2,182 research outputs found

    Model-based integration and testing of high-tech multi-disciplinary systems

    Get PDF

    Pre-validation of SoC via hardware and software co-simulation

    Get PDF
    Abstract. System-on-chips (SoCs) are complex entities consisting of multiple hardware and software components. This complexity presents challenges in their design, verification, and validation. Traditional verification processes often test hardware models in isolation until late in the development cycle. As a result, cooperation between hardware and software development is also limited, slowing down bug detection and fixing. This thesis aims to develop, implement, and evaluate a co-simulation-based pre-validation methodology to address these challenges. The approach allows for the early integration of hardware and software, serving as a natural intermediate step between traditional hardware model verification and full system validation. The co-simulation employs a QEMU CPU emulator linked to a register-transfer level (RTL) hardware model. This setup enables the execution of software components, such as device drivers, on the target instruction set architecture (ISA) alongside cycle-accurate RTL hardware models. The thesis focuses on two primary applications of co-simulation. Firstly, it allows software unit tests to be run in conjunction with hardware models, facilitating early communication between device drivers, low-level software, and hardware components. Secondly, it offers an environment for using software in functional hardware verification. A significant advantage of this approach is the early detection of integration errors. Software unit tests can be executed at the IP block level with actual hardware models, a task previously only possible with costly system-level prototypes. This enables earlier collaboration between software and hardware development teams and smoothens the transition to traditional system-level validation techniques.Järjestelmäpiirin esivalidointi laitteiston ja ohjelmiston yhteissimulaatiolla. Tiivistelmä. Järjestelmäpiirit (SoC) ovat monimutkaisia kokonaisuuksia, jotka koostuvat useista laitteisto- ja ohjelmistokomponenteista. Tämä monimutkaisuus asettaa haasteita niiden suunnittelulle, varmennukselle ja validoinnille. Perinteiset varmennusprosessit testaavat usein laitteistomalleja eristyksissä kehityssyklin loppuvaiheeseen saakka. Tämän myötä myös yhteistyö laitteisto- ja ohjelmistokehityksen välillä on vähäistä, mikä hidastaa virheiden tunnistamista ja korjausta. Tämän diplomityön tavoitteena on kehittää, toteuttaa ja arvioida laitteisto-ohjelmisto-yhteissimulointiin perustuva esivalidointimenetelmä näiden haasteiden ratkaisemiseksi. Menetelmä mahdollistaa laitteiston ja ohjelmiston varhaisen integroinnin, toimien luonnollisena välietappina perinteisen laitteistomallin varmennuksen ja koko järjestelmän validoinnin välillä. Yhteissimulointi käyttää QEMU suoritinemulaattoria, joka on yhdistetty rekisterinsiirtotason (RTL) laitteistomalliin. Tämä mahdollistaa ohjelmistokomponenttien, kuten laiteajureiden, suorittamisen kohdejärjestelmän käskysarja-arkkitehtuurilla (ISA) yhdessä kellosyklitarkkojen RTL laitteistomallien kanssa. Työ keskittyy kahteen yhteissimulaation pääsovellukseen. Ensinnäkin se mahdollistaa ohjelmiston yksikkötestien suorittamisen laitteistomallien kanssa, varmistaen kommunikaation laiteajurien, matalan tason ohjelmiston ja laitteistokomponenttien välillä. Toiseksi se tarjoaa ympäristön ohjelmiston käyttämiseen toiminnallisessa laitteiston varmennuksessa. Merkittävä etu tästä lähestymistavasta on integraatiovirheiden varhainen havaitseminen. Ohjelmiston yksikkötestejä voidaan suorittaa jo IP-lohkon tasolla oikeilla laitteistomalleilla, mikä on aiemmin ollut mahdollista vain kalliilla järjestelmätason prototyypeillä. Tämä mahdollistaa aikaisemman ohjelmisto- ja laitteistokehitystiimien välisen yhteistyön ja helpottaa siirtymistä perinteisiin järjestelmätason validointimenetelmiin

    Rapid prototyping from algorithm to FPGA prototype

    Get PDF
    Abstract. Wireless data usage continuously increases in today’s world setting higher requirements for wireless networks. Ever increasing requirements result in more complex hardware (HW) implementation, especially telecommunication System-on-Chips (SoC) performance is playing a key-role in this development. Complexity increases design workload, therefore, it makes design flow times longer. High-Level Synthesis (HLS) tools have been designed to automate and accelerate design by moving manual work on a higher level. This Master’s Thesis studies MathWorks HLS workflow usage for rapid prototyping of Wireless Communication SoC Intellectual Property (IP). This thesis introduces design and FPGA prototyping flow of Application-Specific Integrated Circuit (ASIC). It presents good design practices targeted for HLS. It also studies MathWorks Hardware Description Language (HDL) generation flow with HDL Coder, possible problems during the flow and solutions to overcome the problems. The HLS flow is examined with an example design that scales and limits the power of IQ-data. This work verifies the design in a Field-Programmable Gate Array (FPGA) environment. It concentrates on evaluating the usage and benefits of MathWorks HLS workflow targeted for rapid prototyping of SoCs. The Example IP is a Simulink model containing MATLAB algorithms and System Objects. The design is optimized on algorithm level and synthesized into VHDL. The generated Register-Transfer Level (RTL) is verified in co-simulation against the algorithm model. Optimization and verification methods are evaluated. The HDL model is further processed through logic-synthesis using the 3rd party synthesis tool run automatically with a script created by MathWorks workflow. The generated design is tested on FPGA with FPGA-in-the-loop simulation configuration. FPGA prototyping flow benefits for rapid prototyping are evaluated. Coding styles to generate synthesizable HDL code and simulation methods to improve simulation speed of hardware-like algorithm were discussed. MathWorks HLS workflow was evaluated for rapid prototype purposes from algorithm to FPGA. Optimization methods and capability for production quality RTL for ASIC target were also discussed. MathWorks’ tool flow provided promising results for rapid prototyping. It generated human-readable HDL that was successfully synthesized on FPGA. The FPGA model was simulated in FPGA-in-the-loop configuration successfully. It also provided good area and speed results for the ASIC target when the algorithm was written strictly from the hardware perspective. The process was found to be distinct and efficient.Nopea prototypointi algoritmista FPGA-prototyypiksi. Tiivistelmä. Langattoman datan käyttö kasvaa jatkuvasti nykymaailmassa ja asettaa korkeammat vaatimukset langattomille verkoille. Kasvavat vaatimukset tekevät laitteistototeutuksesta kompleksisempaa, erityisesti tietoliikenteessä käytettävien järjestelmäpiirien (SoC) tehokkuus on avainasemassa. Tämä kasvattaa suunnittelun työmäärää ja näin ollen suunnitteluvuohon kuluva aika pidentyy. Korkean tason synteesi (HLS) on kehitetty automatisoimaan ja nopeuttamaan digitaalisuunnittelua siirtämällä manuaalista työtä korkeammalle tasolle. Tämä diplomityö tutkii MathWorks:n HLS-vuon käyttöä langattomaan viestintään suunniteltavien SoC:ien tekijänoikeudenalaisten standardoitujen lohkojen (IP) nopeaan prototypointiin. Työ esittelee perinteisen asiakaspiirin (ASIC) suunnitteluvuon, FPGA-prototypointivuon ja suunnitteluperiaatteet HLS:ää varten. Työssä käydään läpi MathWorks:n laitteistokuvauskielen (HDL) generointivuo HDL Coder:lla, mahdollisia ongelmakohtia vuossa ja ratkaisuja ongelmiin. HLS-vuota tutkitaan esimerkkimallin avulla, joka skaalaa ja rajoittaa IQ-datan tehoa. Esimerkkimallin toiminta tarkistetaan ohjelmoitavan logiikkapiirin (FPGA) kanssa. Työ keskittyy arvioimaan MathWorks:n HLS-vuon käyttöä ja hyötyä nopeaan prototypointiin SoC:ien kehityksessä. Esimerkkinä käytetään Simulink-mallia, joka sisältää MATLAB-funktioita ja System Object-olioita. Algoritmitasolla optimoitu malli syntesoidaan VHDL:ksi ja rekisterinsiirtotason (RTL) mallin toiminta tarkistetaan yhteissimulaatiolla alkuperäistä algoritmimallia vasten. Optimointi- ja verifiointimenetelmien toimivuutta ja tehokkuutta arvioidaan. Generoitu HDL-malli syntesoidaan kolmannen osapuolen logiikkasynteesi-työkalulla, joka käynnistetään MathWorks:n työkaluvuon generoimalla komentosarjalla. Luotu malli ohjelmoidaan FPGA:lle ja sen toiminta tarkistetaan FPGA-simulaatiolla. Syntesoituvan HDL-koodin generointiin vaadittavia koodaustyylejä ja algoritmimallin simulointinopeutta parantavia menetelmiä tutkittiin. MathWorks:n HLS-vuon soveltuvuutta nopeaan prototypointiin algoritmista FPGA-prototyypiksi pohdittiin. Lisäksi optimointimenetelmiä ja vuon soveltuvuutta tuotantolaatuisen RTL:n generoimiseen arvioitiin. MathWorks:n työkaluvuo osoitti lupaavia tuloksia nopean prototypoinnin näkökulmasta. Se loi luettavaa HDL-koodia, joka syntesoitui FPGA:lle. Malli ajettiin onnistuneesti FPGA:lla. Vuon avulla saavutettiin hyviä tuloksia pinta-alan ja nopeuden suhteen, kun malli optimoitiin asiakaspiirille. Tämä vaati mallin kuvaamista tarkasti laitteiston näkökulmasta. Prosessi oli kokonaisuudessaan selkeä ja tehokas

    Understanding new venture market application search processes: A propositional model.

    Get PDF
    Technology-based ventures are confronted with complex decisions on how to apply their technology platform in highly uncertain and ambiguous market environments. Based on four case studies, a dynamic decision model is developed in which we highlight the similarities between the search and learning processes in venture development contexts and in new product development contexts. This entrepreneurial search and learning process is understood as consisting of sequences of episodes – characterized by uncertainty and ambiguity - and scripts – i.e. approaches to market application search. The model implies that a venture's adaptability - i.e. its ability to move efficiently and effectively between these episodes and their related scripts - influences its survival.Case studies; Decision; Decisions; Learning; Market; Model; Processes; Product; Product development; Research; Sequences; Similarity; Studies; Technology; Uncertainty;

    Systematic Model-based Design Assurance and Property-based Fault Injection for Safety Critical Digital Systems

    Get PDF
    With advances in sensing, wireless communications, computing, control, and automation technologies, we are witnessing the rapid uptake of Cyber-Physical Systems across many applications including connected vehicles, healthcare, energy, manufacturing, smart homes etc. Many of these applications are safety-critical in nature and they depend on the correct and safe execution of software and hardware that are intrinsically subject to faults. These faults can be design faults (Software Faults, Specification faults, etc.) or physically occurring faults (hardware failures, Single-event-upsets, etc.). Both types of faults must be addressed during the design and development of these critical systems. Several safety-critical industries have widely adopted Model-Based Engineering paradigms to manage the design assurance processes of these complex CPSs. This thesis studies the application of IEC 61508 compliant model-based design assurance methodology on a representative safety-critical digital architecture targeted for the Nuclear power generation facilities. The study presents detailed experiences and results to demonstrate the benefits of Model testing in finding design flaws and its relevance to subsequent verification steps in the workflow. Additionally, to study the impact of physical faults on the digital architecture we develop a novel property-based fault injection method that overcomes few deficiencies of traditional fault injection methods. The model-based fault injection approach presented here guarantees high efficiency and near-exhaustive input/state/fault space coverage, by utilizing formal model checking principles to identify fault activation conditions and prove the fault tolerance features. The fault injection framework facilitates automated integration of fault saboteurs throughout the model to enable exhaustive fault location coverage in the model

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Formal Verification in the Loop to Enhance Verification of Safety-Critical Cyber-physical Systems

    Get PDF
    Formal verification may play a central role in the development of safecontrollers, such as those found in electric drives or (semi-)autonomousvehicles, whose complexity arises from the coexistence ofmechanical and electrical subsystems with sophisticated electronic controllersthat must implement high-level control policies according to different drivingmodes, while optimizing several objectives, such as safety first and foremost,efficiency, and performance among others.  Model-driven development resorts tosimulation to assess how well the various requirements and constraints aresatisfied, but there is a growing awareness that more rigorous methods areneeded to achieve the required levels of safety.  This paper proposes aconceptual framework for the development of complex systems based on (i)higher-order logic specification, (ii) verification by theorem proving, and(iii) tight integration of verification with model-driven development andsimulation.  This framework addresses both digital and analog systems, asillustrated with some examples in different fields including implantablebiomedical systems, autonomous vehicles, and electric valve actuation

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints
    corecore