676 research outputs found

    Optimum and heuristic synthesis of multiple word-length Architectures

    Get PDF
    Published versio

    Emulator of a boost converter for educational purposes

    Get PDF
    Project-based learning (PBL) is proposed for the development of a Hardware-in-the-Loop (HIL) platform and the design of its digital controller for an undergraduate course on Digital Electronic Systems. The objective for students is the design of a digitally controlled HIL Boost converter, a digital pulse-width modulator (DPWM) and a current mode controller, implemented in field-programmable gate array (FPGA) devices. To this end, the di erent parts of the project are developed and evaluated, maximizing the use of FPGA resources in the design of the HIL and DPWM blocks, and applying design techniques that minimize the use of the digital resources used in the design of the controller. Students are equipped with a new individualized educational experience, allowing them to test their technical competence and knowledge in an environment close to the reality of the industry

    Hardware and Software Multi-precision Implementations of Cryptographic Algorithms

    Get PDF
    The software implementations of cryptographic algorithms are considered to be very slow, when there are requirements of multi-precision arithmetic operations on very long integers. These arithmetic operations may include addition, subtraction, multiplication, division and exponentiation. Several research papers have been published providing different solutions to make these operations faster. Digital Signature Algorithm (DSA) is a cryptographic application that requires multi-precision arithmetic operations. These arithmetic operations are mostly based upon modular multiplication and exponentiation on integers of the size of 1024 bits. The use of such numbers is an essential part of providing high security against the cryptanalytic attacks on the authenticated messages. When these operations are implemented in software, performance in terms of speed becomes very low. The major focus of the thesis is the study of various arithmetic operations for public key cryptography and selecting the fast multi-precision arithmetic algorithms for hardware implementation. These selected algorithms are implemented in hardware and software for performance comparison and they are used to implement Digital Signature Algorithm for performance analysis

    Methodology and optimizing of multiple frame format buffering within FPGA H.264/AVC decoder with FRExt.

    Get PDF
    Digital representation of video data is an inherently resource demanding problem that continues to necessitate the development and refinement of coding methods. The H.264/AVC standard, along with its recent Fidelity Range Extensions amendment (FRExt), is quickly being adopted as the standard codec for broadcast and distribution of high definition video. The FRExt amendment, while not necessarily affecting the overall decoder architecture, presents an added complexity of providing efficient memory management for buffering intermediate frames of various pixel color samplings and depths. This thesis evaluated the role of designing the frame buffer of a hardware video decoder, with integrated support for the H.264/AVC codec plus FRExt. With focus on organizing external memory data access, the frame buffer was designed to provide intermediate data storage for the decoder, while using an efficient store and load scheme that takes into consideration each frame pixel format of the video data. VHDL was used to model the frame buffer. Exploitation of reconfigurability and post-synthesis FPGA simulations were used to evaluate behavior, scalability and power consumption, while providing an analysis of approaches to adding FRExt to the memory management. Real-time buffer performance was achieved for two common frame formats at 1080 HD resolution; and an innovative pipeline design provides dynamic switching of formats between video sequences. As an additional consequence of verifying the model, a preexisting Baseline H.264/AVC decoder testbench was augmented to support testing of multiple frame formats

    SeamlessM4T-Massively Multilingual & Multimodal Machine Translation

    Full text link
    What does it take to create the Babel Fish, a tool that can help individuals translate speech between any two languages? While recent breakthroughs in text-based models have pushed machine translation coverage beyond 200 languages, unified speech-to-speech translation models have yet to achieve similar strides. More specifically, conventional speech-to-speech translation systems rely on cascaded systems that perform translation progressively, putting high-performing unified systems out of reach. To address these gaps, we introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-text translation, and automatic speech recognition for up to 100 languages. To build this, we used 1 million hours of open speech audio data to learn self-supervised speech representations with w2v-BERT 2.0. Subsequently, we created a multimodal corpus of automatically aligned speech translations. Filtered and combined with human-labeled and pseudo-labeled data, we developed the first multilingual system capable of translating from and into English for both speech and text. On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation. Compared to strong cascaded models, SeamlessM4T improves the quality of into-English translation by 1.3 BLEU points in speech-to-text and by 2.6 ASR-BLEU points in speech-to-speech. Tested for robustness, our system performs better against background noises and speaker variations in speech-to-text tasks compared to the current SOTA model. Critically, we evaluated SeamlessM4T on gender bias and added toxicity to assess translation safety. Finally, all contributions in this work are open-sourced and accessible at https://github.com/facebookresearch/seamless_communicatio

    ChatGPT for Digital Forensic Investigation: The Good, The Bad, and The Unknown

    Full text link
    The disruptive application of ChatGPT (GPT-3.5, GPT-4) to a variety of domains has become a topic of much discussion in the scientific community and society at large. Large Language Models (LLMs), e.g., BERT, Bard, Generative Pre-trained Transformers (GPTs), LLaMA, etc., have the ability to take instructions, or prompts, from users and generate answers and solutions based on very large volumes of text-based training data. This paper assesses the impact and potential impact of ChatGPT on the field of digital forensics, specifically looking at its latest pre-trained LLM, GPT-4. A series of experiments are conducted to assess its capability across several digital forensic use cases including artefact understanding, evidence searching, code generation, anomaly detection, incident response, and education. Across these topics, its strengths and risks are outlined and a number of general conclusions are drawn. Overall this paper concludes that while there are some potential low-risk applications of ChatGPT within digital forensics, many are either unsuitable at present, since the evidence would need to be uploaded to the service, or they require sufficient knowledge of the topic being asked of the tool to identify incorrect assumptions, inaccuracies, and mistakes. However, to an appropriately knowledgeable user, it could act as a useful supporting tool in some circumstances

    Address generator synthesis

    Get PDF

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector
    corecore