70 research outputs found

    Plataforma de arquivo e processamento de eventos em cápsula endoscópica

    Get PDF
    A cápsula endoscopica foi introduzida no mercado médico em 2001 e é o primeiro micro-dispositivo autónomo a obter autorização e certificação da FDA, para uso intracorporal em humanos. Este dispositivo permite realizar endoscopias de todo o intestino delgado sem desconforto para o paciente, sem anestesia e de um modo não invasivo. Actualmente é considerada uma ferramenta vital no diagnóstico de doenças como sangramentos gastrointestinais obscuros ou doença de Crohn. Um dos principais problemas dos exames de cápsula endoscópica é o tempo que o médico tem de despender para visualizar e interpretar das 6 a 8 horas de vídeo do exame. O principal objectivo deste trabalho é diminuir este tempo de revisão dos exames de cápsula endoscópica, através de um novo software de revisão de exames e a construção de uma base de dados de exames e eventos anotados que fornecerá a informação necessária às investigações clínicas e de visão por computador, do grupo de investigação onde o autor realiza a sua investigação.The capsule endoscopy, introduced as a medical procedure in 2001, is the first autonomous micro device to get authorization and certification of the FDA for medical use inside the human body. This device allows endoscopic exams of the small intestine to be made without discomfort for the patient, without anaesthesia, and it is not an invasive method. Currently it is considered a vital tool for the diagnosis of diseases like obscure gastrointestinal bleeding or Crohn’s disease. One of the main problems of endoscopic capsule exam procedures is the time that the doctor needs to visualize and interpret the 6 to 8 hours of the exam video. The main objective of this work is to reduce this revision time of endoscopic capsule examinations by using a new annotation software and by constructing a database of annotated exams and events, which will supply all necessary data for clinical and computer vision research

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    A hybrid localization method for Wireless Capsule Endoscopy (WCE)

    Get PDF
    Wireless capsule endoscopy (WCE) is a well-established diagnostic tool for visualizing the Gastrointestinal (GI) tract. WCE provides a unique view of the GI system with minimum discomfort for patients. Doctors can determine the type and severity of abnormality by analyzing the taken images. Early diagnosis helps them act and treat the disease in its earlier stages. However, the location information is missing in the frames. Pictures labeled by their location assist doctors in prescribing suitable medicines. The disease progress can be monitored, and the best treatment can be advised for the patients. Furthermore, at the time of surgery, it indicates the correct position for operation. Several attempts have been performed to localize the WCE accurately. Methods such as Radio frequency (RF), magnetic, image processing, ultrasound, and radiative imaging techniques have been investigated. Each one has its strengths and weaknesses. RF-based and magnetic-based localization methods need an external reference point, such as a belt or box around the patient, which limits their activities and causes discomfort. Computing the location solely based on an external reference could not distinguish between GI motion from capsule motion. Hence, this relative motion causes errors in position estimation. The GI system can move inside the body, while the capsule is stationary inside the intestine. This proposal presents two pose fusion methods, Method 1 and Method 2, that compensate for the relative motion of the GI tract with respect to the body. Method 1 is based on the data fusion from the Inertial measurement unit (IMU) sensor and side wall cameras. The IMU sensor consists of 9 Degree-Of-Freedom (DOF), including a gyroscope, an accelerometer, and a magnetometer to monitor the capsule’s orientation and its heading vector (the heading vector is a three-dimensional vector pointing to the direction of the capsule's head). Four monochromic cameras are placed at the side of the capsule to measure the displacement. The proposed method computes the heading vector using IMU data. Then, the heading vector is fused with displacements to estimate the 3D trajectory. This method has high accuracy in the short term. Meanwhile, due to the accumulation of errors from side wall cameras, the estimated trajectory tends to drift over time. Method 2 was developed to resolve the drifting issue while keeping the same positioning error. The capsule is equipped with four side wall cameras and a magnet. Magnetic localization acquires the capsule’s global position using 9 three-axis Hall effect sensors. However, magnetic localization alone cannot distinguish between the capsule’s and GI tract’s motions. To overcome this issue and increase tracking accuracy, side wall cameras are utilized, which are responsible for measuring the capsule’s movement, not the involuntary motion of the GI system. A complete setup is designed to test the capsule and perform the experiments. The results show that Method 2 has an average position error of only 3.5 mm and can compensate for the GI tract’s relative movements. Furthermore, environmental parameters such as magnetic interference and the nonhomogeneous structure of the GI tract have little influence on our system compared to the available magnetic localization methods. The experiment showed that Method 2 is suitable for localizing the WCE inside the body

    Vision-Based Autonomous Control in Robotic Surgery

    Get PDF
    Robotic Surgery has completely changed surgical procedures. Enhanced dexterity, ergonomics, motion scaling, and tremor filtering, are well-known advantages introduced with respect to classical laparoscopy. In the past decade, robotic plays a fundamental role in Minimally Invasive Surgery (MIS) in which the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system for robot-assisted laparoscopic procedures. Robots also have great potentiality in Microsurgical applications, where human limits are crucial and surgical sub-millimetric gestures could have enormous benefits with motion scaling and tremor compensation. However, surgical robots still lack advanced assistive control methods that could notably support surgeon's activity and perform surgical tasks in autonomy for a high quality of intervention. In this scenario, images are the main feedback the surgeon can use to correctly operate in the surgical site. Therefore, in view of the increasing autonomy in surgical robotics, vision-based techniques play an important role and can arise by extending computer vision algorithms to surgical scenarios. Moreover, many surgical tasks could benefit from the application of advanced control techniques, allowing the surgeon to work under less stressful conditions and performing the surgical procedures with more accuracy and safety. The thesis starts from these topics, providing surgical robots the ability to perform complex tasks helping the surgeon to skillfully manipulate the robotic system to accomplish the above requirements. An increase in safety and a reduction in mental workload is achieved through the introduction of active constraints, that can prevent the surgical tool from crossing a forbidden region and similarly generate constrained motion to guide the surgeon on a specific path, or to accomplish robotic autonomous tasks. This leads to the development of a vision-based method for robot-aided dissection procedure allowing the control algorithm to autonomously adapt to environmental changes during the surgical intervention using stereo images elaboration. Computer vision is exploited to define a surgical tools collision avoidance method that uses Forbidden Region Virtual Fixtures by rendering a repulsive force to the surgeon. Advanced control techniques based on an optimization approach are developed, allowing multiple tasks execution with task definition encoded through Control Barrier Functions (CBFs) and enhancing haptic-guided teleoperation system during suturing procedures. The proposed methods are tested on a different robotic platform involving da Vinci Research Kit robot (dVRK) and a new microsurgical robotic platform. Finally, the integration of new sensors and instruments in surgical robots are considered, including a multi-functional tool for dexterous tissues manipulation and different visual sensing technologies

    Oral and Maxillofacial Surgery

    Get PDF
    Oral and maxillofacial surgery is a specialized branch of dentistry that deals with the surgical management of various head and neck pathologies. The specialty focuses on reconstructive surgery of the oro-facial region, surgery of facial trauma, the oral cavity and jaws, dental implants as well as cosmetic surgery. As such, surgeons in this field require extensive knowledge of not only these various surgical procedures but also head and neck anatomy. This book provides comprehensive information on both. Its goal is to educate oral and maxillofacial surgeons to enable them to treat a wide range of conditions and diseases using the most current surgical trends

    Diffusion and Perfusion MRI in Paediatric Posterior Fossa Tumours

    Get PDF
    Brain tumours in children frequently occur in the posterior fossa. Most undergo surgical resection, after which up to 25% develop cerebellar mutism syndrome (CMS), characterised by mutism, emotional lability and cerebellar motor signs; these typically improve over several months. This thesis examines the application of diffusion (dMRI) and arterial spin labelling (ASL) perfusion MRI in children with posterior fossa tumours. dMRI enables non-invasive in vivo investigation of brain microstructure and connectivity by a computational process known as tractography. The results of a unique survey of British neurosurgeons’ attitudes towards tractography are presented, demonstrating its widespread adoption and numerous limitations. State-of-the-art modelling of dMRI data combined with tractography is used to probe the anatomy of cerebellofrontal tracts in healthy children, revealing the first evidence of a topographic organization of projections to the frontal cortex at the superior cerebellar peduncle. Retrospective review of a large institutional series shows that CMS remains the most common complication of posterior fossa tumour resection, and that surgical approach does not influence surgical morbidity in this cohort. A prospective case-control study of children with posterior fossa tumours treated at Great Ormond Street Hospital is reported, in which children underwent longitudinal MR imaging at three timepoints. A region-of-interest based approach did not reveal any differences in dMRI metrics with respect to CMS status. However, the candidate also conducted an analysis of a separate retrospective cohort of medulloblastoma patients at Stanford University using an automated tractography pipeline. This demonstrated, in unprecedented spatiotemporal detail, a fine-grained evolution of changes in cerebellar white matter tracts in children with CMS. ASL studies in the prospective cohort showed that following tumour resection, increases in cortical cerebral blood flow were seen alongside reductions in blood arrival time, and these effects were modulated by clinical features of hydrocephalus and CMS. The results contained in this thesis are discussed in the context of the current understanding of CMS, and the novel anatomical insights presented provide a foundation for future research into the condition
    • …
    corecore