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This dissertation focuses on the novel learning strategy based on geometric 

support vector machines to address the difficulties of processing immense data set. 

Support vector machines find the hyper-plane that maximizes the margin 

between two classes, and the decision boundary is represented with a few training 

samples it becomes a favorable choice for incremental learning. The dissertation presents 

a novel method Geometric Incremental Support Vector Machines (GISVMs) to address 

both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of 

convex hulls is defined and an efficient method is designed to find the best skin 

approximation given available examples. The set of extreme points are found by 

recursively searching along the direction defined by a pair of known extreme points. By 

identifying the skin of the convex hulls, the incremental learning will only employ a 

much smaller number of samples with comparable or even better accuracy. When 

additional samples are provided, they will be used together with the skin of the convex 

hull constructed from previous dataset. This results in a small number of instances used 

in incremental steps of the training process. 

Based on the experimental results with synthetic data sets, public benchmark 

data sets from UCI and endoscopy videos, it is evident that the GISVM achieved 

satisfactory classifiers that closely model the underlying data distribution. GISVM 

improves the performance in sensitivity in the incremental steps, significantly reduced 

the demand for memory space, and demonstrates the ability of recovery from temporary 

performance degradation. 
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CHAPTER 1

INTRODUCTION

With the advancement in data acquisition, storage technologies, and the proliferation of the

world wide web, large amounts of multimedia data in form of text, images and videos has grown

tremendously. The applications with these data pose new challenges to classification algorithms as

they do not always scale up to large datasets, and new or modification to existing machine learning

algorithms are sought to handle them.

This dissertation is motivated by the need in processing of capsule endoscopy (CE) videos,

which shares many characteristics of large databases. CE a miniature device, to visualize the

gastrointestinal tract and the only method to view the entire small intestine. It is now a widely

adopted procedure for diagnosis of diseases including obscure-bleeding, Crohn’s disease, gastric

ulcers, and colon cancer. CEs are miniature capsules and are produced by the manufacturers from

around the world including Given Imaging, Olympus, Sayka IntoMedic, Jinshan Science, under the

brand names PillCam, Endo Capsule, Sayka, MicroCam, OMOM-Pill. The CE videos used in this

research are produced with Pillcam by Given Imaging. The CE is used to examine the entire small

intestine non-invasively [35, 36, 38, 49, 5, 2], and has been used mainly to diagnose lesions beyond the

reach of conventional push enteroscopy and colonoscopy. Its clinical importance has been confirmed

in inflammatory bowel diseases [6, 20, 27, 34, 42, 73] and gastrointestinal (GI) bleeding. The results

have shown great improvement in diagnostic yield for bleeding sources in patients with obscure GI

bleeding, and in diagnosing and localizing the source of blood loss [50, 78, 77, 79].

Since the implementation of the CE, research and technology improvements have added

additional values to the CE and its video interpretation. Efforts have been devoted to many aspects,

such as video enhancement [52], video segmentation [58, 57, 31], and anomaly detection. Among

all the efforts, anomaly detection has been studied the most, primarily due to its importance and

the significance in CE. The Suspected Blood Indicator (SBI) feature provided by Given Imaging,

a CE manufacturer, claims it has the capability of detecting blood in the video frames. However,

in a study by Liangpunsakul et al. [53] the overall sensitivity and accuracy of SBI were only 25%
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and 34.8%, respectively. SBI exhibited better performance in the setting of active bleeding lesions

in the small bowel with a reported sensitivity and accuracy of 81.2% and 83.3%.

The Pillcam device captures two images per second for approximately 8 hours, during which

the device captures about 55,000 color images of 256× 256 pixels in size. Reviewing CE videos is

a tedious and time consuming task for medical specialists. It usually takes more than one hour to

annotate a full length video by a medical specialist. Computer algorithms are sought to reduce the

review time by identifying suspicious frames for verification.

With improved optical sensors the size of each image captured is expected to increase. In

addition, to obtain better generalization performance and avoid curse of dimensionality, we expect to

train classification algorithms using videos of multiple human subjects. For a dataset with n samples

(each containingm features) the memory requirement would be as high as O(n2) (e.g. support vector

machines) or O(mn) (e.g. decision trees). The implementation of classification algorithms that

require all training data to be present in memory would make learning task extremely challenging.

Existing classification algorithms are facing difficulties in handling large number of training samples.

Incremental learning has great potential to handle the aforementioned challenges. At each

incremental step, only the samples that are useful to build future classifiers along with model

information is retained. When new data becomes available, they are integrated with the retained

samples, and the model is updated and/or trained to build a new classifier.

On the other hand with the large amount of digital data it is not possible to annotate all of

them, or due to privacy concerns it is not possible to collect for research purpose. In such cases it

would be practical to build a classifier based on initial data with a decent performance and have the

classifier learn as new samples arrive. Applications for which all the training data are not available

initially and become available overtime, incremental learning naturally fits in.

An incremental learning algorithm is said to be exact with respect to some criterion of interest

e.g. the learned hypothesis’s expected generalization accuracy: if it is guaranteed to achieve the

same result as that obtained in the batch learning setting where the entire dataset is available to

the learning algorithm[14]. In real world applications it would not be possible to learn the class

boundaries, due to the underlying topology.
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In many real world problems involving sufficiently expressive concept classes, exact incre-

mental or distributed learning may not be possible even in principle. In other instances although

possible in principle it may not be feasible in practice for computational reasons.

A key question of incremental SVMs is how to retain knowledge from the training examples

in each iteration to maximize the unbiased representation of underlying data distribution while

maintain a concise subset. Intuitively, SVs from the current SVM are kept. This works well in

cases where the existing examples closely represent the topography of the classes. However, if

a new instance dramatically changes the topography of the distributions and hence the decision

hyper-plane, a previously removed non-support vector instance could become the margin mover.

The goal of this dissertation is to advance the learning strategy for classification of large

datasets. The scientific contribution includes the verification of the following hypothesis and an

advanced technology for automatic capsule endoscopy screening.

Hypothesis : With the identification of the skin of the convex hull, maximum margin classifica-

tion handles large amount of data incrementally without performance degradation.

Goal : Enabling learning with large databases more practical.

Approach : Finding an efficient method to identify and retain samples and model information

such that when new examples become available an optimal classifier could be built without re-

visiting all data available, with generalization accuracies which are exact or comparable to those

obtained in batch learning fashion.

In the rest of this dissertation, Chapter 2, I provide a literature survey on Incremental Sup-

port Vector Machines and highlighting the open issues. Next Chapter 3 starts with an introduc-

tion to Support Vector Machines, then relates to SVMs to Geometrical Support Vector Machines,

and the remaining of the chapter is dedicated to the Geometrical Incremental Support Vector
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Machines(GISVM). Chapter 4 discusses the experiments on synthetic and benchmark datasets to

compare GISVM with libSVM. Next, Chapter 5 provides two applications of GISVM to enable com-

puter aided diagnosis for capsule endoscopy videos. Finally, Chapter 6, summaries the dissertation

contributions.
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CHAPTER 2

INCREMENTAL LEARNING FOR SUPPORT VECTOR MACHINES

Conventional SVM algorithms require that the entire dataset is available at the time of train-

ing a classifier [81]. While a large number of training examples helps to reduce the generalization

error, the learning process can become computationally expensive. In addition, data acquired may

not represent the underlying distribution. For instance, medical data are collected and stored over

a long period. The cumulative datasets become overly large. Out of the data collected, only a

small fraction is positive. In such situations, data is to be processed in parts, and the results are

combined to make it feasible to use with the available computational resources.

Incremental learning algorithms are usually applied to problems where the complete training

set becomes available over time [28, 25]. It is also applied when the complete training sets are larger

in size [26, 84]. and makes the learning process is possible when limited computation resource is

available.

Initially, incremental learning was a method to handle large dataset. Later it was applied

to address on-line learning as well. When developing classifiers using learning methods, a large

number of training data can help reduce the generalization error. However, the learning process

itself can get computationally intractable [25], in which case data can be processed in parts, and

the results are combined to fit the limited memory available. Efficient and scalable approaches are

required that can modify knowledge structures in an incremental fashion without having to revisit

previously processed data. Three challenges faced in developing incremental learning methods are

as follows:

• How to retain knowledge from the training examples in each iteration to maximize the

unbiased representation of underlying data distribution, while maintaining a concise subset

• How to adapt to the changing trends of the data distribution over time

2.1. Modeling the Representative Set

Conventional SVMs [81, 13] classify instances by assigning them to one of the two disjoint

half-spaces. Fung and Mangasarian [29] proposes a proximal SVM to reduce the time complexity of
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finding the separating hyper-plane. In proximal SVMs the binary classification problem bounded by

the soft margin planes are replaced by two planes with data clustered around them [59]. Proximal

SVMs were shown to perform at the similar level of accuracy as conventional SVMs, however it

takes less time searching the separating hyper-plane. Later work of Fung and Mangasarian [30]

showed that the proximal SVM can also be applied to incremental learning.

Attempts of incremental SVM starts with retention of the SVs from each training itera-

tion [76, 63, 43]. The method in [76] keeps only the SVs at each incremental step, which are

aggregated into the next training iteration. The model obtained via this strategy will be the same

or highly similar to what would have been obtained by using all data samples to train. Unless kept

as SVs, examples are discarded after training. Mitra et al. use an error-driven technique in the

incremental SVMs [63]. In addition to the SVs, the method keeps a number of non-SV instances.

Given a trained SVMt at iteration t, new instances are classified using SVMt. The SVs of SVMt

together with a certain number of correctly classified and misclassified instances are used to train

the new model SVMt+1. Alternatively, work of [25] keeps only the misclassified data. Given the

model at time t, new data are loaded into memory and classified using SVMt. If the data is mis-

classified it is kept, otherwise discarded. Once a given number of misclassified data is collected, the

update takes place. The SVs of the last trained SVM, together with the misclassified instances, are

used as training data to obtain the new model.

The assumption of minimum change of the hyper-plane serves the foundation of the above

methods, which primarily retains the SVs. These methods could delete candidates, which have the

potential to be SVs during future iterations. In actuality, new examples emerge in time and the

SVMs need to be updated to a significantly changed hyper-plane.

Katagiri and Abe [43] proposed one-class SVMs to select candidate SVs, which reduce the

possibility of SVs being deleted when hyper-plane is rotated. A hyper-sphere is generated for

each class and only the instances lying close to the boundary of the hyper-sphere are retained as

candidate SVs for future iterations. Although this method handles the rotation of the decision

boundary, the assumption of hyper-sphere to model data distribution becomes unrealistic in many

real-world applications. When a class is not inherently spherical, a small reduction on the radius

6



would leave out a significant number of samples, which is not recoverable in the later iterations of

training.

2.2. Space Complexity and Size of the Representative Set

Hernandez et al. present an incremental procedure for growing support vector classifiers

(GSVC), which avoids pruning mechanism after SVM training [69]. GSVC employs a multi-

resolution approach to design of a multi-kernel support Vector Classifiers. The learning using

Gaussian kernels starts with initial large spreading value for σ which is a coarser level of detail, and

progressively decreases this value in newly added kernels, such that finer solutions are obtained as

the machine grows. Agarwal et al. [3] show that the concept of the span of SVs can be used to build

a classifier that performs reasonably well while satisfying given space and time constraints, thus

making it potentially suitable for such online situations. Imbalance handled through [83], presents

a new method for imbalanced data classification. This method is based on SVM classifiers and

backward pruning technique to reduce the complexity of the learnt classifier.

Mitra, Murthy and Pal present probabilistic SVMs, where training set is refined by actively

querying for the labels of pixels from a pool of unlabeled data. The label of the most interesting or

ambiguous unlabeled point is queried at each step [64]. In this method, active learning is exploited

to minimize the number of labeled data used by the SVM classifier by several orders. Orabona et al.

propose an on-line algorithm, called On-line Independent SVMs (OISVMs) which approximately

converges to the standard SVM solution each time new observations are added; the approximation is

controlled via a user-defined parameter. The method uses a set of linearly independent observations

and tries to project every new observation onto the set obtained so far, reducing time and space

requirements at the of a negligible loss in accuracy. As opposed to similar algorithms, authors claim

that the size of the solution obtained by OISVMs is always bounded, also implying a bounded testing

time [67].

Proximal SVM employs a greedy search across the training data to select the basis vectors of

the classifier, and tunes parameters automatically using the simultaneous perturbation stochastic

approximation after incremental additions are made [72]

Instead of selecting training samples randomly Chen Yin et al., divide training set into groups
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and k-means clustering algorithm applied to collect the initial set of training samples [19]. In active

query, a weight is assigned to each sample according to its confidence factor and its distance to the

separating hyper-plane. The confidence factor is calculated from the error upper bound of the SVM

to indicate the closeness of the current hyper-plane to the optimal hyper-plane [19].

LocalSVM is a classification approach that combines instance-based learning and statistical

machine learning. It builds an SVM on the feature space neighborhood of the query point in

the training set and uses it to predict its class. LocalSVM can improve over SVM, in terms of

classification accuracy, but it is computationally feasible only on small datasets. FastLSVM, is

based on LocalSVM that decreases the number of SVMs that must be built for large datasets.

FastLSVM pre-computes a set of local SVMs in the training set and assigns to each model all the

points lying in the central neighborhood of the k points on which it is trained. The prediction

is performed applying to the query point the model corresponding to its nearest neighbor in the

training set [75]. An algorithm for data condensation using SVMs extracts data points lying close to

the class boundaries, which form a much reduced but critical set for classification. The problem of

large memory requirements for training SVM in batch mode is circumvented by adopting an active

incremental learning algorithm [63]. Cauwenberghs and Poggio present on-line recursive algorithm

for training SVMs, by adding one vector at a time, in adiabatic increments retain the Kuhn-Tucker

conditions on all previously seen training data. Here, The incremental procedure is reversible, and

decremental unlearning offers an efficient method to exactly evaluate leave-one-out generalization

performance [15].

2.3. Adaptability to Changing Trends

Cauwenberghs and Poggio [15] present an incremental and decremental SVM learning method.

This proposed method optimizes the Karush-Kuhn-Tucker (KKT) conditions and partitions the

training data and the corresponding coefficients of the hyper-plane, denoted with {αi, b}, into three

categories: the margin SVs which are strictly on the margin, the error SVs which violate the mar-

gin but are not necessarily misclassified, and ignored vectors which are within the margin. When

a new instance c is misclassified, the SVM is updated by finding new values for the hyper-plane

parameters {αi, b}. Bookkeeping is required to assign samples to one of the three categories. The
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bookkeeping effort increases the computational expense, which could be as high as O(n3) for each

incremental example included. This reflects a trade-off between memory and time. A later work of

Diehl and Cauwenberghs [24] eliminates the computationally intensive tuning of hyper parameters

and the objective functions, using leave-one-out error estimation. Again, the methods assume that

the hyper-plane does not change significantly.

Klinkenberg and Joachims proposed a method to handle drift in SVMs [45]. The drift

represents changes of underlying distribution of the data collected over an extended period for

learning tasks. The method addresses the problem by maintaining a window on the training data

stream and adjusting the window size so that the estimated generalization error is minimized.

Ensemble methods are also explored in an incremental way to classify imbalanced datasets [65]. For

each classifier, a conditional weight is used, which is the ratio of the number of instances from a

particular class used for training that classifier to the number of instances from that class used for

training all classifiers thus far in the ensemble. The voting weights are determined as individual

training performances of the classifiers, adjusted by the class conditional weight factors [65].

Shilton et al. address the of sequentially arriving data and fast constraint parameter vari-

ation. This method uses a warm-start algorithm for the training of SVMs, which allows to take

advantage of the natural incremental properties of the standard active set approach to linearly con-

strained optimization problems. This Incremental training allows quickly retraining a SVM after

adding a small number of additional training vectors to the training set of an existing (trained)

SVM [1].

Boubacar et al. employ an online clustering algorithm that is developed to learn continuously

evolving clusters from non-stationary data. This algorithm is based on SVM methods with kernel

trick in reproducing Hilbert space, and uses a fast incremental learning procedure to take into

account model changes over time. Dedicated to online clustering in multi-class environment, the

algorithm is based on an unsupervised learning process with self-adaptive abilities [4].
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CHAPTER 3

METHODOLOGY

3.1. Support Vector Machine

w
1
*

w
2
*

 

 
(+) Class
(−) Class
Nearest Points
(+) Support Vectors
(−) Support Vectors

Figure 3.1. The nearest points w∗
+, w

∗
− between the two classes found using a SVM.

The support-vectors of w∗
+, w

∗
−, are denoted using shaded diamond and square respec-

tively. Decision boundary that is perpendicular to the vector to connect the nearest
points is denoted with a solid line.

SVMs find the hyper-plane that maximizes the margin between two classes. The margin

is defined by a few training instances of the two classes, i.e. the SVs. The decision boundary in

Fig 3.1 separating the two classes could be represented by using the SVs denoted in red and a weight

b. Removing the rest of instances from the dataset will not alter the classification performance of

SVM. This property makes the SVM a favorable choice for incremental learning, which spawns

many research on incremental SVMs [76, 85, 43, 63, 15, 80].

SVMs [18, 13, 16] originated from the statistical learning theory [81], is based on structural

risk minimization (SRM). The learning task is defined as f : RN → {−1,+1}, using input-output

training dataset,

(x1, y1), . . . , (xn, yn), where xi ∈ R
N , yi ∈ {−1,+1}
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where n is the number of training samples, and N is the number of features of the samples. Let

{xi} be a set of patterns having the labels {yi} , yi ∈ {−1, 1}, where X+ ∈ {xi : yi = 1},

X− ∈ {xi : yi = −1}. SVMs find a decision boundary that maximizes margin between the two

classes.

The decision boundary is represented as w · x+ b = 0, where w is the weight vector, which

is perpendicular to the hyper-plane. The training data satisfies the constraints xi · w + b ≥ +1 for

X+ and xi · w + b ≤ −1 for X−. Combining both functions generates a unified decision function

yi(xi · w + b) ≥ 1 for i = 1, · · · , n. The optimization problem to maximize the margin is hence,

formulated as follows:

min
w,b
||w||, s.t. yi(xi · w + b) ≥ 1, ∀i(1)

Eq (1) consists of the square root, which makes it difficult to solve. Eq (1) can be replaced

by,

min
w,b

1

2
||w||2, s.t. yi(xi · w + b) ≥ 1, ∀i(2)

Eq (2) can be transformed to its dual form by incorporating positive Lagrange multipliers αi

i = 1, · · · , n, for each of the equality constraints. Switching to the Lagrangian formulation makes it

easier to convert into a quadratic equation, and the dual formulation is based only on dot products

of the training data and can be applied to nonlinear case. The Lagrangian dual problem of Eq (2)

is

minL =
1

2
||w||2 −

m
∑

i=1

αi [yi(xi · w + b) + 1](3)

By setting the gradient of L with respect to w, b we have,

w =

l
∑

i=1

αiyixi
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l
∑

i=1

αiyi = 0

Since the optimization problems are convex, any local minimum found can be identified as

global minimum. Only the data points that satisfy yi(xi · w + b) = 1 would have αi > 0, which

are known as SVs and lie closest to the decision boundary. The Fig 3.1 illustrates the decision

boundary between the two classes and the SVs are denoted using shaded diamonds and squares.

3.1.1. Linearly Non-separable Classes

For real-world applications, it is possible that the two classes are non-separable using a linear

hyper-plane. In such situations the Eq (2),(3) could not be solved. The non-separable case can be

solved by including error penalty, by adding a slack variable ξi ≥ 0 to the constraints. This leads

to a new objective function:

min
w,b,ξ

1

2
||w||2 + C

m
∑

i=1

ξi,

ξi ≥ 0, yi(xi · w + b) ≥ 1, ∀i(4)

If a training example lies on the wrong side of the hyper-plane, the corresponding ξi ≥ 1. C

allows the trading off between training error and model complexity. Using Lagrangian multiplier,

we rewrite Eq (4) as follows:

L =
1

2
||w||2 −

m
∑

i=1

m
∑

j=1

iαiαjyiyj(xi · xj)

subject to

∑

i

αiyi = 0, 0 ≤ αi ≤ C(5)

(6)
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And the solution of Eq (6) would be given by w =
∑

i αiyixi.

Time complexity of solving such a quadratic programming problem lies between quadratic

and cubic of the number of training samples used [74].

Kernel trick [11] enables a non-linear classifier, for the maximum margin classifiers following

the linear model. This transforms the original algorithm by replacing the dot products with a kernel

functions, and allows finding the maximum margin separating plane in higher dimensional feature

space.

Linearly separable. For linearly separating hyper-planes as computed by a perception the clas-

sification without training errors are,

yi((w · xi) + b) ≥ 1 for i = 1, . . . , n(7)

Here the goal is to find w ∈ R
N and b such that expected risk is minimized. Since the

expected risk cannot be quantified, the upper bound on the expected risk is minimized. The bound

consists of empirical risk and the VC confidence term. One approach is to keep be empirical risk

zero by constraining w and b to a linearly separable case, and minimizing the VC confidence term.

For linear classifiers the VC dimension h is bounded by h ≤ ||w||2R2 + 1 where R is the smallest

ball round the training data which is fixed for a given training data. Therefore the complexity term

could be minimized by minimizing the ||w||2.This can be represented as a quadratic optimization

problem as,

minw,b
1

2
||w||2(8)

The optimization problem represented by (8) could be solved by forming the dual optimiza-

tion problem. Introducing Lagrange multipliers αi > 0 for i = 1, . . . , n we get

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi(yi((w · xi) + b)− 1)(9)

The optimization problem now it to minimize (9) with respect to w and b and to maximize
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respect to αi. At the optimal point we solve for the following saddle point equations.

∂L

∂b
= 0

∂L

∂w
= 0

Linearly Non Separate Case. In the linearly separable case we considered the empirical error to

be zero. For linearly non-separable case this would not be so, since it could push towards over-fitting.

A trade off is achieved by including a slack variable to relax the hard margin constraints.

yi((w · xi) + b) ≥ 1− ξi ξi ≥ 0 for i = 1, . . . , n(10)

The SVM solution can be found by keeping the upper-bound on VS small and by minimizing

upper-bound on
∑

i = 1nξi on empirical risk. Thus the new optimization problem would be,

minw,b
1

2
||w||2 + C

∑

i = 1nξi(11)

where C is a regularization constant tradeoff between the two components. And (11)’s dual is solved

similar to previous.

3.2. Geometrical SVMs

Geometric interpretations of the optimization problem SVM has been presented in the

past [81, 44, 10], both geometric and the quadratic optimization view of SVM have been shown to

be equivalent [18, 10, 22, 86]. The dual formulation of the optimization problem of SVM can be

interpreted as finding the shortest distance between the Convex-Hulls.

Geometric approach to SVM represents the two classes as convex hulls and finds the minimum

distance between the two [44]. The convex hull based SVM is not efficient for all non-separable

classes. To overcome this, Reduced Convex Hull (RCH) [18, 22] has been used for Geometric

SVM [62, 61].
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3.2.1. Convex Hull and Extensions

Caratheodory’s theorem on convex sets states that if a point x ∈ Rd lies in the convex hull

of a set P , there is a subset Ṕ of P consisting of no more than d+ 1 points such that x lies in the

convex hull of Ṕ .

Let x be a point in the convex hull of P . Then, x is a convex combination of a finite number

of points in P . In other words, x lies in a d-simplex with vertices’s in P .

Let x be a point in the convex hull P . Then x is a convex combination of a finite number of

points in P .

x =
k

∑

j=1

λjxj

where every xj in every λj is positive, and
∑k

j=1 λj = 1

Suppose k > d + 1, then x2 − x1, x3 − x1, . . . , xk − x1 are linearly independent. Therefore

there exists scalars µ2, . . . , µk not all zero such that,

k
∑

j=2

µj(xj − x1) = 0

Let us define µ1 = −
∑k

j=2 µj, then

k
∑

j=1

µjxj = 0

k
∑

j=1

µj = 0

and not all of the µj are equal to zero, therefore at least one µj > 0. then,

x =
k

∑

j=1

λjxj − α
k

∑

j=1

µjxj

=

k
∑

j=1

(λj − αµj)xj

15



for any α ∈ R.

Note that α > 0 for all j = 1, . . . , k

λj − αµj >= 0

In particular, λi − αµi = 0, by definition of α.

x =
k

∑

j=1

(λj − αµj)xj

where every λj−αµj, is nonnegative, their sum is one. Furthermore, λi−αµi = 0. Therefore,

x represented as a convex combination of at most k − 1 points of P . This process can be repeated

until x is represented as a convex combination of at most d+ 1 points in P .

Convex Hull - Representation. Given a set X , convex hull is a linear combination of all the

elements of X

C(X) =

{

k
∑

i=1

αixi; xi ∈ X, 0 ≤ αi ≤ 1,
k

∑

i=1

αi = 1

}

Reduced Convex Hull (RCH) [10] also known as Soft Convex Hull [22] is the set of all convex

combinations of elements of the X , denoted by R(X, µ), µ < 1, is

R(X, µ) =

{

k
∑

i=1

αixi; xi ∈ X, 0 ≤ αi ≤ µ,

k
∑

i=1

αi = 1

}

The difference between a convex hull and RCH, is that the αi of convex hull are bounded by

µ in a RCH. By finding a suitable µ for each class, it is possible to make the RCH of two classes

linearly-separable [61]. For example Fig 3.4-(a) is the convex hull of the two classes are linearly

non-separable. By using R(Xi, 0.08), for i = {+,−} it is possible to make the two class linearly

separable as illustrated by outermost dashed lines in Fig 3.4-(b).

RCH has been used to handle SVM classification using data with non-separable classes [22,

10, 61]. The RCH does not preserve the shape of convex hull and does not provide the sufficient

conditions to find the extreme points. To overcome this, compressed convex hulls [70] has been

proposed, however it makes explicit assumptions on the kernel, therefore not well suited for SVM.
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3.2.2. Geometric SVM

The optimization problem Eq (2) for the separable classes is equivalent to finding the mini-

mum distance between the two classes, for w+ ∈ C(X+), w− ∈ C(X−) can be written as

min
α
‖w+ − w−‖,

= min
α

∥

∥

∥

∥

∥

∥

∑

xi∈X+

αixi −
∑

xj∈X−

αjxj

∥

∥

∥

∥

∥

∥

subject to αi ≥ 0,
∑

i∈X+

αi = 1,
∑

i∈X−

αi = 1,(12)

And the optimization problem Eq (4) for the non-separable classes can be written in terms

of, RCH as follows:

min
α
‖w+ − w−‖

= min
α

∥

∥

∥

∥

∥

∥

∑

xi∈X+

αixi −
∑

xj∈X−

αjxj

∥

∥

∥

∥

∥

∥

subject to 0 < αi ≤ µ,
∑

i∈X+

αi = 1,
∑

i∈X−

αi = 1,(13)

The nearest points w∗
+, w

∗
−, are linear combinations of samples with αi > 0, which are the

SVs. The decision boundary is perpendicular to w = w∗
+ − w∗

−, and the bias b would be the offset

of the hyper-plane from the origin.

For linearly non-separable classes, the SVM finds the optimal separating hyper-plane between

two classes of training samples in the feature space. The SVM works on the feature space, which is

a Reproducing Kernel Hilbert Space, where the mapped patterns lie φ : X →H. It is not necessary

to know the mapping function φ, but only the kernel is needed. The kernel is represented as the

inner products of the mappings of all the samples k(xi, xj) = 〈φ(xi), φ(xj)〉 for all xi, xj ∈ Rn.

Using kernels, nonlinear classification problems are converted into linear classification problem in a

higher dimensional space H.

Geometric SVM represents two classes as convex hulls and solves the problem by finding the
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minimum distance between the two [44]. Given a set X = {x1, x2, . . . , xn}, the function φ maps

each instance into features space, φ(xi). For simplicity, we use φi to denote φ(xi) and the mapped

points forms a feature set Φ = {φ1, φ2, . . . , φn}. The convex hull, C(Φ), is a linear combination of

all the instances in X :

(14) C(Φ) =

{

k
∑

i=1

αiφi| φi ∈ Φ, 0 ≤ αi ≤ 1,
k

∑

i=1

αi = 1

}

In the case of linearly non-separable classes, soft convex hulls [22] or Reduced Convex Hull (RCH) [62,

61] has been proposed. The RCH, R(Φ, µ), is the set of convex combinations of instances in Φ with

αi bounded by a µ, µ ≤ 1:

(15) R(Φ, µ) =

{

k
∑

i=1

αiφi| φi ∈ Φ, 0 ≤ αi ≤ µ,

k
∑

i=1

αi = 1

}

By selecting appropriate µ for each class, the linearly non-separable problem can be reduced to

linearly-separable case [61]. The decision boundary is then perpendicular to the nearest points

between the two RCHs derived from training samples.

Our method uses the RCHs and defines the approximate skin segments of convex hulls. The

intuition is that only the samples within the skin are retained in training. When additional samples

are provided, they will be used together with the skin of the convex hull constructed from previous

dataset. Therefore, much less number of instances is used in training process. However, with a

superset of the possible SVs retained, missing SVs due to significant change of data distribution by

adding new examples can be circumvented.

3.3. Geometric Incremental Support Vector Machine

SVMs find the decision plane as a hyper-plane and is represented in terms of samples which

are support vectors. The problem of finding the samples to retain in Geometric Incremental Support

Vector Machine(GISVM) is manageable only if the chosen method is able to make all calculation

using the kernel function instead of mapping the points explicitly in the feature space. The Kernel

functions can be used by writing all formulations in terms of inner products of data points, which
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can be later replaced by kernel functions evaluations to obtain final feature space formulations [68].

3.3.1. Skin of Convex Hull
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Figure 3.2. Finding seed points using center of gravity

The skin of a convex hull consists of the out-most vertices (or samples). Given two bounds

µu and µl, 0 < µl < µu ≤ 1, the skin, S(Φ, µl, µu), of the convex hull C(Φ) is the set of instances

between two RCHs and can be expressed as follows:

(16) S(Φ, µl, µu) = {φi|φi ∈ {R(Φ, µu)− R(Φ, µl)}.
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Finding the skin of convex hull is nontrivial due to the lack of knowledge of the data distri-

bution. Katagiri and Abe used hyper-sphere to approximate the convex hull and selected boundary

samples for incremental learning [43]. We propose a recursive method that finds the vertices (i.e.,

extreme points) of a convex hull, which are used to represents the skin.

Given a set of instances Φ, φj ∈ Φ is an extreme point of C(Φ) if there exists a direction

d = φb − φa, φa, φb ∈ C(Φ) such that

(17) φj = argmax
φk∈Φ

P (φk, d),

where P (φk, d) denotes the projection of φk to d. The projection of a vector φk to a direction

d = φb − φa is defined as the inner product of the two difference vectors with respect to φa (the

reference vector):

(18) P (φk, d) = 〈φk − φa, d〉.

Extreme points are found in two steps: 1) a set of seed points are identified based on the

center of gravity; and 2) the set of extreme points are then found via recursively searching along

the direction defined by a pair of extreme points.

The seed points identified in the first step are the extreme points of the convex hull. For

a set of feature vectors Φ, the gravity center, Φ̄, is approximated with the average of the samples

in Φ, i.e., Φ̄ =
n

∑

i=1

αiφi and αi =
1

n
. The initial set of extreme points, E ⊆ Φ, are identified by

projecting each point φj ∈ Φ to the direction d(φm) = φm − Φ̄ and selecting the ones that give the

maximum projection:

(19) ESeed(X) = {φn| argmax
φn

P (φn, d(φm))∀φm, φn ∈ Φ}.

where P (φn, d(φm)) denotes the projection of φn to d(φm).

20



Knowing the explicit expression of the feature vectors φi is unnecessary to compute the

extreme points in the above procedure. The projection P (φn, d(φm)) in the feature space can be

achieved with the kernel operation in the input space as follows. Given two feature vectors φa and

φb in Φ, the projection of vector φc is P (φc, d(φa, φb)):

P (φc, d(φa, φb)) = 〈φb − φa, φc − φa〉

= 〈φb, φc〉 − 〈φb, φa〉 − 〈φa, φc〉+ 〈φa, φa〉

=
∑

i

biφi ·
∑

j

cjφj −
∑

i

biφi ·
∑

j

ajφj

−
∑

i

aiφi ·
∑

j

cjφj −
∑

i

aiφi ·
∑

i

aiφi

=
∑

i

∑

j

bicjK(xb, xc)−
∑

i

∑

j

biajK(xb, xa)

−
∑

i

∑

j

aicjK(xa, xc)−
∑

i

∑

i

aiaiK(xa, xa)

where
∑

i aiφi,
∑

i biφi, and
∑

i ciφi are convex representations of feature vectors φa, φb, and

φc, respectively. For an vector φj ∈ Φ, its coefficient vector equals [0, 0, . . . , 1, . . . , 0, 0]′, which the

index of value 1 is j. For a vector φk /∈ Φ but φk ∈ C(Φ), the values in its coefficient vector are in

the range of [0, 1), e.g., coefficient vector of the gravity center Φ̄ is [ 1
n
, 1
n
, . . . , 1

n
]′

When the sample data are dense enough and evenly distributed in the region, the geometric

center can be used to find the extreme points of the convex hull. However, this is usually not

the case in real-world applications. Due to the lack of knowledge of data distribution, the above

procedure could miss less prominent extreme points and find a subset of of the extreme points.

An example is illustrated in Figure 3.3(a). The solid squares denote the data samples and

the gravity center is marked with a large circle. The projected vectors are marked with solid dots.

Using our method, three extreme points are identified and highlighted with solid squares. For

example, point 16 is identified as an extreme point since it gives the greatest projection to d(x16, X̄)

(as well as d(x15, X̄)). However, instances 14, 15, 17 and 18 are the extreme points but are missed

by the process.
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Figure 3.3. Finding extreme points recursively.

The primary cause of missing extreme points is the insufficient number of examples, which

could be exaggerated in high dimensional cases. If data points in feature space are known, classical

algorithms such as QuickHull [8] and Gift Wrapping [71] can be used to complete the searching.

The idea of our algorithm is to recursively search along the perpendicular directions of the convex

hull boundaries, which is lists in Algorithms 1 and 2.

Our algorithm randomly selects two extreme points φp, φq ∈ E and another instance φm ∈ Φ.

The perpendicular searching direction d∗ can then be determined as follows:
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Algorithm 1 Search for extreme points

Require: Φ and E
1: Randomly select φp, φq ∈ E
2: Randomly select φm ∈ Φ and m 6= p,m 6= q
3: Identify probing direction d∗ using Eq. (20)
4: Φ− ← {φi|P (φi, d

∗) < 0}
5: Φ+ ← {φi|P (φi, d

∗) > 0}
6: E ← E

⋃

Probing(Φ+, d
∗, φp, φq)

7: E ← E
⋃

Probing(Φ−,−d
∗, φp, φq)

8: return E

(20) d∗ = φm − φp − P (φm, d(φp, φq))
φq − φp

||φq − φp||

Hyper-plane through φq − φp, and perpendicular to d splits the space into two halves. The

projections of instances, i.e., P (φi, d
∗), that are on the same sides as φm are positive, denoted with

Φ+; whereas the projections of the rest instances are negative, denoted with Φ−. Hence, the further

searching for extreme points is divided into two parts, as shown in Algorithm 1.

Searching in each half space is achieved recursively using a pair of identified extreme points,

φp and φq. Let Φ′ denote the instances in the half space. With a random instance φm in Φ′, a

probing direction, d∗, can be determined using Eq (20). d∗ points toward the outside of the convex

hull; Otherwise, change its direction. Hence, an extreme point is identified in Φ′ following Eq. 17.

φm is paired with φp and φq to split the feature space for further probing. The process stops when

no additional points exist in Φ′.

Fig. 3.3(b) illustrates an example of probing in a half space. The two extreme points are 17

and 18, which determines the probing direction (d and −d in Algorithm 1). The dotted lines depict

the projections of the instances. In two iterations, extreme points 1 and 12 are found.

In the algorithm the length of vectors φ(2) − φ(1) is found using,

||φ(2) − φ(1)|| =
[

〈φ(1), φ(1)〉+ 〈φ(2), φ(2)〉 − 2〈φ(2), φ(1)〉
]1/2

=

[

∑

i

∑

j

β
(1)
i β

(1)
j K(xi, xj) +

∑

i

∑

j

β
(2)
i β

(2)
j K(xi, xj)− 2

∑

i

∑

j

β
(1)
i β

(2)
j K(xi, xj)

]1/2
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Algorithm 2 Recursively probing and search for the extreme points. Probing(Φ′, d, φp, φq)

Require: Φ′ ⊆ Φ, d, φp, and φq

1: F ← ∅
2: Randomly select φm ∈ Φ′ and m 6= p,m 6= q
3: if Φ′ 6= ∅ then
4: Identify probing direction d∗ using Eq. (20)
5: if 〈d∗, d〉 < 0 then
6: d∗ ← −d∗

7: end if
8: d∗ ← d′∗

||d∗||

9: F ← F
⋃

{φe|φe = arg max
φk∈Φ′

P (φk, d
∗)}

10: for all φi ∈ Φ′ do
11: if P (φi, d

∗) > 0 then
12: Φ′′ ← Φ′′

⋃

xi

13: end if
14: end for
15: F ← F

⋃

Probing(Φ′′, d, φp, φe)
16: F ← F

⋃

Probing(Φ′′, d, φq, φe)
17: end if
18: return F

Range of the projections : RX,d of a set of samples X in a given directions d = x(1) − x(2), x(j) =
∑

i xiβ
(j)
i for j = 1, 2 would be

RX,d =

[

min
xi∈X
{Pxi,d} ,max

xi∈X
{Pxi,d}

]

Skin Segment : Given a set X = {x1, · · · , xn}, the skin segment with an angle θ around d =

x(1) − x(2), is

SSX,d =

{

xi|xi ∈ E(X), cos−1 〈d, x(2) − xj〉

||d|| · ||x
(2)
i − xj ||

≤ θ

}

The angle θj between vectors xj − x(2) and d = x(1) − x(2) is,

θj

θj = cos−1 〈d, x(2) − xj〉

||d|| · ||x(2)
i − xj ||

The angle θj between vectors xj ∈ Xi and center of gravity x
(g)
i and w = x∗

+ − x∗
− can be found
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Figure 3.4. (a) Two linearly non-separable classes consisting of 700 data points (b)
The classes are linearly separable using R(µ = 0.1) (c) Decision boundary is found by
finding the nearest points between the R(µ = 0.1) of both classes (d) The S(xi, 0.1, 1)
is retained for future iterations

using,

〈w, x
(g)−xj

i 〉 = ||w|| · ||x
(g)
i − xj || cos θ

θ = cos−1 〈w, x
(g)
i − xj〉

||w|| · ||x
(g)
i − xj ||

The decision boundary is perpendicular to w∗
2 − w∗

1, where w∗
1, w

∗
2 are the nearest points
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(a) (b)

Figure 3.5. Minkowski Set

between the RCHs. Decision boundary would be represented by w0, w, where midpoint of w1

3.3.2. Determining separability of two classes.

The nearest point algorithms find the nearest points between two hulls that are non-intersecting.

Formally if two classes X+, X− are linearly separable if there exists a direction d = (x̂+− x̂−), where

x̂+ ∈ X+, x̂− ∈ X− such that,

[

d

|d|
· (x̂+ − x+)

]

d ∩

[

d

|d|
· (x̂− − x−)

]

d = ∅

∀x+ ∈ X+, x− ∈ X−

In other words there exists a direction d such that the projection of all the points of both

classes are linearly separable. One possible approach would be to check in the pairs of all data

points of the classes, for each direction project all points and find separability of the two classes.

This would result in O(n3) projections and comparisons.

3.3.3. Constructing SVM by Finding the Nearest Points

For simplicity, the two classes are denoted with Φ+ = {φi : yi = 1} for the positive class,

and Φ− = {Φi : yi = −1} for the negative class. The learning task maps input instances into one

of the classes according to the training set {(x1, y1), · · · (xn, yn)}:

f : RN → {−1,+1}
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(a) (b) (c)

Figure 3.6. (a) Illustrates the Line 5 of Gilbert’s algorithm, z∗ is denoted using solid
green square, and all points of convex hull are projected on to z∗ (b) Illustrates the
Line 6 of Gilbert’s algorithm of finding the nearest point to origin on segment [z∗z]
(c) The solid blue line denotes the path of z∗ of Gilbert’s algorithm as, z∗ converges
towards the nearest point to origin.

Algorithm 3 Finding the nearest points of two convex hulls [32]

1: Z ← {φ+ − φ−|φ+ ∈ Φ+, φ− ∈ Φ−}
2: Randomly select z∗ ∈ C(Z)
3: repeat
4: z∗old ← z∗

5: z ← argmin
zi∈Z

P (zi, z
∗)

6: z∗ ← argminz′ ||z
′|| where z′ ∈ [z∗old z]

7: until ( ||z∗ − z∗old|| ≈ 0 )

where xi ∈ R
N , yi ∈ {−1,+1}.

The quadratic and geometric solutions of SVM have been shown to be equivalent [18, 10, 22,

86, 44]. In geometric approach to SVM, the two classes are represented by their convex hulls and

the nearest points are found. The SVM is the hyper-plane that perpendicular to the connection of

the nearest pair of points, denoted with (φ∗
+, φ

∗
−), in the two convex hulls, i.e.,

(21) (φ∗
+, φ

∗
−) = arg min

φ+∈Φ+,φ−∈Φ−

(||φ+ − φ−||)

where φ∗
+ ∈ Φ+, φ

∗
− ∈ Φ−, are found using the Gilbert’s algorithm [32]. The nearest point problem

is equivalent to finding the minimum norm problem (or the closest to the origin) of the Minkowski
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difference set. The solution of SVM is hence becomes finding w∗:

(22) w∗ = arg min
z∈Z

(||z||)

where Z = {φ+ − φ−|φ+ ∈ Φ+, φ− ∈ Φ−}. It is assumed that the convex hulls are disjoint.

The algorithm starts by randomly selecting an initial point z∗ ∈ Z. Next the point z ∈ Z

is found from all zi ∈ Z, where z makes the minimum projection on z∗. The current value of z∗ is

stored in z∗old, the new value for nearest point z∗ is updated with the closest point to origin on the

segment [z∗old z]. Nearest point between the origin and segment [z∗old z], can be found using,

[z∗old, z] =















































z∗old if −z∗old.(z − z∗old) ≤ 0

z if ||z − z∗old||
2 ≤ −z∗old · (z − z∗old)

z∗old +
−z∗

old
·(z−z∗

old
)

||z−z∗
old

||2
(z − z∗old) otherwise















































By choosing z to have the minimum projection, allows z∗ to move to closer to the origin,

while at the same time for z∗ to remain within the enclosing convex hull. Finding z the minimum

projection onto z∗, and moving z∗ along segment [z∗old z] is repeated until z∗ does not change.
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Figure 3.7. Steps of Gilbert algorithm, and the decision boundaries between the
two classes found after 100 iterations.
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CHAPTER 4

EXPERIMENTAL RESULTS

In our experiments, both synthetic and real-world benchmark datasets are used to evaluate

the proposed method. Synthetic data are computer generated in the two-dimensional domain, and

benchmark data are from the UCI [7] repository.

The proposed Geometric Incremental Support Vector Machine(GISVM) was compared with

libSVM [16]. The GISVM is implemented in Matlab, a C++ implementation of libSVM was

downloaded from the authors site. The experiments were conducted on Intel Dual Core PC with

4GB memory running Ubuntu operating system. The parameters for the SVMs including the

kernel, for GISVM was handpicked, and the libSVM parameters were determined by optimization

of libSVM.

Training vectors xi are mapped into a higher dimensional feature space by the function φ.

The decision boundaries are found in feature space where the classes are linearly separable. SVM

finds a linear separating hyper-plane with the maximal margin. C > 0 is the penalty parameter of

the error term.

K(xi, x+ j) = φ(xi)φ(xj) is called the kernel function.

The following four kernels were used in the experiments reported:

• Linear Kernel : xi · xj

• Polynomial Kernel : (xi · xj + 1)λ

• Radial Basis Function (RBF) Kernel : eγ|xi−xj |2

• Sigmoid : tanh(γxi · xj + coefficient)

The RBF is one of the most popular choice of kernel types used in SVMs. This is mainly because

of their localized and finite responses across the entire range of the real x-axis [66]. In addition,

the Sigmoid kernel behaves like RBF for certain parameters[54]. Further, the number of hyper-

parameters which influences the complexity of model selection, whereas the polynomial kernel has

more hyper-parameters than the RBF kernel.
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4.1. Evaluation Metrics

For quantitative evaluation, we adopted measures of sensitivity and specificity are as follows:

Accuracy =
TP + TN

TP + FN + TN + FP

Specificity =
TN

TN + FP

Specificity =
TN

TN + FP

where

• TP - Number of positive examples that are correctly labeled,

• TN - Number of negative examples that are correctly labeled,

• FP - Number of negative examples that are labeled as positive,

• FN - Number of positive examples that are labeled as negative.

Incremental Learning methods should be robust and reliable [76] this can be identified using

stability, improvement, and Recoverability.

Stability: of the prediction accuracy; this should not significantly vary over incremental

steps.

Improvement: of the prediction accuracy as the training progresses; when more training

examples are seen.

Recoverability: the learning method should be able to recover from its errors. Even if

accuracy drops at a certain step, should be able to recover to previous states.

4.2. Synthetic Dataset

The synthetic datasets are generated to visualize the decision boundaries and to compare the

underlying distribution. The block and the disk datasets are linearly separable, and the Gaussian

data sets are non-linearly separable in kernel space as well (Fig 4.1). The block and Gaussian

datasets are created in two fashions 1) Simple 1×2 - where the block datasets are linearly separable

in the feature space, however the Gaussian is not linearly separable due to overlap. 2) XOR - The
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Figure 4.1. Synthetic Datasets

two datasets are created as the classic XOR problem. Where the block XOR dataset can be linearly

separable in a feature space, but not the Gaussian dataset due overlap.

Each of the synthetic dataset was created using 200 randomly generated instances for each

class. Each attribute ranged from [0 1], and equally divided among the cells in the attribute, after

leaving a 0.01 separation between the cells for the non-overlapping classes. For the block dataset

the number of samples for each cell in XOR was set as equal. The Gaussian datasets were created

by randomly sampling Gaussian functions, with the underlying distributions having overlap by 1%.

Success rate was estimated by generating ten sets of samples were randomly generated using each

model, and testing on a test set of 200 instances uniformly sampled in a grid fashion.
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Figure 4.2. Decision boundaries of the classifiers for the 1 × 2 Gaussian datasets
using RBF Kernal.
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Experiments were performed to visualize the 1. decision boundaries and compare with the

underling distribution from which data was generated 2) compare performance with batch learning

of libSVM.

Using our 2-D synthetic datasets, we plot the final classifiers using our method in Fig. 4.2-

4.4. The data instances are marked with squares and triangles in the plots. The shade indicates the

distance to the decision boundary. With the shades at 0 indicate, equal distance to both classes.

The training started with randomly selected 10 samples and, at each iteration, 10 new samples from

the training set were randomly selected and used.

Fig- 4.2,4.4 represent the behavior of kernels and their parameters on on the decision bound-

ary found. In the experiments with both datasets, as we decrease the σ of the RBF kernel, the

final classifier appears over fitting. Among all the kernels tested, RBF kernels with σ around 0.1

resulted in better decision boundaries than others. With appropriate kernels, it is evident that our

method achieves satisfactory classifiers that closely model the underlying data distribution.

Fig. 4.6(a) and (c) illustrate the maximum number of samples retained (i.e., the samples in

the skin of the RCHs) from both classes as the function of σ using the RBF kernels. The total

training examples are 200 in both Gaussian and XOR datasets. With the decrease of σ value,

the number of samples retained significantly increased. In both cases, when σ reaches 0.01, the

number of samples retained is approximately the total number of samples used in the training.

This indicates possible over-fitting of the model, which is also depicted in Fig. 4.3,4.2,4.4. The

number of SVs changes much slightly. The good choice for σs for the synthetic datasets is 0.1,

which provides a good description of the datasets and retains much less number of samples in the

training iterations.

Fig. 4.6(b) and (d) show the number of samples retained from both classes during the training

iterations. With properly chosen σs, the number of samples retained is small, which implies the

stability of the incremental learning process. With all training examples exposed to the learner, the

number of retained samples is only a fraction of the total samples used. That is, a much smaller

amount of memory was used to complete the training. In case of batch learning, all examples are

loaded in to memory at one time for training. Hence, it is evident that our incremental learning
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method is memory efficient.

Table 4.2 lists the number of seconds it takes by our method and batch learning-based SVM

to complete training and updating. Ten repetitions were conducted and the average times are

reported. Because random samples were used, training time varies and the standard deviation is

listed in the parenthesis. The incremental learning simulates the case that new examples, when they

become available, are used to update the classifier. Assuming equal number of examples are used

to update classifiers, which is referred to as step size ∆. The time reported for incremental learning

is the average iteration time to complete the learning. If batch-learning strategy is used, the new

examples are used together with the existing ones to retrain the classifier. The times reported for

batch learning are the ones it took to learning from all examples.

Because of the small number of examples available in some datasets, we were unable to

conduct experiments with larger step size. Based on the two incremental learning cases (∆ = 10

and ∆ = 20), we can see that our incremental learning handles data efficiently and can update the

classifier in much shorter time. The average time cost for our method to complete is approximately

13.4% of the time cost for batch learning SVM.

It is an interesting observation that larger step size does not necessarily result in longer

training time. This is probably due to the fact that the much less number of examples (i.e.,

examples lie in the skin of the RCHs) were carried to the next round of training. That is, the

training complexity is mostly determined by a subset of training examples.

In our experiments, we use hierarchical SVM to perform multi-class classification. In the first

level one-against-all is for all classes is performed to find the class which discriminates from the rest.

The first level classifier is used to classify the class identified. In the next level the one-against-all

for remaining classes is repeated to find the class which discriminates the rest of the remaining

classes. This is repeated until all classes can be classified.

Figure 5.6 shows results or classifying three classes. Since there are three classes there would

be two levels of classifications. The decision boundary in Figure 5.6 is denoted by the zero level

contour. Given a test example the first level classifier would be used to test for class 3, and the

second level would be used to classify class 1, 2.
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Figure 4.7. Results of hierarchical multi class classification. Contours of decision
boundaries of (a) Class 3 Vs Class(1&2) (b) Class(1)

4.3. Benchmark Dataset

Five real-world datasets were obtained from UCI machine learning repository [7], which

contain no missing values. In addition, a mammography[17] dataset is used. For the multi-class

datasets, one class is selected as the positive class and the rest are grouped into the negative class.

Each feature in a dataset was normalized with the mean value and the range of that feature. Hence,

the instances are in the range of [0, 1]. Table 4.1 lists the properties of the datasets used in our

experiments.

To evaluate the performance of our method, sensitivity and specificity are used as metrics

as well as accuracy. Fig. 4.8-4.12 illustrates the classifier performance based on these three metrics

during the incremental learning iterations. Ten repetitions were conducted with random initial

training set. For each dataset, 50% of the data were randomly selected and used for training. The

remaining data were used as the test set.

In each case, a SVM classifier was created using all the training data. The best parameters

were selected based on their generalization performance with the testing dataset. Table 4.3 lists the

selected kernels and parameters that gave the best performance measures. The results from these

classifiers are used as reference and are depicted as horizontal lines in Fig. 4.8-4.12.

In our incremental learning process, 10 samples were randomly selected from each class of
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Table 4.1. Properties of the benchmark datasets used in the experiments.

Classes Sample Size
Name Dim. (+) Class Total (+) Class (-) Class

IRIS 4 Setosa 150 50 100
SPECT 22 1 267 212 55
PIMA 8 1 768 268 500
YEAST 8 CYT 1,484 463 1,021
IONOSPHERE 34 b 351 126 225
MAMMOGRAPHY(ISM) 6 2 11,183 260 10,923

Table 4.2. Training time (in second) used in our incremental and the conventional
batch learning. The results show the average over five repetitions. The standard
deviation is in the parenthesis.

Batch Learning SVM
Datasets Training Example Time
Gaussian Training Example 2.9 (0.4)
XOR Training Example 5.2 (0.4)
iris Training Example 0.65 (0.1)
SPECT Training Example 2.7 (0.3)
yeast Training Example 97.2 (12.5)
pima Training Example 71.4 (7.9)
ionosphere Training Example 3.8 (0.5)
Mammography Training Example 2261(478)

Our Incremental Learning Method
∆ = 10 ∆ = 20
Time Iter. Time Iter.

Gaussian 0.2 (0.04) 19 0.21 (0.06) 9
XOR 0.34 (0.03) 19 0.54 (0.08) 9
iris 0.15 (0.02) 5 0.18 (0.03) 3
SPECT 0.35 (0.05) 11 0.25 (0.02) 6
yeast 3.59 (0.25) 73 5.16 (0.42) 37
pima 21.14 (0.25) 36 13.39 (1.34) 19
ionosphere 0.3 (0.04) 15 0.43 (0.05) 8
Mammography 2859(541) 445 1540 (338) 223

the training set and a SVM is trained. In each incremental step, randomly selected 10 samples

from the remaining training dataset were used to update the classifier. The intermediate classifiers

were evaluated with the test dataset. For each dataset, 10 repetitions were conducted and the

average performance is plotted with solid line in Fig. 4.8-4.12. The shaded area depicts the range

of performance in each training iteration.
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Table 4.3. Parameters used for the experiments

GISVM
Datasets Kenal µu µl

IRIS Linear 1 1
SPECT RBF σ=0.05 0.9 0.6
PIMA RBF σ=0.10 0.9 0.6
YEAST RBF σ=0.15 0.5 0.3
IONOSPHERE RBF σ=0.01 0.5 0.3
MAMMOGRAPHY RBF σ=0.01 0.8 0.4

(+) Sample Size Average
Name Dim. Class Total (+) (-) Memory Usage

IRIS 4 Setosa 150 50 100 36.4%
SPECT 22 1 267 212 55 44.8%
PIMA 8 1 768 268 500 39.5%
YEAST 8 CYT 1,484 463 1,021 26.4%
IONOS 34 b 351 126 225 28.1%
ISM 6 2 11,183 260 10,923 21.8%

Table 4.4. Memory Usage of for UCI datasets by GISVM

With more examples included in the training process, the classifier trained with our method

improves its performance. It is evident in the cases of Yeast, SPECT, Pima, and Ionosphere. In

the cases of Iris and Ism, the performance at the very beginning is already superior and there is

not much of improvement space. Hence, the change of performance in the following iterations is

minimum. However, improvement in sensitivity can still be observed in the training using Ism

dataset and by the end of iterations, classifier outperformed the batch learning by a small margin.

Despite a slightly drop of specificity of the SPECT dataset, the SVMs trained with our

method achieved the same performance or even outperformed the batch learning method. As listed

in Table 4.1, the SPECT dataset contains more positive examples than negative examples. The ratio

is approximately 4:1 between positive and negative classes. Hence, the improvement of sensitivity

leverages the under-performance in terms of specificity and the overall accuracy is close to the

batch training result. It is interesting that in five cases (except Iris), the intermediate classifier had

a degradation in early iterations, but the training process was able to recover to the benchmark

performance asymptotically as additional data instances are in-cooperated.
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Figure 4.3. Decision boundaries of the classifiers for the 1 × 2 Gaussian datasets
using Polynomial and linear Kernal.
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Figure 4.4. Decision boundaries of the classifiers for the XOR block datasets using
RBF Kernal, Polynomial and linear kernels.
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Figure 4.5. The number of extreme points identified in the incremental learning
progresses using RBF kernels. (a) and (c) show the number of retained samples and
SVs as a function of sigma using Gaussian dataset and XOR dataset, respectively.
(b) and (d) show the number of retained samples using RBF kernel with σ = 1.0,
σ = 0.1, and σ = 0.01 (from left to right)
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Figure 4.6. The number of extreme points identified in the incremental learning
progresses using RBF kernels. (a) and (c) show the number of retained samples and
SVs as a function of sigma using Gaussian dataset and XOR dataset, respectively.
(b) and (d) show the number of retained samples using RBF kernel with σ = 1.0,
σ = 0.1, and σ = 0.01 (from left to right)
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Figure 4.8. Results IRIS dataset. The rows top to bottom accuracy, sensitivity, and specificity.
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Figure 4.9. Results ISM(Mammography)[17] dataset. The rows top to bottom ac-
curacy, sensitivity, and specificity.
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Figure 4.10. Results SPECT dataset. The rows top to bottom accuracy, sensitivity,
and specificity.
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Figure 4.11. Results PIMA dataset. The rows top to bottom accuracy, sensitivity,
and specificity.
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Figure 4.12. Results IONOSPHERE dataset. The rows top to bottom accuracy,
sensitivity, and specificity.
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Figure 4.13. Results ISM dataset. The rows top to bottom accuracy, sensitivity,
and specificity.
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CHAPTER 5

APPLICATION - COMPUTER AIDED DIAGNOSIS FOR CAPSULE ENDOSCOPY

5.1. Capsule Endoscopy

Figure 5.1. Contents of CE Device 1) Optical Dome 2) Lens holder 3) Lens 4)
Illuminating LEDs (Light Emitting Diode) 5) CMOS 6) Imager 7) Battery 8) ASIC
transmitter Antenna

Wireless capsule Endoscopy (WCE) is a recently established technology that requires no

wired device intrusion and can be used to examine the entire small intestine non-invasively. The

imaging component of this system is a vitamin-sized capsule that is composed of a color CMOS

camera, a battery, a light source and a wireless transmitter. It provides a 140-degree field of view

and generates 256 × 256 images. Once the device is activated, it is ready to take pictures. The

camera acquires two pictures every second for approximately eight hours, transmitting images to a

recording device worn by the patient. By using a lens of short focal length, images are obtained as

the capsule is propelled through the tract. Unlike conventional fiber-optic Endoscopy, WCE requires

little patient preparation and can potentially image any section in the digestive system. The ability

of WCE to detect undersized lesions in the small intestine is ideally suited for this particular role.

It enables physicians to examine the entire small intestine, a region that was previously difficult

to view at all, and provide a new non-invasive gastrointestinal (GI) visualization technology. The

diagnostic yield using WCE is much higher compared to other endoscopic imaging methods. Capsule

Endoscopy has the potential for use in a wide variety of illnesses.
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Chron’s Disease

GI Bleeding

Small Bowel Tumor

Figure 5.2. Video frames from CE videos showing symptoms of disease.

5.2. Feature Extraction

(a) (b)

Figure 5.3. (a) HSV & (b) RGB Color spaces of pixels with obscure bleeding(red), and

non-bleeding(blue) regions.
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Figure 5.4. Average Hue-Saturation Histogram of (a) Non bleeding frames (b) Bleeding

frames of the training set.

We employ three image features in our method: color histograms, dominant color, and color

co-occurrence.

Color Histogram (CH)

Color histogram is widely used due to its concise representation of color information. Among

many color spaces, HSV separates the luminance from chromaticness (Figs 5.4,5.3). It is usually

represented with a hexacone, the central vertical axis of which denotes the luminance. Hue is defined

as an angle relative to the red and ranges in [0, 2π]. Saturation is measured as a radial distance from

the central axis of the hexacone. Its chromatic components describe color in a way that is most

suitable to bleeding detection [55]. Hence, video frames are converted to HSV color space and each

color component is normalized to [0, 1] and sampled with 256 bins. In previous experiments with CE

videos, it was noted that HSV color space gives better classification performance on average [33].

In addition, using histogram significantly reduces the dimensionality (Each frame is a 256× 256

color image. If pixel color is used, the dimensionality of each instance is up to 196,608.) Hence,

we adopted the color histogram in the HSV space as features. The color histogram is very large

and sparse matrix as shown in Figure 5.5. With n bins used in each color component, there are

n3 features using HSV histogram for every video frame, most of which are zeros or close to zeros.

To suppress sparseness and the number of values in features, only the hue and saturation (HS)

components were used. As observed in our previous experiments [33, 55], an advantage of using

HS components is improved robustness in handling lighting variations in the GI tract. As shown
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in Figure 5.5, the 2D space spanned by HS components is dominated with small values. Hence,

a minimum bounding rectangle region of the HS space with non zero values was identified from

the training images. Only the values within the rectangular region of HS histogram were used as

features for our classification.
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Figure 5.5. The average HS histogram of the CE video used in training. The
rectangle denotes the color space used in our learning and classification processes.

Dominant Color (DC)

The dominant color consists of eight representative colors, variances for each color, and their

percentages in the image [60]. The descriptor is presented as a vector in the following format and

the total percentages of the colors in the image sum to 1.

(23) DC = {ci, vi, pi}, and i = {1, . . . , 8}

where ci is the ith dominant color, pi is its percentage, vi is the color variance.

For each video frame, colors are clustered and the mean color is used to represent each cluster.

This results in a much smaller number of colors. The variance of dominant colors is computed for

bleeding and non-bleeding frames. Despite possible information overlap with CH, DC delivers a

more concise color description and suppresses the color variance as well as the number of colors.
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Color Co-occurrence (CC)

The color co-occurrence matrix follows the classical computation of co-occurrence matrix

and contains the frequency of color pair within a pre-defined distance, i.e., (△x,△y). In an 8-bit

color image, there are possible 224 colors. To reduce the matrix size, we quantize the color into a

set of representative ones. In addition, to eliminate rotation variance in the image plane, we omit

the direction of the spatial location of two pixels and only keep track of the pixel distance, i.e.,

d =
√

△x2 +△y2. Because the matrix is symmetric with respect to the major diagonal line, our

feature vector only uses the components in the upper triangle matrix.

5.3. Obscure Bleeding Detection in CE Videos

Among many efforts in computer aided diagnosis with CE videos, bleeding detection has

been investigated the most due to its clinical importance. The “Suspected Blood Indicator” func-

tion by the Given Imaging, a CE manufacturer, provides the capability of detecting blood in video

frames. A study by Liangpunsakul et al. [53] showed that the overall sensitivity and accuracy of

SBI were 25% and 34.8%, respectively. It exhibits better performance for active bleeding lesions

in the small bowel with reported sensitivity and accuracy of 81.2% and 83.3%. This deficiency

motivated studies in automatic bleeding detection. Color feature is adopted in many detection

studies [47, 39, 37] and texture features are used in applications particularly for detecting hetero-

geneous objects, e.g., ulcer and polyps [9, 82, 12]. The combination of color and texture has also

been heavily experimented [51, 21]. On the other hand, neural networks [82] Support Vector Ma-

chines (SVMs) [57, 33], and thresholding [82] are used to make decisions. Despite the encouraging

improvement, many previous studies were evaluated with a small number of samples and, to the

best of our knowledge, no performance was reported with respect to entire videos. An important

question awaits investigation: “Given relatively small number of positive examples from CE videos,

how to train learning algorithms to achieve minimal false negative detections?”

Automatic detection of obscure bleeding in CE videos has been studied and Table 5.1 summa-

rizes 12 related work. Despite different features and classification methods used, the experimental

data and performances vary greatly. Among these studies, results in eight studies were generated

from experiments using 1000 examples or less [52, 9, 82, 41, 51, 21, 40, 46, 56]. Two studies [48, 39]
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used moderately larger number of examples. Comparing to the number of frames available in a

CE video (approximately 50,000), however, the training data set size is much smaller. Ideally, if

the training set is well-selected and unbiased, the classifier can achieve satisfactory generalization

performance. It is unclear how the samples are selected and if the cohort formed represents the

true data distribution.
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Table 5.1. Experimental data and detection outcomes. ‘-’ indicates not reported in the paper.

Data Set Size Performance
Reported Studies Total Abnormal Normal Sensitivity Specificity Accuracy

Kodogiannis and Boulougoura [46] 140 35 35 - - 95.7%
Kodogiannis and Lygouras [56] 140 35 35 - - 97.1%
Vilarino et al. [82] 400 100 300 - - 95.5%
Coimbra and Cunha [21] 1000 - - - - 87%
Lau and Correia [48] 1705 577 1128 88.3% - -
Li and Meng [52] 60 30 30 65.2% 82.5% -
Li and Meng [51] 400 200 200 91% 93% -
Jung et al. [39] 2000 1000 1000 92.8% 89.5% -
Barbosa et al. [9] 204 100 104 98.7% 96.6% -
Karargyris and Bourbakis [41] - 20 30 75% 73.3% -
Karargyris and Bourbakis [40] 50 10 40 100% 67.5% -
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5.3.1. Experimental Setup

CE videos were manually annotated by gastroenterologists. The positive training set of 1000

frames was constructed by extracting the frames with signs of obscure bleeding from two videos

of human subjects. And the negative training set showing the normal GI tract was obtained be

extracting all the frames from a CE video of a normal subject. Seven full length videos of seven

subjects with signs of obscure bleeding and three videos with no signs of bleeding was used for

evaluation. Each frame in a CE video is 256×256 pixels in size with a color depth of 8-bits. As

part of preprocessing, the black border, which is outside the field-of-view, was removed to avoid

confusion and reduce the computational expense. The MPEG descriptors Scalable color and the

dominant color were used as features of each frame.

First, a suitable µu is found such that the RCHs becomes linearly separable. Using the

same µu for both classes, to minimize the total number of mis-classified samples from both classes

would result in the decision boundary being biased to towards the majority class. This would

result in large number of false negatives. To avoid this two separate µu+, µu− are determined,

by weighting using the ratio of number of samples from each class seen. i.e. when making the

convex hulls linearly separable for the CE frames one frame with bleeding is weighted to be equal

to 150 frames containing no signs of bleeding. Next, to avoid over-fitting, a µli(< µui) is selected

and the skins S(Φi, µli, µui) i = {+,−}, denoted by filled triangles in Fig-3.4-b are used to find

the decision boundary for the current incremental step. The decision boundary is determined by

finding the nearest points between the skins S(Φi, µli, µui) i = {+,−}. For the incremental steps

skins S(Φi, µli, 1) i = {+,−} (Fig-3.4-d) are retained.

Further color histogram is invariant to image scaling, translation, rotation as well as partial

occlusion. Radial basis function with σ = 0.01 was used as kernel to train the support vector

machine, the samples were weighted by using an imbalanced ratio of 1:150. The Table 5.2 list the

performance on two test videos, by adding a video at each incremental step.

5.4. Segmentation of CE Videos by organs in the Gastrointenstinal Tract

Recognizing where a WCE frame is taken in the digestive tract is vital to diagnosis and

treatment deployment. An important question that often arises at diagnosis is where the lesion
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Table 5.2. Results of incrementally training by adding one CE video at each step.

Sensitivity Specificity

Step #1 77.2% 98.7%
Step #2 79.5% 98.5%
Step # 3 78.3% 98.6%
Step # 4 80.9% 98.3%
Step # 5 81.7% 98.5%

is found. Reviewing WCE videos and estimating the anatomical locations of WCE frames are,

however, very difficult, even for experienced readers. The primary reasons are inconsistent speed

of WCE device and lack of physical landmarks. The current technology relies on wireless signal

strength, which is used to calculate the distance of the device to the data receiver. This method

provides very coarse anatomical trace. A common practice by physicians is reading WCE frames to

identify some specific gastrointestinal (GI) images, known as GI landmarks, that indicate entrance

to a GI section [23, 57].

The software that comes with Pillcam camera displays the route and relative position of the

capsule on a graphical model of the torso, so that diagnosis could be performed. However these are

displayed only after the medical specialist manually annotates Pylorus, where the capsule leaves

the stomach and enters the intestine, and the Ileocecal valve, between the intestine and colon. The

experiments on CE videos were performed to automate the classification of the frames of CE videos

into four digestive organs namely esophagus, stomach, intestine and colon.

5.4.1. Multi-class Classification

Figure 5.6 illustrates the contour plots of decision boundary trained with synthetic data

sets of three classes. The color depicts the distance to the center of each class. Two classifiers

were trained to partition the space into three parts that correspond to the class distribution. The

decision boundary for this example is denoted with the zero level contour. Figure 5.6(a) illustrates

the decision boundary of class 3 verses classes 1 and 2, whereas Figure 5.6(b) illustrates the decision

boundary of classes 1 and 2. The 2D contour plots of the classifier demonstrate that our method

predicts class labels successfully in the case of multi-class classification.
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Figure 5.6. Results of hierarchical multi class classification. Contours of decision bound-

aries of (a) Class 3 Vs Class(1&2) (b) Class(1)

Table 5.3. Order and parameters of hierarchical classification of organs of CE videos

Inc GeoSVM LibSVM

Kernel

1 Esophagus Vs Rest RBF(σ = 0.15)
2 Intestine Vs Stomach & Colon RBF(σ = 0.1)
3 Stomach Vs Colon RBF(σ = 0.5)

5.4.2. Experimental Setup

The order of classification of multi-class SVM was determined based on the preliminary

classification evaluation. In our experiments, identification of esophagus gives the best accuracy

followed by the identification of small intestine. Hence, the order is determined and listed in

Table 5.4. The kernels used to train SVM are also included in this table.

Table 5.4. Order and parameters of hierarchical classification of organs of CE videos

Order Dividing classes Kernel

1 Esophagus vs. Rest RBF(σ = 0.15)
2 Small intestine vs. Stomach and Colon RBF(σ = 0.1)
3 Stomach vs. Colon RBF(σ = 0.5)

In the learning process, 50 frames were randomly selected from each class of the training

video to train a SVM. In each incremental step, randomly selected 20 frames from the remaining

training video frames were used to update the classifier. The iteration repeats until the training

examples exhaust. Table 5.5 lists the results of the final classifiers tested using the test videos. The
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performance of our method is highly satisfactory. With the majority of frames acquired in stomach

and small intestine, the average accuracies are 86.9% and 94.4%, respectively. Images acquired in

colon are disturbed with noise from feces and fluid, which results in large number of dark images

and causes performance drop in the classification accuracy.

Table 5.5. Classification performance of digestive organs in CE videos

Video Esophagus Stomach Small Intestine Colon

1 100.0% 87.6% 94.2% 85.3%
2 94.4% 85.8% 95.3% 82.2%
3 95.0% 87.2% 94.7% 84.3%
4 100.0% 86.4% 94.1% 83.7%
5 90.0% 87.7% 93.9% 94.3%

At the end of incremental training only 12% of the frames were part of the skins among the

four classes for the hierarchical SVMs. Apparently, the smaller number of examples demands much

less memory space for learning process and, hence, provides a plausible mechanism for handling

large amount of data set. When new samples are added, the classifier is updated efficiently in

contrast to the conventional batch learning methods.
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CHAPTER 6

CONCLUSION

With advance in data acquisition technology, data available for research have become large

and dynamic. Efficient and scalable approaches are needed that can modify knowledge structures

in an incremental fashion without having to revisit all previously processed data.

This dissertation presents GISVM to learn from large data set with emerging trend and

dynamic patterns. To overcome high computational demands from large data set, this dissertation

describes a method to identify and employ a subset of samples in the training process. GISVM,

extends the reduced convex hull concept and defines the approximate skin segments of convex hulls.

The data points in the skin are found by identifying the extreme points. A recursive method is

developed to find such points in reduced convex hulls. The intuition of our incremental learning

is that only the samples within the skin are retained in training. When additional samples are

provided, they will be used together with the skin of the convex hull constructed from previous

dataset. This results in a small number of instances used in incremental steps of the training

process. The set of extreme points are found by recursively searching along the direction defined

by a pair of extreme points. Therefore, a fewer number of instances is used in the training process.

Besides the advantages in computational efficiency, our method handles linearly non-separable

cases naturally. This is achieved with the representation of disjoint datasets of the distinct classes.

Experiments were conducted with synthetic, benchmark and CE dataset. The results demon-

strated highly competitive performance that requires much fewer resource. Based on the experi-

ments, the following conclusions can be drawn.

With the synthetic datasets, the proposed method achieves satisfactory classifiers that closely

model the underlying data distribution with appropriate kernels. The choice of RBF kernel for the

synthetic datasets provides a good description of the datasets and retains much fewer number of

samples in the training iterations.

From the experiments on benchmark datasets it was demonstrated that the GISVM learning

handles data efficiently and update the classifier in approximately 13.4% of the time for batch learn-
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ing SVM. Performance over the incremental steps demonstrates the proposed method’s stability,

improvement, and recoverability. The accuracy over the incremental steps increases steadily. Since

the implementation is optimized for accuracy, the sensitivity or the specificity drops at certain steps.

As the skin containing useful samples is retained, the classifier is able to recover to previous levels in

future iterations. Furthermore, the improvement in the performance measures over the incremental

steps by deleting samples other than the ones on skin indicates that retaining the samples on the

skin preserves adequate information about the decision boundary of SVMs.

From the experiments on CE videos it was noted that the average performance of classifying

CE video is above 86.9%, which is very competitive. The amount of memory space required in

the training process could be one eighth of what is required by the conventional SVM, which cast

new light on processing large data set within constrained resource. The accuracy for our CE video

segmentation could be further improved if temporal information is utilized. Further experiments

on CE videos demonstrated that GISVM can handled data that could not be handled by libSVM.

6.1. Future Work

This dissertation presents GISVM to learn from large data set with emerging trend and

dynamic patterns to overcome high computational demands. Primary forcus of this work has been

to identyfy more informative samples and use them in incremental steps. Thereby reducing the

number of samples used in incremental steps and enable learning in limited memory situations. On

direction of future work would be to efficiently store the computed values, so that they could be

reused.

Parameters selection for the GISVM is done by deciding on parameter ranges, and to then

do an exhaustive grid search over the parameter space to find the best setting manually. This at

times results in a large number of evaluations and long training run times. Automating parameter

selection of parameters a using a more coarse to fine refinement is another direction for improvement.

GISVM proposed in this dissertation has been validated using synthetic and benchmark data

set. Theoretical validation or estimates on bound on error between batch and incremental learning

would add value to the proposed method.
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