95,567 research outputs found

    Learning in a Landscape: Simulation-building as Reflexive Intervention

    Full text link
    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that arise in the course of determining what counts as theory, as model and even as a simulation. Such debates are especially decisive when working across disciplinary boundaries, and their resolution is an important part of the work involved in building simulations. In particular, we show how ontological arguments about the value of simulations tend to determine the direction of simulation-building. This dynamic makes it difficult to maintain an interest in the heterogeneity of simulations and a view of simulations as unfolding scientific objects. As an outcome of our analysis of the process and reflections about interdisciplinary work around simulations, we propose a chart, as a tool to facilitate discussions about simulations. This chart can be a means to create common ground among actors in a simulation-building project, and a support for discussions that address other features of simulations besides their ontological status. Rather than foregrounding the chart's classificatory potential, we stress its (past and potential) role in discussing and reflecting on simulation-building as interdisciplinary endeavor. This chart is a concrete instance of the kinds of contributions that STS can make to better, more reflexive practice of simulation-building.Comment: 37 page

    Simulation modelling: Educational development roles for learning technologists

    Get PDF
    Simulation modelling was in the mainstream of CAL development in the 1980s when the late David Squires introduced this author to the Dynamic Modelling System. Since those early days, it seems that simulation modelling has drifted into a learning technology backwater to become a member of Laurillard's underutilized, ‘adaptive and productive’ media. Referring to her Conversational Framework, Laurillard constructs a pedagogic case for modelling as a productive student activity but provides few references to current practice and available resources. This paper seeks to complement her account by highlighting the pioneering initiatives of the Computers in the Curriculum Project and more recent developments in systems modelling within geographic and business education. The latter include improvements to system dynamics modelling programs such as STELLA¼, the publication of introductory textbooks, and the emergence of online resources. The paper indicates several ways in which modelling activities may be approached and identifies some educational development roles for learning technologists. The paper concludes by advocating simulation modelling as an exemplary use of learning technologies ‐ one that realizes their creative‐transformative potential

    Prospects for large-scale financial systems simulation

    No full text
    As the 21st century unfolds, we find ourselves having to control, support, manage or otherwise cope with large-scale complex adaptive systems to an extent that is unprecedented in human history. Whether we are concerned with issues of food security, infrastructural resilience, climate change, health care, web science, security, or financial stability, we face problems that combine scale, connectivity, adaptive dynamics, and criticality. Complex systems simulation is emerging as the key scientific tool for dealing with such complex adaptive systems. Although a relatively new paradigm, it is one that has already established a track record in fields as varied as ecology (Grimm and Railsback, 2005), transport (Nagel et al., 1999), neuroscience (Markram, 2006), and ICT (Bullock and Cliff, 2004). In this report, we consider the application of simulation methodologies to financial systems, assessing the prospects for continued progress in this line of research

    Computational and Mathematical Modelling of the EGF Receptor System

    Get PDF
    This chapter gives an overview of computational and mathematical modelling of the EGF receptor system. It begins with a survey of motivations for producing such models, then describes the main approaches that are taken to carrying out such modelling, viz. differential equations and individual-based modelling. Finally, a number of projects that applying modelling and simulation techniques to various aspects of the EGF receptor system are described

    Variance in System Dynamics and Agent Based Modelling Using the SIR Model of Infectious Disease

    Get PDF
    Classical deterministic simulations of epidemiological processes, such as those based on System Dynamics, produce a single result based on a fixed set of input parameters with no variance between simulations. Input parameters are subsequently modified on these simulations using Monte-Carlo methods, to understand how changes in the input parameters affect the spread of results for the simulation. Agent Based simulations are able to produce different output results on each run based on knowledge of the local interactions of the underlying agents and without making any changes to the input parameters. In this paper we compare the influence and effect of variation within these two distinct simulation paradigms and show that the Agent Based simulation of the epidemiological SIR (Susceptible, Infectious, and Recovered) model is more effective at capturing the natural variation within SIR compared to an equivalent model using System Dynamics with Monte-Carlo simulation. To demonstrate this effect, the SIR model is implemented using both System Dynamics (with Monte-Carlo simulation) and Agent Based Modelling based on previously published empirical data.Comment: Proceedings of the 26th European Conference on Modelling and Simulation (ECMS), Koblenz, Germany, May 2012, pp 9-15, 201
    • 

    corecore