simulate an ELL representation in the

AIJ code by simply padding with zeros any rows in the AIJ that have fewer than

nz elements. Once the row size is fixed, the compiler can specialize the code for that

size, greatly improving the performance.

23

3.4.3 Code Transformations in CHiLL

The above code variants, to gather elements of sparse vectors and exploit the banded

matrix structure, set the stage for further specialization in the compiler. For all three

applications, we optimize the code in the same way: known provides an interface to

specialize code according to fixed loop bounds and block sizes, unroll at multiple loop

levels to expose instruction-level parallelism, SSE code generation and simplify branching,

and in some cases, split the iteration space of the loop prior to inserting pragmas to

force SSE code generation, discussed in the next section. CHiLL’s optimization and code

generation strategy can be controlled using a transformation recipe that describes the set

of transformations to be applied [14]. Whether to split the loop and which loops to unroll

can be represented with different CHiLL recipes. Which of these recipes to use and how

much to unroll is determined through 1.

3.4.4 Original vs Gather (Memory Level)

We performed some tests on Matrix-Vector Multiplication (BAIJ) using BLAS. We set

the number of nonzero blocks to 7 and each block is separated from the previous block

by 200 blocks. The results are plotted in Figure 3.7. Gather performs significantly better

than the original for small block sizes. However, for block sizes more than 20, the original

code performs better. This is probably because BLAS is column-major and performs very

1 2 3 4 5 6 10 12 15 20 25 30

0

2

4

6

8

10

12

Effect of Block Sizes

Using BLAS

Gather

Original

Block Sizes

T
im

e
 o

f
E

x
e

c
u
ti
o
n
 (

N
o
rm

a
liz

e
d
)

Figure 3.7: Original vs Gather : Varying Block Sizes

24

well for small number of rows and large number of columns. For small block sizes, gather

causes the number of columns to increase but the number of rows remain constant. As the

size of the blocks increase, the row dimensions increase, reducing performance. The shift in

performance occurs between block sizes 15 to 20 and depends on the distance between the

blocks. From our experiments, the effect of distance only effects the block size at which the

shift in performance occurs. The effect of distance for a a constant number of blocks (n=7)

and Block Size (bs=15) is displayed in Figure 3.8. Note that these results use BLAS and

might vary depending on the code used to perform Matrix-Vector Multiplication.

3.5 Examples

Below are three examples of scripts and generated, one from each application.

3.5.1 Example 1

The example script shown in Figure 3.9 was used for the MatMult (BAIJ) in pflotran.

Recall that block sizes of the matrices were 15. The code is outlined in Figure 2.3 in Chapter

2. The inner two loops were optimized where the inner loop was always bounded by 15 and

the outer loop is bounded by 15 or 15*n (gather version). The script achieves significant

performance gains in the PGI compiler. It unrolls the innermost loop by a factor 5 and the

outer loop by a factor of 3. The unrolled code is then postprocessed for scalar replacement

and prefetching. The script and the generated code is shown in Figures 3.9 and 3.10.

1 10 20 50 100 200

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Effect of Distance between Blocks

Using BLAS

Gather

Original

Distance between Blocks (in Blocks)

T
im

e
 o

f
E

x
e

c
u

ti
o

n
 (

N
o
rm

a
liz

e
d
)

Figure 3.8: Original vs Gather : Varying Distance

25

known(bs<16)

known(bs>14)

ul_m = 5

ul_n = 3

//and unroll loops 1 and 2

//Syntax: unroll(statement no,loop no,

unroll factor)

unroll(0,2,ul_m)

unroll(0,1,ul_n)

Figure 3.9: MatMult-BAIJ -
CHiLL Transformation Recipe

for (t4 = 0; t4 <= 12; t4 += 3)

{

//Post Processing - Prefetch A for 5 iterations ahead for 3

rows

_mm_prefetch((char*)&A[(t4*15)+40], _MM_HINT_T0);

_mm_prefetch((char*)&A[(t4*15)+48], _MM_HINT_T0);

_mm_prefetch((char*)&A[(t4*15)+56], _MM_HINT_T0);

_mm_prefetch((char*)&A[(t4*15)+64], _MM_HINT_T0);

_mm_prefetch((char*)&A[(t4*15)+72], _MM_HINT_T0);

_mm_prefetch((char*)&A[(t4*15)+80], _MM_HINT_T0);

//Post Processing - Scalar replacements

chillTemp_5 = x[t4];

chillTemp_7 = x[t4 + 2];

chillTemp_6 = x[t4 + 1];

for (t6 = 0; t6 <= 10; t6 += 5)

{

chillTemp_0 = z[t6];

<-- copy z array values to chillTemp_ scalars -->

chillTemp_0 += A[t4 * 15 + t6] * chillTemp_5;

chillTemp_1 += A[t4 * 15 + t6 + 1] * chillTemp_5;

chillTemp_2 += A[t4 * 15 + t6 + 2] * chillTemp_5;

chillTemp_3 += A[t4 * 15 + t6 + 3] * chillTemp_5;

chillTemp_4 += A[t4 * 15 + t6 + 4] * chillTemp_5;

chillTemp_0 += A[(t4+1) * 15 + t6] * chillTemp_6;

chillTemp_1 += A[(t4+1) * 15 + t6 + 1] * chillTemp_6;

chillTemp_2 += A[(t4+1) * 15 + t6 + 2] * chillTemp_6;

<--- Rest of the Code --->

z[t6] = chillTemp_0;

<-- copy from chillTemp_ back to z -->

}

}

return;

}

Figure 3.10: MatMult - BAIJ - Unrolling with Post-
processing (Xcalar Rep + Prefetch)

3.5.2 Example 2

An example CHiLL recipe for Uintah which employs both gather and loop splitting to

expose SSE is shown in Figure 3.11. The script transforms the code shown in Figure 3.5

(ELL). All statements are indexed starting with value 0 and all loops are indexed starting

at value 1. The code is specialized for the value 7 using the known command. The three

statements are distributed and the first two are unrolled completely. The simple inner loop

structure, split into loops with iteration counts that are small powers of two, in conjunction

with the postprocessing below, forces the Intel compiler to use SSE instructions. The

generated code is displayed in Figure 3.12.

3.5.3 Example 3

Another example of performing gather with loop unrolling to expose instruction-level

parallelism, register reuse and possible SSE instructions is shown in Figure 3.13. We do

26

value_n= 7

known(n>value_n-1)

known(n<value_n+1)

original()

//Distribute the statements

//Syntax: distribute([statement nos,loop

no])

distribute([0,1,2],2)

//and unroll only statement 0 and 1

//Syntax: unroll(statement no,loop no,

unroll factor)

unroll(0,2,7)

unroll(1,2,7)

//Split the loop

//Syntax:

// split(statement no,loop no,split

condition)

split(2,2,L2<6)

split(2,2,L2<4)

Figure 3.11: MatMult-AIJ -
CHiLL Transformation Recipe

for (t2 = 0; t2 <= m - 1; t2++) {

//Prefetch matrix aa and column vecto aj

_mm_prefetch((char*)&aa[(t2*7)+40], _MM_HINT_T0);

_mm_prefetch((char*)&aj[(t2*7)+80], _MM_HINT_T0);

*col = aj[t2 * 7 + 0];

col[0 + 1] = aj[t2 * 7 + 0 + 1];

col[0 + 2] = aj[t2 * 7 + 0 + 2];

col[0 + 3] = aj[t2 * 7 + 0 + 3];

col[0 + 4] = aj[t2 * 7 + 0 + 4];

col[0 + 5] = aj[t2 * 7 + 0 + 5];

col[0 + 6] = aj[t2 * 7 + 0 + 6];

*colVal = x[*col];

colVal[0 + 1] = x[col[0 + 1]];

colVal[0 + 2] = x[col[0 + 2]];

colVal[0 + 3] = x[col[0 + 3]];

colVal[0 + 4] = x[col[0 + 4]];

colVal[0 + 5] = x[col[0 + 5]];

colVal[0 + 6] = x[col[0 + 6]];

#pragma vector always

for (t4 = 0; t4 <= 3; t4++)

y[t2] = y[t2] + aa[t2 * 7 + t4] * colVal[t4];

#pragma vector always

for (t4 = 4; t4 <= 5; t4++)

y[t2] = y[t2] + aa[t2 * 7 + t4] * colVal[t4];

y[t2] = y[t2] + aa[t2 * 7 + 6] * colVal[6];

}

}

Figure 3.12: MatMult - BAIJ - Gather + loop split-
ting with Postprocessing (Prefetching)

not perform any post processing on this code as it degrades performance. In this we do not

unroll completely as it might cause register spilling. The generated code is shown in Figure

3.14.

3.5.4 Postprocessing

We use postprocessing to insert calls to the prefetch API and pragmas specific to the

Intel compiler to force SSE code generation, as in the examples above. The matrix data

aa and column vector aj are prefetched 5 iterations ahead. The prefetch distance depends

on the architecture while the number of prefetch statements is dependent on the amount

of work done inside the loop. Pragmas that compel the compiler to generate SSE code are

inserted into split loops.

These optimizations modify the code in an architecture-specific way, and are not portable

source-to-source transformations. Therefore, they are not included in CHiLL and are instead

added by a postprocessing phase.

27

value_n= 7

known(n>value_n-1)

known(n<value_n+1)

original()

value_n= 14

known(n>value_n-1)

known(n<value_n+1)

original()

//Distribute the statements

//Syntax: distribute([statement nos,loop

no])

distribute([0,1,2,3],2)

//and unroll statements 0,1,2 and 3 by 6

unroll(0,2, 6)

unroll(1,2, 6)

unroll(2,2, 6)

unroll(3,2, 6)

fuse([0,1,2,3],2)

print

Figure 3.13: MatMult-SBAIJ -
CHiLL Transformation Recipe

*z_temp = z[i];

for (t4 = 1; t4 <= 7; t4 += 6)

{

col[t4] = ib[t4];

col[t4 + 1] = ib[t4 + 1];

col[t4 + 2] = ib[t4 + 2];

col[t4 + 3] = ib[t4 + 3];

col[t4 + 4] = ib[t4 + 4];

col[t4 + 5] = ib[t4 + 5];

colVal[t4] = x[col[t4]];

colVal[t4 + 1] = x[col[t4 + 1]];

colVal[t4 + 2] = x[col[t4 + 2]];

colVal[t4 + 3] = x[col[t4 + 3]];

colVal[t4 + 4] = x[col[t4 + 4]];

colVal[t4 + 5] = x[col[t4 + 5]];

z[col[t4]] += v[t4] * x1;

z[col[t4 + 1]] += v[t4 + 1] * x1;

z[col[t4 + 2]] += v[t4 + 2] * x1;

z[col[t4 + 3]] += v[t4 + 3] * x1;

z[col[t4 + 4]] += v[t4 + 4] * x1;

z[col[t4 + 5]] += v[t4 + 5] * x1;

*z_temp += v[t4] * colVal[t4];

*z_temp += v[t4+1] * colVal[t4+1];

*z_temp += v[t4+2] * colVal[t4+2];

*z_temp += v[t4+3] * colVal[t4+3];

*z_temp += v[t4+4] * colVal[t4+4];

*z_temp += v[t4+5] * colVal[t4+5];

}

col[13] = ib[13];

colVal[13] = x[col[13]];

z[col[13]] = z[col[13]] + v[13] * x1;

*z_temp = *z_temp + v[13] * colVal[13];

z[i] = *z_temp;

Figure 3.14: MatMult - SBAIJ - Gather + Unrolling
+ with Postprocessing (Prefetching)

3.5.5 Autotuning

Autotuning technology systematically explores a search space of alternate implemen-

tations of a computation to select the best-performing solution for a particular execution

context. CHiLL’s structure is designed to support its use in autotuning. For the purposes

of this paper, we use autotuning to select among code variants and CHiLL transformation

recipes and to fine-tune loop unrolling parameters for a particular transformation recipe

applied to a particular code variant. Often a concern with autotuning is the size of

the search space. In previous work, we have employed Parallel Rank Order search to

navigate a compiler’s optimization search space, by integrating with the Active Harmony

system [29, 30]. For example, we showed in [30] we could explore a search space of over

500 million points by looking at only 490 points in 20 parallel steps. However, in this case,

the loop bounds are small, and by using unroll factors divisible by the loop bounds, we can

search the entire space.

28

3.6 Summary

In AIJ matrices, if the matrix cannot be converted to a an ELL format, the function

has to be specialized for values of the number of nonzeros per row. In BAIJ and SBAIJ,

code can be specialized irrespective of the number of nonzeros per row. By employing a

gather operation, code can also be specialized for the number of nonzeros in addition to the

block size. In UNIC, the block size is only one and hence the function is specialized for a

varying number of nonzeros which results in a large piece of code, as shown in Figure 3.15.

In this section, we outlined our approach to specialize PETSc functions using compiler-

based source-to-source transformation in conjunction with certain pre- and postprocessing

to achieve the desired results. We introduce techniques such as gather at both memory

level and register level. These techniques bring about significant performance improvement

as we will see in the following chapter.

29

for (i=0; i<mbs; i++) {

//Initializations

switch (n){

case 27:

//specialized code for n=27

*z_temp = z[i];

for (t4 = 1; t4 <= 22; t4 += 3)

{

col[t4] = ib[t4];

col[t4 + 1] = ib[t4 + 1];

col[t4 + 2] = ib[t4 + 2];

colVal[t4] = x[col[t4]];

colVal[t4 + 1] = x[col[t4 + 1]];

colVal[t4 + 2] = x[col[t4 + 2]];

z[col[t4]] += v[t4] * x1;

z[col[t4 + 1]] += v[t4 + 1] * x1;

z[col[t4 + 2]] += v[t4 + 2] * x1;

*z_temp += v[t4] * colVal[t4];

*z_temp += v[t4+1] * colVal[t4+1];

*z_temp += v[t4+2] * colVal[t4+2];

}

<--- Clean up loop --->

z[i] = *z_temp;

break;

case 14:

*z_temp = z[i];

for (t4 = 1; t4 <= 11; t4 += 2)

{

<--- Gather to col and colVal--->

z[col[t4]] += v[t4] * x1;

z[col[t4 + 1]] += v[t4+1] * x1;

*z_temp += v[t4] * colVal[t4];

*z_temp += v[t4 + 1] * colVal[t4+1];

}

<--- Clean up loop --->

z[i] = *z_temp;

}

break;

<--->

Specialized Code for 5 more cases

<--->

default:

for (j=jmin; j<n; j++) {

cval = *ib;

z[cval] += *v * x1;

z[i] += *v++ * x[*ib++];

}

break;

}

}

Figure 3.15: Specialized Code for MatMult for SBAIJ

CHAPTER 4

RESULTS

4.1 Introduction

In this chapter, we discuss our experimental setup and workflow. We present our results

for each transformation using the PGI and the Intel compilers. Finally, we discuss in detail

the impact of our optimizations on the performance of the application and the impact of

the back end compiler.

4.2 Experiment Workflow

Experiments were conducted in 2 phases. In phase 1, we optimize the outlined code

under the assumption that data are in the cache. We use a simple driver function written

in C that evaluates the code. The workflow for Phase 1 is shown in Figure 4.1. For a given

Transform Source Code
ChiLL
 Script

Outlined
Code Known

Value

Generated
Code

Evaluate
(Assume data in Cache)

Post Processing
(Except Prefetch)

Phase 1:
Optimizing for
data in Cache

Change
Optimization
Parameters

Figure 4.1: Experiment Workflow: Phase 1

31

known value (Example: number of nonzeros), we exhaustively find the best optimization

parameter (Example: unroll factors) for the outlined code. This is performed for all

the knowns and all transformation recipes for a function. We perform all the required

postprocessing in this phase except for prefetch since we assume that data are in cache.

For each transformation recipe, a specialized implementation of the PETSc function that

wraps all the known cases is created in phase 2 (Figure 4.2). The code is then postprocessed

for prefetching and evaluated using a driver function. The driver function uses PETSc

library calls to read the actual application data and compares the specialized function with

the original implementation. The results of this phase are discussed in Section 4.4 .

All experiments were conducted on a single node on the Hopper XE6 system. The

best-performing implementation of each function was then integrated into a specialized

PETSc library that was linked into the program in the usual way.

To evaluate code generation alternatives on individual kernels, We optimized the func-

tions with two different backend compilers, PGI (version 10.9.0) and Intel compiler (version

12.0.4). Code generated for the Intel compiler was compiled with the -O3 and -fno-alias

flag. The -fno-alias informs the compiler to optimize assuming there are no aliases. The

corresponding flag for PGI is -Msafeptr. The code for the PGI compiler was optimized

Optimized Code
for

each known value
Create Specialized PETSc Function

Add Prefetching

Evaluate
(With Application Input Data)

Change
 Prefetch
DistancePhase 2 :

Optimizing for Input Data

Figure 4.2: Experiment Workflow: Phase 2

32

with the -fast and -fastsse flags. Table 4.1 shows which compiler and PETSc version were

used by the application as provided by the developers. While the optimized functions are

compiled by the backend compiler that achieves the best performance, the remainder of the

program and the PETSc library are compiled as previously.

4.3 Modification in Application Code

In all three examples, applications had to be recompiled with the modified version of

PETSc. PETSc does not directly support the ELL representation but can be simulated

by using the AIJ format of matrices. The MatSetValues function sets values for multiple

rows by accepting inputs for row vectors and the column vectors and their values. PETSc

ignores negative column values. Legal column indices with zero in the corresponding column

value vector insert a zero in the AIJ format. Using this feature to insert zero values where

necessary, each row is guaranteed to contain at least 7 elements.

PETSc has optimized Matrix-Vector Multiplication for the compressed sparse row stor-

age format specifically for banded matrices. It splits the nonzero data into two matrices.

The first matrix attempts storing all the diagonal bands while the second matrix stores the

rest of the nonzero elements. The mxm matrix is split into blocks of nxn blocks where n

is the number of processes. To explain this, we revisit a figure from Chapter 3 displayed

in Figure 4.3. Blocks 1,4,8 and 10 are stored in the first matrix while blocks 3,2,6,7 and

9 are stored in the second matrix. Hence, the operation is done in 2 phases. The first

phase performs a Matrix-Vector Multiplication for the diagonal blocks (first matrix) and

the resultant vector of this operation undergoes a Matrix-Vector Multiplication-Add with

the nondiagonal matrix (second matrix). It is important for the application developer to

pad only the diagonal matrix to ensure that the input to the Matrix-Vector Multiplication

functions has a fixed number of nonzeros per row. The other applications did not require

any code modification in their application code.

Table 4.1: Application Setup

Application PETSc Version Compiler

PFLOTRAN PETSc 3.1 PGI 10.9.0

Uintah PETSc 3.0 gcc 4.6.1

UNIC PETSc 3.0 Intel 12.0.4

33

1 2

3 4 6

8 9

10

7

Figure 4.3: Banded Matrices in PETSc

4.4 Impact on Performance of PETSc Functions

We first examine the individual performance of PETSc functions for each application

shown in Figures 4.4, 4.5 and 4.6, with measurements for both PGI and Intel compilers.

The speedups are compared against a baseline of original PETSc code. In the case of

PFLOTRAN, the baseline invokes a separate BLAS dgemv, whereas in the other codes, it

is represented by C code. We used different optimization strategies for the two compilers

because of differences in what code the backend compiler expects to do the best job of

code generation. For clarity, the figures show an interesting subset of the experiments we

performed.

For PFLOTRAN, we compare not only against the baseline but also a hand-tuned

version (first bar) [28]. For some versions, we use the gather version, as shown in Figure 3.3.

Loop splitting and a pragma forces SSE code generation on the Intel compiler, as in the

example of Figure 3.10 (for more discussion, see Section 4.6). Scalar replacement of arrays

reused within the inner loop body is needed for the PGI compiler to place the array elements

in registers. Prefetching was used for both compilers. Overall, the best PGI versions

obtain speedups of 1.42X and 1.35X on the PETSc functions and employed unrolling, scalar

replacement and prefetch and does not perform a gather. The best Intel versions obtain

much higher speedups of 1.72X and 1.87X, and use gather, loop splitting and prefetching.

For Uintah, the ELL with the original and gather variant of Figure 3.5 is used for

34

MatMult_SeqBAIJ_N MatSolve_SeqBAIJ_N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PFLOTRAN

Speedup of PETSc Functions using PGI Compiler

Hand Tuned

Original + Unroll

Original + Unroll +
Scalar Rep.

Original + Unroll +
Scalar Rep. + Prefetch

Gather + Unroll

Gather + Unroll +
Scalar Rep

Gather + Unroll +Scalar
Rep. + PrefetchS

p
e
e

d
u
p

 o
v
e
r

B
L

A
S

MatMult_SeqBAIJ_N MatSolve_SeqBAIJ_N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PFLTORAN

Speedup of PETSc Functions using Intel Compiler

Hand Tuned

Original + Unroll

Original + Unroll +
Scalar Rep.

Original + Loop Splitting

Original + Loop Splitting
+ prefetching

Gather + Unroll

Gather + Unroll +
Scalar Rep.

Gather + Loop splitting

Gather +Loop Splitting+
prefetching

S
p

e
e

d
u
p

 o
v
e
r

B
L

A
S

Figure 4.4: PFLOTRAN: Speedup of PETSc Functions

optimization. We use unrolling and prefetching with the PGI compiler and splitting and

prefetching with the Intel compiler. Speedup of the best PGI version is 1.36X, while the best

Intel performance is 1.48X. For UNIC, the same optimizations and a gather as compared

to Uintah are applied, but different ones are profitable. The optimizations applied to Mat

Mult had a positive impact on performance in spite of the added control flow to check the

number of nonzeros. A snapshot of the specialized code is shown in Figure 3.15. The best

PGI versions are just 1.22X and 1.08X faster while the best Intel versions are 1.43X and

1.12X faster.

A summary of the best optimization strategies and their speedup to the orginal code for

the PGI and Intel compiler are shown in Tables 4.2 and 4.3.

35

MatMult_SeqAIJ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Uintah

Speedup of PETSc Functions using Both Compilers

PGI � Original +
Unrolling

PGI � Original
+Unrolling +
Prefetching

Intel � Original +
Unrolling

Intel � Gather +
Loop Splitting

Intel � Gather +
Loop Splitting +
Prefetching

S
p
e
e
d
u
p
 O

v
e
r

O
ri
g

in
a

l
C

o
d
e

Figure 4.5: Uintah: Speedup of PETSc Functions

4.5 Impact on Performance of Applications

We measured the application using the best-performing versions of the PETSc libraries

and compared against the original application. These applications used input data provided

by the application developers. In UNIC, we had only one input matrix of a relatively small

size. Hence, we were able to scale the problem to only 16 processes while others were

scaled to at least 64 processes. Overall, we see application performance gains stable across

processes at 1.1X for PFLOTRAN (as compared to an already tuned PETSc and BLAS

implementation), a gain of 1.07X to 1.09X on Uintah, and a gain of 1.25X on UNIC (in

spite of having unstructured matrices). The results are displayed in Figure 4.7 .

4.6 Impact of Backend Compiler

The performance of the code generated by the PGI compiler is significantly below that

of the Intel compiler. In addition, the optimization strategies used for each compiler vary

significantly. The gap in performance is especially seen in PFLOTRAN, where unrolling the

original code performs much lower than the same optimization applied for the Intel compiler.

The performance of the PGI compiler improved substantially by explicitly performing

scalar replacement as a postprocess built only for the PFLOTRAN-PETSc routines. Scalar

replacement in this function improves instruction scheduling, instruction level parallelism

and register reuse. This specific scalar replacement, for register reuse inside inner loop

bodies, was not beneficial for the Intel compiler.In fact, CHiLL incorporates a form of scalar

replacement in its datacopy, but it is for replacement across loops. In the past, we have

36

MatMult_SeqSBAIJ_1 MatRelax_SeqSBAIJ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

UNIC

Speedup of PETSc Functions using the PGI Compiler

Original +
Unrolling

Original+
Unrolling +
Prefetching

 Gather+Unrolling

 Gather +
Unrolling +
Prefetch

S
p

e
e

d
u
p
 o

v
e
r

O
rg

in
a

l
C

o
d
e

MatMult_SeqSBAIJ_1 MatRelax_SeqSBAIJ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

UNIC

Speedup of PETSc Functions using the Intel Compiler

Original +
Unrolling

Original +
Unrolling +
Prefetching

Gather+ Unrolling

Gather + Unrolling
+ Prefetch

S
p

e
e

d
 u

p
 o

v
e
r

O
ri
g

in
a

l
C

o
d

e

Figure 4.6: UNIC: Speedup of PETSc Functions

found that both the Intel and Nvidia compilers can detect the need for this replacement.

To reduce the effect of cache misses, the PGI compiler generates prefetch instructions

for its loops. The generated prefetch instructions may conflict with any explicit calls to the

prefetch API. In both Uintah and UNIC, we see a decline in performance when prefetching

is performed as a postprocess. However, the Intel compiler does not generate prefetch

instructions. Prefetching in PFLOTRAN brought significant gains in both the Intel and

PGI compiler, modest gains in Uintah for the Intel compiler and insignificant gains in UNIC.

37

Table 4.2: Speedup of PETSc Functions using PGI Compiler: Summary

Application PETSc Function % Best Performing Optimization Speedup

PFLOTRAN

MatMult SeqBAIJ N Original + Unrolling 1.42X
+ Scalar Rep. + Prefetch

MatSolve SeqBAIJ N Gather + Unrolling 1.35X
+ Scalar Rep. + Prefetching

Uintah MatMult SeqAIJ Original + Unrolling 1.36X

UNIC
MatMult SeqSBAIJ 1 Gather + Unrolling 1.22X
MatRelax SeqBAIJ Original + Unrolling 1.08X

Table 4.3: Speedup of PETSc Functions using Intel Compiler: Summary

Application PETSc Function % Best Performing Optimization Speedup

PFLOTRAN

MatMult SeqBAIJ N Gather + Loop Splitting 1.72X
+ Prefetching

MatSolve SeqBAIJ N Gather + Loop Splitting 1.87X
+ Prefetching

Uintah MatMult SeqAIJ Gather + Loop Splitting 1.48X

UNIC
MatMult SeqSBAIJ 1 Gather + Unrolling + Prefetch 1.43X
MatRelax SeqBAIJ Original + Unrolling 1.12X

The poor performance gains from prefetching in UNIC can be attributed to the unstructured

matrix data making it hard to predict a good prefetch distance.

Loop vectorization has very strict requirements that make the generation of SSE code

very hard in both compilers. Gather coupled with loop splitting with appropriate postpro-

cessing for the intel compiler exposed SSE instructions in Intel compiler. These versions

performed the best across the compilers and functions in which they were used.

4.7 Summary

In this work, we presented a semi-automated framework by which “Joe Programmers”

can improve performance significantly by employing transformations scripts designed by

“Stephanie Programmers”.

38

32 64 128 256

1

1.02

1.04

1.06

1.08

1.1

PFLOTRAN

Speedup

Specialized
Library �
PGI

Specialized
Library �
Intel

Number of Processes

S
p
e
e
d
u
p
 o

v
e
r

O
ri
g

in
a

l
A

p
p

lic
a
ti
o
n

8 16 32 64

1

1.02

1.04

1.06

1.08

1.1

Uintah − Methane Fire Container

Speedup

Specialized
Library �
PGI

Specialized
Library �
Intel

Number of Processes

S
p

e
e

d
u
p
 o

v
e
r

O
ri
g

in
a

l
A

p
p

lic
a
ti
o

n

8 16 32 64

1

1.02

1.04

1.06

1.08

1.1

Uintah − Methane Fire Container

Speedup

Specialized
Library �
PGI

Specialized
Library �
Intel

Number of Processes

S
p

e
e

d
u
p
 o

v
e
r

O
ri
g

in
a

l
A

p
p

lic
a
ti
o

n

Figure 4.7: Application Speedups

4.7.1 Degree of Automation

There are phases in the workflow that are manually performed in the framework now.

Automating some of these would be straightforward, like:

• Profiling data to extract the size of the blocks and a histogram of the nonzeros.

• Postprocessing such as pragmas and prefetching can be incorporated in to the CHiLL

framework easily.

• Generating wrapper functions to insert into the code can be done using third party

tools like the ROSE compiler.

We feel that two things would require more effort to automate.

• Generating alternate code variants for the gather operations. We believe this can be

done by extending the current datacopy command in CHiLL.

39

• Currently, the exact sequence of CHiLL commands are generated automatically using

a python script. We would need to encapsulate these within the compiler framework

as a higher-level API for a more robust system. Since we understand what is required

now, we can automate this within the CHiLL framework.

4.7.2 Research Contributions

In this work, we improve the performance of sparse computations using nonstandard

techniques.

• In PETSc, functions are specialized only for the block size of the data structure. We

add one more variable to the specializations, number of nonzero elements calculated

at every row. We specialize the inner loops (loop bounds that vary dynamically for

every row) for both structured (PFLOTRAN, Uintah) and unstructured (UNIC). The

results show strong performance gains in spite of the excessive control flow in the case

of unstructured matrices.

• The performance gains in UNIC are strongly attributed to the register level gather

operation performed. We showed how to perform a register level gather operation

using a source-to-source compiler in tandem with the backend compiler to get the

desired effect.

• Finally, we employed the backend compiler to generate SSE instructions on loops that

were small and odd bounds. To our best knowledge, using loop splitting along with

pragmas to generate SSE instructions is a very rare technique used by maybe only a

few programmers.

Apart from the new optimizations, the methodology uses source-to-source compilers along

with the backend compilers to perform gather (register) level and generate SIMD instruc-

tions that lead to more portable code. In contrast, Williams et al. developed manually

tuned libraries with low level SIMD instructions to achieve the same desired effect. Finally,

using polyhedral compiler technology on irregular sparse codes is unique in the compiler

community.

CHAPTER 5

RELATED WORK AND CONCLUSION

5.1 Related Work

5.1.1 Library-Based Autotuning

Library-based autotuning has been successful for dense and sparse linear algebra [6, 32]

and signal processing [10, 23, 31]. OSKI [32] tunes sparse matrix computation automatically.

These library-based systems are able to autotune for a particular hardware, but they tune

only a fixed set of library kernels and are not able to tune arbitrary computations. With

respect to the most closely-related library OSKI, designed for sparse linear algebra, OSKI

focuses on tuning for matrix structure and uses a manually-written code generator rather

than a compiler to perform its transformations. As compared to our compiler system that

can do its work behind the scenes, with a library, the programmer must modify their source

code, unless it is embedded inside PETSc and hidden from the programmer. There is a

PETSc release that incorporates OSKI, but it would not have helped in the applications

in this work:PFLOTRAN’s block size was already specified by the programmer as an

application feature, and it would not have generated the specialized code for Uintah and

UNIC shown in Figure 3.15 .

5.1.2 Compiler-Based Autotuning

Compiler-based autotuning systems can generalize beyond fixed functions. Our own

prior work in this area combine compiler models and heuristics with guided empirical evalua-

tions to take advantage of their complementary strengths [8, 7], navigates large search spaces

using parallel heuristic search [29, 30], and has developed a unique compiler structure for

recipe-based autotuning [7, 14]. Hartono et al. [15] use annotations to describe performance

improving code transformations. POET is a scripting language for parameterizing complex

code transformations [35]. Pouchet et al. [21, 22] embed legality of affine transformations

as linear constraints, thereby combining the code transformation steps and the legality

41

checking step. Kulkani et al. [18] describe VISTA, which allows selecting the order and

scope of optimization phases in the compiler.

5.1.3 Optimizing Linear Algebra

For dense linear algebra, there are several prior techniques to specialize according to

matrix size. Herrero and Navarro [16] describe specializing matrix multiplication for small

matrices. However, their code variants were generated manually. Gunnels et al. [13]

provide strategies for blocking matrices for matrix multiplication at each level of hierarchical

memories, but this approach only applies to much larger matrices. Barthou et al. [4] reduce

the search space by separating optimizations for in-cache computation kernels from those

for memory hierarchy. To generate code variants, they use the X Language controlled by

user-provided pragmas. In prior work, we describe a compiler that applies specialization

with autotuning for matrix multiply of small rectangular matrices in the context of nek5000,

a spectral element code [27, 26]. While the approach for both dense and sparse libraries with

small loop bounds rely on many of the same compiler transformations (unroll, specialization

with known, SSE), in this work, we employ additional code variants for gather and matrix

structure optimization, additional transformations in CHiLL (split, distribution, fusion) to

fine-tune code generation, architecture-specific postprocessing (prefetch, pragmas to force

SSE code generation) and dynamic code selection in inner loop bodies.

Recent work on benchmarking sparse linear algebra for multicore and many-core ar-

chitectures employs some of the same optimizations (unroll, block sparse matrices and

prefetch), but omits others (gather, ELL representation, dynamic code selection for varying-

length nonzero rows). [34]. Significantly, the code is generated by a manually-written script,

and the code explicitly contains calls to low-level architecture-specific intrinsics for SSE.

Thus, the code is not portable, and it would not be feasible to use such a strategy in

the context of specialization. A study of high-performance CUDA implementations was

described by [5], but it uses GPU-specific optimizations.

As a design choice, we could have generated SIMD instructions directly from our tool

chain using SIMD intrinsics [23, 20, 25]. This would allow us to have finer control over SIMD

code generation. Instead,we have the backend compiler perform SIMD parallelization by

providing it with dependence and alignment information and forcing the parallelization.

In this way, we can rely on the backend compiler’s selection of instructions to exploit

instruction-level parallelism as well, maintain code portability and simplify the tool chain.

Overall, our work is distinguished by its ability to achieve performance gains on existing

code using a compiler. In this way, it has minimal impact on the application in which it

42

is integrated – no modifications to source code or application build process, the ability to

specialize beyond what is feasible in a library, and the preservation of high-level code that

is translated to tuned code behind the scenes.

5.2 Conclusion

This thesis demonstrated how compiler-assisted specialization could be used to improve

the performance of applications that use the PETSc sparse linear algebra libraries. Using the

proposed approach, we improved the performance of individual PETSc functions by as much

as 1.9X. Overall application performance improved by 9-24% for the three applications we

considered. These improvements were obtained over baseline code that is already considered

to be tuned and specialized for matrix structure.

How reusable are these specialized libraries? For PFLOTRAN and Uintah, the maxi-

mum number of nonzeros and block sizes are fixed by inherit properties of the applications,

so for other problem inputs, the same library could be used. This is not the case for the

unstructured UNIC, which must test dynamically at each row how many nonzero elements

there are. So for UNIC, the tuning would need to be done at run-time, or offline during

instantiation of a new problem input. In general, the methodology we employed could

be performed for other applications. Over time as we port to new architectures and new

generations of backend compilers, most but not all of these optimizations would still be

profitable. The transformation recipes and scripts document the optimization strategy for

the current execution context and serve as a knowledgeable guide for optimizations for

future execution contexts.

REFERENCES

[1] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-
Crummey, J., and Tallent, N. R. Hpctoolkit: tools for performance analysis of
optimized parallel programs. Concurrency and Computation: Practice and Experience
22, 6 (2010), 685–701.

[2] Amarasinghe, S., Hall, M., Lethi, R., Pingali, K., Quinla, D., Sarka, V.,
Shal, J., Luca, R., and Yelic, K. Ascr programming challenges for exascale
computing.

[3] Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W. D.,
Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang,
H. PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National
Laboratory, 2010.

[4] Barthou, D., Donadio, S., Duchateau, A., Jalby, W., and Courtois, E.
Iterative compilation by exploration of kernel decomposition. In The 19th International
Workshop on Languages and Compilers for Parallel Computing (2006).

[5] Bell, N., and Garland, M. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (2009), SC ’09.

[6] Bilmes, J., Asanovic, K., Chin, C.-W., and Demmel, J. Optimizing matrix
multiply using PHiPAC: A portable, high-performance, ANSI C coding methodology.
In International Conference on Supercomputing (1997).

[7] Chen, C. Model-Guided Empirical Optimization for Memory Hierarchy. PhD thesis,
University of Southern California, 2007.

[8] Chen, C., Chame, J., and Hall, M. Combining models and guided empirical search
to optimize for multiple levels of the memory hierarchy. In International Symposium
on Code Generation and Optimization (Mar. 2005).

[9] Davison de St. Germain, J., McCorquodale, J., Parker, S., and Johnson,
C. Uintah: a massively parallel problem solving environment. In High-Performance
Distributed Computing, 2000. Proceedings. The Ninth International Symposium on
(June 2000).

[10] Frigo, M., and Johnson, S. G. The fastest Fourier transform in the West. Tech.
Rep. MIT-LCS-TR728, MIT Lab for Computer Science, 1997.

[11] Guilkey, J. E., and Weiss, J. A. Implicit time integration for the material point
method: Quantitative and algorithmic comparisons with the finite element method.
International Journal for Numerical Methods in Engineering (2003).

44

[12] Gunnels, J. A., Gustavson, F. G., Henry, G. M., and Geijn, R. A. V. D.
FLAME: Formal linear algebra methods environment. ACM Transactions on Mathe-
matical Software 27, 4 (2001), 422–455.

[13] Gunnels, J. A., Henry, G. M., and van de Geijn, R. A. High-performance
matrix multiplication algorithms for architectures with hierarchical memories. Tech.
Rep. CS-TR-01-22, University of Texas at Austin, 2001.

[14] Hall, M. W., Chame, J., Chen, C., Shin, J., and Rudy, G. Transformation
recipes for code generation and auto-tuning. In International Workshop on Languages
and Compilers for Parallel Computing (Oct. 2009).

[15] Hartono, A., Norris, B., and Sadayappan, P. Annotation-based empirical per-
formance tuning using Orio. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (Rome, Italy, 2009).

[16] Herrero, J. R., and Navarro, J. J. Improving performance of hypermatrix
Cholesky factorization. In 9th International Euro-Par Conference (2003), pp. 461–469.

[17] Kaushik, D., Smith, M., Wollaber, A., Smith, B., Siegel, A., and Yang,
W. S. Enabling high-fidelity neutron transport simulations on petascale architectures.
In Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis (2009), SC ’09.

[18] Kulkarni, P., Zhao, W., Moon, H., Cho, K., Whalley, D., Davidson, J.,
Bailey, M., Paek, Y., and Gallivan, K. Finding effective optimization phase
sequences. In ACM SIGPLAN Conference on Language, Compiler, and Tool Support
for Embedded Systems (San Diego, CA, 2003).

[19] Mills, R., Lu, C., Lichtner, P. C., and Hammond, G. E. Simulating subsurface
flow and transport on ultrascale computers using pflotran. J. Phys.: Conf. Ser. 78
(2007).

[20] Nuzman, D., and Zaks, A. Outer-loop vectorization - revisited for short SIMD
architectures. In International Conference on Parallel Architectures and Compilation
Techniques (2008).

[21] Pouchet, L.-N., Bastoul, C., Cohen, A., and Vasilache, N. Iterative opti-
mization in the polyhedral model: Part I, one-dimensional time. In Fifth International
Symposium on Code Generation and Optimization (CGO’07) (San Jose, CA, 2007).

[22] Pouchet, L.-N., Bastoul, C., Cohen, A., and Vasilache, N. Iterative opti-
mization in the polyhedral model: Part II, multidimensional time. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’08) (Tucson,
AZ, 2008).

[23] Püschel, M., Moura, J. M. F., Johnson, J., Padua, D., Veloso, M., Singer,
B., Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson,
R. W., and Rizzolo, N. SPIRAL: Code generation for DSP transforms. Proceedings
of the IEEE 93, 2 (2005), 232–275.

[24] Saad, Y. Sparskit: A basic tool kit for sparse computations, version 2.

45

[25] Shin, J., Chame, J., and Hall, M. W. Exploiting superword-level locality in
multimedia extension architectures. Journal of Instruction Level Parallelism (JILP) 5
(2003), 1–28.

[26] Shin, J., Hall, M. W., Chame, J., Chen, C., Fischer, P. F., and Hovland,
P. D. Speeding up nek5000 with autotuning and specialization. In Proceedings of the
24th ACM International Conference on Supercomputing (2010), ICS ’10.

[27] Shin, J., Hall, M. W., Chame, J., Chen, C., and Hovland, P. D. Autotuning
and specialization: Speeding up matrix multiply for small matrices with compiler
technology. In The Fourth International Workshop on Automatic Performance Tuning
(Oct. 2009).

[28] Sripathi, V., Hammond, G. E., Mahinthakumar, G., Mills, R. T., Worley,
P. H., and Lichtner, P. C. Performance analysis and optimization of parallel i/o
in a large scale groundwater application on the cray xt5, Nov. 2009.

[29] Tiwari, A., Chen, C., Chame, J., Hall, M., and Hollingsworth, J. K. A
scalable autotuning framework for compiler optimization. In IPDPS (Rome, Italy,
May 2009).

[30] Tiwari, A., Hollingsworth, J. K., Chen, C., Hall, M., Liao, C., Quinlan,
D. J., and Chame, J. Auto-tuning full applications: A case study. International
Journal of High Performance Computing Applications (Aug. 2011), 286–294.

[31] Voronenko, Y., de Mesmay, F., and Püschel, M. Computer generation of
general size linear transform libraries. In International Symposium on Code Generation
and Optimization (CGO) (Seattle, WA, 2009).

[32] Vuduc, R., Demmel, J. W., and Yelick, K. A. Oski: A library of automatically
tuned sparse matrix kernels. Journal of Physics: Conference Series 16, 1 (2005),
521–530.

[33] Whaley, R. C., and Dongarra, J. J. Automatically tuned linear algebra software.
In SuperComputing (1998).

[34] Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J.
Optimization of sparse matrix-vector multiplication on emerging multicore platforms.
Parallel Computing 35, 3 (2009), 178 – 194.

[35] Yi, Q., Seymour, K., You, H., Vuduc, R., and Quinlan, D. POET: Parame-
terized Optimizations for Empirical Tuning. In IPDPS (Long Beach, CA, Mar. 2007).

[36] Yotov, K., Li, X., Ren, G., Garzarán, M. J., Padua, D., Pingali, K.,
and Stodghill, P. Is search really necessary to generate high-performance BLAS?
Proceedings of the IEEE 93, 2 (2005), 358–386.

