
ADDRESS GENERATOR SYNTHESIS

by

Douglas M. Grant

A thesis submitted to the Faculty of Science,
University of Edinburgh, for the degree of

Doctor of Philosophy

Department of Electrical Engineering,
1991

-I-

Abstract of Thesis
Increasing complexity of Application Specific Integrated Circuits (ASICs) has

demanded a corresponding increase in the power of Computer Aided Design (CAD)

tools, so that contemporary design tools can now synthesise an entire silicon

architecture, given only a description of its functionality. Specialised automated

synthesis techniques have now been applied to almost all parts of the architecture, but

one area which remains unresolved is that of memory address generators.

Previously combined with other logic synthesis techniques, less than optimal

solutions were often found for generating memory address sequences, and this thesis

examines address generator synthesis as an individual step in the design process, as part

of an investigation into high level synthesis. The synthesis techniques developed for

address generators in the AG1 and AG2 tools presented, target specific architectural

forms including counters, incrementors and ROM look-up tables, and the details of

these are gathered within a comprehensive data structure which allows optimisation

through hardware sharing to occur.

At a slightly higher level, the specification of address sequences as a stage in

memory synthesis is also investigated and a behavioural to register-transfer level

silicon compiler; MC 2 is presented. The data path and memory architectures

constructed by this tool are used to produce realistic address generation requirements

whose implementations are also presented, synthesised by AG2.

It is shown that both array and non-array memory can benefit from more specialised

address generator synthesis over the existing, mainly logic synthesis approach.

'IC

Declaration of Originality

The material contained herein was researched and composed entirely by myself in the
Department of Electrical Engineering at the University of Edinburgh, between October
1988 and October 1991.

Acknowledgements

I would firstly like to thank my supervisors, Peter Denyer and Peter Grant for all their

help and advice throughout my time at Edinburgh, all the guys from the SARI project,

BAe for their sponsorship, Fiona from the TTC and Joan Burton for their help with all

things complicated, lain Finlay, Paul Neil, Jonathan Puddicombe and Hamish Failside
for putting up with my ranting in the office, and most of all thanks to Tracy my wife-to-
be for all her support during those late night brainstorms.

one

Contents

Abstract 	 I
Declaration of Originality 	 II
Acknowledgements..H
Contents..ifi

Preamble...1

Chapter 1: Introduction to address generation .. 2
Address Generation in Digital Systems .. 2
What is address generation? ... 5
The scope of address generation ... 5
Overview of address generation techniques 6

Forcontrol 	.. 6
For memory access 	... 6

Overview of address generator synthesis techniques 7
Forcontrol 	... 7
For memory access ... 7

Other related approaches .. 8
The case for address generators based on counters 8
Comments.. 10

Chapter 2: Introduction to address generator architecture 11
Thememories 	... 11
The binary counter .. 12

The ripple counter .. 12
The serial carry counter .. 12
The parallel synchronous counter .. 13
The serial/parallel synchronous counter 13
The pseudo-parallel synchronous counter 14

The modulus m counter .. 14
Other address generator elements .. 16

AddressROMs 	.. 16
Exclusive OR gates 	... 18
Clocked-bits 	.. 19
Incrementors 	.. 19
Logic.. 20

Cost breakdown of address generator elements 21
Area-costs 	.. 21

IFLIM

Speed-costs 	 . 	22
Comments 	 . 	22

Chapter 3: Requirements for an address generator23
Data-dependant addressing ..23
Scheduled memory addressing ..24
Arrayaccess ...24
Control...26
Comments..26

Chapter 4: Address generation based on binary counters27
Some traditional problems ...27
Some manually designed address generators 31
AG1 - Address generator synthesis based on binary counters33

Dataentry types..34
Method...34

- 	Logic synthesis ..37
Outputformat ..40

Address generators designed using AG1 ...41
Comparisons..41
Use of the 'C' programming language ..44
Comments..44

Chapter 5: Introduction to behavioural synthesis 46
What is behavioural synthesis' 	.. 46
Key steps in the high level synthesis process..................................... 47

Capture of behaviour ... 48
Scheduling... 49
Resource Allocation .. 51
Datapath synthesis 	.. 51

Controllersynthesis 	... 55
Resulting design format ... 55
Impact on address generation ... 56
Comments.. 57

Chapter 6: A heuristic approach to memory, communication and control
synthesis for scheduled algorithms ...58
Thejoy of synthesis! ..58
Schedules and their scheduling method ...58
Constraints on this approach ..62

MC2 - Memory, Communications and Control synthesis62

V

Schedule data-base 	 62
Pre-assignment or not 	 65
The Three Steps to heaven ... 65

Memory and communications synthesis 65
Address and control requirement analysis78
Address and control sequence synthesis83

Outputformat ...86
Some synthesised data-path architectures ..88
Comparisons with related results ...91
A Standard for behavioural synthesis results presentation95
Prolog for fast development ...96
Comments..96

Chapter 7: A general approach to address generator synthesis 99
The need for generalisation .. 99
The inevitable data model .. 99
Requirements of an address generator synthesis tool 102
AG2 - A general address generator synthesis tool 102

Inputformat ... 102
BasicMethod 	... 105
Aworking example 	... 106
Method... 108

Finding an Incremental Sequence 108
Padding a Bit Sequence .. 109
Transformation to Repetition Sequence 110
Reducing the Repetition Sequence 111
The Repetition Sequence Characteristic 113
Matching the Charateristic to a Bit Sequence Generator.... 114
Finding Clocked-type Bit Sequence Generators 115
Multiple Access Sequences .. 116

Optimization... 116
Outputformat ... 119

Other worked examples and results .. 120
ADA- Abigstep 	.. 131
Comments... 131

Chapter 8: Address generator synthesis as part of a general behavioural
synthesistoolset 	... 133
Introduction to SAGE - Concepts and Reality 133
Address generation within SAGE ... 136

-VI-

Scheduled memory 	 . 	136
Array memory 	 . 	137
Macro-generation of counters 	 . 	138

	

Futureplans .. 	139

	

Comments.. 	139

	

Chapter 9: Conclusions and new directions .. 	140

	

References.. 	144

	

Appendix A - Author's publications .. 	160

	

Appendix B - Example output from AG2 ... 	194

	

AppendixC -Workplan ... 	213

	

AppendixD - User Guides .. 	214

Appendix E - Address generators for MC2 examples

Also included: 1 disk containing all code.

-1-

Preamble

This thesis examines high level synthesis of data path architectures and in
particular, address generation hardware. This is based upon the recognition of certain

characteristics of binary sequences which relate directly to certain generation methods.

The first chapter introduces the concept of address generation, and gives an overview

of related work in this area, and then the motivation for this work is stated. Chapter 2

introduces the hardware involved in address generation, including counters, single

logic gates and ROMs, and the next chapter illustrates the possible requirements for an

address generator, before Chapter 4 looks at a simple address generator synthesis tool
- AG1.

Next, in Chapter 5, the many and varied approaches to contemporary behavioural

synthesis are documented, and then Chapter 6 presents a heuristic approach to memory,

communication and control synthesis for scheduled algorithms - MC 2, which has been
coded in Prolog. This step was necessary in order to produce some realistic address

sequences for otherwise well-known examples.

Chapter 7 returns to address generator synthesis with a more complex address
generator synthesis tool - AG2, and in Chapter 8 its application within a general

behavioural synthesis tool is investigated. Finally, Chapter 9 presents conclusions and

directions for future work.

Appendix A contains the author's publications and then Appendix B presents some

annotated output from the tool described in Chapter 7. Appendix C gives account of

how time was spent on this project, and Appendix D holds the user guides to the tools
presented in this thesis. Also included with this thesis is a disc which holds all the code
described in the text.

-2-

Chapter 1 Introduction to Address
Generation

1.1 Address Generation in Digital Systems
Since the first digital systems were constructed in the mid-1930s [200], great

advances have been made in both their design and physical implementation. From the

earliest vacuum tube transistors used by Newman and Pinkerton [201, 202], evolved
solid-state logic [203], and with that came the first great improvement in the size, power
consumption and reliability of digital circuit components.

As the properties of silicon as a substrate for both transistors and interconnect were
developed in the early 1950's, a second step was taken in circuit performance, so that
we now have highly complex micro-computers and data-processing hardware,
integrated on a single chip (IC), less than three square centimetres in area.

Figure 1.1 shows a typical Von Neumann data-processing architecture [204], in
which data is guided between computational hardware and memory of some sort, under

the direction of a process controller and ancillary hardware.

Figure 1.1 A typical data-processor architecture (NEC7720).

Computational hardware performs any calculations required on the data, for
instance adding and multiplying, and this may be done by hardware dedicated to that

-3-

specific calculation - adders or multipliers - or by multi-function Arithmetic Logic

Units (ALUs). The memory hardware implements storage for either long-term data, for

fast, on-chip access, or for data being transferred between computational hardware
elements.

Memories may be Read Only Memories (ROMs), Random Access Memories

(RAMs), registers (latches) or register-files, shift registers, stacks, or any other data
storage device, and in the case of ROMs, RAMs and register-files, these memories will

need an address to be generated before data may be accessed.

The steering logic, including multiplexers and demultiplexers, guides the data

between all this circuitry, and is controlled by signals generated by a controller, which
may be micro-programmed [84, 85], or have some simpler implementation [193, 194].
This controller may receive feedback from computational hardware, for decision-

making, as well as interpreting externally applied information, and generating any

-- clocking signals required by synchronous circuitry, -Its other- main task, is to generate the

control necessary for the memory hardware, consisting of Read/Write enable signals,

the memory addresses, and any other Shift/Load/Push/Pull control signals. A simplified
description of the architecture is shown in Figure 1.2.

I/O INTERFACI

CONTROLLER

- *-- 1-
COMPUTATIONAL

MEMORY
HARDWARE R

G

Figure 1.2 Simplified data-processing architecture.

The huge rise in integrated circuit complexity, through Large Scale Integration

(LSI), to Very Large Scale Integration (VLSI), soon overwhelmed the wholly manual
approach to digital system design, but also provided a solution, in the form of Computer

Aided Design*. As more complex and powerful computers were designed, they were
used to aid the design of even higher-performance systems (The DEC MicroVax

* The IEEE Transactions on Computer Aided Design was created in 1982 to handle the increas-
ing activity in this area.

-4-

prototype was designed using GenesillM). At first the drafting of the physical layout of

the circuits was the only design stage to benefit from these advances [95, 96], but more
and more of a digital system designer's "toolkit" of methodologies have since been
automated. These provide support in areas, from the geometry-level view of the chip,
right up to the design of an entire IC, almost at the press of a button. Placement and
routing, design-rule checking, combinatorial logic synthesis [62..68], and increasingly
important, test {88..92], have and will continue to benefit from the increase in the power
of the computers used to automate them.

Having automated what used to be the repetitive and error-prone tasks of a VLSI
designer, more time could be devoted to the investigation of the design space, to
perhaps find more efficient implementations of existing processors, or to develop
wholly new architectures. Schematic capture of designs was developed to aid this
investigation [127, 128], and it naturally followed that high-level synthesis of complete
data-processing architectures was targeted next for automation [3 1,108].

01-13.111 iflW

:IL 27

IL

II 	
IpuIl!1I11I

oil N ii ri H

Figure 1.3 Architecture and chip layout by PHIDEO [61].

Contemporary high-level synthesis systems may be based on procedural, Hardware
Description Languages (HDLs) [153.. 156], or on the more complete, VHSIC (Very
High Speed IC) Hardware Description Language (VHDL) [157, 1581 (now
standardised - IEEE 1076), or Behavioural Description Languages [24,34] (usually in-
house), and can be used to produce gate-array [102], standard-cell [14], and other semi-
custom design method implementations of Application Specific ICs (ASICs), in the
latest VLSI technologies [99, 100, 46, 36, 30].

-5-

One area of high-level synthesis which has been under-developed, is that of

synthesis of application-specific address generators, as separate entities to the general

controller on an IC. The hardware required for address generation can make up a large
percentage of the total chip area (up to 50%), so there should be at least as much work
done on its synthesis as there is for the computational part of the design. Some

contemporary systems treat address generation as just another computation and design

the hardware as a data path, but in [141] sequence generation is identified as a distinct

basic block in a functional block environment, and it is the field of sequence generator

synthesis which is targeted by this thesis.

1.2 What is address generation?
To generalise as far as possible, address generation is the production of some

sequence of binary words, of some width.

Since the primary use of these words is by memories, as addresses, the generation
of them is known as address generation.

An address generator is therefore the hardware which actually produces these data,
and may produce several addresses as part of its data word.

1.3 The scope of address generation
As stated above, an address generator does of course generate addresses for

memories, but can have other uses:

To generate control bit sequences for steering logic (such as multiplexers).

To generate control bit sequences for selection of function in ALUs, and for
other selection requirements.

To generate test patterns for a processor, on the same IC.

In order to place some limits on the scope of this thesis however, address generation
is defined as being the production of a predetermined sequence of binary words of some
width.

This precludes applications for which a sequence is dependent on internal variables
or data, for instance the output from an adder during successive uses.

/

Em

1.4 Overview of address generation techniques
There follows an account of related techniques in sequence generation, both for

control purposes and for memory access.

1.4.1 For control

To date there are very few ASIC design systems which deal with the memory

addressing problem as separate entity from the more general and possibly non-

deterministic control problem. So control generation has dominated address generation

techniques with most address generators eventually embedded in the controller.

Conventional approaches to control generation are, like most tried and tested

means, too general in their methods to produce the most optimal architectures. They
will produce passable results all the time but are not ideally suited to ASIC design.

The problem is usually one of mapping state numbers to actual control signals as -

fast as possible, using the least area of silicon. If there are just a few simple mappings

then full combinatorial logic would be used, but as the number of inputs and outputs

increases, a ROM look-up table may be used in conjunction with a (state) counter to

produce any deterministic sequences, or as part of a FSM. However, as the number of
inputs increases further, the ROM becomes outsized and a PLA is more likely. ROMs
are also used as look-up tables as the basis for micro-programmed logic. A PLA may

be used in conjunction with a binary counter to implement any combinatorial logic

functiOns which map the linear state count to the control outputs, and this is certainly

the most common form of controller architecture both for deterministic and non-

deterministic sequences. The area of a PLA may be reduced by folding parts of the logic

array, and their ease of programmability makes them very popular, but testing them as
they stand is very difficult. By adding special structures to allow selection of each
crosspoint on the PLA however, some PLAs may be used to test themselves [140].

Various other sequence generators and detectors are discussed in [152].

1.4.2 For memory access

Several different address generation schemes have been reported, especially for

array processing, based on adders [144], and on ALUs [145] which can use three types
of address arithmetic to produce eleven different addressing modes in the Motorola

DSP56000 chip. Address Calculation Units are also used in the Tektronix M275
programmable array processor [146] along with pointer registers. Counters have been

-7-

used in many cases, especially where the address sequence is to be used for array
access, in a regular pattern [205].

1.5 Overview of address generator synthesis techniques
Now we examine the diverse techniques for automatically synthesising sequence

generators, for general control, and as a separate entity for memory access.

1.5.1 	For control

Devadas et al.'s MUSTANG system attempts to synthesise FSMs [64] using state

assignment techniques to optimise a multi -level logic (multiple PLA) implementation

[62], while Amman et al's SUCIM tool [66] aims at both optimal state assignment and
state sequences. Here too, multiple PLA/ROM-structured FSMs are targeted for use
with binary counters [65].

Micro-programmed controller synthesis has been around a relatively long time,
with Grass and Lipp's LOGE system being a fair example[84, 85], and the Cathedral II
system [81] synthesises micro-programmed control also.

The principals of combinatorial logic synthesis are described in [63] and the

optimisation or minimisation of such logic is a popular subject [67, 681.

The Yorktown Silicon Compiler [73, 74] is one of the earlier systems for controller
synthesis, and others include CPC [72] for use in the SYCO compiler, the SILC
compiler [75], and work reported in [76, 77, 79, 80, 821.

1.5.2 For memory access

A schematic capture method is reported in [142] which can be extended to the

capture of address generation hardware, and in [143] address sequences for scheduled

memory are produced automatically for multi-port memory allocations, but the
problem of virtual to real address conversion is ignored, and no real synthesis is
attempted.

In the Cathedral II system [162], background memory is synthesised in the form of

Pointer Addressed Memories (PAMs), which only require an incremental address

sequence, thus avoiding the construction of complex Address Calculation Units. For

high speed circuits, the PHIDEO system [61] allows exploration of the address
generation costs/ memory costs domain, and can synthesise address generators based

on relative addressing using pointers, for a minimal sized memory structure, or based

EM

on counters for a possibly redundant memory, or based on otherwise minimised

memory structures, which can lead to rather complex generators.

The author's own address generator synthesis systems, AG1 [149] and AG2 [148,

151], use decompositon of address sequences in trying to find a better hardware

implementation than would normally be found using logic synthesis.

1.6 Other related approaches
There are other applications for sequence generators. BIST (Built-In Self Test) for

PLA's [138], and more general use [135, 139], as well as other design techniques [136,

137] can utilise the same sort of architecture as address generators.

1.7 The case for address generators based on counters
Counters are reliable, reuseable, testable and efficient, which makes such adaptable

circuitry invaluable in chip design.

The use of counters in address generators is not a new concept [65], and in fact the

subject matter for this thesis was originally inspired by some address generation

hardware, manually designed for an image-processing application [205]. One such

address generator is illustrated in Figure 1.4, along with a graphical description of the

memory access sequence it produces. The gate array chip layout which includes this
architecture can be seen in Figure 1.5.

Once this, and other solutions had also been produced automatically, it became

apparent that counters could form a part of much more general-purpose address

generators, if only the techniques for recognising their possible use could be developed.

S

II,IrT.

I
u•uuuuii•uuu•riuu• 	lFnflaEEEEE

- --------------
- •••••••••••••••• 	A ••U••l••••U•UU A ••••uu•u•u••uu £ ••••U•••••••UU

................ 	•••••........... UU•U•U••••RU•••• ••••............uuw 	•••uuuu••••u••m
•••••••uuuua••u•v
:1Is9TT 1 f9T 	 ___

• _ __I

I

•_ _

Figure 1.4 Example of a counter in an address generator.

- 10-

Figure 15 Chip layout of which about 50% of active area is address generation circuitry.

1.8 Comments
The DTI and the SERC have recently specified a new jointly funded collaborative

programme - VLSI Design Automation for Information Technology Systems - whose
workplan includes a sub-section on memory architectures which calls for "Novel
configurations of memory and address generation, leading to reduced hardware
requirements, involving automatic generation from system requirements" [206].

The design of address generators is at present an expert's task. The intuitive
decisions made in their conception are based on a collection of experience of this and
similar problems, from many different angles. It is only by utilising this experience that
the human designer may hope to overcome the size and complexity of some of the
design problems, to realise a working solution. But then a careful and often lengthy
check must be made, perhaps using simulation, to ensure that no errors have occurred
during the design. The size of the problem, however, will often make exhaustive
simulation prohibitively expensive, so often the expert must be recalled to intuitively
check the solutions by hand.

We believe that an address generator synthesis tool should not only guarantee
correct solutions, which will also be testable, but should also do so with a vast
improvement in design time. We will report later on such a tool which has mirrored
manual designs with an increase of between one and three orders of magnitude in
performance.

-11-

2 Introduction to address generatér
architecture

In Chapter 1, an address generator was defined as producing a predetermined

sequence of binary words, of some width. To complicate proceedings a little we may

add constraints of timing on both the address sequence as a whole, and on the speed of
production of the data words. Area considerations may force re-use of all or some part
of the address generator, so some outside control may be necessary, as well as the

associated logic to implement that control. Power consumption may also figure in

deciding on a specific address generator architecture.

Commencing with a description of the types of memories for which addresses may
be generated, this chapter defines the constituent parts of successively more complex

and generic address generators, starting with some different implementations of the

most basic element - the binary counter. This is then generalised to a modulus m

counter, before other pieces of the architectural jigsaw are examined. Finally, a

breakdown of the costs of these address generator elements is presented.

2.1 The memories
Before defining possible address generator architecture, we first examine the

memories which can require addressing.

On the physical level, a RAM cell (bit) may be reduced to just five transistors for a
slower, static approach [176], or to a single transistor in the faster, dynamic mode [178]

which has refresh overheads. A ROM cell may also be reduced to a single transistor due

to its simplicity [179]. Other novel approaches include magnetic bubble memories
[180].

Memories may be Content-Addressable [172, 173, 177], or Content-Associative for
faster access [171], or have other added features [174], and may be designed using
many different styles [175] including Standard Cell, Super Integration and Structured
Array to develop RAMs and Cache memory.

A highly parallel memory structure may be defined for parallel processor

applications [170], and multi-phase clocking schemes may introduce other possibilities

[181, 182..184]. A RAM may have one or possibly several pairs of address and data
ports.

-12-

2.2 The binary counter
Being such a well-known piece of hardware, the binary counter can take one of

several proven forms, and more specialized architectures are possible with differing IC

technologies [195, 196, 198]. The basis for all counters in this thesis is a series of JK
master-slave flip-flops, whose values toggle at certain times.

22.1 The ripple counter

Simplest to construct is a ripple counter, which has all of its flip-flops, or bits, set to

toggle at any time, by tying both J and K inputs to logic '1'. The first flip-flop, Bit 0, is
clocked by an external clock, and its Q(time t) output is then used to clock the second

flip-flop, Bit 1. The Q(t) output from this is used to clock Bit 2, and so on until a counter

of the correct size (number of bits) is produced. The Q(t) outputs form the count word
at time t - an output from the counter module - which may need to be strobed by a
ontrol signal to synchronise the signals.

Strobecr

CPL.

Figure 2.1 The ripple counter with strobe.

2.2.2 The serial carry counter

To avoid the problem of synchronisation, and so the need for a strobe, the serial
carry counter is constructed a little differently to the ripple counter. The first bit of the

counter is set to toggle at any time as before, but instead of using its output to clock the

next bit, this is done by the external clock itself. The second bit will only toggle if the

Q(t-1) output of the first bit is in the high state. All other bits of this counter are also

clocked by the same clock, and the value on their J and K inputs is set by the result of

Q, 	25

 : 0 P : i CP:

- 13-

ANDing the next lower bit's Q(t- 1) output with its J (and K) input. In this way, the delay

Figure 2.2 The serial carry counter.

2.2.3 The parallel synchronous counter

To increase the speed of the counter further, one must take a more parallel approach

in its construction. Here, the first three bits work in the same way as for a serial carry

counter, but any further bits will have their J and K inputs set by a logical AND of all

lower Q(t-1) outputs.

1 	 Qo. 	Q1 9 	 Q2

a' 	 i_ 	

TJ3JO 	Qo H' 	Qi 	 Q2

KO Qo K1cP 	 LK2cQ2 	 3 CP

CPa

Figure 2.3 The parallel synchronous counter.

2.2.4 The serial/parallel synchronous counter

Since the parallel counter described above requires an (n- 1) input AND gate to

implement an n-bit counter, then as the number of bits increases so does the likelihood
of AND gate fan-in rules being broken. This problem may be partially solved, at the

expense of some speed, by placing an upper limit on the number of counter bits

-14-

connected in this way. If this limit is reached during the construction of the counter, then

t senal carry is taKen to me next Dit, and 	:arrymg is commencea trom there.

	

Parallel carry, as above
	

Parallel carry, as above

3
	

4
	 J7 	Q7

	

3cp
	

cP
	K7 pQ7

cP

Figure 2.4 The serial/parallel synchronous counter.

2.2.5 The pseudo-parallel synchronous counter

Another possible conglomeration of basic counter architectures is shown in
Figure 2.5, where a large (Say > 4 bits) ripple counter is divided into equal slices, and
each of these slices is clocked by a parallel carry from the previous slice, but remains,
internally, a ripple counter.

	

Ripple carry, as before 	 Ripple carry, as before

Jo 	Qo} 	 J7

KO Cp Qo 	-k3 Cr' 3 	
Lfr4 Cp 04 	k7 Cp 07

cpc~_
............................. 	 --- ---------

L 	I 	 L. 	I

— _j

Figure 2.5 The pseudo-parallel synchronous counter.

2.3 The modulus m counter
A useful generalisation of the binary counter is the so-called modulus m (or modulo

m [197]) counter. Instead of each counter bit producing streams of bit values which
change value after some power-of-two of bits, the modulus m counter produces

-15-

streams of bit values which change after m.2' t bits, where ii is the bit number on the
counter (n ~ 0). Thus a binary counter is in fact a modulus 1 counter.

A modulus in counter is basically two binary counters connected in series, with the

first counter having the logic necessary to reset it after m clock ticks (or rather, when its

count value would otherwise have reached m).

The bits of this first counter make up the lesser bits of the modulus m counter, as
illustrated in Figure 2.6, which shows the architecture of a modulus 7 counter. The reset
logic shown on the outputs of the lesser bits will henceforth be omitted for simplicity,
and because the cost of this logic is minimal.

The second counter, clocked by the MSB of the first counter (or a combination of

bits, if a more parallel carry counter is used), implements the upper bits of the modulus

in counter, whose bit sequences follow the m.2" repetition rule as defined above.

Lesser Bits Upper Bits

_ ___

Outputs: 	Q..3 Q2 Qi Qo Q.
o

Time
0 0

8
0

8
0

1 0 1
8
0

7.(2")

o
o
1

1
0
0

1
0
0

0
1
1

0
1

o
1

1
3.

0
0

1
1 7.(2)

1 0
o

1 1

Figure 2.6 A modulus 7 counter.

By using modulus m counters prudently, it is possible to realise very cheap and

simple address generation schemes which implement complicated, non-binary access

patterns, for array access. It is also possible to produce some very efficient schemes for

scheduled memory address generation and even general control, usually the final
element of a processor to be examined, can benefit from the use of modulus in counters.

- 16-

There are two, very basic address generation architectures which use a modulus m

counter (Figure 2.7). The simplest is the preset-modulus counter, which has reset logic
built directly onto the counter, as for the modulus 7 example above. The second address
generator contains a parametrizable-modulus counter, which has an input dedicated to

receiving the modulus parameter. It also contains a comparator, to generate the reset
signal when needed.

Modulus - 1

Address H u Address

Dock
Clock 	LZI

-N~M Reset

Figure 2.7 Two basic address generators:
a) Simplest counter; b) Parametrizable-modulus counter.

2.4 Other address generator elements
Other address generator elements include: ROMs, dedicated to storing a sequence

of addresses; incrementors (simplified adders); exclusive OR gates, and random logic.

2.4.1 Address ROMs

Address ROMs, and their own address generation schemes, have three distinct
architectures, as illustrated in Figure 2.8:

A minimum-sized ROM, which contains only one copy of any address

required.

A medium-sized ROM, which contains multiple copies of addresses needed

more often.

A maximum-sized ROM, which contains an address, required or not, for

every control step of a process.

17-

Address Sequence: 0 13 2 6XX54X 100463

ROM Address 0 	 6 	 0 	 12

ROM Contents 	 O04 6 3

a) 	 b)

0 	 15

101 11 312161XIXI 51 41XI 11 01 01 416131

Figure 2.8 The three address ROM architectures:
a) Minimum-sized; b) Medium-sized; c) Maximum-sized.

Often the choice of address ROM will be forced, by factors inherent in the overall

address generation requirement. For example, in array access, one element of that array

can be accessed in each control step, implying a maximum-sized ROM. But in the case
of scheduled memory access, any form of address ROM is possible.

A maximum-sized ROM is created for scheduled memory, by filling any "Don't
care" times in the original access sequence, with real addresses. This may seem strange,

but it allows us the simplest of ROM-address generation schemes - A simple, binary
counter. The very action of filling the "Don't care" times is a complicated one, and this

should be done on a bitwise, rather than wordwise basis. This may even allow a cheaper

address generation scheme than a ROM-based one. This problem is dealt with in

Section 6.4.3.3.

A medium-sized address ROM can be created simply by storing in it only those
addresses actually required, in that order, and allowing multiple copies of addresses.
This slightly complicates matters for the ROM-address generator, in that the counter's
clock must be gated by a control signal, which must be generated elsewhere, and which
allows the counter to be clocked only once the current address in the ROM has been

read out. With some care, it is possible that the gating control sequence for the ROM-

address counter could be given regularity by utilising any "Don't care" times available,

and perhaps clocking the counter a little earlier than necessary.

A minimum-sized ROM is created if only one copy of any address required is stored
within it. This can save a lot of ROM area, but unless the addresses are only ever needed
once, or they are required often, but in a regular order, the address generation for the

-18-

ROM access can result in yet another ROM-based address generator! This is obviously
pointless, if we consider the example below.

Address Sequence:3 12031203120

ROMI 3 1 1120

ROM Address Sequence:
012301230123

(Easy to generate)
a)

Address Sequence: 12 0 1 2 3 2 12 0 3 1

ROM I 1 1 2 1 0 1 3 1
ROM Address Sequence:
012013101230

(Just as difficult to generate
as original sequence)

b)

Figure 2.9 Examples of a): good and b): bad uses of Minimum-sized ROMs.

2.4.2 Exclusive OR gates

Exclusive OR (EXOR) gates are often essential to a good address generation
solution, especially when used in conjunction with counters. An exclusive OR gate can
be used to invert the polarity of some bit sequence, after some number of bits, as shown

in Figure 2.10. The original bit sequence is input at A, and the second sequence, which

controls the inversion of polarity, is applied at B. When the value at B is logic '0', the

polarity of C follows that at A, and otherwise is the inversion of A. The bit sequence

produced at C is then exclusive ORed with yet another bit sequence, and the same rules

apply to that combination.

Usually the sequences fed in at B and D will be generated by a counter, causing a

regular inversion of polarity, and often the sequence at A is produced by one or more

bits from the same counter. In Figure 2.10, all bit sequences applied to the EXOR
network are generated by a 4-bit, modulus 3 counter.

A0__001001001001
B o 000111000111

	
C 001110001110

D0 010010010010 0 E JE)
Figure 2.10 The effect of an EXOR network.

The sequence produced at E bears only a little resemblance to those used to generate

it, and it is here that many problems arise, in recognising possible bit sequence
generators.

- 19-

2.4.3 Clocked-bits

It is often the case that one bit sequence within an address sequence may be

generated by using another of its constituent bit sequences to clock a T-type flip-flop.
Thisis: uiustrateu in i-igure z. ii. i. nppie counter is rormea in mis way.

Bit
Generator

01000100110 	
.::::.: 00111100001

Address Word Out

Figure 2.11 Example of Clocked-type bit sequence generator.

2.4.4 Incrementors

Another commonly occurring element of address generators is the adder. This is

perhaps most useful when the 'sum' output is fed back to one of the adder inputs, and

the other input is hardwired or set externally to a constant binary value, thus creating an
Incrementor. The adder can of course take one of several hardware implementations,
including lookahead-carry in bit-parallel adders [185.. 189], and various bit-serial
approaches [198].We will concentrate on the bit-parallel adders in this thesis, since the
feedback is much simpler.

A simple incrementor is shown in Figure 2.12,where the increment is 3, and since

this contains no reset circuitry, the address sequence produced does not repeat until after
the third cycle, as shown.

Figure 2.13 shows a more commonly used incrementor, which has circuitry to cause

a reset of the incrementor at a value which will produce a shorter cyclic address

sequence. Finally Figure 2.14 illustrates a general purpose incrementor, whose

increment may be set externally, along with the value at/above which to reset, and also

an optional preset value. Also included is an optional gating circuit, and corresponding

gating signal, which enable the incrementor to remain at the same value for several
control steps.

- 20 -

0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13,0,3,6,...

Figure 2.12 A simple incrementor.

Reset—at (n *i)

Increment (i)

Clock

0, i, 2i, -3i, 4i,...(n-1)i, 0, i, 2i, 3i,..

Figure 2.13 incrementor with reset.

Reset—at (n *i)

Out

Increment(i)I _

. 	

CO) 	

Addresses
Preset to

Enable

Clock

~

Gating Signal o

Figure 2.14 A general purpose incrementor.

2.4.5 Logic

The vague classification "logic", represents here either a Boolean network of any
size, which is fed by some counter bits to produce address bit sequences, or that
combinatorial logic required for any very local control (eg: Reset logic for counters).

- 21 -

2.5 Cost breakdown of address generator elements
The area and speed of the hardware described are both technology-dependent,

making costing a rather localised matter. For our purposes, ES2 's Solo-1400 1.2 micron

parts library [102] was suitable as the source of costs, where a "stage" is two transistors,

or half a gate.

2.5.1 Area-costs

Table 2.1 below shows the approximate areas of each address generator element in

terms of the number of "stages" of logic which they will require.

Component Actual
Area cost in stages

Relative
Counters: Ripple (per bit) 27.4 1.00

Serial 47.5 1.73
Parallel 49 1.78
Serial/Parallel
Pseudo-Parallel

48 1.75
48 1.75

ROM (per bit, not mci. overhead) 1 NA
EXOR Gate 7 NA
JKFlip-Flop 30 1.10
Incrementors:Simple 49 1.78

General Purpose 58 2.11
Logic (per two-input gate) 2 NA

Table 2.1 Comparative area of address generator components.

The area of a ROM-based address generator can only be defined once the size of the

ROM has been decided upon, since the ROM will have a certain overhead-cost for

creation (address decode, etc.) which will be shared between all bit sequences contained

in the ROM, as will the cost of the address generator for the ROM itself.

The ripple counter, although quite small, is unlikely to be used because of the
problems its asynchronous output signals introduce, and because of the slow speed

when used with strobing circuitry.

WIM

2.5.2 Speed-costs

The approximate delay of each component, in terms of the delay through a single

JK flip-flop, are given in Table 2.2.

Component Actual 	
Delay

Relative
Counters: Ripple n iOn
(n bits) 	Serial 2 20

Parallel 1 10
Serial/Parallel n/4 2.5n
Pseudo-Parallel(4) 4 40

ROM 3 30
EXOR Gate 0.1 1
JK Flip-Flop 1 10
Incrementors:Simple

General Purpose
1 (fast lookahead carry) 10
3 30

Logic <1-4 00 <104°°

Table 2.2 Comparative speeds of components.

2.6 Comments

An address generator is composed of a set of bit sequence generators, which may

take any of the forms mentioned in this chapter. The next chapter will describe the

different possible requirements for an address generator, for different memory
architectures and for control purposes.

SOLUTION
x

- 23 -

3 Requirements for an address generator

This chapter investigates the possible causes of requirements for an address
generator.

3.1 Data-dependent addressing
Data-dependent addressing requires an address generator to produce an address

rom vanable data, elmer directly, as in case () below, or indirectly, as in case (b):

PROBLEM 	SOLUTION

Access Memory Location + 	* HM1
M1((x+y)*Z)

a)

PROBLEM
IFx== yTHEN
Access Memory Location

M1(K * Z)
ELSE

b)

Figure 3.1 Data-dependent addressing schemes.

Neither of the cases above are applicable to the automatic address generator

synthesis techniques targeted by this thesis, but in each case there is a definite direction

to take for automation. In the case of direct transformation of available data, this can be
recognised at a behavioural level, from the corresponding High-level description

language, and address generation hardware constructed as part of the computational

base [163]. Indeed, it is this approach which is taken in SAGE (See Chapter 8), a
behavioural synthesis tool developed at the University of Edinburgh[1501.

In the second case of data-dependent addressing - That of indirectly using available

data to specify a wholly different address, or sequence of addresses (if a branch runs for

- 24-

several control steps, or perhaps branches further) - no such scheme is possible. The

simplest approach seems to be to use the branch conditions to select from a variety of

ROM's which hold the possible address sequences, or to embed the address generator

in the chip controller.

3.2 Scheduled memory addressing
In a design with many operations and few resources, the data produced by

operations may need to be stored over more than one clock tick, perhaps accessed

several times during the lifetime of that data. Instead of assigning a single register to

store each group of temporally disjoint data, a RAM or register file may be used which

can hold much more data but which will require an address sequence to control access.
Very often there will be times when no address is actually required, so that the address
produced at that time may be any of those possible, and choosing one may have a

significant effect on the cost of producing the address sequence. This is a problem

which must be tackled before the address generator synthesis stage-proper, as part of -

the memory synthesis task (See Section 6.4.3.3).

3.3 Array access
The final, and perhaps the most promising situation as far as synthesis is concerned,

is that of array access. Here, one, two or more dimensional data arrays are written to
and read from usually large memories. Commonly the access sequence will be
predefined at synthesis time, most usually as a set of (nested) loops. It is a simple matter
to deduce the access sequence thus required and to use decomposition methods to
recognise the use of counters in its generation.
It is also possible that the synthesis stage could recognise oversized memories or

redundant accesses and optimise them accordingly [166]. Figure 3.2 shows an example,
where data is to be written to a memory in locations a[O] to a[255], and then read out
again in four separate passes.

for i=Oto255loop
get x;
store x in a[i];

next i;

for j = 0 to 3 loop
for i = (((j+l) * 64) —1) downto j*64 loop
read a[l];
next i;

next j;

I.E.: i_=63,62,...O,127,...64,195,...128,255,...196.

Figure 3.2 Example of array access specification.

- 25 -

This obviously implies a 256-word RAM, with a simple counter to generate the

write address sequence, and something a little more complex for the read address

sequence, detailed in Figure 3.3a&b. Since the two most significant bits in each

addressing scheme are produced by the corresponding bits from the (shared) counter, it

is possible to reduce the memory size by half, and if the RAM may have two ports then
the read and write sequences may be interleaved, as illustrated in Figure 3.3c.

0..255 	256 x 1 	 0..255 	 256 x 1
Counter 	RAM 	 Counter 	 RAM

(a) 	 (b)

R 	X X,64..O,127..65,64..O,..

O..127 / 	128x1
Counter /7 	RAM

W

	

0..64,65.327,0..64,65.327,..

(c)

Figure 3.3 Synthesis and optimisation of array access example.

This generalises to the rule: "If the top n bits of the address word may be generated

by the same counter bits for two access sequences, then as long as circumstances allow,

the top (n- 1)bits may be discarded, the memory shrunk by a factor of 2(n-1) and the
new most significant address bit inverted for one sequence. This is pictured in

Figure 3.4.

- 26 -

O..2(m)1 	2m x 1
Counter 	R"

(a)

P(MSB

Counter 	i-4)

2 x 1
Counter 	RAM

(b)

R
2(m-3) X 1

RAM

(c)

Figure 3.4 Generalisation of memory optimising transformation.

3.4 Control
Wherever a control bit sequence can be predefined, we can use the address

generator synthesis techniques to try to find a cheap hardware implementation to

produce it. As for scheduled memory address sequences, the binding of Don't Care

values to actual values can be critical if such a solution is to be found. Requirements

targeted here are multiplexer control, write enable signals for memories and ALU
function-selection, amongst others. -

3.5 Comments
It becomes obvious that almost any deterministic sequence of binary words has the

potential to be produced more cheaply than by the usual combinatorial logic methods.

Not mentioned here are sequences to be produced by built-in self-test (BIST) circuitry,
whose manual solutions bear a striking resemblance to those produced automatically

for other sequence requirements. The next chapter will detail some of those solutions

obtained using AG 1 - a first attempt at an address generator synthesis tool.

DOZE

4 Address generation based on binary
counters

4.1 Some traditional problems
Many of today's sophisticated digital signal processors, be they bit-serial, bit-

parallel or distributed [361, have one thing in common: Arrays of data are processed.
And it is today's chip designer who has to provide the knowledge to obtain an efficient

memory-array access scheme. Very often, array data will be written to the memory in

serial fashion, from the start of memory to the end, and the best way to generate the

memory address sequence is with a simple binary counter, whose output is used directly

as the address word. It is in reading the data back from memory, however, that address

generation problems arise. The read-address sequence is rarely a simple count, and is

more likely to be a steadily increasing sequence of addresses, but not necessarily of
adjacent memory elements.

These memory elements (memels) can be likened to pixels (picture elements) of a

digital image, and the two-dimensional memory "image" is simple to understand and

useful also, as we will explain. In fact, digital image processing is one field which

places great demands on the designer of array access hardware, and the examples given

below could, or do, form part of an image processing system*.

*
16 by 16 pixel block 	 256 by 256 pixel block

a) (Repeated four times) 	 b)

The numbers represent the order of selection of memory locations.

Figure 4.1 Threshold-determination filter access pattern.

* Examples marked with a * are real examples. Others are contrived, but still useful.

- 28 -

The first example is that of a thresholdmg filter, which must sample the image data

in the pattern described in Figure 4. 1, in order to find the correct quantisation level for

each block of data. The address sequence for this access pattern is 64kwords long, as is

the sequence for a second example, shown in Figure 4.2. Here, the access pattern has

been skewed slightly from the first example, but remains a valid thresholding pattern.

Figure 4.2 Alternative thresholding access pattern.

A final thresholding pattern is shown in Figure 4.3. This also requires 64k accesses,

in which the pattern from the first example is shifted one pixel between each of the four

passes, in order to cover the whole area of memory.

- 29-

ME
IIi1!I1t!L

uuuuuuii•u•u•ruu -

IAi -

............... 	 A UUUU•l•••UU••UU
- 	A u•uu•u•uui••u• £ •U••••••UU••••

EEMMI

•••••iu•umu••• - 	••••••••••••••• •••••••••••••• U , 	•••U•l•••••U•
••u•uuuuuuuuuu r 	••••u•ui•uuu•u

Y riPrIlIIir*

Figure 4.3 Further alternative thretholding access pattern.

Following the determination of a local threshold for each block of data, the image
will pass through a binarisation stage, producing the binary - black and white - image,

and this too can have a non-linear address sequence. One such sequence is described

below, and is much simpler than the thresholding patterns given before.

- 30 -

0 	S. - IS
 nnR Er

• .--------------
•••..••.........u.. 	.•.........u.... 	•••••••......... •••••••••....... ••••••i•••••uuui 	•............... 	•••............

•••••••••••••••• 	•...............
S

- 	I - 	 - 	- S• - S 	-- 	I S 	- S 	S - S

Figure 4.4 Binarisation stage access pattern.

If the image processing application is one of image recognition, then the binary
image will probably be passed through a correlator, which gives a measure of how well
segments of the image match the same segments of a previously stored image. This
could have the access pattern shown in Figure 4.5, which samples the data in four pixel
by four pixel blocks.

-31 -

4 by 4 pixel block

 ./
1 6by 16'pixel block_____ 256 by 256 pixel block

2 	 ffhiifi
-

1 I 4

C) 	 --

The numbers represent the order of selection of memory locations.

Figure 4.5 Possible correlation filter access pattern.

4.2 Some manually designed address generators
Shown below are the address generation solutions found manually for some of the

examples given in Section 4.1. It should be said that these designs originally took a

matter of man-days to produce, and considerably longer to verify by simulation

(Indeed, exhaustive simulation of all 64k steps was never attempted). The address

generator for the original thresholding filter consists of a 16-bit binary counter, whose

output bits are "shuffled" by wiring only, before being connected to the 16-bit address
port of the memory.

1234

5678

9 10 	11 	12

13 14 	15 	16

1 3 4

5 6 7 8

9 10 11 12

13 14 15 16

- 32-

Figure 4.6 Original thresholding filter address generator.

The other two thresholding filter patterns produced the following address
generators respectively.

MSB

C
o

U
a) 	N FJS Memory

T
E

LSB

_____ MSB ______

C ___

o =
U

__

L4)___

b) 	N : Memory

T =
E - ___

R

LSB

Figure 4.7 Other thresholding filter address generators.

- 33 -

The second real example, of the binarisation process, produced a much simpler
shuffling of the counter bits, as shown in Figure 4.8.

MSB

c

0

u
N 	 Memory

EID
T

E
R

LSB

Figure 4.8 Binarisation process address generator.

From the third contrived example of a possible correlation filter access sequence,

was obtained a more complex transformation of the address bus, and this demonstrates
some of the rules which could be used to automate this design process.

MSB

C
0
U
N

T

E
R

4 _
R 	Memory

__ __ =
= : =
LSB

Figure 4.9 Address generator for possible correlation filter.

4.3 AG1 - Address generator synthesis based on binary
counters

There follows a description of a tool developed to automatically design (describe)

address generators of the type described above, based on the specification of the address

sequence to be generated. A brief outline of modes of data entry is followed by the

method behind the synthesis algorithms. A short description of how combinatorial logic

- 34-

synthesis proceeds is then given, and finally the output format from the tool is
explained.

For a more detailed description of the tool's functionality, and the source code itself,
refer to Appendix D, and the diskette enclosed.

4.3.1 Data Entry types

Four different methods exist to introduce the access sequence into AG 1. The first

allows generation of the sequence by software, possibly as a set of nested loops, as

shown in Figure 4.10. The second data-entry method uses a built-in graphical entry tool

to lay out the access pattern on a two-dimensional representation of the memory space.

Like the first method, this is very amenable to the non-expert designer.

for V = 0 to 65535 step 4096,
for X =0 to 255 step 16,

for I = 1 to 4,
for y = 0 to 4095 step 512,

for x=(y/512) mod 2 to l5 step 2,
address(tjme t) = X + / + X +

next x,
next y,

next i,
next X,

next

(block height =16 rows)
(block width = 16 columns)
(do 4 times)
(every 2nd line)
(every 2nd pixel, skewed)

Figure 4.10 Sequence specification by software.

The final two data-entry options deal with loading predefined bit sequences from

file: Primarily sequences which follow no specific pattern, or which are not of length
bits. These sequences should, however, have 'padding' bits added to make the total
length a power of two, since the main pre-requisite of all input sequences is that they

have length 2's .

4.3.2 Method

The basis for the synthesis method involves iteratively bisecting each bit sequence
in the address sequence from the LSB to the MSB, recognising the presence of various

binary counter bits in their generation. The length of the first and subsequent halves of

- 35 -

the sequence, which should be length 2, give indication as to the binary counter bit(s)
involved, as described by the rules listed below.

Split sequence of bits, list[1 . .2n], into two halves, list[1 . .n] and list[n+ 1. .2n].

For example the list:

[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1]

becomes:

[0,0,0,0,1,1,1,1] and [0,0,0,0,1,1,1,1]

and the list:

[LOA 1,0,1, LOA 1,1,0,1,0,0,1]

becomes:

[1,0,0,1,0,1,1,0] and [0,1,1,0,1,0,0,1]

(These lists are much longer in practice).

If the list has a single entry (n = 1), then force the current address bit to '0' or
1', according to that entry, and then go on to examine the next most significant bit

of the addresses.

This Only happens if all the entries in the original list for the bit were identical.

If the two halves of the list are identical then halve the list by discarding the
second half, and return to (1).

This controls the use of Rule 1 by allowing the first half of the list to be split
further, only if both original halves are identical. For the first example given
above, after the first split the two halves are identical, and so we can take the
first half and split that:

[0,0,0,0,1,1,1,1]

becomes:

[0,0,0,0] and [1,1,1,1].

If the two halves are not identical, nor the logical inverse of each other, then we
cannot use any counter bits directly connected to this address bit, and we go on to
use the logic synthesis tool.

- 36-

A list of bits must be symmetrical about the midpoint for things to procede
further.

5) Rule 5 checks that the list has a length of 2m (which should always happen) and
stores the fact that the (m+1)th counter bit, Cbltm can be used to generate this list.

Rule 5 is invoked with the knowledge that the two halves of the list are not
identical (otherwise it would have been split again) but that they are the
logical inverse of each other (otherwise Rule 4 would have been invoked).
Several possibilities arise at this point, with the list having many different
possible forms:

[0,0,0,0] and

[0,0,1,1,0,0,1,1] and [1,1,0,0,1,1,0,0],

[1,0,0,1] and [0,1,1,0],

[0,1,0,0,1,1,0,0] and [1,0,1,1,0,0,1,1], etc.

If all bits in the first half, list[1 . .n], are equal, then the list has been reduced as
far as possible, and Rule 7 is called.

Thus lists which conform perfectly with sequences produced by a binary
counter bit are identified. For example, the sequence:

[0,0,0,0,1;1,1,1,0,0,0,0,1,1,1,1]

may be generated using Bit 2 of a binary counter.

If not all bits in list[1 ..n] are identical, then use the (m + 1)th counter bit (from
Rule (5)) XORed with whatever bit is chosen by halving the list again and returning
to (2).

Rule 6b deals with the other possibilities from Rule 5. Any list which has the
two halves non-identical, but logically inverse, and not all entries in one half
the same, is the XOR function of the (m+1)th counter bit, with whatever is
produced by halving the list again and returning to Rule 2. The XOR gate will
allow the first half of the sequence to be inverted after a constant number of
bits.

7) If the first bit in the list is a '1' , then negate whatever counter bit, or combination
of bits, has been chosen.

This implies that all bit sequences produced by counters begin with a '0',
which is quite natural.

- 37-

8) Print out the connections from counter bit(s) to address bit, and start at (1) with
the next most significant address bit.

Once this process has been completed for all address bits, we have a list of

connections from counter bits to address bits - the mapping, or transform - which will
produce the correct sequence of addresses with the minimum of logic.

4.3.3 Logic synthesis

Logic synthesis is done in two distinct steps in AG 1. The first step is carried out on

a bitwise basis across the address sequence, for any bit sequence which fails at Rule 4

above. The second step is one of global optimisation.

Firstly, the minterm value is determined as the binary value which appears least in
the bit sequence. Then an algorithm iterates down the bit sequence and for every
minterm a new logic function is produced in terms of a product of binary counter bits.

Figure 4.11 shows the relationship between the binary counter which will be used to
feed the logic, and the bit sequence to be produced.

3 	0000000011111111
Counter Bits: 	2 	0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10011001100110011
0 	

olololololololol

Target Sequence: 	0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0

Figure 4.11 Counter output against target bit sequence.

In order to get the minimum number of counter bits required to generate each

mintenn, an increasing number of bits of the counter are examined, and all possible
combinations of each set of bits are tried, until the selected counter bits' values only
ever correspond to a minterm. This is illustrated in Figure 4.12 where a mask is created
to select the counter bits and the bit pattern seen through the mask appears at several
locations in the count sequence.Only if all locations correspond to minterms is the

combination of, and values of unmasked counter bits accepted, and the next minterm

examined. Masked counter bits are stored in the pattern as '0's.

mom

3 	0000000011111111
Counter Bits: 	2 	0000111100001111

1 	0 0 1 	1 0 0 1 	1 	0 0 1 	1 0 0 1 1
0 	0101010101010101

ABC 	D E F X
Target Sequence: 	0 1 1 1 0 1 0 0 0 1 0 	1 0 0 0 0

Mask: 	at A gives Bitl.Bit0 which corresponds to minterms at D and E but
not at X, so reject this mask (0011).

at A gives i.Bit0 which corresponds to minterms at C, E and F
Mask. 	and to no maxterms, so the mask (0101) and pattern at A (0001)

define the logic required for A. (The same would be found for C,E

Figure 4.12 Masks and patterns for minterms.

Once each minterm has been defined in terms of a mask and pattern, in each random

bit sequence of the same length, and attempt must be made to match all or part of each
corresponding logic function to other minterms' logic, to get an optimised multi-level,

multiple-output logic implementation of the sequence generator. A heuristic weighting
system is employed to reduce the run-times of what is a complex problem, with the
weights calculated as follows. Given that minterms A and B have masks MA and MB

and counter bit patterns PA and PB the weighting between A and B is taken as the

number of '1' bits in

(mA® m& . (PA® PB).

In other words, we give a high weighting between two minterms whose logic

functions are identical, and a low weighting between those which are not at all alike.
Figure 4.13 shows some examples of this.

MA= 0101 MB= 1111 m= 01O1 MD= 0101

PA°°° 1 	PB 001 ° 	Pc 0001 	PD° 101

Weightings: w(A,B) = 1, w(A,C) =4, w(A,D) = 3, etc.

Figure 4.13 Examples of minterm weighting.

- 39 -

Once all minterrns have been compared and weighted against all other minterms

and the weights stored in an adjacency matrix (Figure 4.14), the total of all weights for

each minterm in turn is calculated. if the number of '1' bits in the corresponding mask

(Number Of Bits In Mask -: NOBIM) is greater than one (i.e.: More than one counter
bit is involved in its generation) then this total is normalised by multiplying it by

(Maximum_possible_NOBIM / NOBIM), and the result is stored in another, one
dimensional table, as the true weight for that minterm. if only a single counter bit is
involved (NOBIM = 1) then the true weight should be zero, since we will use the logic
for the minterm with the highest weight to help generate other minterms, and the single

counter bits are already available. Figure 4.14 gives the weightings for the sequence in
Figure 4.12.

Choosing the minterm with the highest true weight (A), we then give it a unique

function number, and then search through the original weight table for any similar logic
functions. If the weight between two minterms is equal to the

Maximum_possible_NOBIM, then they are given the same logic function number (C,
E and F), but if the weight is smaller, but still >0, and

(MA • m& • (PA PB) == MA,

then the current function number is stored alongside the other minterm as part of a sum
of products. The weights against any completely specified minterms are zeroed in the

original weight table, and a new set of true weights constructed, until no weights > 0

remain. Then any remaining 'minterms not so far given a function number have this

added, and finally the logic functions are extracted from the mask and pattern

information and printed out. Figure 4.14 shows the logic generated for the example.

- 40 -

Minte

True Wei

•ilAAU IJu.uuuu •uiiuucici

iuociixii
MEN MKIMIE

mA=O101 mD=O101
PA 0001 PD 0101

MB= 1111 mE=O101
PBOO 1 O PE= 0001

mc=O101 mF=0101
PC= 0001 PF= 0001

Output:
fl = Bit2bar.BitO
f2 = Bit3bar.Bit2bar.Bit1bar.Bjt0bar
f3 = Bit3bar.Bit2.Bit1bar.Bjt0

fl+f2+f3 ==> Target Sequence.

Alternative Output (b(l) = Bit b of binary counter (modulus 1)):

f = 2(1) bar. O(1)
f2 = 3(1)bar.2(1)bar.1(1)bar.0(1)bar
f3 = 3(1)bar.2(1).1(1)bar.0(1)

fl+f2+f3 ==> Target Sequence.

Figure 4.14 Weights and true weights for example sequence.

4.3.4 Output format

The output produced by AG1 is very simple to understand. Each bit of the address

word is described in sum-of-products form, which can vary from involving a single

binary counter bit to a multi-level logic description using several counter bits. The use
of inversion and EXOR gates is also made perfectly clear. Figure 4.15 contains the
description of a benchmark circuit, WGT(5) [69], which must produce a binary count
of the number of '1' bits in a five-bit input word. Note that the modulus 32 counter is
equivalent to a 5-bit binary counter.

- 41 -

fl = -5(32).-4(32).-3(32).-2(32)

f2 = -5(32).-4(32).-3(32).-l(32)

£3 = -5(32).-4(32).-2(32).-l(32)

M = -5(32)bar.-4(32)bar.-3(32)bar.-2(32)bar
f5 = -5(32).-3(32).-2(32).-l(32)

f6 = -4(32)bar.-3(32)bar.-2(32)bar.-1(32)bar

f7 = -5(32)bar.-3(32)bar.-2(32)bar.-1(32)bar

f8 = -4(32).-3(32).-2(32).-1(32)

f9 = -5(32)bar.-4(32)bar.-2(32)bar.-1(32)bar

f 10 = -5(32)bar.-4(32)bar.-3(32)bar.-1(32)bar

-1(32) exor(-2(32) exor(-3(32) exor(-4(32) exor(-5(32))))) ==> adbit 0

not(f4+f6+f7+f9+f10+fl+f2+f3+f5+f8)==>adbitl

fl +f2+f3+f5+f8 ==>adbit2

Figure 4.15 Example of output from AG1 - Description of WGT(5).

4.4 Address generators designed using AG1
All the address generators described in Section 4.2 were mirrored by AG!, and it is

pleasing to note that the synthesised designs are identical to those produced manually.

Examining the address generators in Figure 4.6 and Figure 4.8, a useful fact becomes

apparent - we do not need such a large (64kword) memory. As long as the original data
is available somewhere (if the image has not changed), then we need only store one

sixteenth of the whole image at one time, and we can discard the top three bits of the
address as unnecessary, inverting the fourth and so reducing the memory size

drastically. This conclusion can be reached from the fact that all four top bits have no

shuffle applied.

4.5 Comparisons
The logic synthesis tool, which was coded in a matter of weeks, nevertheless stands

up to comparison with other logic synthesisers.

One benchmark example used was WGT(5), which must output the number of logic

'l's in its 5-bit binary input. Its logic circuit as synthesised by Gatemap [71] is shown

- 42 -

in Figure 4.16, and the equivalent logic as defined by AG1 appears in Figure 4.17. The

chain of exclusive OR gates was created by the core algorithm of AG 1, while the other

logic was synthesised by the logic synthesis part -: A joint effort.

1N2
IN 4

OP 1
IN

1N3
1N5

1N4
IN
1N5
1N3

IN 2

IN 3

IN 2

1N3
OP 2

IN 1

Tr

1N4
1N5

IN 3 	
IN 2

IN

1N3

4I1Yf 	
OP 3

IN 5 	

1N4 	 1N3
IN 3 	 IN

IN i_f>o_IN I IN 	 1N4

IN 3
—>o--

 IN 3 	
1N5

IN4>o_ IN

IN 5-4>0---3

Figure 4.16 Logic Synthesis results for WGT(5) benchmark by Gatemap, which requires 96 transistor
pairs in CMOS (8 per EXOR gate).

- 43 -

IN 5
IN 4
IN 3

IN 2 OP 1
IN I 	 D--O

OP
IN 1

INS___________ - -
1N4 - - -
1N3
1N2 	 - - - 	 —oOP3
IN 	 -- -

INS—>— INS 	- - 	 -

IN a->---- IN

IN 3—[>o_ IN

IN 2—{>o--_ IN 2

IN 1

Figure 4.17 Logic synthesis result for WGT(5) by AG1 ,which requires 89 transistor pairs.

The address generators described in Section 4.4 matched exactly those designed
manually, and those which were not originally designed manually were carefully
checked. Producing the same results as a human designer is no small victory for AG 1,
and coupled with the marked reduction in design time, as described in Table 4. 1, AG 1
is, for all its limitations, a very useful tool.

- 44-

Example Manual Gatemap AG1

WGT(5) 10 mins (approx) 3.2 mins. <1 sec.

Image Filters 10 hrs (approx) N.A. <10 mins.

(incl. recomp-

ilation)

Table 4.1 Design-time comparisons.

4.6 Use of the 'C' programming language
The 'C' programming language was chosen for AG1, simply because it was the

language best known to us at the time of coding. Despite this, 'C' was found to be

almost perfect for the job, with its built-in array pointers and useful bitwise functions,

and although strong typing and therefore code security is not encouraged, the language
was found to be quiteameháble to algorithm development

4.7 Comments
Obviously, despite all its complexity, AG1 is not a generally useful tool, in that the

sequences fed to it must have length 2", and any "good" solutions found, owe this

entirely to the binary characteristics of the original access patterns. For instance, the
correlation filter memory access pattern described in Section 4.1 differed from that 	- -
defined for a real correlation filter [203], in that the real filter required data in three-by-

three pixel blocks, instead of four-by-four. The manual design for the real filter's

address generator included two long line delays, to obtain the three vertically adjacent

pixels needed. This seemed a rather crude method, and prompted an investigation into

address generation using non-binary counters, which is described in Chapter 7. The

logic synthesis part of AG1 has proved to be useful on many occasions, and is re-used
as part of the aforementioned investigation, and consequent synthesis tool.

The worst-case complexity of the various parts of AG1 are given below:

Sequence length = Is = 2", 	Sequence width (bits) = w.

Loading sequence = O(l).

Matching sequence to solution = O(w * 1).

- 45 -

Logic synthesis (m minterms):

Minterm detection O('s + 3l)
2

Minterm factorisation z 002 + 2m 3)

From these figures we can deduce that the logic synthesis tool will be slowed

considerably for random bit sequences greater than length =100 bits, while the main

part of AG1 will run in linear time.

- 46-

5 Introduction to behavioural synthesis

5.1 What is behavioural synthesis?
A behavioural synthesis tool will accept a description of what a processor is

expected to do - its behaviour(s) - and generate a netlist of hardware components which

will exhibit that behaviour, in a design anywhere from chip-level to system-level. Note
that a processor may exhibit more than one behaviour, probably under external control.

For instance, an Arithmetic Logic Unit (ALU), may add two numbers, multiply them,

or utilise any other built-in functionality and so has a set of behaviours describing each

function in turn.

The nethst of hardware components forms the structure of the design and there can

be only one structure for a given component, perhaps implementing several behaviours.

The hardware components themselves may have behaviours and structure, and in order

to generate correct and efficient hardware solutions, the simplest components should be
chosen from a library on the merit of their ability to exhibit the required behaviour(s),
as well as a number of other factors. The design process is summed up in Figure 5.1.

output I 	I 	 I 	
a—~h

c}_j Behavioural I_ 	c

input a,b I 	I 	 I 	 ALU

c:=a*b I 	I
Synthesis

Behaviours 	 Structure

Figure 5.1 The Behavioural Synthesis Approach.

A major requirement of a behavioural synthesis system, is an ability to handle a
hierarchical definition of a process [87, 93]. This allows the process to be broken down
into ever-simpler processes, as in a typical manual design, and hopefully these simpler

processes' behaviours will match those of some library components, which can then be

used to implement those functions, as part of the overall processor architecture. A
problem arises though, that decisions made at the simplified level may have major

ramifications on the overall design, and the outcome of these decisions must be

propagated back up through the design hierarchy - A computationally complex, and
time consuming task. However, it is only with behavioural synthesis that we may

- 47-

explore the design space so thoroughly, in such an efficient manner, and perhaps with
parallel-processing [94], point tools [86] or some other recent development, it is

possible that design time, from behavioural specification to netlist generation, could be
reduced to a negligible span, by today's standards.

To get from the behavioural description to a register transfer level description,

before logic and layout synthesis complete the design, is the task of high level synthesis.

It is this area which will be explored in the following sections.

5.2 Key steps in the high level synthesis process
Usually the behavioural description of the process will first be broken down into a

simpler internal format before carrying out the tasks of allocating a number of library
modules - computational resources - to be used, scheduling any computational
operations onto these resources and creating the necessary memory and

communications circuitry and control circuitry to support the process. These problems

Will be examined as part of an overview of high level synthesis systems.

Since the CMU-DA system [10] developed at Carnegie-Mellon University in the
late seventies, and MACPITTS in the early eighties [109, 16], a great deal of research
has gone into high level synthesis [27]. In Europe such projects include the
CATHEDRAL systems of IMEC [103, 104, 105, 1061, the MIMOLA project at the
University of Kiel [26], EASY at Eindhoven [20], CADDY at Karlsruhe [23],
SCHOLAR at Southhampton [33], FIRST at Edinburgh [108], Piramid from Philips
Research Laboratories [113] and the VENUS [97] system at Siemens.

In the United States and in Canada also, much work has been carried out, especially

at CMU, with their original design system and more recently with the System

Architects Workbench [114]. California has also been a centre of interest, with the three

universities of Southern California, Berkeley and Irvine producing the ADAM [39],
LAGER [120] and HYPER [52], and VSS [116] systems respectively. IBM's Yorktown
Silicon Compiler [53] and V compiler [54], and General Electric's Parsifal system
[117], along with the Bridge [118] and SAM (now CHARM)

[55]
systems at AT & T

Bell Laboratories, are typical of systems in industrial use.

The Canadian universities of Waterloo and Carleton have also been at the forefront
with the SPAID [19] and HAL [15] systems respectively. Inevitably, a large Japanese
effort is underway, and work is also going on in India, France and of course in

Edinburgh with the University's recently ended SARI project [34], and the author's

own MC2 system [50].

There follows a description of the key steps in high level synthesis, and their
implementations in the various synthesis systems.

5.2.1 Capture of behaviour

Capture of behaviour from the HDL or BDL into the internal format is normally

done by some sort of parser, and several classifications of the internal control and data
flow representations exist.

At IMEC a tree based description is derived directly from the Silage input language
[159] which is actually a signal flow graph description, and the LAGER system also

uses Silage. MIMOLA also uses a tree structure, parsed from its name-sake input
language [160].

Separate data and control flow graphs are used by Camposano [22] for the
synthesis of VHDL behavioural models, ASM (Algorithmic State Machine) charts in
Slicer [38], and in the VSS (VHDL Synthesis System). The latter use groups of data
flow operations which need no control, as basic blocks in the control flow graph, while
the former includes every operation.

A semi data flow graph, which requires less analysis of the input description, is
usually represented as a bipartite graph [168], and this method is used to create four

separate data models in the Design Data Structure (DDS) of the ADAM system: For

data flow; Timing and control; Logical structure; Physical Structure. The first two are

based on bipartite directed acyclic graphs, and a multi-graph formulation is also utilised

in the CADDY system, where three graphs for data flow constraints, data flow itself,
and for timing constraints, all share the same nodes. The nodes correspond to the

operations in the DSL input language [21]. The YSC's YIF format is another
manifestation of a semi data flow graph.

Using a combined data and control flow graph with fork and merge nodes can lead
to a more coherent data structure, and both the EASY system and the System Architects

Workbench have this distinction. The combined graph allows much simpler global

optimisation, by avoiding the need for basic block and their boundaries. Repetition

(loops) can also be handled better, rather than being represented outside the basic

blocks. The SCHOLAR system also uses a combined data and control flow graph
derived from its input description, as does FLAMEL [35] which deals with memory in
a global sense, over all basic blocks.

- 49-

5.2.2 Scheduling

Scheduling of operations onto hardware resources is required whenever a
maximally parallel approach is not feasible. The set of operations will have
dependencies on other operations for data, and these constraints are represented by the

data arcs between operations in the schedule. The schedule may be constrained in

length by a target number of control steps (usually the least possible) and by a target

number of each type of hardware resource available (again, the least possible). There

are four main methods of scheduling, including iterative operation-by-operation

techniques, self-organising methods, integer linear programming (ILP) and
transformational scheduling which tries to improve on an existing schedule. An
example of a schedule is shown in Figure 5.2.

Control
Step

o 	IN 	I I EjE] 	L1 l,6I 	 I3I 	I 	91
1 7 +3

2 +1

3

4 I 6

7 +19 - - +29

8 +1 +22

9
10

11 +1 	E:91 1+35 	 N
12

3

1 +7

14 + 1 34_ 	 4

15 X6 +14 +4

16 	+4

17

I 	2 	I I_13117,81r261_3811331 	 3 	43
OUT

Figure 5.2 A example of a (cyclic) schedule.

- 50 -

Most scheduling algorithms cannot handle loops or hierarchical behaviours and so

operations are commonly grouped into basic blocks, to be scheduled as possible. If

these basic blocks form quite large schedules then this practice works fine, but if the

blocks are small, and there are several of them in a control-dominated design, then the

number of basic block boundaries will cause a global scheduling problem for a block-

by-block scheduler. A hierarchical extension to this [45] schedules each basic block to
get a global timing, which is tailored by successively removing expensive and little-

used resources. Pipelining a design to increase the data throughput is a complex

scheduling problem, and only a few pieces of work, such as SEHWA [39] and that by
Hwang [43] and Mallon [44] have attempted to solve the problem.

Where a lot of chained operations are desired, for a fast (short) schedule, a path
based scheme [32] can help tremendously. Each conditional data flow path derived
from the control flow, graph is scheduled separately, and loops are treated as ordinary

straight line data flow which may or may not be executed. -

In the methods for scheduling within basic blocks, iterative techniques are the most
prevalent. These are divided between those that examine each control step in order and
those that iterate through the operations instead. In the former group, as soon as
possible (ASAP) scheduling, as used in the first CMU-DA system [29], which operates
under no hardware constraints, and also list scheduling techniques, are common. List
scheduling involves applying hardware constraints to delay certain operations from an

ASAP implementation; using some heuristic to choose which of the operations are to

'be delayed. A significant improvement was made in the HAL system [41] with force
directed list scheduling. This was a logical extension of previous work on SEHWA [39]

which uses a combination of list schedulers to get some idea of the urgency of
operations (and can handle pipelined designs), and this is similar to the approach taken

in the ELF [14] and CSTEP [114] schedulers. The Slicer scheduler [8] uses both the
ASAP and the ALAP (as late as possible) schedules to determine the mobility of
operations in the time domain. More recent work includes a time-constrained list
scheduler [57].

The iterative algorithms which examine each operation in order, include critical
path schedulers and distribution based schedulers.In [17], Parker schedules all
operations on the critical path(s) first, and then uses a mobility factor to assign control

steps to the others, while the CATHEDRAL II scheduler, ATOMICS [101], the length
of each critical path is taken into account. Force directed scheduling (FDS) [42]
distributes all the operations not on the critical path using a parallel of spring tensions

as a guide, and the CASCH scheduler [24] uses a more conservative statistical method.

- 51 -

An extension to FDS in PHIDEO [61] includes memory costing in the overall "tension"

calculations.

Integer linear programming (ILP) methods have been applied to scheduling with
some success for short schedules [58, 59]. This involves solving a linear program to
minimise some cost. Recently a more efficient ILP formulation has been reported in

[60].

Transformational scheduling applies either serialising techniques to a maximally

parallel starting schedule, or the corresponding parallelising transformations to a serial
schedule. Examples of these are found in the YSC [53] and CAMAD [78] systems
respectively. A branch and bound method for optimal parallel to serial transformation
is discussed in [7]. SCHOLAR uses a rule base for the same sort of transformations and
FLAMEL uses a rule base to transform the behavioural description itself, to greatly
increase possible parallelism in the eventual design.

Other scheduling methods include the application of simulated annealing
algorithms [51], and a branch and bound search for an optimal solution in SCHALLOC
[6], the scheduler in the CHIPPE system [38], which uses the connectivity binder
SPLICER [9] to prune the search space by costing.

5.2.3 Resource Allocation

Once the schedule is available, it is possible to determine the type and required

multiplicity of resources needed, and this may have been a constraint during the

scheduling task itself. It is possible however, that different resources' functions may be

combined, in an ALU for instance, and this may produce a better or worse design. This

is an area normally left to the human designer, or ignored altogether, but in both the
MIIMOLA system and the ADPS [59] system, module selection is done automatically
using an ILP formulation to reduce the global cost of the resources.

5.2.4 Data Path Synthesis

There are three specific tasks in constructing the data path to implement the

scheduled operations in the correct order. Memory must be created to store temporary

values, the interconnection between that and the computational resources must be

added and operation must be assigned to a distinct resource where a choice is available.

These three stages may be merged, but the complexities involved make this

approach infeasible even for medium-sized problems. A serial approach can apply each

algorithm in turn to the whole design at once - a global approach - but inherent

- 52 -

interdependencies between each subproblem can cause problems here too, as can the

order of application of the algorithms within the general synthesis scheme.

The algorithms themselves may be based on several different methods: Global

algorithms, based on clique partitioning/covering methods; Iterative and greedy

algorithms; Rule based schemes; Branch and bound search techniques; ILP

formulations; Logic synthesis. A further approach, of interconnect-driven schemes,

considers wiring as a first-order effect during data path synthesis.

Most global algorithms utilise clique covering methods to cover an undirected
graph, and Tseng [29] was the first to apply clique partitioning, based on heuristics, to

first complete the memory (register) assignment, then operation assignment and finally

interconnect synthesis. The heuristic approach does well in general but several special

cases allow exact algorithms to be used. The Left Edge algorithm (See Figure 5.3),
devised originally for a channel routing problem, can be used to allocate and assign the

exact minimum of registers, but cannot handle cyclic schedules [167]. An algorithm is

described in [4] which deals with this as a multi-commodity network flow problem.

0-1eP A B C D E F G H (Eight Datum) 	P A B D F H (Five Registers)
oil 	I

1 	
o______

1

211 	I 	I 	I 	 2

	

JCJ 3IiFF1 	3 - -

Left Edge

IG

Figure 5.3 The Left Edge algorithm groups data lifetimes to registers.

To allow some communication between the synthesis tasks, a correlated clique

cover approach is applicable, and is used in CADDY, HAL and EASY. In CADDY, the

order of tasks is register, operation and then bus assignment, and all are based on
colouring restriction and preference graphs [169]. In HAL the operation assignment is

done first, using functional partitioning, and is followed by register allocation using

clique partitioning weighted by interconnection patterns, whose synthesis completes
the data path. For EASY the first synthesis scheme starts with operation assignment

using heuristics to cover cliques with the largest weight. Then memory synthesis is

attempted using an improved left edge algorithm to reduce the associated cost of

- 53 -

interconnect, and another clique covering algorithm as an optimisation stage. Finally

the interconnect is added.

A mainly rule-based synthesis scheme is used in the DAA [13] for the original,

global memory synthesis, before partitioning the design using clique partitioning, and
then optimising at local and global levels, again using the knowledge-base. SCHOLAR

assigns registers to variables using a rule base, and then a point to point interconnection
network is added before finishing with operation assignment using a clique partitioning
method similar to that in FACET [29], but extended to handle concurrency.
CATHEDRAL U's Jack-the-Mapper [107] is another example of a rule-based memory
synthesis scheme, which also examines address generation as part of its task. Operation

assignment can be influenced by pragmas from the designer and is completed along

with register assignment by the ATOMICS micro-code scheduling tool. MC 2 uses a
rule base to first assign temporary variables to dual port register files, then to assign

operations to specific resources as a side effect of interconnection minimisation.

Finally, variables are assigned to specific locations within the register files, bearing
address generation costs in mind, and the address sequences and optimised control

sequences are then produced automatically.

A branch and bound scheme is used in IvHMOLA, where register assignment is
done first, for any straight line code. Operation assignment forms part of the

communications synthesis stage using a branch and bound algorithm on one control
step at a time (starting with the busiest cstep). SPLICER includes dynamic register
allocation with operation assignment in the interconnection synthesis stage, again on

one cstep at a time. Solutions are found quickly by this method, and then improved on
using backtracking.

Integer linear programming models are also included in MIMOLA now [25] for
register and operation assignment during scheduling, but this only works on a time-
local basis (step by step).

Iterative approaches include that taken in the ADA to standard cell compiler [14]

which iterates through the operations in the scheduled order to assign them to resources.

A similar approach is taken in MABAL [1, 2] but limited reiteration is possible, and

both registers and operations are assigned together, using the partial interconnect's cost
as a guide. The EMUCS system [115] assigns operations on a step by step basis using
heuristics to order them (within a control step), while CHARM [56] iteratively
performs a form of graph colouring, again using heuristics, with the register and

- 54-

communications synthesis built into the costing algorithm. Here sets of compatible

operations are constructed which will eventually share the same resource.

Logic synthesis systems such as the YSC and HERCULES [119] can play a part in

data path synthesis, especially for control-dominated designs, but lack the intimate
design knowledge of most other methods.

Although many of these systems do take interconnect costs into account, it is not
treated as an integral part of the synthesis scheme, and so work has been done on data

path synthesis schemes driven primarily by these interconnect costs. Park [18]

describes a method where short sequences of operations are assigned to the same partial

structure, using a heuristic clique partitioning algorithm on pipelined designs, to reuse

as much interconnect as possible. Register assignment is done at the same time,
implicitly, but any remaining interconnections must be added manually. In EASY again

[3], interconnect synthesis is done on two levels of hierarchy. After storage operation
grouping, which groups operations' data arcs into single port register files, perhaps
using a two-phase memory access scheme, register allocation takes place using a

bipartite graph edge colouring algorithm. Finally a simulated annealing algorithm is

used to assign operations to resources, which should reduce the costs of local

interconnections between memory and computational resources. MC 2 adopts a very
similar approach, but uses a rule base to produce control-free interconnect from

resources to memories, and to minimise the cost of the rest of the communications
network. -

Table 5.1, shows the relative strengths and weaknesses of these different methods
of data path synthesis.

- 55 -

Data Path Synthesis + - Method

Global algorithms Formal basis; Efficient;
Possibly exact Sometimes too general

Rule based
Good for Application Specific Slow; Difficult to
Synthesis maintain

Branch and Bound Very fast first solution Too time-intensive

ILP Good for small designs and for
Too time-intensive automated resource allocation

Iterative Simple to implement A lot of expensive look-
ahead required

Logic Synthesis Okay for control-dominated Cannot synthesise effi-
designs cient data operators

Interconnect Driven Good for communication- Suffers from resource
dominated designs allocation stage

Table 5.1 Comparison of Data Path Synthesis Methods.

5.3 Controller synthesis
Once the memory and communications have been added to the design, multiplexer

and register control sequences may be extracted using the schedule, and these will

commonly be handed to a logic synthesis tool to be assigned to a PLA-FSM or some - - - - -
other controller. The SCHOLAR system is one which constructs a specialised control
unit itself, as a non-deterministic FSM consisting of a Sequence Controller and some

combinatorial logic.Where memory address sequences are required, first the

assignment of values to actual memory locations may need to be completed, and this

may have great bearing on the cost of generation of these sequences. Control steps

where one does not care about a certain control value may be exploited to allow sharing
and simpler generation of these also. This is examined in Section 6.4.3.2 and Section
6.4.3.3.

5.4 Resulting design format
With the general simplicity of data path components, it is amazing how badly

reported are the results from some of the data path synthesis systems described above.

- 56-

The resulting design, excluding the controller, should be a netlist of computational

inputs and outputs, memory, buses and steering logic, as detailed in Figure 5.4.

A 	1/1
Computational 	D 	 1j 	 - - Steenng
Resources 	 Logic

R 	5
2 	 8

N.

A 	2
D 	 9 	IM
D
E 	F Latch
R 	 --

\ 	1 	3

Buses 	 4t_ -. ..
L

I I - 	 Memories

M
A A A ~ Al Latch

Coefficient ROM

KEY: IM = Input Memory
MM = Multiplier Memory
AMn = Adder Memory n

Figure 5.4 A example of a design resulting from data path synthesis.

5.5 Impact on address generation
Imagining now that we have synthesised a register transfer level description of the

required design, and that the registers have been grouped into register files as their
access times allow, let us backtrack through the synthesis process to find any stages
which have effected the address generation for those register files.

Obviously the grouping and subsequent sharing of registers within the files

ultimately defines the address sequence, but the stage of operation assignment may

restrict this grouping due to interconnect costs. Scheduling is by far the most important

stage as far as memory is concerned, since it is here that data arcs between the

operations are stretched or squashed, producing different storage requirements, and
perhaps it would be better to schedule the data arcs onto a predefined memory

architecture, whose address generation properties are known already. The PHIDEO

- 57 -

system [61] attempts to use look-ahead memory costing to influence the scheduling

task, but cannot attach more than a vague guess at address generation costs.

5.6 Comments
All the systems described deal with bit parallel architectures, but work has also been

done on bit serial high level synthesis. FIRST [108] at Edinburgh for bit-serial design,
and the CATHEDRAL I system for bit serial digital filter design were the earliest

systems, and since then Hartley and Jasica [48] and Cheung and Leung [49] have
reported such work.

- -:-

6 A heuristic approach to memory, control
and communications synthesis, for

scheduled algorithms

6.1 The joy of synthesis!
Without a doubt, the area of behavioural synthesis is an extremely interesting one,

offering constant challenges to an automation designer. Once the first part of the

synthesis problem has been expanded to a dozen or more equally difficult tasks, nothing

seems to be "simple" any more.

The overall motivation was that to examine the possibility of using automatic
synthesis techniques to construct scheduled memory address generators, one first needs

some address sequences on which to test and prove the techniques. These sequences
could have been compiled on a random basis, but would then bear no real relevance to
scheduled memory addressing, or they could have been produced manually for several

real examples, with high probability of errors, and with some difficulty. Therefore a

third option was exercised: That of designing a simple, automated synthesis system,

capable of accepting a schedule and some allocation information, and of producing any
address sequences needed by scheduled memory.

As coding of this synthesis system progressed however, it became obvious that
much needed to be done before a realistic memory address sequence could be produced, 	- --
and it was decided that the synthesis system should also produce a netlist of
computational resources, memories and steering logic, as well as the control bit
sequences for that logic. These were also targeted as test vectors for an address
generator synthesis technique.

So the synthesis system developed, as well as becoming more general in the form

of schedule required, until it consisted of three major programs, the function of which
are described in Section 6.4.

6.2 Schedules and their scheduling method
Scheduled memory addressing becomes a problem the moment an algorithm has

been scheduled, but little or no attention is paid by the literature to either memory or

memory addressing costs at the scheduling stage, with few exceptions. Scheduling

methods to date have been targeted at reduction of computational hardware and
controlling logic, along with an optimisation of throughput, by load-balancing and tree-
based methods.

- 59-

The first schedule below (Figure 6.1) is for a 5th order, elliptical, digital wave filter

[15], and has become a standard benchmark for several data-path synthesis systems [1,

3, 6, 9, 191. There are 42 computational operations in all, with 26 adds and 8

multiplications. One constant factor of each multiplication is held in a ROM, and a

single multiplier, pipelined in two control steps, and with a latency of one, is available.

Two adders, operating in a single control step, are also available. The filter algorithm
was scheduled into 20 control steps using a Force Directed Scheduling (FDS) algorithm
[41, 42], which utilises load-balancing techniques. The second schedule of the same

algorithm is shown in Figure 6.2, but this time the operations have been scheduled onto
slightly different hardware in just 17 control steps, by a simulated annealing approach

[51]. Again there are two adders and one multiplier available, but this time a fast
multiplier is used which does not need pipelining.

Control step

o 	INL'J 	LI1 13] 1261 1331 UU

2 +12

3 +20 +3 -

4 +25

5

_

X21

_ _

6

7 +19

8 +11

9 _

10

11 +8

12 +10 	181

13

14

15

16.

+ 14

_

17

18 	 +5

19

J2 I 6 	
38 11331 LII1

OUT
Figure 6.1 Fifth-order wave filter schedule.

.1

Control
Step

0 	IN U [iiI] 	[I] I,6I 	1331 	1391
1 7
2 +12

3
4

5

6 I 1 	+27

8 +22

9 . // +23 _\+3

10
 _

11 I18l I _N
12

13 +7 ZM +37

14
? 	 0

-15------- +1-4 --- 	 +4 	- 	 --

16+4 \

17

2 I I_131 1_18IT261_3811331 39 	4
OUT

Figure 6.2 Fifth-order wave filter scheduled using Simulated Annealing.

Figure 6.3 shows a schedule of a 16-point, digital FIR filter. Here, again, the

multiply operations have one input supplied by a pre-defined ROM, and in order to

complete the 23 operations in 6 control steps (actually 3 control steps, through
pipelimng), 5 adders and 3 multipliers are needed [18].

- 61 -

Control
Step

AB 	E FGHIJK L M CD

0 +1 	+2 	+3 	*13 *14ina mb 	nb 	na 	mb

1 * 9 	* 10 +d +e +4 	+5 	+6

2 inb
:a

Figure 6.3 16-point FIR filter schedule (Pipelined).

A third schedule, shown in Figure 6.4 is for a Fast Discrete Cosine Transform
(FDCT) algorithm, scheduled using simulated annealing into 13 control steps, and
requiring two adders, two subtractors and two multipliers. All multiply operations have
one input fed from a (hidden) ROM.

	

• 	•

	

• 	R ' ' ' 	'IJ
law

'p

nil

4 -

• 	V__RN____ __ __

• ___

• AIaI__

WiSMEW
I

__

Figure 6.4 Fast Discrete Cosine Transform schedule.

- 62-

The fourth example is that of a differential equation, and the schedule in four control

Figure 65 Schedule for the differential equation example.

6.3 Constraints on this approach
As it stands, the synthesis system described below, MC 2, has certain constraints.

Schedules containing fork and merge operations - the equivalent of an IE.THEN..ELSE

statement - cannot be handled properly, due to restrictions in the assignment stage.
These schedules' corresponding memories would need data-dependent addressing
schemes, which are not considered for automatic synthesis here.

The allocation of an ALU resource cannot be handled correctly by MC 2, again due
to restrictions in early stages of synthesis.

Operator chaining is allowed, as are ROM definition (to hold constants), cyclic and

acyclic schedules, multicyclic delays, and multicycling or pipelined computational

resources.

6.4 MC2 - Memory, Communications and Control synthesis of
scheduled algorithms

There follows a description of the MC 2 tool, from its input format through the major
steps in the synthesis process, to the output format and some synthesised examples.
Given a description of an operational schedule along with some allocation information,

MC2 generates a netlist of hardware components as well as the control and memory
address sequences required to make the design function.

6.4.1 Schedule data-base

The schedule which is handed to MC2 is described in terms of resources, operations,

operation timings and data flow constraints.

- 63 -

The data-base facts:

cstepO (X)

cstepn(Y).

define the first control step of the schedule to be X and the last control step to be (Y-
1).

Resource declarations follow the format:

res (Restype,Nres)Ninputs, [Widths-of-Ports], [List s_of equiv inputs])

Restype is the type of resource ('+', 'adder', 'mult', etc.), and Nres is the number of
resources of that type available. Ninputs is the number of input ports to that resource

type (Number of outputs is assumed to be unary) and a ROM resource has zero inputs.

The widths of these input ports are defined in bits for each port, and then lists of
interchangeable inputs describe the commutativity of the resource's function.

Operations are defined thus:

opr(OpUID, Restype, Nres, Wtime, [Rtimes]).

start time(OpUID, Start)

reads from(OpUID, [Other OpUIDs])

OpUID is usually a number or letter for each operation. If the operation is actually
providing a constant from a ROM, then the OpUID should be of the form:

- 	 'c.Constant value'. 	 - 	 -- 	--

Restype is the resource type on which this operation can occur, and Nres is as for
that corresponding resource definition. Again, if a ROM is being used then Nres should
equal the number of constants to be stored, although the actual size of the ROM may be
reduced at a later date. Wt ime is the clock tick during which the operation terminates in
the schedule (i.e.: When its output data becomes available), and the list of Rtimes are
the clock ticks when that data is actually required by other operations.
The starts — at/2 fact defines the clock tick during which the operation starts, and the
operations wch feed data to the one in question are listed in the reads _f ronl2 fact,
which is also a tentative port assignment. If an operation is to receive data from another

operation in the same control step - Chaining - then the supplier's UM should be
preceded by a 'ch.' in the reads _from list. Multicyclic operations are handled by
providing different start and Write times for that operation. Figure 6.6 shows extracts
from the FIR filter schedule description.

The schedule data-base will form the basis for synthesis to which structural
information will be added to the system.

- 64-

cstepO(0)

cstepn(3)

reslist(*, [J)

reslist(+, [])

res list (in, [])

reslist(rom, [1).

res (+,5, 2, [8, 8], [[1,2] 1)
res (*,3, 2, [8, 81, [[1, 21

res (in, 6, 1, [8], [])

res (rom, 3, 0, 1], [[]])

opr (al, in, 6, 2, [0])

opr(bl,in, 6, 2, [0])

opr (a2, in, 6, 2, [0])

opr (b2, in, 6, 2, [0]).

opr('c.1',rom,3,,[1]).

opr('c.2',rom,3,,[1]).

opr('c.3',rom,3,,[2]).

opr(1,+, 5, 0, [11).

opr(2,+, 5, 0, [11).

opr(3,+, 5, O r [2]).
opr(4,+, 5, 1, [21).

opr(5,+, 5, 1, [01).

opr(9,*,3,1, [2]).

opr(l0 I * • 1, [2)).

-'I 	I opr(11. I
* 	2 [0])

starts at(al,2)

starts-at (bl, 2)

starts _at (a2,2)

starts _at (b2,2)

starts at(a3,2)

starts _at (1, 0)

starts-at (2, 0)

starts-at (3, 0)
starts-at (4,1).

starts at(5,1).

reads from(7, [a7,b7])

reads from(8, [a8,b8])

reads from(a, [9,10]).

reads from(b, [11,a])

reads from(c, ['ch.b',12])

reads from(d, [c,13])

reads from(e, ['ch.d',14])

Figure 6.6 Partial schedule for the FIR filter.

- 65 -

6.4.2 Pre-assignment or not?

It is possible to pre-assign operations to a resource, if desired, by specifying the
resource as a singular one. For instance, if three adders are required in a schedule, then

to pre-assign some operations to one of these, it would have to have a name different
from the other two adders, for example "pre_assgnd_adder", instead of just "adder".

It is not possible, however, to assign any further operations to these resources, once

synthesis has commenced, since they would then have to support two, distinct operation
types - pre-assigned and normal - and ALUs are not handled by the system.

Also, the pre-assignment of operations severely constrains the synthesis heuristics

employed, often giving sub-optimal results, and since the assignment plan in MC 2 is,
in fact, a direct side-effect of memory synthesis, any tinkering with pre-assignment can
cause severe down-grading of results. Pre-assignment is a useful feature, though, when

it comes to defining ROM access operations in the schedule, operations whose constant

values will probably be pre-grouped to specific ROMs. It is also useful for testing
assignment strategies produced by other work [51].

6.4.3 The Three Steps to Heaven

The possible complexity of the synthesis process, and limited memory space,
demand a partitioned programming approach. The first stage is to take the schedule

- - - - data-base, and construct the-memory and communications - structure around - the -
computational base. Then the second stage extracts control and virtual address
sequences from the structure, and the final stage finds the actual control and address
sequences, as (sets of) bit sequences.

6.4.3.1 Memory and communications synthesis

A major premise in this memory synthesis method is that dual port memories are to

be used wherever possible, and that, due to a single-phase clocking scheme, no memory
element may be both read-from and written-to in the same control step. Because of this,

the first stage in memory synthesis is to find any operations (in a cyclic schedule) whose

output data is not finally read until the same control step as it was written, as for

operation 3 in Figure 6.7a. In each case a dedicated latch is added, to store the data
between cstepO and the datum's final use (Figure 6.7b).

1.9

91- CM
10,210L
*INSi
-I-i

1Ui!'J
*INS

•

Figure 6.7 a) Simple schedule.
b) Schedule after latch insertion.

The changes to the schedule database for this transformation are as follows:

	

Added: 	opr(latchUID,latchUID,1,0, [1,3]).

res(1atchUID,1,1, [W], [[1]]).

starts at (latchUlD, 0)

reads_f rom(latchUID, [3]).

	

Altered: 	opr(3,+,1,3, [1,3]). => opr(3,+,1,3, [0])

reads from(4, [3, in2]) .=>reads from(4, [latchUID,in2])

	

- 	
- reads frorn(5, [3,4]) .=>reads frorn(5, [latchUlD, 4]).

Any operations which are chained within a single control step, to

avoid having a latch inserted at this stage, have the marker "ch."
prepended to their UID, which is discarded after this stage.
For example: opr(5,*,1,3, [3,4]). and reads from(6, [ch. 51)

Next, any multicycic delays which have been declared in the schedule database, are

expanded and transformed into strings of latches (shift registers). For instance,
operations 2 and 3 would have been declared with:

reads from(2, [1,0.1])

reads_f rom(3, [1,00.1])

In other words, operation 2 reads data from operation 1, and from operation 1 in the

previous cycle, while operation 3 reads data from operation 1 again, but from two
cycles previously.

- 67-

The same sort of transformation occurs here as for simple latch insertion, with the

delay latch placed in the control step just before the operation requiring that delay,

wherever possible. Figure 6.8 shows the schedule from Figure 6.7b, after delay

insertion.

Figure 6.8 Schedule after delay insertion.

Once these steps are completed, memory synthesis-proper begins, by forming

groups of operations of the same type, in two stages. If there is only one resource of a

certain type, for example the multiplier in the Wave Filter example, then obviously all 	- 	--
operations of that type must happen on that resource, and are grouped together.

Multiple-resource operations, with a choice of resource on which to occur, are also
grouped by resource type.

What we hope to achieve is illustrated in Figure 6.9. There should be a separate set

of memories written to by each resource, and this allows a control-free bus structure,

one for each resource. This may seem constrictive if a least-memory-locations solution

is desired, but there was no serious increase in the number of memory elements found

for the examples used here (See Section 6.6). We intend to concentrate on reducing the

control necessary in the data path, at the expense of a few memory elements.

IMM

Figure 6.9 Target Write-bus architecture.

Since it is possible that not all data from a single resource may be eventually held
in the same, two-port (one Write-only, one Read-only) RAM or register-file, because of

access clashes between data, those data, or rather the operations which produce them,
must be further grouped "intelligently" so that a near-optimal solution is found. This
further grouping allocates multiple-resource operations to specific computational

resources, as a side effect of forming the memory structure required to support that
allocation.

The "intelligent" approach, using heuristics, was adopted over an exhaustive or
iterative search, because of the complexity and accompanying run-times of those other

approaches. By pre-grouping the operations by their resource type, we drastically
reduce the complexity of the overall problem, and we can use a simple weighting

system to implement the second grouping of operations, and their data, to specific
memories.

Multiple-resource operations are given a "Write" weight, equivalent to the number

of other operations of the same type which require to write data to memory at the same

time. Single-resource operations can never have Write access clashes, since only one

Write access can ever happen in any control step. The "Read" weight is similarly
determined for all operations, and the two weights are combined to give a number
corresponding to the degree of difficulty of grouping one operation with others of the

..

same type. Figure 6.10 repeats the Wave Filter example schedule, annotated with the

weights given to each operation.

Control
step

0 	irLiJ [Ijil] L1 1261 1331 [491
1

2 5/

3 6

4 +25 	4

5 12

6___

7 6 24 	2

8

9 2x9 8 +27

10 +2 	4 4

11 +8 4 _5_4 X3o 2

12 35 3 +1 1181 \\ /
13 1 CXD 5 j- 	\
14 1381- 0 +2

15 CiJ2

16 40

17 / / 4 	0

18 +5 	1 74
 \ 19 8 3 	4

I 	2 	I =E718 LalF3. 81 I 	I LII lI1
OUT

Figure 6.10 a): Wave filter schedule and weightings given to operations.

One simple way to understand the applicability of these weights is to examine an
adjacency matrix, or "square graph", of operations (or their associated memory
elements). Figure 6.11 shows the square graph of the add operations from Figure 6. 10,

with an 'r', a 'w' or an 'rw' denoting an access clash (or two) between two data. The

- 70 -

object of the exercise is then to reorder the data on the axes so that the fewest pOssible

squares may be drawn on the diagonal, containing no clashes, and covering all data.

This reordering should be done using the weights gathered previously.

Two very simple reordering schemes involve sorting the operations in each group

into an increasing or decreasing list, by weight. The operation with the lowest weight

is the "easiest" to group with other operations, and if we start with the easiest first, and

work through the sorted group towards the hardest, we will usually end up with one

large group of data, and several small groups. For all examples, the other, hardest-first

approach produced the least number of groups (memory blocks), which were more

balanced in size. It should be noted, however, that the size of each group, or memory
block, bears little relation to the actual number of memory locations required to store
all the data.

p

'

i•uuuuuuuu••••u•••••••u
DUE
•i•••u•uuuu•u••u••uu••uun
IMMENNE EMEMEMEMMEMEMBEEMEN
••••••••uu•nn••••uuuuu
••U•U•••UiU••UU•U••••EI •u•••••n•••••••••••nu

•uu•••uu•uu•••••u•n•uu
MEMEME MMEMBEEMEN

...............rn.......i

Figure 6.11 Original square graph of add operations in Wave Filter Example.

Figure 6.12 shows the square graph with operations reordered into ascending order

of weight, with arbitrary groupings shown. The hardest-first approach is used to further

reorder them, forming the square graph in Figure 6.13, which represents four memory
blocks.

- 71 -

WEIGHTS (No.. of access clashes)
Easiest 	 > Hardest

Figure 6.12 Add operations sorted on square graph axes.

Figure 6.13 Add operations finally grouped into memory blocks.

The final touch to memory synthesis is to make sure that each memory block may
be bound to a single computational resource. If the data elements in two different

Figure 6.14 Square graph showing Write access clashes only. 	 - 	-

Figure 6.15 Resulting Write-bus architecture for the Wave Filter Example.

- 72-

memory blocks of the same resource-type are Written at the same time (for example
operations 8 and 23), then those memory blocks, and their associated operations, may
not be bound to the same resource. The square graph in Figure 6.14 shows only the
Write access clashes between data in the example, and this information may be used in
the same way as before, to group together memory blocks. There must be as many
groups of compatible memory blocks as there are resources of the associated type. The
resulting Write-bus architecture for the example is given in Figure 6.15.

- 73 -

If the target number of groups of memory blocks is not reached, then a routine

iteratively searches for that target, by moving the causal operations to other, compatible

memory blocks, and avoiding local loops in the iteration. The two least-clashing

memory blocks (1 and 3, here) are searched for the "culprit" operations (8 and 23), and
the one which is easiest to move to another memory block (operation 8), determined

with more heuristics, is moved there (to memory block 4). if the target number of

groups of blocks is still unattainable, then a different Write access clash is moved, until
the target can be reached.

Now we move on to communications synthesis. Since the Write-bus network is

already defined, "all" that remains to be done is the construction of the network of

multiplexers between the memories and the computational resources, completing the
16'1 Vtn Niim,nn rihitii'tiir (Pin1ii- 	1A)

M Multiplexing I R 	' 	Network

o

i 	PT
Hardware Resources

Figure 6.16 Target Read-bus architecture.

- 74-

Control 	Adder 1 	Adder2 	Multi
step: 	Port AB AB 	AB

1 IPM1 AM1
2 AM3AM1
3 	AM3 AM1 	AM2 AM4
4 	AM1 AM2
5 AM1
6
7 	AM3MM1 AM1
8 	AM3AM4
9 	MM1 AM2 	 AM1
10 	AM4 AM1 	AM5 AM2
11 	AM1 AM5 	AM3 MM1 	AM2
12 	AM3 AM2 	AM2 AM4
13 	MM1 AM4 	AM2 AM3 	AM1
14 	AM5AM1 AM2
15 	IPM1MM1 AM3AM1
16 	AM1 AM4 	MM1 AM3 	AM2
17 	AM2AM3 AM1
18 	AM1AM2 AM3MM1
19 	AM1MM1 AM3AM2

Figure 6.17 Read-access table for Wave Filter Example.

This process commences with the creation of a table of Read accesses, derived from
the "coloured" square graph, shown in Figure 6.17 for the Easiest-first memory

- - - ---- 	configuration -Next starting-at -a control step defined-by the user (usually-cstep O),--and---------- -
working forwards in time (going back to the start of the schedule if necessary), until all
control steps have been examined for each resource, "paths" are created between

memory blocks and resource inputs using the following criteria:

B1We wish memory block B to be available on input i 	11

of resource R, R, in cstep C, with I(i,j) meaning
that inputs i and j are interchangeable on R: 	 +

R

- 75 -

If: 	B 	(Block n already connected to Resource input i) Then continue.

'if

If: Bn and I(i,j), and _Bm and 	Then 	and FBn]

Rj]

iii)If: B and l(i,j),and 	and B m ;Then Bm and Bn j

R 	 R
	
Ri 	 FRj]

If: B and I(i,j), and B but only for ; Then B 	and B n 	 m this cstep

	

rn 	ri

Rj _ 	 RJ 	 _ _

Otherwise: 	B

'I,

Figure 6.18 Path making criteria for construction of Read-bus network.

In (i) above, a path has already been created between the memory block and the

resource input, and the present control step is added to a list associated with that path,
holding the times when that path is needed.

In (ii), a path has already been created to an interchangeable input on the resource.
This interchangeability is specified in the definition of the resource, as lists of

- 76-

interchangeable inputs. For example, inputs 1 and 2 of the adders are interchangeable.

Here there is also a path already existing from the block which was to have been

connected to the interchangeable input, to the input originally (and arbitrarily) intended

for the block in question. The blocks are swapped on the inputs, and we get criteria (i)

for the other block, and eventually for the block in question.

In (in), a path to an interchangeable input exists for the block in question, but no

path yet exists for the other proposed block at all. The blocks are swapped on the inputs,
and path-making continues for the same input.

For case (iv), there already exists a path from the other block to the other input, but

which has only been created in this cstep. Here the newly created path is erased, the

blocks are swapped, and we continue with the same input.

In (v), none of the above criteria have been found, and a new path is created from

the block to the input, whose creation is noted for the duration of the path-making for
this cstep.

This path-making continues for all the inputs of each resource, until we have the

minimum number of paths from memory blocks to each resource input, which can then

be rationalised into a network of multiplexers.

Now we create an optimal communications network between memory blocks and
- resources, consisting of buses and 2tol muxes. 	 - -

The process starts with the creation of a muxntol for each resource input, where n

is the number of blocks which must be connected to that input. This number will have

been minimised during path-making. if n=O (There is no memory block connected to

the input), then the muxOtol is erased. Along with each muxntol exists an associated
list of csteps during which the mux is needed.

Using the path information, the muxntols are broken down into 2tolmuxes. From

this point an "input" is either to a resource or to a 2tolmux, which has inputs '1' and
'2', and output '3'.

First we find any inputs which must receive data from, at least the same memory

blocks, the data being identical whenever the blocks are Read in the same cstep. All but

one of the common muxntols, and their associated paths, are erased, the one left being
that with the greatest value of n. The lists of csteps when data is required are updated

with any different csteps from the erased muxntols and paths, and a connection is made

from the output of the remaining muxntol to the inputs whose muxntonls were erased.

- 77 -

Next we find the most-used path and extract a 2tolmux from its associated
muxntol, if necessary:

if n = 1, then connect the memory block where the path starts, to the input, where

the path ends, erasing the path and the muxitol:

Mem.
Block

muxitol path(Mem., Input)

1
Input

Mem.
Block

connect(Mem., Input).

Input

If n> 1 then connect the memory block whose path it is, to input '1' of a new
2tolmux, and connect the output of that 2tolmux to the input expecting the data. The

muxntol is erased, and a mux(n-1)tol substituted, with its list of csteps updated so that

it no longer includes the csteps when the chosen path was needed. The path is erased

and all other paths associated with the mux(n-1)tol are redirected to lead to input '2' of
the new 2tolmux:

	

Most used path 	 M.Bj

M.B JIMB
1 	2 1- 	 mux(n-1)tol

J7_J 	I 	MjB 	path(MB 2 , Input)

'i%l, muxntol 	I 	 I

path(MB , Input) 	 2tolmux

	

Input 	 Input

By choosing the most used path first, we increase the amount of "Don't care" values

in the control sequences for the 2tolmuxes, and so increase the chance of being able to

fold the control sequences at a later stage (Section 6.4.3.2).

Finally, any new muxitols are erased, along with their associated paths, and the

blocks are connected to the inputs expecting the data. The whole process then iterates,

WE

until there are no muxntols or paths remaining. The Read-bus network is described as

a set of connections, from either memory blocks or 2tolmux outputs, to either resource
inputs or 2tolmux inputs.

The resulting Read-bus network for the Wave Filter example is shown in

Figure 6.19, which includes the Write-bus networks from before.

- Figure 6.19 Resulting communications network for Wave Filter example. 	 - - -

6.4.3.2 Address and control requirement analysis

The next step is to analyse and decide on virtual address and control bit sequences
for the memories and multiplexers.

It is a simple matter to construct a virtual address sequence for each port of each

memory, where the virtual addresses are just the UTDs of operations whose output data

are being stored or accessed. Alongside the virtual address sequence construction, a

boolean "Don't Care" sequence is also built to denote the actual addressing needs, and

also the lifetimes of each data item are noted. Any Write Enable control sequences are

- 79-

also produced at this stage if required. A sample of the information gathered for the
lave Filter example is shown below.

wal (*1', [0,0,0,0,0,0,21,0,24,0,9,0,30,0,6,16,0,36,40,0])

ral (* 1f, (0,0,0,0,0,0,0,21,0,24,0, 9,0,30,0,6,16,0,36,40))

wal('+1', [O f 0,0,20,0,0,0,0,11,27,0,0,0,0,28,0,41,14,37,42))
wal('+2', (O f 3,12,32,0,0,0,0,0,0,0,0,7,31,0,4,17,0,5,0))
ral ('+1', [37,0,14,42,20,0,0,0,0,11,27,27,0,42,27,28,42,41,0,37])

ral ('+2', [17,5,3,12,32,0,0,12,12,32,32,3,3,7,31,0,31,17,4,31])
dc_seq(*1l,r,[0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,1]).

dcseq('+1',r,[l,O,l,l,l,O,O,O,O,l,l,l,O,l,l,l,l,l,O,l]).

dcseq('+2',r,[l,l,l,l,l,O,O,l,l,l,l,l,l,l,l,O,l,l,l,l]).

latch—control ([latchll, latch2l,inl], [save, 0, 0, 0, O f O f 0, O f O f O f 0, 0,0
Of Of Of Of 0, Of 0])

Figure 6.20 Information produced during address and control requirement analysis.

Latch control sequences, in the form of "save" operations (technology independent)
within a sequence of control steps are also easily derived. It is not so simple, however,

to extract the control sequences required for what may be a large number of

multiplexers (say < 100). Knowing that memory M must be connected to the
computational resource input, R 1 , during control step C, we can trace the path from R 1

back through the multiplexing network to M, noting the input desired on each

- multiplexer traversed. The control values of any muxes not needed in a control step are
"Don't care" values, which are taken to be '0', whereas the muxes which are needed
can have control value '1' or '2'. This representation is used because the real control
values, '0' and '1', have not yet been assigned, and may be bound to either of the virtual

values, at a later date. Examples of multiplexer and Write Enable control bit sequences
are given in Figure 6.21.

csigl ([muxl] , [0,1,1,2,1,0,0,0,0,0,1,1,2,1,2,1,1,0,2,2]
csig2 ([mux2] , [0,0,0,2,0,0,0,1,2,1,2,2,2,1,0,1,2,2,1,1]

csig5 ([we, +4] , [1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2]
csigl0 ([muxl0] , [0,2,0,0,0,0,0,0,0,0,0,2,1,0,0,2,2,0,1,1]
csig12 ([muxl2], [0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,2,1,0,0,0]

Figure 6.21 Example multiplexer virtual control bit sequences.

In the controller, a PLA-FSM or COUNTER-ROM method may be used to generate
the control bit sequences for the multiplexers, and the address sequences for the
memories. Setting the address generation aside for the moment, we must find some way

of folding the control bit sequences together, so that many multiplexers may share the

same bit sequence, reducing the controller's PLA or ROM area.

There are three distinct ways to fold the bit sequences together, each of which is tried,
in order, on pairs of control sequences.

Overlapping fold.

This is where the two sequences have common values '1' or '2'.

	

E.g.: a) 	 0 0 1 2 2 1 1 0 1 2
* * * * 	*

	

and b) 	 2012210002

have a "positive" overlap of 5 bits (marked by *s).

These sequences would fold into:

2 0 1 2 2 1 1 0 1 2

We can easily swap 'l's and '2's, simply by swapping the inputs to the muxes, so

1 1 2 1 1 2 2 2 2 1

would become:

2 2 1 2 2 1 1 1 1 2

which sequence (c) would fold into, with positive overlap of 8. 	-

Non-overlapping fold.

This is where the control bit sequences have no overlapping 'l's or '2's, but do have
overlapping 'U's.

	

E.g.: a) 	 210001021
* 	*

	

and b) 	 0 0 0 1 0 0 1 0 0

have a "negative" overlap of 2.

These sequences fold into:

	

C) 	 2 1 0 1 0 1 1 2 1

Shifted fold.

Depending on the length of the control bit sequences, it may be useful to introduce

delays on some bit sequences, so that they may be generated by other sequences.

a b c d e f g h

00 ... abcde..

ELM

If some sequence starts with n '0's (b), and then continues with a sequence already

existing, but earlier in time (a), then we can introduce a delay of up to n csteps on the
control line of the first sequence. Sequences whose first bit is non-zero, i.e.: "Do care",
cannot be generated using a delay, unless the first bit can be preset on the delay - a

situation too dependent on other factors to be explored further here.

E.g.: a) 	 210212001

b) 	 0 0 2 1 0 2 1 2 2

Introducing a delay of 2 on (b) to get (b"), we get:

a) 	 210212001
* * 	* * *

b") 	 2 1 0 2 1 2 2 0 0

which have a positive overlap of 5, and can be folded into:

C) 	 210212201(=(a)&(b")).

The maximum number of delays it is viable to introduce depends on the length of

the control sequence, and the respective areas of control and delay.

No possible fold.

If the sequences follow none of the above patterns, then their overlap is null, and

they will never be folded together.

Order of selection

The selection of pairs of control sequences for possible folding is not haphazard.

The control sequences are ordered by the number of '0's in each, so that the
"busiest" sequence - that with the fewest '0's - is examined first for possible folding.

From the remaining sequences, the one with the largest overlap with that sequence is

chosen as a partner for the first. If no overlap exists with any of the remaining
sequences, then the sequence with the next fewest 'U's is tried.

Once a possible fold is found, the sequences are merged, overlaps are again

calculated, and folding attempted once more, until no more folding can occur. Finally,
if the sequences are long enough to merit it, shifted folding is attempted, commencing
with the sequence starting with the most 'U's.

Figure 6.22 contains the original and folded control bit sequences for each
multiplexer.

Of an original sequence couit of 15 for the Easiest-first memory configuration, only

7 sequences were necessary, and from 12 sequences for the Hardest-first configuration,

only 6 sequences were actually needed.

Shifted folding was not attempted, since the sequences were not considered long

enough to use a delay instead of separate control bit.

In another example, a set of 40 multiplexer control sequences of length 14 bits was
reduced to just 8 sequences, again without trying shifted folding.

Original control sequences: (0 -> Don't Care, 1&2 -> Logic '0' or '1')

controlsigi -> [muxi] = [0,1,1,2,1,0,0,0,0,0,1,1,2,1,2,1,1,0,2,2]

controlsig2 -> [mux2] = [0,0,0,2,0,0,0,1,2,1,2,2,2,1,0,1,2,2,1,1]

controlsig3 -> [mux3] = [0,2,1,1,1,0,0,0,0,0,1,2,2,2,1,1,2,0,2,1]

controlsig4 -> [mux4] = [0,0,0,0,0,1,0,1,0,2,0,1,0,2,1,0,1,2,0,0]

controlsig5 -> [mux5] = [0,0,0,1,0,0,0,1,1,1,2,2,1,2,0,2,2,1,2,2] -

controlsig6 -> [mux6] = [0,0,0,1,0,0,0,0,1,0,1,1,2,0,0,0,1,2,0,0]

controlsig7 -> [mux7] = [0,0,0,1,0,0,0,0,0,0,0,0,1,0,2,0,0,0,1,1]

controlsig8 -> [mux8] = [0,0,0,0,0,0,0,0,0,0,1,2,0,1,0,2,1,0,1,2]

controlsig9 -> [mux9] = [0,2,0,0,0,0,0,0,0,0,1,2,2,1,0,2,2,0,2,2]

controlsiglO> [muxl0]=[0,2,0,0,0,0,0,0,0,0,0,2,1,0,0,2,2,0,1,1]

- controlsigil > [muxll]=[0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,O,1,O,O]

controlsig 12> [mux 12] =[0,2,0,0,0,0,0,0,0,0,0, 1,0,0,0,2,1,0,0,01

Folded control sequences:

Some of the mux inputs may have been swapped, inverting their control bits.

controlsig13 > [muxl,muxl0] = [0,1,1,2,1,0,0,0,0,0,1,1,2,1,2,1,1,0,2,2]

controlsig14> [mux2,muxl2] = [0,1,0,2,0,0,0,1,2,1,2,2,2,1,0,1,2,2,1,1]

controlsig15 > [mux3,mux8] = [0,2,1,1,1,0,0,0,0,0,1,2,2,2,1,1,2,0,2,1]

controlsigl6> [mux5,mux11] = [0,0,0,1,0,0,0,1,1,1,2,2,1,2,0,2,2,1,2,2]

controlsigl7 > [mux7,mux9] = [0,1,0,1,0,0,0,0,0,0,2,1,1,2,2,1,1,0,l,1]

controlsig18 > [mux4,mux6] = [0,0,0,1,0,1,0,1,1,2,1,1,2,2,1,0,1,2,0,0]

Figure 6.22 Control sequences for wave filter example before and after folding.

Wiz

6.4.3.3 Address and control sequence synthesis

As far as the control bit sequences are concerned, all that remains to be done is to

fill any remaining Don't Care times in a sequence with 'l's and '2's so that each
sequence is made as regular as possible, and then to bind these virtual control values to
actual values, '0' and '1'. This also defines which input to each multiplexer is selected
by which control value.

The replacement of the Don't Care values can be quite complex, but the method is

based on taking as short a sequence as possible from the start of the original sequence,

and making it fit repetitively onto the rest of the bit sequence, as described in
Figure 6.23.

iuuiiiiii••••u iii•iiiuuii•••• iiuuuuuuii•••••

!u!IIIIIuUIIIIlIIliI
E4IIIMMUUIIIIIIIIIIIIII

•••11111M

UtIUII!flflli

Original Seq.

Sample Length =

1St Inversion afi
three repetitions
2nd Inversion n
after three rep's,

so reject Length
Original Seq.:

Length =2
1st Inversion aft
single repetition

Resulting Seq.:
(Hint = Length =

Binary Seq.:

Figure 6.23 An incompletely specified control bit sequence is filled with values to capture inherent
regularity.

- 84-

The virtual values are then converted to real binary values on an arbitrary basis; '1'
-> '0' and '2' -> '1'.

The assignment of data items to actual memory locations now commences, which

defines the possibly incomplete address sequences, and their constituent bit sequences.
Looking at each memory in turn, first the virtual read address sequence is examined. In

an interactive mode the number of memory locations available may be set between the

minimum number required, discernable from the data-lifetime information, and the

maximum feasible with that number of address bits needed to support the minimum.

For instance, if at least five memory locations are required, determined from the

lifetimes of the data by the Left-Edge algorithm (See Section 5.2.4), then three address

bits are needed, which can support up to eight memory locations. The default number
of memory locations to use is the minimum required.

For each bit of the address sequence a certain set of values will be possible. An

example is given below, where five memory locations exist.

Location:0 4 	2 	1 	3
Bit 2 óJ Fil 	1~1 If 0 1~1 UO

Bit 0 	 SUBTREES :1[
Figure 6.24 Possible address bit values for a five-word memory.

We traverse the virtual address sequence from start to end and build up the lowest

significant address bit sequence first, and then all the others, in such a way that the

sequences are as regular as possible. This method requires information on the lifetimes
of the data, and on which data may share the same memory location. Data are assigned

to one or other subtree (Figure 6.24) of possible locations depending on that

information, in such a way that there will be enough room for all the data in each

subtree, keeping in mind the symmetry of the resulting bit sequence, before the next bit

of each real address is examined. Once all data have been assigned to specific memory

locations, an algorithm similar to that used on the control bit sequences is then put to

work, which takes into account all possible values of each bit of each address to come
to an optimal solution. It should be noted that addresses greater than the number of
locations available may appear, but only at Don't Care times. Figure 6.25 shows a
virtual and the corresponding real address sequence for one of the memories in the wave
filter example.

- 85 - -

Virtual Read Address Sequence: (0 -> Don't Care).

Cstep: 0 	 W 19
[37,0,14,42,20,0,0,0,0,11,27,27,0,42,27,28,42,41,0,3

Can't share memory location: 	3 memory locations available:

	

28, 42 	11, 27 	 II I I II

	

28, 27 	20, 42 	 BIT1 1 0 11 1 11 0 1

	

14, 41 	41, 42

	

14, 37 	37, 42

	

14, 42 42, 27 	 BITO 	0 	1
11, 42

Real Address Sequence: 	N.B. Location 3 does not exist, but is only referenced at
Don't Care times.

Bitno:
IP

0 	[0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0]
L Repeat

1 	[1,0,O,0,1,0,1,1,1,0,1,1,1,0,1,O,0,1,1,1]

Memory assignments: DataUlD Location

37 	2
14 	0
42 	1
20- 	2
11 	0
27 	2
28 	0
41 	2

Figure 6.25 Virtual to Real read address sequence conversion.

Since a virtual write address sequence will never be less sparse (have more Don't

Care times) than its corresponding read address sequence, the greater degree of freedom

this allows relegates the write address sequence to a slightly cruder synthesis technique.

The actual locations assigned to each datum are already known from the previous

synthesis stage, and it is a simple matter to insert these locations into the write address

sequence, where required. The address sequence can then be split bitwise, and each bit

sequence can have any inherent regularity retained during the filling of any Don't Care

times, as before (Figure 6.26).

MM

Virtual Write Address Sequence: (0 -> Don't Care).
Cstep: 0 	 Mo. 19

[0,0,0,20,0,0,0,0, 11,27,0,0,0,0,28,0,41,14,37,42]

Incomplete Real Write Address Bit Sequences: (x -> Don't Care).
Bitno:

o 	[x,x,x,O,x,x,x,x,O,O,x,x,x,x,O,x,O,O,O,1]
1 	[x,x,x,1,x,x,x,x,O,1,x,x,x,x,0,x,1,O,1,O]

Completed Real Write Address Bit Sequences:
Bitno: 	

-
Repeat 	 - Repeat 	u. 	 Repeat

0 o 	[o r 1, O r o, 0,O,O,1,O,O,0,0,,1,O,0,O,O,O,1]
1 	[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0 ,1,0]

L Repeat
(inverted)

Figure 6.26 Virtual to Real write address conversion.

6.4.4 Output format

The output from MC 2 describes two things:- The structure of the circuit, and the

address/control requirements. The former is in the form of a netlist of components, with

connections defined between specific ports on the computational and ancillary

resources. The circuit synthesised for the FIR filter is described in part by the facts in
Figure 627. The circuit itself appears in Section 6.5.

group (+,'+l', [3,d,g])

group(+, 1 +2 1 , [e,8,b])

wgroup_of blocks ('+resl', ['+1'])
w group of blocks ('+res2', ['+6' , '+4'

D.
w group of blocks ('+res3', ['+2'])

connect (1n3, [muxl,l])

connect ([muxi, 3], ['+res2' ,l])

connect (ml, [muxl,2])
connect (in4, [mux2,1])
connect ([mux2, 3], ['+res2' , 2])

connect(*41, [mux23,2])

connect (in2, [mux24,1])

connect([mux24,31, [muxll,2])
connect(1*3, [mux24,2])

connect ('+5', [mux25,1])

connect([mux25,3], [muxl4,2])
connect('+l', [mux25,2])

Figure 6.27 Netlist description of FIR circuit.

Multiplexers are defined to have inputs numbered 1 and 2 and an output numbered

3. The inputs will be bound to specific control values at a later date. The other

information shown in Figure 6.27 specifies the assignment of operations (e.g.: 3, d, g)

to resources (+res 1, +res2) and the memory allocation which that introduces (Memories
are '+6', etc. - Adder memory no. 1, Adder memory no. 6).

The second collection of output data specifies the address and control sequences
which are required for memories, latches and multiplexers. Memories have their

minimum number of memory elements calculated using the Left Edge algorithm, and

this information is used by the sequence specification stage. If a memory comprises

only a single memory location then the memory will be implemented as a latch, with its

own latch control sequence. Address sequences for RAM or register files are described

in terms of their constituent bit sequences, with arbitrary control values 1 and 2, to

separate virtual values from actual ones. A binary sequence defining which addresses
are actually required, for both read and write address ports is also included, if there is
at least one Don't Care time.

Latch control signals are defined, technology independently, as a 'save' operation

during the correct control steps, and may share the same wire if identical. Write enable
signals for memories and multiplexer control signals are grouped together, and so may
have several destinations, and the signals are described in terms of those destinations
and of course the control values. The address and control information for the FIR filter

example is shown in part in Figure 6.28. This information maybe simply translated into

the format used to input address sequences to AG2, an address generator synthesis tool

descr bea in the next chapter.
minnomemels ('1 , 3)
minnomemels (, 2)

adbit (w, 0 I
*2l

I [2,2,1], [2, [mv, 1]])
adbit(r,O I

1*21
I [1,1,2], [2, [inv,1]]).

adbit(w,1 I
1*11

I [1,2,1], [2, [inv,0]])
adbit(w,O , 1*11

I [2,1,1], [2, [inv,1]])
adbit(r,1 , 1*11

I [1,1,2], [2, [inv,1]])
adbit (r, 0, I*11, [1, 2, 1], [2, [iv, 0]])

dc_seq(*1I,r, [1).
dc_seq(*2I,r, [1,0,1]).

latch_control (['+6' ,I*4I], [0, save, 0]

control(csig74, [mux2, [not, [[we,I*3h], [not, [muxl]]]],mux25

Figure 6.28 Partial address and control specification for FIR filter.

WO

The information following each virtual address and control bit sequence specifies
the shortest section from the start of the sequence, which can be used to generate the
whole sequence, if repeated, perhaps with inversion in polarity after a number of
repetitions. It is this information which allows us to calculate a hint as to the generation
of the sequence, to also be handed to AG2. Appendix E contains the address and control
generators as synthesised by AG2 for all the examples given here.

6.5 Some synthesized data-path architectures

Shown in the next few diagrams are the circuits synthesised by MC 2. These have
been drawn manually, following the netlist information from the system. Firstly, the
circuit for the wave filter example is given in Figure 6.29, and Figure 6.30 shows the
circuit for the FIR filter. The implementation of the differential equation example is
illustrated in Figure 6.31, and finally the FDCT architecture appears in Figure 6.32.

Figure 6.29 Wave Filter circuit.

Figure 6.30 FIR Filter implementation.

Inz

Figure 6.31 Differential Equation example.

MOTM

Figure 6.32 FDCT solution.

6.6 Comparisons with related results
It is very difficult to find a globally fair comparison between circuits synthesised by

different systems, described in the literature [1, 3, 6, 9, 15, 19, 39]. This is due to a lack
of standards in the reporting of results in this area, and such a standard is proposed in
the following section. Table 6.1 gives some of the results from the literature alongside

those from MC2. A second table shows the same results normalised to the best result in
each column.

- 92 -

Multiplexer trees are taken to be autonomous networks of multiplexers; Multiplexer
inputs are all primary inputs to muxes (i.e.: not from other muxes); Multiplexer
equivalent is simply a count of all 2 to 1 multiplexers in a design - A multiplexer tree
with n primary inputs will need (n-i) 2 to 1 mux equivalents, or less if multi-level
optimisation has occurred. The number of local interconnections is given as the total
number of wires with only two ends - Point-to-point links - and this may include wires
from computational resources to memories, from memory outputs or chip inputs to
multiplexer or resource inputs and links within multiplexer trees. To find the number of
buses in the designs, all connected wires (nets) with more than two ends are gathered
together as a bus, and this should include any wires not labelled as local interconnect.
shows the wave filter architecture with buses in grey and the local interconnect in black.

Registers are either RAM locations or single latches. A register file with a single
location should be converted to a latch, so that any register file will contain more than
one location. Control Bits is a count of all different bit sequences to be applied to the
circuit, including latch control, mux control, memory write-enable and address wires.
Any control bit sequence may have several destinations.

CPU Time is given as an approximate guide to run-times, but is only important in
that all the time given are quite short, considering the complexity of the examples. The
use of different hardware on which to run the software precludes any real comparison
of speed between systems.

Figure 6.33 Wave filter architecture with buses highlighted in grey, and local interconnect in black.

- 93 -

Systems: A-Easy; B-SPAJD; C-Splicer; D-Sehwa; E-SCHALLOC; F-MABAL;

I-HAL; J-EMUCS; H-MC 2 .

Wave Filter:

System Cycles + * M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T.

F 17,19 2 ip 13,10 45,32 32,22 -,2 16,10 <15

A 19 2 l 25 15 8

C 21 1 21 9 43 1 55

I 19 2 1 6 26 20 45 12 —600

J 19 2214 50 36 12

B 19,21 2 ip 7(51 14,13 5,4 19 5,4 —60

E 21 2 ip 13 57,53 28,27 11,9 13 —150

H 19 2 ip 5 16 14 17 8 16 5 28237

FIR Filter:
System Cycles + * M.T. Mi. M.E. L.I. Buses Regs R.F. C.B. C.T.

D 3(6) 5 3 23 34x8 18

B 3(6) 4 3

3(6) 5 3

H 3(6) 5 3 16 41 25 33 19 20 8 4 563

Differential Equation: - 	 -
Sys. Cyc. + - * < M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T.

F 4 1 112 1 6-8 13-17 7-9 5-6 <1
I 4 1 1 2 1 6 13-14 7 5 140
C 41121 5 12 7 6 291

E 11,4 1 1 2 1 3-7 11-16 6-8 6 11
423

H 4 1 1 2 1 6 13 7 12 8 9 3 8 57
FDCT
Sys. Cyc. + - * M.T. M.I. M.E. L.I. I Buses Regs R.F. C.B. I .c..I.
H 13 1 	2 1 	2 2 1 	11 51 43 41 F 27 24 8411121

Key: M.T. - Multiplexer Trees.
M. 1. - Multiplexer Inputs.
M.E. - Two-to-one Multiplexer Equivalent.

L.I. - Number of local interconnection wires

R.F. - Register files.
C.B. - Number of different address/control

bits to be generated.
C.T. -Approx. CPU time in seconds.

Table 6.1 Results from literature against those from MC2.

- 94-

Wave Filter:

System Cycles + * M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C . T.
F 19 21p2 2 1.5 - 1 1 - - 1
A 19 2 ip - 1.6 - - - 1.5 1.6 - -

H 19 2 1pj 1 1 1 1 4 1.6 1 28 16

I 19 2 ip 1.2 1.6 1.4 2.6 - 1.2 - - 40

J 19 2 2 2.8 2.6 2.6 - - 1.2 - - -

B 21 2 ip - 1.3 - 13 1 1.5 4 - 1.1

E 21 2 ip 1.2 1.3 27 - 2.3 1 - - 2.7

C 21 21 1 1 - - - - --1

FIR Filter:
System Cycles + * M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T.

D 3(6)53 - -

B 3(6) 4 3 - - - - - - - - -

3(6) 5 3 - - - - - - - - -

H 3(6) 5 3 16 41 1.1 1 19 1.1 8 4 563

Differential Equation:
Sys. Cyc. + - * =? M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T.
F 4 1 1 2 1 1.2 1.1 1 - - 1 - - 1
I 4 1 1 2 1 1.2 1.1 1 - - 1 - - 140

C 41121 1 1 1 - - 1.2 - -291

E 4 1 112 1 1.4 1.3 1.1 - - 1.2 - - 11

H 4 1 1 2 1 1.2 1 	1.1 1 12 8 1.8 3 8 57

Where no comparison could be made, the original figures have been retained.

Table 6.2 Normalised results.

From these tables we can deduce that MC 2 tends to produce better results for
communications and control circuitry at the expense of local memory space. This is an

effect of the memory-first synthesis approach taken in MC 2 and is not terribly
detrimental to the size of a design, since RAM locations come quite cheaply.

- 95 -

6.7 A Standard for behavioural synthesis results
presentation

It is always useful to know the number of cycles into which an algorithm has been

scheduled, but commonly the given figure does not include any input or output control

steps. This is all right because any input or output steps may be wrapped round to the

end/start of the schedule, so that the number of cycles scheduled - Cyc - should include
all computational operations. Whether the schedule is cyclic or acyclic is important,
and for pipelined designs, the delay for the first output should also be given, in brackets.

Since we want to be able to compare as many different architectures as possible, all

results should be technology independent. In other words, instead of giving the actual

area of any computational resources, we should simply present the number and type of

such hardware, for example: 2 adders, 3 multipliers, etc.

The number of multiplexer trees and primary inputs are not as important as the
number of 2 to 1 multiplexer equivalents, which should be given as the total number in
the design - N2m1. We are also interested in the number of different multiplexer control

wires required - NCm . Other communications information should include the number of

buses - NB and the number of local wires as defined in the tables above - NWL.

From the memory side of things, we wish to know the number and average size of

any RAMs or register files ARAM, SRAM; The number of registers (latches) - NREG -

andalso the number of different address wires and latch control wires required - NCA,

NCREG.

Finally, the CPU time should be given - CPU - as well as a note of the hardware
used in producing that run-time.

If any of the above factors are not automatically produced by a system, they must
be compiled by hand and reported as such in the results table.

Example Cyc N2m 1 Ncm NB I NwL NRAM SRAM NEG NcA NcREG cpul
IWave Filter 19 14 12 8A 17 5 2.7A 3 11' 1 237

* Including 3 ROM address bits. A signifies hand compilation

Table 6.3 Example of standard result.

20.2

6.8 Prolog for fast development

Indubitably it was Prolog that allowed such fast development of MC 2. Having used
the language previously, the re-learning curve was steep, and although the code can get

rather unintelligible, the ease of handling the data is a boon. Any new facts can be

simply added to the data-base in a meaningful format, and old data may be removed just

as easily. The data structure may not be hierarchical or coherent, but is sufficient for our
purposes and took very little time to develop.

6.9 Comments
Even at this point, there are several problems still unaddressed in this area, but sadly

these have to remain so, while the over-riding task, that of automating scheduled

memory address generator synthesis (and now also, control bit sequence generator
synthesis) is completed.

The complexity figures for the algorithms used in MC 2 are almost impossible to
compute due to the recursive nature of much of the code. However, Table 6.4 below

shows the run-times for the various sections of MC 2 for the examples used, along with
some information on the complexity of the original schedules.

CPU time (s)

Data path, memory and
communications synthesis 44 242 17 257

Control and Address 72 281 21 748 sequence extraction and optimisation

Control and Address sequence 121 40 19 116 analysis, and final memory synthesis

No. of Operations 	42 39@ 11 50
140 5 No. of Resources 	3 14 9)

No'. of Csteps 	19 13 3 4
25 7 No. of Multiplexers 	14 43

_ o

(D Including 16 input operations. 	Example: 	.

I ® Inclu ding 6 input ports. Cd

a) I © Including 8 input operations. 	 .
) Including 8 input ports. 	 Cd

-I

Table 6.4 Runtimes for the three sections of MC2 for the examples.

- 97-

From these figures we can determine that a busy schedule with a large resource set
slows down data path and memory synthesis, a long schedule effects the control and

address sequence analysis, and a large number of multiplexers badly effects the time for
control and address sequence extraction and optimisation. Formulae obtained for the
run-times of the two latter stages are:

CPUSTAGE2 (0.64 *N2m1)2

CPUSTAGE3 sw 5(I(Ops.Csteps) -2.8) secs.

MC2 turns out to be a highly adaptable and functionally complex data-path
synthesis system, as well as fulfilling its seemingly simple original purpose.

If a partial target solution to a design problem can be found quickly, then we can use

exhaustive techniques to perfect this. It is the compilation of the target architecture
which requires all the planning of a chess master, such that the game is almost over after
the first move. The chess master will look ahead not to all possible moves in the game,

but only to those probable in the situation reached. We have the same planning problem
in behavioural synthesis, in that every decision made will effect our choice of further

decisions, but unlike the chess master, our opponent is neither inscrutable nor

unpredictable. We should know exactly what will happen after the very first decision

has been made, since our synthesis algorithms tend to be serial and predictable.

- Synthesis systems cannot hope to achieve anything near as good as a manual -

-approach while they are based on a single, very general algorithm. If the algorithm is

tailored to a specific example, then it will be better at similar problems, but worse than

the general approach for different ones. To be as good as manual designers in general a
system must be able to select and alter the algorithms to be applied. The synthesis
is then targeted directly at the individual problem, for best results.

For instance, the time taken to find a solution using each individual algorithm

should be known from its complexity order. If a solution is required very quickly,

perhaps as an innovative suggestion or trigger, then only the fastest algorithms should

be chosen from. If in a chip design problem there are a large number of operations, then

we will most likely need to schedule them onto a fewer number of computational

resources. If there are a large number of data arcs in the schedule then point to point

communications will probably prove to be unworkable, and memory synthesis is very
important.

•:

By fine-tuning the available algorithms as best we can, very good solutions should

be found quickly, and it is only this lack of interface between the synthesis algorithms

and the human designer that inhibits the possible generality of our tools.

Inz

7 A general approach to address generator
synthesis

7.1 The need for generalization
After the completion of the first part of this work, described in Chapter 4, we

accepted that we were still very constrained in terms of the problems targeted. For some
digital image processing filters for example, it is known that more efficient designs can

result from sampling the image data in blocks not sized by a power of two [207], but by
three or five or some other number. Also, much of the control of these processes should

also be based on that size of sample, and any FSM built to generate that control would
be more efficient when driven by a non-binary counter.

So the decision was made to attempt to construct a more general and complete tool

which would seek the same sort of solutions as AG1, but which would do so using an

intelligently-chosen counter modulus. The bitwise approach was adopted from AG 1 but

a much more comprehensive data structure in AG2 allows a whole design's address and

control generators to be optimised in terms of their total area. Many other methods of

address generation other than using counters are also identified in AG2.

7.2 The inevitable data model
The possible complexity of the situation demands a coherent and comprehensive

data structure, in which to store and process all the necessary information. The

hierarchical approach taken here is both necessary [87, 93] and natural, with each

memory requiring a set of address generators, which are in turn formed from a set of bit

sequence generators (See Figure 7.1).

At the top level is a list of the memories required in the design. Each memory has a
name and a UID, as well as a possible pointer to an actual hardware component (in a
general design environment - See Chapter 8). The type of memory should be known,

and if this is given as "control" then then addresses are actually to be generated as

control words for use elsewhere. Information on the dimensions of the memory are

available, and a list of the names of any arrays (or groups of data) to be stored in the

memory, corresponds to the address generators needed to access that data.

An address generator data structure is tied to a single data-array, and as such has

well defined time limits on its use, as well as a clock signal, which may be gated by a

second, strobe signal. The mode of memory access for which this address generator will

- 100 -

NAME
HARDWARE

DECLARED SIZE, WORDSIZE
ROUNDED SIZE, WORDSIZE
X-DIM, Y-DIM

CONTENTS

No_Of_Ports

Types_Of_Ports 	 A.G.

ARRAY_NAMES

ACCESS—ID 	 PORT—NO
ACCESS—SEQUENCE
DON'T—CARE—SEQUENCE
START—CLICK, LAST—CLICK
CLOCK—NAME, STROBE _NAME
COMMUNICATIONS

ARRAY

R W RW C

ADDRESS_BIT_NO 	INVERTED?

•EI
BIT —SEQUENCE

INCREMENT
BIT—NUMBER PRESET—TO (01101011011...)

MODULUS GATED—BY
GATING—SIGNAL

- ROM_DEFN.
'0' OR '1'

BIT—NUMBER

Ell 	ON 11 	1~

WITHLNVERSION

EXORED_WITH CLOCKED_BY

MEMORY I I A.G. I I B.G. 	COST—INFO

Figure 7.1 Address Generation Data Structure.

- 101 -

be used will be important, as will the port number on the RAM (if a multi-port RAM is

involved).

The destination of stored data, suppliers of data to be stored, or in the case of control
generation, the destinations of control signals, may be defined, as well as a list of

behavioural function calls for addresses, and which of these are actually required
(There may be dummy calls inserted).

The address generator also comprises a number of bit generators, which may be one
of several types:

A Simple bit generator is defined as the bth bit of a modulus m counter;

An EXORed bit generator is some bit generator, as above, exclusive ORed
with the output of some other bit generator;

A Clocked bit generator is a simple flip-flop, clocked by the (possibly

inverted) output of some other bit generator;

An Incrementor-type bit generator is bit b of some incrementor, which may
be preset, reset and have a gated clock;

A ROM bit generator is some output bit b from an address ROM, which may
be constructed as part of the optimisation process;

A Logic-type bit generator is the output from some combinatorial logic or
- 	- 	 PLA, characterised by a binary sequence; -

A Hardwired bit generator is simply a constant logic 6 0' or '1';

A Wholly Random bit generator is one whose required bit sequence is too
long and too random to consider here;

Finally, a bit sequence may have an as-yet-Unknown bit generator.

The outputs from these bit generators together form the address words to be
generated, and may be inverted in polarity.

The final element of the data model, to allow bit generator costing and optimisation
at a later date, is a cross-referenced list of all bit generators, along with space for their
costs, further discussed in Section 7.4.5.

Taking a general view of this data structure, it can be seen that a RAM may have
several ports of different types, each of which may be utilised to store or access some

group of data in some predetermined sequence. Each group of data will have addresses

- 102-

generated by a set of bit generators, and, most importantly, these may be implemented
on hardware shared with other address generators.

A data ROM access sequence may be defined as for any other memory, along with
its contents, and this may possibly have addresses generated by another, address ROM,
which will in turn need addressing, most likely using an incrementor. The "Unknown"

bit generator may in the future be expanded to handle other types of bit generator, for
instance ring-counters or more complex structures [196, 199], with corresponding
extensions to the data structure. It is felt, however, that what we have now is sufficient

to handle most situations.

7.3 Requirements of an address generator synthesis tool
As stated, AG2 can perform global optimisation of address and some control

generation hardware. This is a major requirement of a synthesis tool since the bias
towards the use of counters is not only for their simplicity, but also their re-usability.
Other requirements include explicit definition of address sequences for RAMs and

ROMs, and the ROM contents if applicable. Deterministic control bit sequences should

be handled and any sequence must be able to express whether each address is actually

needed or is just a dummy address filling an unnecessary part of the sequence.

A number of options for the generation of each sequence should be considered, and

hardware sharing should be encouraged where it is effective in reducing the total area
of all the generation circuitry.

7.4 AG2 - A general address generator synthesis tool
In the following sections we examine the human interfaces to AG2, as well as

describing the method used to recognise various types of bit sequence generator, and

then investigating the optimisation stage where the bit sequences are bound to their

cheapest possible generator. A user guide for AG2 appears in Appendix D and the code
is included on the disk.

7.4.1 Input format

There is a standard, file-based input format for AG2, with the input file(s)
containing the following information:

• Memory Name - This is derived from the name of the access sequence file
itself.

• Memory Type - May be 'ram', 'rom' or 'control', in which case the
sequence is to be generated for control rather than memory access. The
memory name should reflect this.

- 103-

 Start Click - An integer defining the clock tick (click) on which the first
address is to be generated.

• Clock Name - The clock which will be used to iterate through the sequence
(and it is this clock which should be used to determine the Start Click).

• Strobe Name - This may simply be 'dummy', but if the sequence is to be
generated using a gate on the aforementioned clock, then the strobe name
should be defined as the UID of that gating signal. This may be done
automatically if necessary.

• Access Mode - 'W', 'R', 'WR', 'RW' or 'C'. This defines the mode of
memory access for which this sequence will be used. 'C' denotes a control
sequence.

• Communications Name - This should be a list of all computational resources
which read/write data from/to the memory, or a list of all destinations of a
control sequence.

• Hint - A very important integer which will be used by the synthesis tool as
a basis for finding counter-based address generators. Figure 7.2 describes
how a designer could find a good hint, which should reflect any repetitive
pattern length inherent in the problem. If given as '0', it will be found
automatically, but at the expense of time.

Figure 7.2 Manually defining a hint.

• Access Sequence - This is the list of integers which must be generated,
terminated by a '-1'.

• Don't Care Sequence - A binary sequence with the same length as the
Access Sequence, again terminated by a '-1'. Where the Don't Care
Sequence is '0', the corresponding address in the Access Sequence is not
actually required. If a Don't Care Sequence would be all 'l's (every address
is required), then it may be omitted, apart from the '-1' terminator.

- 104-

 ROM Contents - The list of constants to be fixed in the ROM, in order of
ROM address, terminated with a '-1'. This data is only included if the
Memory Type is 'rom'.

• Any other information. For example control connection details for
multiplexers, in a control sequence whose destinations include multiplexers,

as output by MC2.

i ne rormat or mis aata witnin me access sequence me is snown in 1-figure 1.3.

I 	sequenco ñlename=meiu1+acsect=> Memory Nanie= meni1'
ram! rom/ control
o 	 Start Click
ClockUID
StrobeUlD/dummy
r/w/rw/wr/c 	 Access Mode
adder l/mult2/mux3l " 	Communications
3 	 Hint
0
1
2

Access Sequence

99
-1

0
0
1
1 Don't Care Sequence
1
0

25

-1
1

16 ROM Contents

—1

mux3l's input 1 is chosen by control value 1.
mux3l's input 2 is chosen by control value 0.

Figure 7.3 Access Sequence File Format.

This standard format may be compiled by hand, but facilities exist in both MC 2 and
AOl for automatically producing files in this format.

7.4.2 Basic method

This section will describe the support procedures which transfer the data from the

access sequence file into the internal data structure, and also the basic method for
synthesis, without getting into too much detail.

The main procedure in AG2 is run twice during the synthesis process, first to pick

up all the address sequences defined externally, and then to synthesise address-ROM

address generators, for any ROMs which have been created as look-up tables as part of
other address generators. In the first case, the system enquires as to the data capture
method: Using a drive file containing the names and memory data widths of several

memory access and control sequences (width = 1); Or loading data from a single access
sequence file and then manually providing the data width.

To commence the loading of information, a check is made on the total size (in bits)

of the access sequence, and if this is too large then the system will load each bit

sequence of the access sequence individually. The maximum address, access mode and

memory name and type are also derived at this point, and are used to either add the
information to an existing memory record, or to produce a new one, adding ports to
each RAM as -required.- Then the rest of the access sequence information is loaded and
stored in the corresponding memory record, before the synthesis stage-proper can
begin.

The first type of address generator sought is an incrementor. The incrementor may

be preset for the first clock tick, and may be reset at a fixed value after that. It should

have a fixed increment, which may be a postitive or negative integer, and need not
increment every click.

If an incrementor cannot be used to generate the given sequence then it is split
bitwise and an attempt is made to match each individual bit sequence to a counter-based

bit sequence generator. This involves using the given hint (or derived hint, if not given)

to pad out the bit sequence so that it is of length H.2n1, where H is the hint. This allows
iterative bisection of a compact representation of the bit sequence, quite like the method
used in AG 1, to hopefully find a cheap bit generator.

- 106-

Finally, for address sequences which are not too large, each constituent bit sequence

is compared with others to try to find one which may be generated using another

sequence to clock a flip-flop.

Once all this has been done for all bit sequences in each access sequence file, costs
are derived for each possible implementation of each bit sequence generator, based on
their area and possible hardware sharing. These costs are then iteratively optimised
until each bit sequence has a single, definite generator, and then any sequences which
have been bound to address ROMs, are collected together to form the contents lists of
those ROMs, and the access information for the ROMs is handed back to the main

procedure as a whole new set of access sequences, but which cannot be generated by
yet another address ROM.

7.4.3 A working example

In order to show as many features of the system as possible, a set of three access
sequences will be used as a working example. The first two contain memory access

sequences for the same memory, and the third is a control bit sequence for a set of

multiplexers. The first address sequence bears little resemblance to those normally
seen, since its constituent bit sequences have been tailored to illuminate certain points,

and then combined to give the address sequence. More realistic examples will be
detailed in a later section. The access sequences, as handed to AG2, are given in
Figurie 7.5, and their file names and memory widths are contained in a drive file, shown
in Figure 7.4.

mem 1 .wacseq
8
mem 1 .wracseq
8
csig2 1 .cseq
1

Figure 7.4 Contents of drive file for working example.

- 107-

ram
0
clocki
dummy
W
inputi
0 	-- Hint
48
160
177
166
39
55
44
253
234
234
123
104
241
97
102
119
196
212
205
74
91
11
-1
-1

control
22
clocki
dummy
C
mux3/mux7/muxl 0
0 	--Hint
1
1
0
1
0
0
1
1
0
1
0
1
1
0
1
0
1
1
0
1
-1
-1

ram
22
clocki
dummy
WR
input2/adderl /multl
0 	-- Hint
5
8
11 1
11 1
11 0
14 0
17 1
0 1
3 1
6 1
9 1
9 1
9 0
12 0
12 1
15 0
18 1
18 1
18 0
0 0
0 1
3 0
3 1
6 0
6 1
9 0
9 1
9 0
12 0
15 1
15 1
18 0
0 1
3 1
3 1
6 0
-1 1

1
I -1

Figure 7.5 Access sequence files for working example.

7.4.4 Method

A primary stage, before loading an access sequence from file, is necessary to

establish whether the size of the sequence will allow it to be loaded in its entirety, or

only on a bitwise basis. Then the memory name is derived from the input file name, and

an attempt is made to find this amongst existing memory records. If one is found then

that memory record is returned to have another address generator added, and otherwise
a new memory record of the correct type is created, with a single port of the required

access mode. Then the dimensions of the memory are updated if necessary, for example

if a larger address appears than in an address sequence already treated.

Finally the rest of the access sequence information is transferred to the internal data
structure, changing or adding ports to the memory if required. A ROM may only have
a single port of mode R (Read), while a RAM may have as many ports as required of
any mode, and if a RAM port of mode R or W is available for an access sequence of the

opposite mode (W or R) then the port will be extended to be of mode RW - Read and

Write. Now the synthesis algorithms start in earnest to examine the sequence for

possible generation methods, starting with incrementor-based generators.

7.4.4.1 Finding An Incremental Sequence

In iteratively examining the address sequence, we look for several points:

- 	 - The maximum address must be> 1. - 	-- 	 - -.

The very first address is the preset value for the incrementor.

• If the next address is the same as the present one then a gating signal is
required on the clock, and it should be set to '0' for the present clock tick.

• If the next address =0, for the first time in the sequence (apart from the very
start) then the modulus of the incrementor is made equal to the previous
address plus the increment value - the address which the incrementor will
not quite reach. Also any gating signal should equal '1' for this clock tick.

• If, when the next address =0, the present address = the modulus minus the
increment, then any gating signal will equal '1', and if not then the sequence
cannot be generated using an incrementor.

• If the next address is different from the present one, for the first time in the
sequence, then the increment is recorded as next—address minus
this—address, and also any gating signal should be '1'.

- 109 -

• if the next address differs from the present one by the correct increment,
then any gating signal should be '1' for this clock tick but if the increment
is different to the recorded one then an incrementor is not suitable for this
sequence.

If the whole address sequence passes the above tests then a corresponding set of bit

generators must be constructed. If the increment is unary then a counter is more efficient
than an adder and such a counter is constructed, with possible preset and gating signal.

The counter modulus is the maximum address plus 1, and only the lesser bits of such a

counter are required. If the increment is greater than one then an adder will be used, and

the output bits are numbered from 0 up to the MSB of that adder. If a gating signal is

not required for the incrementor then the name of the dummy signal is set to 'clock' and
otherwise takes the form 'gating sigUID'.Figure 7.6 shows how an incrementor type
solution is found for memi .wracsea in our working examDle.

5 8 11 11 11 14 17 0 3 6 9 9 9 12 12 15 18

t A 	A 	A 	Check the rest

Preset
Value
=5

Increment
=8-5=3

Gating signal 	Modulus
- 	is required 	=17+3

=20

Gating Signal:

110011111100101 lx

Figure 7.6 Finding An Incrementor-based Solution.

7.4.4.2 Padding A Bit Sequence

Assuming that the address sequence cannot be generated using an incrementor, the

next task is to try to match each constituent bit sequence to a counter bit or logical

combination of bits. To allow this matching process to function correctly, the bit

sequence must first be padded out so that it has length Hint * 2''. This involves

appending a copy of part of the bit sequence to its end, inverting the polarity of the copy

if necessary. The hint may be predefined, and if so will be used in padding ALL bit

sequences in the address sequence, but if it is not specified (ie: Hint =0) then it must be

-110-

found automatically for each bit sequence in turn. This can be very time consuming for
very long sequences since it involves taking successively longer sections from the start

of the sequence, which a separate algorithm attempts to fit repetitively onto the rest of

the sequence, as explained in Figure 7.7.

Sample Length = 2

BitSeq: 0 1 1 0 1 1 1 0 0 1

Sample inverted after sini
so should be inverted again here, but is not, so reject sample length = 2.

Sample Length = 3

BitSeq: 0 1 1 0 1 1 1 0 0 1 0 0
I 	II 	II 	II 	I

I 	II.Ir
Sample inverted after two runs
so should be inverted again here, and is, so accept sample length = Hint = 3.

Figure 7.7 Finding a hint where none is given.

The padding routine consists of two stages, after the hint is discovered. The first

stage copies a section from the first basic pattern, to get a whole number of these basic
patterns, as detailed for a pair of bit sequences in Figure 7.8a, and then the second stage

- adds the padding to get the final length, H*2r, as shown in Figure -7.8b

a) _ 	 b)

0100100100101 	0 	10010010101 	01061001001 0 	
1101101

)ifference causes 	 Difference causes inversion
inversion

Original sequence, 	Partially padded seq. Padded sequence, length 24 (=2 3*3)
length 13 (= 4 .33*3) 	length 15 (5*3)

Figure 7.8 Padding a bit sequence: a) to a whole number * Hint; b) to a power of two * Hint.

7.4.4.3 Transformation To Repetition Sequence

The previous stage may seem to be wasteful, in that it lengthens the bit sequence by
up to (Original _length - 1) bits, but the next stage, during which the repetition sequence
is formed, aims to reduce the sequence length by a lot more than that. The repetition

sequence contains a polarity value - the first bit of the corresponding bit sequence -

followed by a sequence of integers describing the number of adjacent bits with the same

-111 -

values. Examples of the repetition sequence construction for the memi .wacseq example

are given in Figure 7.9 and the final one, not from our working example, demonstrates

the savings possible through this transformation, with a bit sequence of original length

32k reduced to a repetition sequence of length 2.

Bit No. 	Padded bit sequence
	 Repetition Sequence

7 	011100011100100011100011 -.9 	0, (1,3,3,3,2,1,3,3,3,2)
length =24 length= 10

6 	0000000111111111111110000000 -" 	0,(7,14,7)
length =28 length =3

5 	11111111111111110000000000000000 -0 1,(16,16)
length =32 length =2

4 	10100101001010010100 	-001. 	1,
ioiooioiooioiooioioo

length =40 length =32

3 	000000111111000000111111 -u-, 0, (6,6,6,6)
length =24 length =4

2 	0001111100000011111000 	-9 0, (3,5,6,5,3)
length = 22 length = 5

1 	OOO111O01110O011OO0111O0111OOO11 0, (3,3,2,3,3,2,3,3,2,3,3,2)
length =32 length= 12

0 	00101101001O11010010110100101101. 0,
length = 32

length = 24

16k bitt 	16k bits
(1, (16384,16384))

length =32k length =2

Figure 7.9 Construction of repetition sequences.

7.4.4.4 Reducing The Repetition Sequence

The length of the repetition sequence (not including the polarity value) is very
important in the synthesis process. We can tell straight away if the bit sequence contains

only one polarity of bit, and should be hardwired to logic '0' or '1', when the repetition

sequence length is unary. If this is not the case then we start to iteratively bisect the

repetition sequence, to hopefully find a counter-based solution to its corresponding bit

sequence's generation. Different routes are taken in reducing the repetition sequence,

depending on whether its length is odd or even, and whether half of its length is odd or

even, as described by the following rules (BSG - Bit Sequence Generator).

-112-

Rules

L_RS = length of the repetition sequence, m = L_RS /2.

la) IF L_RS is even THEN Rule 2.
lb) IF L_RS = 1 THEN find_BSG using remaining sequence.
lc) 	IFrep_seq(2..(m-1)) =rep_seq((m+l)..(L_RS-1)) AND

rep_seq(l) + rep_seq(L_RS) = rep_seq(m) THEN Rule 5.

id) 	find_BSG using remaining sequence.

IF rep_seq(1..m) = rep_seq((m+1)..L_RS) THEN Rule 3.

find_BSG using remaining sequence.

IF L_RS/2 is odd THEN Rule 4.

Bisect the sequence and recurse using the first half.
EG: Bit 1: (3,3,2,3,3,2,3,3,2,3,3,2) => (3,3,2,3,3,2).

IF L_RS/2 = 1 THEN bisect the sequence and recurse.

EG: Bit 5: (16,16) => (16).

IF we can generate the corresponding bit sequence, as the

repetition sequence stands, with a single counter bit, then

find_BSG using the current repetition sequence.--
The corresponding bit sequence is the result of EXORing

a counter bit (found from LRS), with whatever BSG is

found by recursing using the first half of the sequence.
EG: Bit 7: (1,3,3,3,2,1,3,3,3,2) => (1,3,3,3,2) EXOR 2(3)

(Bit 2 of a modulus 3 counter).

5a) IF (1,_RS+1)/2 is even THEN as for RULE 4c.

Sb) 	Bisect the sequence and recurse.
EG: Bit 2: (3,5,6,5,3) => (3,5,3).

-113-

la IF..
2a IF..

3a IF..
4a IF..
4b_ELSIF..
4c ELSE..

3b ELSE..
2b—ELSE..

lb ELSI1F..
ic_ELSIF..

5a IF..
5b_ELSE..

id—ELSE..

7.4.4.5 The Repetition Sequence Characteristic

Now the repetition sequence has been collapsed as far as possible, the remaining
sequence is sent to be matched to a bit sequence generator. It is first converted into
another format, to ease this matching, which consists of four parameters, as shown in
1-igure /.IU.

Repetition Sequence Characteristic:

Polarity (as for repetition sequence) - P First repetition in repetition sequence -R1

Repetition count of first repetition - RR Final repetition, if different - r

- Some examples help to explain this: 	 - 	-
Repetition sequence 	Rep. seq. Characteristic 	Corresponding bit seq.

(0, (2,2,2,1)) => 	0 2 	<= (0,0,1,1,0,0,1)

31

(1,(4,4,4)) =>

	

	 1 4<=(1,1,1,1,0,0,0,0,1,1,1,1)

30

(0, (1,2)) => 	 0 1 	<= (0 1 1 1 1)

1 2 	(=> bit(-2) , mod 3, EXORed with
bit(-l), mod 3)

A special case is needed to denote a random bit sequence, where all parameters =0:

(0, (1,3,2,4,2,3)) => 	c 	<= (0,1,1,1,0,0,1,1,
1,1,0,0,1,1,1)

0 0 	sent to logic synthesis

Figure 7.10 Repetition sequence characteristic formulation.

-114-

7.4.4.6 Matching the Characteristic to a Bit Sequence Generator

Now we are ready to try to find the counter bit which will produce the bit sequence,

characterised as above. The counter bit is described by its bit number, b, and the
modulus of the counter, m. The polarity in the characteristic determines whether a

counter bit's output should be inverted by a NOT gate.

Finding the counter modulus, m

If there is a single repetition left in the repetition sequence, then its characteristic

will look something like this, where, R1 is the remaining bit repetition length:

OR1

10

The modulus of the counter needed is found from R 1 by finding the lowest odd

factor of R 1 , i.e.: By dividing it by 2 until an odd quotient is found. The number of

times R 1 can be divided is the bit number of an upper (>= 0) bit of the counter. For

I 0 1761
example, a characteristic: 	I 	I 	I

iOI

counter.

will be generated by bit 4 of a modulus 11

- -- 	However, if there is more than one -repetition left, then the modulus is calculated as: 	- 	-

modulus(P R1

RRr
) = (R * RR) + r = m

i.e.: The sum of the remaining repetitions. This should represent the sequence
generated by a lesser (<0) bit of a modulus m counter. For example a

characteristic: 	1 2 	will be generated by bit(-3) of modulus 11 counter.
51

If a random bit sequence is characterised, then for consistency its modulus is set to

0, as a flag. Also, if a repetition sequence remainder (r) is greater than the first
repetition, then it is possible that this may characterise a bit sequence generated by

EXORing lesser bits of a counter, and these lesser bits can be found by expanding the
characterised repetition sequence to its bit sequence, and then repeating the whole

-115-

synthesis process for that sequence (Padding first, using a hint of 1). For example the

characteristic: 	
0 2 	

represents the bit sequence 00111, which is the result of
13

EXORing sequences 00110 and 00001, which are produced by bits(-2) and (-1) of a
modulus 5 counter, respectively.

Finding the lesser bit number

If, once the modulus has been found, it is found to be greater than the first repetition,
then a lesser bit of the counter is desired, and the correct bit is derived simply from the
modulus, which determines how many lesser bits there will be, and from the first
repetition, which should be a power-of-two.

7.4.4.7 Finding Clocked-type Bit Sequence Generators

Whether or not a counter-based solution has been found for a bit sequence, all
sequences in the address sequence are examined in the hope of finding some other bit

sequence which may be used to clock a flip flop and produce the bit sequence in

question. A list of repetition sequences is constructed, describing each bit sequence and

this list is sorted using the first repetition in each sequence as a guide, so that the

repetition sequence with the shortest first repetition is at the head of the list. This
sequence is then compared to each other one in turn, comparing the sum of each
successive pair of repetition values from the former with individual repetition values - 	-
from the latter, as illustrated in Figure 7.11.

09

00101401001011..
Adding Pairs

_ VQ

09 (39392939392939392939392) 	JKFF

Figure 7.11 Recognising clocked-t)pe bit sequences and their clocking bits.

Of course the clocked bit sequence may start with a '1', in which case it is said to

be NOTTED. The address bit which will be used to clock the flip flop is recorded and
the algorithm then goes on to examine the next repetition sequence, until all have been
compared. Generating a sequence in this way introduces a skew on the timing of

-116-

address bits, but if several flip flops are to be chained together (forming a ripple-carry

counter), producing a large skew, then this chain could easily be given serial or parallel

carry, to reduce the skew. This is not yet implemented as an optimisation stage.

7.4.4.8 Multiple Access Sequences

At this point the main procedure would reiterate, loading and analysing the next

sequence named in the drive file, if that was the data entry option used, and this repeats

until all sequences have been run through the synthesis algorithms. Then costs are

found for each and every bit sequence generator before the optimisation stage
commences. This costing will be explained in the next section.

7.4.5 Optimisation

Before any optimisation of hardware in terms of area can proceed, the area costs of

each bit sequence generator must be found. The generators, or parts of them, are

assigned one or more possible generation methods from the following, each of which

must be costed:

• Counter-based, including semi-random bit sequence generators which will
by default use a counter and some combinatorial logic.

Incrementor-based.

-- - 	. Clocked-type. 	 •--

ROM-based.

Each address bit in each sequence may be generated using a ROM look-up table,
accessed using a counter, so this cost is estimated for every sequence, although the
different types of bit sequence generator may be given other costs as well.

SIMPLE bit generators are costed along with EXORed and LOGIC-type bit
generators, and also with INCREMENTOR-based generators with a preset of zero and
a unary increment. These counter-based costs are calculated in the following way.

Having determined all the modulii of the counters required, for each of these modulli a

list of all counter bits-used is compiled, with the least significant first. Then the cost of
implementing each counter bit in turn is based on the nearest existing bit on the counter,
the size of a JK flip flop, and on the number of bit sequence generators which can share
this hardware, as shown in Figure 7.13 overleaf. if a bit generator is an incrementor bit

with increment equal to one, then a gating signal may be required and the extra cost for

this is based on the ROM area required to store the gating sequence. if a semi-random

-117-

bit sequence exists then it will require all lesser bits of a counter whose modulus equals

the length of the random part of the sequence, and an extra cost for the combinatorial

logic is based on that length also.

The compatability of bit generators sharing the same hardware is determined by
comparing their clock names and either their strobe names or the gating signals

themselves, before looking at the start and finish times of the sequences. Two sequences

are compatable if their start times and their finish times coincide, or if the sequences do

not overlap in time, or finally if the differences between the two start times is equal to

an integer multiple of the length of repetitive bit sequence naturally produced by the
UOUIILI OIL 111 qUesuoll, as siiowii oeiuW.

Clock Tick: 0 1 2 3 4 5 6 7 8 9... (=3*3)

S eq. l: 	10011001001001001001001
Seq.2: 	3

3

Figure 7.12 A pair of compatable sequences.
These two sequences can be produced by the same (modulus 3) counter.

INCREMENTOR-based bit sequence generators are grouped onto adders and share
the cost of any support required, such as storage for the increment value and the gating
sequence.

CLOCKED-type bit generators are grouped by their interconnectivity (ie: In
chains), and each is given the area cost of a JK flip flop.

ROM-based bit sequence generators are grouped into ROMs by the compatability

of the lengths and timings of the sequences and each generator is given a ROM area cost

based on the length of the sequence, and an equal share of any ROM address generation
costs and of decoder/driver hardware costs incurred during the creation of the ROM (a
flat-rate cost).

Once all possible costs for each bit sequence generator have been calculated, it

remains to choose the globally optimal method of generation for each one. This is

obviously another NP-complete problem, in that the sharing of costs between

generators is dependant on them using one or another method of generation, and
randomly selecting bit generators and binding them to, or inhibiting the use of certain
hardware is not feasible, unless run-times are to skyrocket.

-118-

The approach taken here is to use the total of the cheapest possible costs of every

bit sequence generator as a target to aim for, and then calculate the total costs incurred

using as much ROM-based bit generation as possible, and using as little as possible.

Comparing the latter two extremes should show one to be higher than the other and the
bit generator with the greatest extra expense by the more expensive method is forced
not to adopt that method in the future. The cost functions are then run again to
determine the new costs of bit generators after this binding, and if the cheapest possible

cost has increased by more than a small amount then then previous decision is reversed.

This continues until every bit sequence is tied to a specific bit sequence generator and

it is now that the main synthesis routine is run once more, with the RUM-based

generators grouped into RUMs to be fed back as internally-supplied access sequence

information and then to have their own address generators synthesised. At the moment

the RUM address sequences are simple counts from zero, but it would be possible to
take advantage of coincident 'Don't Care' times in the individual bit sequences to

reduce the ROM size, and perhaps the size of its own address generator.

Counter-based costs:

If we require bit b on a modulus m counter, and there already exists the lower
significant bit (b-i), then the cost of the new counter bit is:

1* JKFF_SIZE

If we require bit b on an incrementor with unary increment, preset =0, which
requires a gating signal, and there already exists bit (b-i), then the cost of the
new counter bit is:

(1 * JKFF_SIZE) + (ROM—BIT—SIZE * Sequence—length)

If we require a random bit sequence of length L, then we will need all lesser
bits of a modulus L counter, and the cost is given by:

(1092(L) * JKFF_SIZE) + (L /4)

These costs should be divided equally between all bit sequence generators
which can share the hardware.

Clocked-type costs:

If there exists a sequence which can be used as a clock for a flip-flop to
generate a second sequence, then the cost of the generator of that second
sequence is given as:

JKFF_SIZE

Figure 7.13 Cost Functions

-119-

Incrementor-based costs:
If we require bit b on an incrementor with increment i, preset top, and there
already exists the lower significant bit (b-i), then the cost is calculated as:

(1 * ADDER—BIT—SIZE) + Extra_costi + Extra_cost2

If the increment> 1 and the modulus is m then the Extra_costi is:

(1092(i) * ROM—BIT—SIZE) + (1092(m) * LATCH_SIZE)

The Extra_cost2 must be added if a gating sequence, length L is required:

L * ROM—BIT—SIZE

These extra costs should be shared equally between all bit sequence
generators using the incrementor, while the basic cost should only be
divided between generators using the given bit on the incrementor.

ROM-based costs:

Every bit sequence is treated as if it were to be placed in a ROM.

There are three distinct costs involved in the address ROMs created
from a conglomeration of compatable bit sequences.

Each bit sequence (Length = L) is given the cost of ROM area it will use:

L * ROM—BIT—SIZE

If a ROM is constructed from N compatable bit sequences, of length L
each bit sequence generator receives a share of the cost of support
circuitry (decoders, etc.):

ROM—CREATION—COST / N

There will also be a share of the cost of addressing that ROM:

(1092(L) * JKFF_SIZE) / N

Figure 7.13 (continued) Cost Functions

7.4.6 Output Format

Appendix B contains annotated extracts from AG2's output for the working example.
The schematic for this example is shown in Figure 7.14.

- 120 -

Clock!

1 ROM-1000 Csig_21 6
C R
0 0/

N(o..32)
T

LS
2 LSB/

T Flip Flops

Gating_sig 5o 	°
Gating_sig 60-

1 'o'__.__
'0'

Gating_sig

3t1

IIIII _r _
c Preset

R
E

'20' Mod. 	M

N 5 u

'3'
T

Inc. 'O' during ticks O..21
'1' during ticks 22..51

- - - 	- 	Figure 7.14 -Schematic diagram of synthesis result for working example. -

7.5 Other worked examples and results
The first example from the real world is that of a memory access pattern for image

compression. A 256 by 256 word memory is to be accessed in 8 by 8 blocks of pixels,

on a row by row or column by column basis, where the zig-zag access pattern inside the
blocks is shown in Figure 7.15.

Start Here

Fimsh Here

--- ' 7 117 / . / --- 7 -

/77777 7
7777777
- 777777)-
727Z7Z

Figure 7.15 Access pattern of 8 by 8 block of pixels.

- 121 -

The solution to this problem is not a simple one, but with a bit of thought a decent

attempt may be made. Having input the 64k-word access sequence in row-by-row

format - generated automatically using the graphical entry tool - to AG2, we get the
following result.

15 B 	15

5 N 	11 1'!
A
R 10
Y p MEMORY

(0..65535) 8
C 	10 o /

256 by 256
7

U 	6

T 	5 RAoLIIJ_
"5

31

Clock----]

Figure 7.16 Primary solution to image compression access problem.

This is the same result as was obtained manually, for which the combinatorial logic

block was synthesised automatically as about 100 gates * . Further examination of the
- output from the logic block leads to the conclusion that the sequence is symmetrical

about its mid-point, and the second half of the sequence is in fact the first half of the

sequence, inverted in polarity and in time. To get a sequence to reverse in time is
possible if the first half of the sequence is stored in a look-up table (LUT) which must

be traversed in both directions. For our example, the LUT will be 32 words long, and
the access sequence for it should be a count from 0 to 31 and then back. This may be
generated by a 6-bit binary counter as demonstrated in Figure 7.17.

BC
I 0 	MSB 5 EXOR gates

(0..63)

R
0

0.31,31..0,0.31,etc.

YRA

Figure 7.17 Producing an up/down count from a simple counter.

* Thanks to Martin Bolton of SGS-Thomson for this information.

- 122-

In order to invert the polarity of the sequence, also at its mid-point, the same method

may be used on all the output bits from the LUT, which now needs to be half the original

size. The final design for the zig-zag access pattern generator is shown in Figure 7.18.

The logic equivalent of the LUT would take up just 58 standard cells, with an overhead
of approximately 10% to reduce critical path length, for speed purposes

B 	15 	 15

N 	11 	 11
A
R 	 10
Y 	 I

. 	 MEMORY

C in 	
. 	

256 by 256
0
U 	6

Clock -----J 5 EXORs 	 6 EXORs

Figure 7.18 Final zig-zag pattern generator design.

- 123 -

The next two real examples come from another vision application, and are best
described using a set of address/time graphs. Each example has a Write and a Read

Lddress sec

E. 50

75

. 50

w.
Ui
W47.SO

ft 38

4 2B . so
Is

9.50

0

uence, as shown in F'igure 1.19 10 rigure I.zz.

72 	143.E021S.20.G058.40430 	SOl.BOS75.20B44.80715.4000

7:Z ME (CLk< 71k<S)

Figure 7.19 Example 1 Write address sequence plotted against time

Er= SO
	

IiL

Lo S7

\
<28.50.

o 	 I

0.43 0.51 0.58 O. 	0.73 0.80 0.99 0.95 1.02 1.10 1.17 XtO--3

TIr'IE 	Lk< TICKS)

Figure 7.20 Example 1 Read address sequence plotted against time.

- 124 -

-4-

--

+4-

±4- +
1-

+ +4-

- -4-
±

'- -4- -+- 	
4-

-1- - 4--4- 4+- -.--
--- 	+

-+-

-4- 	
± 	 -

+
+

-. -+4-

+ +4.

+

~ 4- :

MO

2SS

2S2

U)
Ii)
W ISO

o144

C
i• 108

72

:.1E 3.29 0.43 0.58 0.72 0.97 1.01 1.19 1.30 	 1.

TNi 	C-< TI<S

Figure 7.21 Example 2 Write address/time graph.

4-+ + -4-4-

• - - 	- 	 * 	4- +
	 + 	4- - 	

. .4-4- . 	 ±

• . - - 	-r ± 	
4- ±-1_ -4- 	- 	±

- 	 ± ~

4 ±
	

4-

-2! 	-4-- 	 _ 	± 4- 	± 	+ 	4-4-
= - - 	 1-- ± 	R- --++I- 	 1 	- 	4- 	-4-
- - 4- 	 4.4-. 	 ± 	-4- 	~ ±+

4-

- -
-':4-. 	 4-.44- 	 • 	4-4- 	

-

4- 	 4-
-4-4- 	

±-+- 	-- 	

±

+

+ ± 	 -

+ 4-4-

•'• -1-

C.E 1.32 1.18 1.34 1.90 	.58 t. 82 1.97 2.13 2.39 2.49 X1O•3

TIr-IE (CCJK TIE-K)

In 218
111
U io

0144

0

72

36

Figure 7.22 Example 2 Read address/time graph.

- 125 -

Examining these graphs we can see that the first example requires rather simple

address sequences, while the latter requires much more complex sequences. The

resulting address generators for the first example are shown below and these were

derived from the output of AG2 without the temporal partitioning of the sequences,
wnicn may nave neipea.

Write Address Generator

Mod 96
Counter k/7--

Address Bit Number

LOGIC I

4
5Bit 3

Binary 2
Counter

1
0

Clock 1/4

Read Address Generator

Mod 359
Counter ~9LOGIC

Mod 360 I 	I

Counter 	
ROM

Mod 348 ' 	 I

Counter 	Ic? 	LOGIC

Mod 349
Counter 	i

Clock2

Figure 7.23 Resulting address generators for first example.

4

3
2
1
0

5

4
3
2

1

i]

- 126-
The Read address sequence, containing 360 addresses is obviously rather complex,

requiring a lot of combinatorial logic to implement its generator. The specified
architecture of several large counters stems from that fact that each individual address

bit sequence ends with the same short (and possibly inverted) bit sequence as it starts

with.This short repetition does not make the sequence much easier to generate through

logic, so that it is likely that the final architecture after designer intervention would be

as detailed in Figure 7.24, with the individual logic blocks combined to aid

optimisation. It is hoped that this process of optimisation will be automised at the
earilest date..

6

Mod 360 	 ____

Clock2 	
Ow E~LOGIC*F

Figure 7.24 Final address generator architecture for the Read address sequence.

Another problem not yet approached is that of timing. Obiviously with all the logic

required, as well as ROM access delays, the output signals would be difficult to

synchronise, and the critical path through a logic network may be longer than the

- - - - _ 	iimrnispeçfied in the problem. This is not apjobtenl we wish to approach he_
moment because of the difficulty in technology mapping, but let it be said that the
results given here are not constrained by timing considerations. In fact, the Write
address generator may also take the form shown in Figure 7.25, where the knowledge
that there will be an appreciable delay through the logic block is used to authorise the
use of a rioole counter-Woe architecture.

Figure 7.25 Alternative Write address generator architecture for first example.

- 127-

It is probable that a more efficient solution could be found for the Read address
generator if the address sequence was partitioned into sections of obvious regularity -

The diagonal address/time graph sections - but because the address sequence was not
continuous in time (There is an irregular clock signal required), making the

optimisation unpredictable, this partitioning was not attempted.

The second, and much more irregular pair of address sequences yielded the design

illustrated in Figure 7.26. This again shows the signs of a sequence, length 720 words,

whose complexity merits the construction of a single pair of logic blocks of some form,

although it is interesting to note from the address/time graphs that the second group of
three scans of memory in the Write address sequence is repeated exactly as the first
group or tnree scans in me Read address sequence, and could thus share hardware

Write address generator Read address generator

\r_ 8
Mod 716 riiii_ 3

I Counter I—~j1LOGIq----_ 1
0

Mod 713
Counter 10 	LOGIC

0 0
I Mod 719

C Counter 10 LOGI
Mod 718

LOGIC -

• 10EfIIII Counter

Mod 7179
4

r i-D 4 Mod 718
Counter LOGI - L) 3 r7ioE__ 107 5

Mod 714
_jCounter io°I

Clockl/2

Figure 7.26 Address generators for second example.

- 128-

The final real example comes again from an image processing application and is

certainly the most complex of the examples presented. The address/time graphs for the

Write and Read address sequences are given in Figure 7.27 and Figure 7.28. The

approach to synthesis here is to partition the address sequences into sections which

show some regularity, and this is especially useful for the Read address sequence which

shows obvious points of interest.

Examining more closely the second half of the Read address sequence, shown in
Figure 7.29a and b, the regularity is obvious, and handing this section to AG2, as a high

address sequence, a low address sequence and a high-low control sequence, produces

the address generation architecture shown in Figure 7.30. We have ignored the timing
and clocking of this generator for simplicity, but there may be a skew problem with the

long chain of flip-flops. This partitioning technique for address generator synthesis

would be greatly helped by the inclusion of some graphical interface to allow easier
sectioning of the sequences, but unfortunately the time and resources were not

available, so this has to remain a part of future work.

- 129 -

j.10 4

1 . 42

1.27

1.11

w o .

(n
WQ.79

00.63

0

<0.47

0. 32

0.16

0.00

0.00 0.29 O.S7 0.6 i.IS 1.43 1.72 2.01 2.29 2.S9 2.67 X10..4

TINE: (CLOCK TICKS)

Figure 7.27 Address/time graph for Write address sequericeforfinal example.

1Xi0.f

1.27

1.11

U10-S5

to
w0.79

00.63

0

<0. 47

0. 32

0.16

0

0 	0.29 0.57 0.06 1.15 1.43 1.72 2.01 2.29 2.Se 2.67 xiO•-4

TIME (CL.OD< TICKS)

Figure 7.28 Address/time graph for Read address sequence for final example.

- 130-

1. sex 10

I .

l.S3

1.s1

1. 4S

U)
wI.4.

J1.44

a
l.42

.39

::: ,VWW
2.02 2.10 	2.19 	2.27 	e.5 	2.44 	2.S3 	2.61 	2.70 	2.79 	2.87 x10.•4

TINE (CLOCK TICKS;)

a) The second half of the Read address sequence.

I. 44X tO..4

- 	 - 	 - 1.43

1.42

1.41

U) 140
(I)

ft

0
41.37

1.36

2.02 	2.05 	2.07 	2.10 	2.13 	2.16 	2.19 	2.22 	2.25 	2.29 	2.30 XI0-- 4

TINE: 	CL.CXJ< TICKS)

b) One section of the above.

Figure 7.29 Closer examination of small section of Read address sequence for final example

1 	 13

Figure 7.30 Address generation architecture for section of Read address sequence.

- 132-

7.6 ADA - Abig step
The reason for writing AG2 in ADA was one more of necessity than of choice. It

was originally intended to form part of the SAGE toolset, also written in ADA and it
still uses many common items in the SAGE data model.

To learn the necessary features of ADA takes weeks and it is not at all an easy matter

to get even the simplest of programs running. Once the hurdles of library, family,

package and procedural definition have been crossed however, ADA becomes a boon
to the programmer, with its user-defined types, generic programs and overloading

facilities. It is fair to say that the coding was done more efficiently in ADA than in C,
after a respectable learning curve.

7.7 Comments
The AG2 synthesis tool is by no means a complete system. There is no guarantee

-, that it will find a better, solution than any other system for a given address sequence.

AG2 is envisaged as a preprocessing stage before the more common logic synthesis
stage, through which any deterministic sequence should be passed in an attempt to find
a cheaper solution than would normally be produced.

The data structure in AG2 was designed to support memory synthesis as well as
address generator synthesis and could form the basis for a more complete tool. A

standard input format has been described along with interfaces to two other tools - MC 2
for data path synthesis and scheduled memory access sequence specification, and AG1

'for its logic synthesis stage. Much of the method described here may be extended to be

more clever or more complete in the recognition and synthesis of other forms of address

generator, and the optimisation stage especially requires a higher degree of complexity
which was not implemented in this work.

Several examples have been presented which prove the power of the tool in certain
situations and also prove its applicability to scheduled memory address generation - a

field previously combined with general comtroller synthesis. The run-times for the

examples are quite satisfactory for real-time design, and so could be of help in an

iterative, interactive CAD environment, for costing partial designs.

- 133 -

8 Address generator synthesis as part of a
general behavioural synthesis toolset

8.1 Introduction to SAGE - Concepts and Reality
The approach taken in the SAGE design tool [34] was to provide a human designer

with extensive design assistance in real-time VLSI architectural synthesis, but to leave

the designer with overall control of the design process. This was to be done with no
architectural constraints, other than that continuous-time analogue circuits would not be
an option. Design-for-correctness was also proposed, to reduce simulation costs at a

later date, and the whole process was to be interactive, with cost functions produced by

the system as feedback to the human operator. This would encourage the designer to

iteratively refine an initial architecture, devised by the expert's experience, with

proposed design times of between five and twenty engineer-days for a 100,000
transistor ASIC. The process-independant output from the SAGE tool would then be

passed to existing logic and layout synthesis tools for a final design specification, and

all stages of its design would be automatically documented to help explain the design

strategies followed. The proposed SAGE design environment is shown in Figure 8.1.

SPECIFICATION

Compile

lata-flow graph

resource-time graph

cost indicators

To physical design and assembly

Figure 8.1 The Proposed SAGE Design Environment.

- 134-

An important feature of the system is the resource-time graph representation of the
design space, and an example is given in Figure 8.2 for the data-flow graph shown.

	

a 	c
Data-flow
Graph: 	 2

x = a+b+c+d;

x

	

' 	 '

' 	Resources

::.

:: 	 .3

Time

Figure 8.2 Resource-time graph for a three-adds example.

This resource-time graph represents a maximal hardware solution with no operation

conurrency, and the human designer would be expected to compress the graph in time

and resource numbers to realise a more optimal solution using smart, global cost

functions to guide the process. This is illustrated in Figure 8.3 for the three-add
example.

- 135 -

E 1

' 	R

t .

J_
T --

POWER 	
T

E 1

R

t..
T+

,t4
POWER

mma

' 	R

1..
-I-.

T+

Design Time

Figure 8.3 Manipulation of the resource-time space.

There is one major problem with the resource-time graph, in that for a design of any
appreciable size, the graph is too cluttered with information to make much sense, and

large designs must therefore be partitioned, locallising any optimisation stage.
Unfortunately, the proposed flexibility for SAGE introduces very complex problems in
supporting this hierarchical design approach, which could not all be tackled within the

- 136-

lifetime of the project. So the SAGE tool remains for now a quite comprehensive

template for a general behavioural synthesis system, capable of most of the sub-tasks
proposed, but lacking the clever design techniques necessary in producing more
optimal data paths in individual designs.

8.2 Address generation within SAGE
The address generator synthesis tool previously described has not yet been fully

integrated with SAGE. Steps were taken to at least provide some sort of address
generator synthesis in SAGE, and these are dealt with in the following sections.

8.2.1 Scheduled memory

The detection of scheduled memory requirements and subsequent address

generation requirements is not a simple matter within the SAGE data model. Very
simple address generators, actually constant generators, will have already been placed

in the structural and behavioural descriptions by the scheduled memory synthesis stage

{147], and these must be replaced with calls to a single address generator for each (1-
port) memory.

As a compromise to time, with AG2's functionality unavailable, a ROM-based

address generation solution is the default, and this would probably be chosen anyway,

for the short, rather random sequences. A gated-clock counter of the correct length is
also specified,to_generate.the ROM addresses, -and-like - the ROM, --is-created--
automatically (See Section 8.2.3). Figure 8.4 below shows the changes made to the

behavioural and structural models as a result of this rather crude address generator
synthesis.

- 137-

Behaviour 	BEFORE 	Structure

Constant Gen.

\ Ad Address Gen.

IRW

p—

	

— Jdexed Read/Write

fIE

AG

--------- FRAM

AFTER

1:
tte

Figure 8.4 Effects of simplified address generator synthesis in SAGE.

A ROM has a single structure, of course,
but must have a separate behaviour for each
datum stored in it, in order to distinguish
those contents from one another.

8.2.2 Array memory

Array memory addressing is at present handled by the VTIP front-end to SAGE,

which specifies the address generator directly from the VHDL description of its

requirements. The loops, or otherwise, are considered as part of the main process, and

have counters, adders, comparators, etc. specified as required, as illustrated in
Figure 8.5. It is possible that the VHDL description of the address generator could be

- 138 -

simulated, to generate the actual address sequence, to be handed to AG2, but this has

not yet been attempted.

Figure 8.5 Address generator synthesis by SAGE front-end.

8.2.3 Macro-generation of counters

As counters play an integral part in most address generators, it makes sense to allow

a macro-based approach to their construction within SAGE. The coding of the macro-

generation tool proved invaluable experience in dealing with the SAGE data model.

Three different specialised counter architectures are possible: A preset modulus

version where the modulus of the counter is hardwired; A parametrisable modulus

counter with a port dedicated to supplying the modulus; A binary counter specifically
designed for the controller synthesis stage in SAGE, with STOP and CLEARBAR ports.

In order to to create these specialised counters architectures, two further macro-
generators were developed. The first produces an n-input AND gate from two-input

gates, in such a way that the minimum delay through the net is achieved, and the second

uses this facility to produce the core counters which will be placed in the specialised
architectures.

Four different counter variants are provided for: Serial carry: Parallel carry; Ripple

carry; Strobed ripple carry. The two ripple carry counter types have a parallel carry for

every four counter bits, reducing possible skew to a managable level.

- 139 -

8.3 Future plans
There are no plans at the moment to fully integrate AG2 with SAGE. This is not to

say that it would be an impossible task, since the same address generation data structure
is used in both, and the input/output formats are quite amenable to full integration, but

simply to say that time has not allowed it.

8.4 Comments
The problem of developing a general design system is at the outset one of enormous

proportions. Developing a coherent data structure is the first task, but trouble appears

without careful definition of the interfaces between parts of the system. The user

interface can then be drawn up, so that the testing of tools is supported from the start.

Only then should the coding of each tool commence, with each programmer providing

example output from his own allocation of work, so that interfaces can be matched. To

hand-code an entire data model for test purposes requires a second user interface, which
should be developed alongside the data structure, before the actual system visuals are
required.

- 140 -

9 Conclusions and new directions

9.1 Conclusions
In this thesis we have tried to preset a coherent explanation of address generation as

a high level synthesis step. Starting with the definition of the address sequences targeted

and the advantages of biasing synthesis towards the use of counters, we gave an

example of just what can be achieved by this. Some possible architectures for address

generators have been described, including the introduction to the modulus m counter

which can play an important part in sequence generation.

Then the various requirements for address sequences were investigated, including

a short description of data-dependent addressing. The areas of scheduled and array

memory access were proposed as candidates for synthesis, as well as any deterministic

control sequences, before the introduction to AG1 - A synthesis tool targeting the use

of binary counters. It was found that by iteratively bisecting the individual bit sequences

of an address sequence 2' words long, the possible use of binary counter bits in their

generation could be recognised. At this stage it also became necessary to provide a

graphical entry method by which memory access patterns could be manually defined in

the minimum of time. Several real and possibly-real examples were given and their

solutions found using AG1 were shown to exactly match those produced manually, with
orders of magnitude reduction in design time. Putting this performance into practice in

a much more general synthesis environment was later to prove no simple matter, but the
experience gained in designing AG1 was to be invaluable.

To approach the problem of less regular access patterns and even short term or

foreground memory management required a deep investigation into automatic

recognition of the use of non-binary counters, but before any such system could be

tested on real examples, those examples had first to be specified. Synthesising the short-

term memory is normally the last stage in high level synthesis, apart from controller
synthesis perhaps, and no scheduled memory address sequences were available in the

literature, so that a diversion of attention was necessary to further investigate the field

of high level synthesis, in the hope of constructing a very simple foreground memory
synthesis tool to produce such example sequences.

After the results of that investigation were presented, there followed a description

of MC2, a mainly rule-based data path synthesis suite, which can produce from an

operation-priority schedule and some resource allocation information, a data path in the
form of a neffist, including registers and register files, multiplexers and ROMs, whose

- 141 -

address and control sequences are made available to allow their generation to be

investigated. MC2 was shown to apply both well known and novel techniques in a
pragmatic manner and to produce as a side effect of memory synthesis, data paths to
rival those given in the literature. The memory synthesis-first approach may be a little

wasteful in memory space but to the benefit of control and communications complexity.

Comparisons with the literature were made with some difficulty due to the diversity of

reported information, and so the outline for a standard format for reporting data path
synthesis results was presented.

Next the final, main piece of work was discussed. A general address generator
synthesis tool - AG2 - was presented which built on the experience of AG 1 to develop

ways of recognising non-binary counter-produced sequences, and was shown to allow

the design of a whole system's address generation layer. This was optimised as globally

as possible given the short run times required in the iterative behavioural synthesis
system - SAGE - in which AG2 was envisaged to play a part.

Based on an extension of the method of iterative bisection of bit sequences, novel
algorithms in AG2 control the recognition and global optimisation of sequence

generators, in turn based on both binary and non-binary counters as well as several

other possible address generator elements. To facilitate all this, a coherent and

comprehensive data model was presented along with a textual user interface, with

which both AOl and MC2 are compatible.

The three main stages of the synthesis process were all described and backed up by

several examples of their use. Firstly the development of possible solutions was

described. This depended mainly on the user to provide some hint as to the modulus of

counter to be used if possible, but automatic methods were described which find this

hint on a bitwise basis within the address word. Next, a simple transformation was

applied which allowed iterative bisection techniques to work on sequences generated
by non-binary counter bits. Explanations of this and other generator-recognition

techniques were presented using a working example, which was construed to show

most of the features of the AG2, rather than to be representative of real problems.

Finally the area-cost based optimisation of the address generators was expounded,

before the results of synthesis for several examples were presented. AG2's results are

simple to interpret and were shown to be of excellent quality when compared to manual
designs. It remains to be seen if AG2 is any better than some other synthesis tools, but

it is felt that good advances have been made in the area of address generator synthesis.

NEFIX

As high level synthesis moves into its second decade and it struggles to keep up

with the demand for more intelligent ASIC synthesis, the field is fragmenting as each

new problem appears. It is unreasonable now to think that all of a designer's knowledge

may be incorporated in the automata, or that every problem is foreseeable, and we are
sure that as ASIC design progresses into behavioural synthesis, new problems will be
encountered. However, if a pragmatic, hands-on approach is taken, as in this thesis, then
it may soon be a reasonable thought after all.

The main problem in developing useful tools in the past has been a lack of

consistency in design representation. VHDL aims to change that, with the authority of

the I.E.E.E. and the N. American D.ofD. behind it, and already CASE tool frameworks

are being marketed to provide a systems-level design environment into which tools like
AG2 may be designed to fit. It is possible that such frameworks may be seen as overly
constrictive on future design plans and it may be some time before a framework is
produced to be acceptable to all, in the knowledge that the industrials would then have

to play by the same rules. There might then be a return to the competitive, secretive, in-
house coding that we have seen in the past, perhaps to the detriment of technical
advancement.

On a different note, many of the task in high level synthesis would benefit hugely

from a multi-processor environment, and configurable processor arrays coupled with
iterative synthesis tools could be used to provide instant simulation and feedback on

- -- system dynamics and design constraints. An array of processors may be programmed -

to act like the architecture defined by the synthesis tool and fundamental to this

technique would be the coherent interface between the hardware and software. For most

tasks in high level synthesis a depth-first approach is best - You don't know the best

solution until you have tried then all - and hardware simulation should take the sting out
of this infuriating truth.

9.2 Future Plans
Further work to be undertaken on AG1 might be an improved, mouse-driven

graphical interface for the definition of memory access patterns, and in MC 2 a graphical
rather than textual description of the synthesised data path would be better.

For AG2 there is a need for another graphical interface for the analysis of long,
complex address sequences, and other improvements might include the exploration of

ROM contents to allow possible optimisation, automatic array memory optimisation by

- 143 -

the methods described in Section 4.4, and an output format compatible with the SAGE

tool or even in VFIDL or EDIF.

Other plans include the use of AG2 and its data structure as the basis for another

project on memory synthesis in general. There is also a motive for an investigation into

memory-based scheduling: Instead of scheduling computational operations onto a

smaller set of resources, the chronological constraints on the order of operations - in

effect their storage requirements - are mapped onto a given, but possible flexible
memory architecture.

- 144-

References

Data-Path Synth.
1 	Ktiçukçakar, K. and Parker, A.C., MABAL. A software package for Module And

Bus ALlocation, Tech. Report No. CRI-88-61, University of Southern Califor-
ma, 1989.

2 	Kuçukçakar, K. and Parker, A.C., Data Path Design Tradeoffs Using MABAL,

Tech. Report No. CENG 89-21, U. of S.C., 1989.

3 	Stok, L., Interconnect Optimisation During Data Path Allocation, Proc. Euro-
pean DAC '90, pp. 141-145.

4 	Stok, L., Synthesis and Optimisation of Architectures for Digital Systems, PhD
Thesis, Eindhoven University of Technology, March 1991.

5 	McFarland, M. et al, Tools for Architecture Synthesis, IFIP Workshop on Fast
Prototyping of VLSI, Elsevier Pubi., North-Holland, 1987.

6 	Beny, N. and Pangrie, B.M., SCHALLOC: An Algorithm for Simultaneous
Scheduling and Connectivity Binding in a Data Path Synthesis System, Proc.
European DAC '90, pp. 78-82.

- 	 7 	Grass, W., A Branch-and Bound Method for Optimal Transformation of Data
Flow Graphs for Observing Hardware Constraints, Proc. European DAC '90,
pp. 73-77.

8 	Pangrie, B. M. and Gaj ski, D.D., Slicer: A state synthesiserfor intelligent silicon
compilation, Proc. ICCAD '87, pp. 42-45.

9 	Pangrie, B.M., Splicer: A Heursitic Approach to Connectivity Binding, Proc.
25th IEEE DAC, 1988, pp. 536-541.

10 	Parker, A.C. et al, The CMU design automation system: An example of automat-
ed data path design, Proc. 16th DAC, June 1979.

11 	Thomas, D.E. eta!, Methods of automatic data path synthesis, IEEE Computer,
Vol. 6, No. 12, Dec. 1983.

12 	Kowalski, T.J. and Thomas, D.E., The VLSI design automation assistant:
What's in a knowledge base, Proc. 22nd DAC, 1985.

- 145 -

13 	Kowalski, T.J. et a!, The VLSI Design Automatin Assistant. From Algorithms to

Silicon, IEEE Design and Test of Computers, pp. 33-42, August 1985.

14 	Girczyc, E.F. and Knight, J.P., An ADA to standard cell hardware compiler
based on graph grammars and scheduling, Proc. ICCD '84.

15 	Paulin, P.G., Knight, J.P. and Girczyc, E.F., HAL: A multi-paradigm approach
to automatic data path synthesis, Proc. 23rd DAC, 1986.

16 	Southard, J.R., MacPitts: An approach to silicon compilation, IEEE Computer,
Dec. 1983, PP. 74-82

17 	Parker, A.C., Pizarro, J. and Mlinar, M., MAHA: A program for data path syn-
thesis, Proc. 23rd DAC, 1986.

18 	Park, N. and Kurdahi, F.J., Module Assignment and Interconnect Sharing in
Register-Transfer Synthesis of Pipelined Data Paths, Proc. ICCAD '89, pp. 16-
19.

19 	Haroun, B.S. and Elmasry, M.I., Architectural Synthesis for DSP Silicon Com-
pilers, IEEE Trans. CAD, Vol. 8, No. 4, 1989, pp. 431-447.

20 	Stok, L. and van der Born, R., EASY Multiprocessor Architecture Optimisation,
Proc. Int'l Workshop on Logic and Architecture Synthesis for Silicon Compil-
ers, Ed. P.M.McLellan,pp. 313-328, Grenoble, May 1988.

21 	Camposano, R. and Rosenstiel, W., Synthesising Circuits From Behavioural
Descriptions, IEEE Trans. CAD, Vol. 8, No. 2, Feb 1989, PP. 171-180.

22 	Camposano, R. and Tablet, R.M., Design Representation for the Synthesis of
Behavioural VHDL models, Proc. 9th Int'l Conf. Comp. HDLs, May 1989.

23 	Rosenstiel, W., CADDY: The Karlsruhe Behavioural Synthesis System, IEEE
High-Level Synthesis Workshop, Orcas Island, Wa., Jan. 1988.

24 	Kramer, H. and Rosenstiel, W., System Synthesis using Behavioural Descrip-
tions, Proc. European DAC '90, Pp. 277-282.

25 	Balakrishnan, M. and Marwedel, P., Integrated Scheduling and Binding: A Syn-
thesis Approach for Design Space Exploration, Proc. 26th DAC, pp. 68-74.

26 	Marwedel, P., The MIMOLA Design System: Tools for the Design of Digital
Processors, Proc. 23rd DAC, pp. 587-593.

- 146 -

27 	Gajski, D. and Kuhn, R., Guest Editor's Introduction: New VLSI Tools, IEEE
Computer, Vol. 16, No. 12, pp. 11-14.

28 	Gajski, D. (Ed.), Silicon Compilation, Addison-Wesley, 1988.

29 	Tseng, C.-J. and Siewiorek, D.P., Automated Synthesis of Data Paths in Digital
Systems, IEEE Trans. CAD, Vol. 5, No. 3, pp. 379-395.

30 	Bergstraesser, T. et al, SMART: Tools and Methods for Synthesis of VLSI Chips
with Processor Architecture, Proc. 25th DAC, 1988, pp.654-657.

31 	McFarland, M.C., Parker, A.C. and Camposano, R., Tutorial on High-Level
Synthesis, Proc. 25th DAC, 1988, pp. 330-336.

32 	Bergamaschi, R.A. and Camposano, R., Synthesis using Path-Based Schedul -
ing: Algorithms and Exercises, Proc. 27th DAC 1990, pp. 450-455.

33 	Bergamaschi, R.A. and Allerton, D.J., A Graph-Based Silicon Compiler for
Concurrent VLSI Systems, Proc. IEEE CompEuro '88, Brussels, pp. 36-47.

34 	Denyer, P.B. et a!, An Approach to the Synthesis of VLSI Systems from Behav-

ioural Specifications, SARI Internal report, No. SARI-001-B, Dec. 1987.

35 	Tnckey, H., Flamel: A High-Level Hardware Compiler, IEEE Trans. CAD, Vol.
6, No. 2, pp. 259-269.

36 	HOU, p.-P.. Owens, R.M. and Irwin, M.J., DECOMPOSER. A Synthesiser for
Sys:olic Systems, Proc. 25th DAC, 1988, pp. 650-653.

37 	Jerraya, A. et al, Principles of the SYCO Compiler, Proc. 23rd DAC, 1986.

38 	Brewer, F.D. and Gajski, D.D., Knowledge Based Control in Micro-Architecture
Design, Proc. 24th DAC, 1987, pp. 203-209.

39 	Park, N. and Parker, A.C., Sehwa: A Software Package for Synthesis of Pipe-
lines from Behavioral Specifications, IEEE Trans. CAD, Vol. 7, No. 3, pp. 356-
370.

40 	Blackman, T., Fox, J. and Roseburgh, C., The SILC Silicon Compiler: Language
and Features, Proc. 22nd DAC, 1985, pp. 232-237.

41 	Paulin, P.G. and Knight, J.P., Force-Directed Scheduling for the Behavioural
Synthesis of ASIC's, IEEE Trans. CAD, Vol. 8, No. 6, 1989.

- 147-

42 	Paulin, P.O. and Knight, J.P., Force-Directed Scheduling in Automated Data

Path Synthesis, Proc. 24th DAC, pp. 195-202.

43 	Hwang, K et a!, Scheduling and Hardware Sharing in Pipelined Data Paths,

Proc. ICCAD '89, pp. 24-27.

44 	Mallon, D.J. et al, A New Approach to Pipeline Optimisation, Proc. EDAC '90,
pp. 83-87.

45 	Potkonjak, M. and Rabaey, J., A Scheduling and Resource Allocation Algorithm

for Hierarchical Signal Flow Graphs, Proc. 26th DAC, pp. 7-12.

46 	Yassa, F. et al, A Silicon Compiler for Digital Signal Processing: Methodology,
Implementation and Application, Proc. IEEE, Vol. 75, No. 9, pp. 1273-1282.

47 	Denyer, P. and Renshaw, D., VLSI Processing: A Bit Serial Approach, Reading,
Mass., Addison-Wesley, 1985.

48 	Hartley, R. and Jasica, J., Behavioural to Structural Translation in a Bit-Serial

Compiler, IEEE Trans. CAD, Vol. 7, No. 8, pp. 877-886.

49 	Cheung, Y.S. and Leung, S.C., A second generation compiler for bit-serial sig-
nal processing architecture, Proc. IEEE CASSP '87, pp. 487-490.

50 	Grant, D.M. and Denyer, P.B., Memory, Control and Communications Synthesis
for Scheduled Algorithms, Proc27thDAC, 1990,ppl62-167.-

51 	Neil, J.P. and Denyer, P.B., Exploring Design Space Using SAVAGE: A Simulat-

ed Annealing based VLSI Architecture GEnerator, Proc. 33rd Mid-west Symp.
on Circuits and Systems, Calgary, Aug., 1990.

52 	Chu, C.M. et a!, HYPER: An Interactive Synthesis Environment for High Per-
formance Real Time Applications, Proc. Int'l ConI. on Computers, 1989, pp.
432-435.

53 	Brayton, R.K. et al, The Yorktown Silicon Compiler System, Silicon Compila-
tion, Ed. Gajski, D.D., pp 204-310, [28].

54 	Berstis, V., The V Compiler: Automating, Hardware Design, IEEE Desifn and
Test of Computers, pp. 8-17, April 1989.

55 	Woo, N.S., SAM: A Data Path Allocation System, Proc. IEEE CICC 1990, pp.
14.4.1 - 14.4.3.

- 148-

56 	Woo, N.S., A Global, Dynamic Register Allocation and Binding for a Data Path

Synthesis System, Proc. 27th DAC, pp. 505-510.

57 	Kumar, A.A. and Balakrishnan, M., A Novel Integrated Scheduling and Alloca-
tion Algorithm for Data Path Synthesis, Proc. 4th CSIJIEEE Int'l. Symp. on
VLSI Design, New Delhi, Jan. 1991, pp. 212-218.

58 	Lee, J.H., Hsu, Y.C. and Lin, Y.L., A New Integer Linear Programming Formu-
lation for the Scheduling Problem in Data Path Synthesis, Proc. ICCAD '89, pp.
20-23.

59 	Papachristou, C.A. and Konuk, H., A Linear Program Driven Scheduling and
Allocation Method, Proc. 27th DAC 1990, pp. 77-83.

60 	Gebotys, C. H. and Elmasry, M.I., A Global Optimisation Approach for Archi-
tectural Synthesis, Proc. ICCAD '90, pp. 258-26 1.

61 	Lippens, P.E.R. et al., PHIDEO: A Silicon Compiler for High Speed Algorithms,
Proc. EDAC '91, pp. 436-441.

Logic Synthesis
62 	Devadas, S. et al, MUSTANG: State Assignment of Finite State Machines for

Optimal Multi-Level Logic Impementation, Proc. ICCAD '87, pp. 16-19.

63 	Rosenstial, Wañd Schmid, D., Logic Synthesis, Advances in CAD for VLSI,
Vol. 2, North-Holland, 1986, p. 37.

64 	Devadas, S. et al, MUSTANG: State Assignment of Finite State Machines Tar-

geting Multilevel Logic Implementations, IEEE Trans. CAD, Vol. 7, No. 12, pp.
1290-1299.

65 	Amman, R. and Baitinger, U.G., New State Assignment Algorithms for Finite
State Machines using Counters and Multiple-PLA/ROM Structures, Proc. IC-
CAD '87, pp. 20-23.

66 	Amman, R. and Baitinger, U.G., Optimal State Chains and State Codes in Finite
State Machines, IEEE Trans. CAD, Vol.8, No. 2, Feb. 1989, pp. 153-170.

67 	Brayton, R.K., Sentovich, E.M. and Somenzi, F., Don't Cares and Global Flow
Analysis of Boolean Networks, Proc. ICCAD '88, pp. 98-101.

- 149-

68 	Gurunath, B. and Biswas, N.N., An Algorithm for Multiple Output Minimisa-
tion, IEEE Trans. CAD, Vol. 8, No. 9, Sept. 1989, pp 1007-1013.

69 	Harada, Takashi, Research Memo: Prolog based Logic Synthesis System, Uni-
versity of Edinburgh, Dept. of E.E., July 1988.

70 	Wei, R.-S., Rothweiler, S. and Jou, J.-Y., BECOME: Behavior Level Circuit
Synthesis Based on Structure Mapping, Proc. 25th DAC, 1988, pp. 409-414.

71 	Pitty, S. et a!, Syntactic Translation And Logic Synthesis In GATEMAP, Plessey
Research, October 1987.

Controller Synth
72 	Mhaya, N. and Jerraya, A.A., CPC: A Control Section Synthesiser, Proc. 8th In-

ternational Custom Microelectronics Conference, 1988, pp. 22.0-22.7

73 	Brayton, R.K et al, A microprocessor design using the Yorktown silicon com-
piler, Proc. ICCD '85.

74 	Camposano, R., Structural synthesis in the Yorktown silicon compiler, Proc.
VLSI '87.

75 	Fox, J.R. and Fried, J.A., Telecommunication circuit design using the SILC sil-
icon compiler, Proc. ICCD '85, pp.213-219.

76 	Joepen, H. and Glesner, M., Architecture construction for a general silicon
compiler system, Proc. ICCD '85.

77 	Krekelberg, D.E., Sobelinan, G.G. and Jhon, C.S., Yet another silicon compiler,
Proc. DAC '85, pp. 176-182.

78 	Peng, Z., Synthesis for VLSI systems with the CAMAD design aid, Proc. DAC
'86.

79 	Siskind, J.F., Southard, J.R. and Crouch, K.W., Generation of custom high per-
formance VLSI design from succinct algorithmic description, Proc. 1982 Conf.
on Advanced Research in VLSI, MIT, pp. 28-39.

80 	Southard, J.R., MacP itts: An approach to silicon compilation, IEEE Computer,
Dec. 1983, pp. 74-82

81 	Zegers, J. et al, CGE: Automatic Generation of Controllers in the CATHE-
DRAL-Il Silicon Compiler, Proc. European DAC '90, pp. 617-612.

- 150 -

82 	Nagle, A.W., Cloutier, R. and Parker, A.C., Synthesis of Hardware for the Con-
trol ofDigital Systems, IEEE Trans. CAD of ICs and Systems, Vol. 1, No. 4, pp.
201-211.

83 	Spaanenburg, L., Structured Design of Control Specifications, Advances in
CAD for VLSI, Vol. 2, North-Holland, 1986, pp. 53-92.

84 	Grass, W. and Lipp, H.-M., LOGE - A highly effective system for logic design
automation, ACM SIGMA newsletter 9, No. 2, 1979.

85 	Grass, W., Biehi, G. and Hall, S., LOGE-MAT, a program for the synthesis of
microprogrammed controllers, Proc. CAD '80, Brighton, pp. 543-558.

O uotes
86 	De Man, H., "Efficient design synthesis is only possible when targeted to one

particular architecture," De Man, H. et al, A unified toolbox of CAD tools for the
design of dedicated signal processing chips, IEEE International Conf. on Com-
puter Design: VLSI in Computers, ICCD '84, pp. 838-844.

87 	Zimmerman, G., ".. the top-down design of complex digital systems for VLSI

implementations is possible and is capable of yeilding much better results than
bottom-up methods.", Top-Down Design of Digital Systems, Advances in CAD
for VLSI, Vol. 2, North-Holland, 1986, p. 28.

Test
88 	Maly, W., Nag, P.K. and Nigh, P., Testing Oriented Analysis of CMOS ICs with

Opens, Proc. ICCAD '88, pp. 344-347.

89 	Goldstein, L.H., Controllability/Observability Analysis of Digital Circuits,
IEEE Trans. Circuits and Systems, Vol. CAS-26, No. 9.

90 	Goldstein, L.H. and Thigpen, E.L., SCOAP: Sandia Controllability/Observabil-
ity Analysis Program, Proc. 17th DAC, 1980, pp. 190-196.

91 	Catthoor, F. et al, A Testability Strategy for Multiprocessor Architecture, IEEE
Design and Test of Computers, Apr. 1989, pp. 18-34.

92 	Sutlieff, C., Testing Time for ASIC's, TEE Review, Jan. 1991, pp. 27-3 1.

- 151 -

CAD Issues
93 	Lang, M.H. and McCormick, P.E., Hierarchical Design Methodologies: A VLSI

Necessity, Advances in CAD for VLSI, Vol. 6, North-Holland, 1986, pp. 123-

149.

94 	Tutorial on Parallel Processing, presented at DAC '90, Orlando, FL, June 1990.

CAD Systems
95 	Rosenstial, W. and Schmid, D., Logic Synthesis, Advances in CAD for VLSI,

Vol. 2, North-Holland, 1986, p. 31.

96 	Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design, A Systems

Perspective, Reading, Mass., Addison-Wesley, 1985, p. 241.

97 	Wecker, T., Semi-Custom Design Systems, Advances in CAD for VLSI, Vol. 2,
North-Holland, 1986, pp. 195-228.

98 	Koike, N. and Ohmon, K., Design Automation Machine, Advances in CAD for
VLSI, Vol. 6, North-Holland, 1986, pp. 465-499.

99 	Shiva, S.G., Automated Hardware Synthesis, Proc. IEEE, Vol. 71, No. 1, Jan.
1983, pp. 76-87.

100 Burrows, j).F., SHADE:. Plessey's structured hardware design environment,
Proc. 3rd Silicon Design Conference, 1986, pp. 105-114.

101 Goossens, G., An efficient microcode-compiler for custom DSP-processors,
Proc. ICCAD '87, pp. 24-27.

102 SOLO 1400 Reference Manual (Overview), ES2 Publications Unit, January
1990.

103 De Man, H. et a!, CATHEDRAL II. a silicon compiler for digital signal process-
ing, IEEE Design and Test, Dec. 1986, pp. 13-25.

104 De Man, H. et al., Cathedral II, A Computer-Aided Synthesis System for Digital
Signal Processing VLSI systems, lEE CAE Journal, April 1988, pp55-66.

105 Vanhoof, J., Rabaey, J. and De Man, H., A Knowledge-Based CAD System for
Synthesis of Multi-processor Digital Signal Processing Chips, Proc. VLSI '87,
Sequin, C.H. (Ed), Elsevier, New York, 1988, pp. 73-88.

-152-

106 De Man et a!, Architecture-Driven Synthesis Techniques for VLSI Implementa-

tion of DSP Algorithms, Proc. IEEE, Vol. 78, No. 2, pp. 319-335, Feb. 1990.

107 Goossens, G. et al, Optimisation-based synthesis of multiprocessor chips for

digital signal processing, with Cathedral-II, Proc. Tnt Wkshp. on Logic and Ar-

chitecture Synthesis for Silicon Compilers, 1988.

108 Denyer, P.B., Renshaw, D.A. and Bergmann, N.W., A silicon compiler for VLSI
signal processors, Proc. ESSCIRC 1982, pp. 215-218.

	

109 	Siskind, J.F, Southard, J.R. and Crouch, K.W., Generation of custom high per-

formance VLSI design from succinct algorithmic description, Proc. 1982 ConI.
on Advanced Research in VLSI, MIT, pp. 28-39.

	

110 	Saunders, J.E., ELLA - A toolset for system designers, Proc. 8th International
Custom Microelectronics Conference, 1988, pp. 57.0-57.7.

	

111 	Koelmans, A.M., McLauchlan, M.R. and Robson, A.P., The STRICT language
and design methodology, Proc. 1987 Electomc Design Automation Conference,

pp. 79-86.

112 Koelmans, A.M., McLauchlan, M.R. and Kinrnment, D.J., Asynchronous exten-
sions to the STRICT High level design system, Proc. 8th International Custom
Microelectronics Conference, 1988, pp. 23.0-23.5.

	

- 113 	Huisken, J et al., Efficient design of Systems on Silicon with Piramid, Proc. Tnt
Wkshp. on Logic and Architecture Synthesis for Silicon Compilers, 1988,
pp299-31l.

114 Thomas, D.E. et a!, The System Architects Workbench, Proc. 25th DAC, pp.
337-343, 1988.

	

115 	Thomas, D.E. et al, Algorithmic and Register-Transfer Level Synthesis: The
System Architects Workbench, Kluwer Academic Publishers, Boston, 1990.

116 Lis, J.S. and Gajski, D.D., Synthesis from VHDL, Proc. IEEE ICCD 1988, pp.
378-381.

	

117 	Casavant, A.E. et a!, A synthesis environment for designing DSP systems, IEEE
Design and Test of Computers, pp. 35-43, April 1989.

	

118 	Tseng, C.J. et al, Bridge: A versatile behavioural synthesis system, Proc. 25th
DAC, pp. 4 15-420, 1989.

- 153 -

119 De Micheli, G. and Ku, D.C., HERCULES. a System for High Level Synthesis,

Proc. 25th DAC, pp. 483-488.

120 Shung, B.C. et a!, An Integrated CAD System for Algorithm-Specific IC Design,

IEEE Trans. CAD, Vol. 10, No. 4, pp. 447-463,1991.

Circuit level Simulation
121 Nagel, L.W., SPICE2: A Computer Program to Simulate Semiconductor Cir-

cuits, Memo ERL-M520, University of California at Berkley, 9th May 1975.

122 Nagel, L.W., AD VICE for Circuit Simulation, Proc. IEEE ISCS, Houston, 1980.

Timing Simulation
123 Chawla, B.R., Gummel, H.K. and Kozak, P., MOTIS - An MOS Timing Simula-

tor, IEEE Trans. Circuits and Systems, Vol. 22, No. 12, 1975, pp. 901-910.

124 Agrawal, V.D. et al, Mixed Mode Simulation in the MOTIS System, Journ. Dig-
ital Systems, 1981, p. 383.

Switch level Simulation
125 Bryant, R.E., MOSSIM: A Switch-Level Simulator for MOS LSI, Proc. 18th

DAC, July 1981, pp. 786-790.

Timing Verification
126 Jouppi, N.P., Timing analysis for nMOS VLSI, Proc. 20th DAC, June 1983, pp.

411-418.

Schematic Capture
127 Joobbani, R. et al, Design Consultant: A Design Synthesis Tool to Enhance De-

sign Productivity, Proc. 8th International Custom Microelectronics Conference,
1988, pp. 54.0-54.7.

128 Barn, J., STELLA - A Schematic Capture Tool for ELLA, Proc. 8th International
Custom Microelectronics Conference, 1988, pp. 36.0-36.7.

- 154-

Neflist Comparison
129 Ebeling, C. and Zajicek, 0., Validating VLSI Circuit Layout by Wirelist Com-

parison, Proc. ICCAD '83, pp. 172-173.

130 Spickelmier, R.L. and Newton, A.R., Wombat: A New Netlist Comparison Pro-
gram, Proc. ICCAD '83, pp. 170-17 1.

Layout
131 Persky, 0., Deutsch, D.N. and Schweikent, D.G., LTX - A Minicomputer-based

System for Automated LSI Layout, Journ. DA and Fault Tolerant Computing,
Vol. 1, No. 3, pp. 2 17-255.

Design Styles
132 Tanaka, S. et al, A Sub-Nanosecond 8K-Gate CMOS/SOS Gate Array, Proc.

ISSCC '84, pp. 260-261.

133 Takechi, M. et a!, A CMOS 12K Gate-Array with Flexible 10Kb Memory, Proc.
ISSCC '84, pp. 258-259.

134 Werner, J., Custom IC Design in Europe, VLSI Design, Jan. 1984, pp. 28-33.

- 	- 	.BIST
135 Scholz, H.N. et al, ASIC Implementations of Boundary-Scan and BIST, Proc. 8th

International Custom Microelectronics Conference, 1988, pp. 43.0-43.9.

136 Chakradhar, S.T., Bushnell, M.L. and Agrawal, V.D., Automatic Test Genera-
tion Using Neural Networks, Proc. ICCAD '88, pp. 419-419.

137 	Maly, W. and Nigh, P., Built-In Current Testing - Feasability Study, Proc. IC-
CAD '88, pp. 340-343.

138 Dandapam, R., Gulati, R.K. and Goel, D.K., Built-In Self-Testfor Large Embed -
ded CMOS Folded PLAs, Proc. ICCAD'88, pp. 236-239.

139 Koenemann, B., Mucha, J. and Zwiehoff, G., Built-In Logic Block Oberseration
Techniques, Digest 1979 Test Conference, 79CH1509-9C, pp. 37-41.

140 McCluskey, E.J., Logic Design Principles, Prentice Hall International, pp. 450-
455.

- 155 -

Address Generation
141 	Bateman, A., Bolton, M. and Reed, G., Specification and Synthesis of VLSI Dig-

ital Communications Systems, Proc. 8th International Custom Microelectronics
Conference, 1988, pp. 31.0-31.7.

142 Joobbam, R. et a!, Design Consultant. A Design Synthesis Tool to Enhance De-
sign Productivity, Proc. 8th International Custom Microelectronics Conference,
1988, pp. 54.0-54.7.

143 	Balakrishnan, M. et al, Allocation of multi-port memories in data path synthesis,
Proc. ICCAD '87, pp. 266-269.

144 Kung, S.Y., Whitehouse, H.J. and Kailath, T. (Eds.), VLSI and Modern Signal
Processing, Prentice-Hall, 1985, pp. 339-340.

145 Kung S.Y, Owen, R.E. and Nash, J.G., VLSI Signal Processing II, IEEE Press,
1986, pp. 238-239.

146 Kung S.Y., Owen, R.E. and Nash, J.G., VLSI Signal Processing II, IEEE Press,
1986, pp. 261-263.

147 	SAGE 4.2 User Manual, Silicon Architectures Research Initiative, Oct. 1990,
pp 3_51 - 3_54.

148 •Grant, -D.M.,Address generation for SAGE4, SARI internal report, -University -
of Edinburgh, June 1990.

149 Grant, D.M., Denyer, P.B. and Finlay, I., Synthesis ofAddress Generators, Proc.
ICCAD '89, pp 116-119.

150 Grant, D.M., Sari Technical Note re: Address Generation in Sage4, University
of Edinburgh, June 1990.

151 Grant D.M. and Denyer, P.B., Address Generation for Array Access Based on

Modulus m Counters, Proc. EDAC '91, pp. 118-122.

152 	Chirlian, P.M., Analysis and Design of Integrated Electronic Circuits, Vol. 2,
Harper and Row, 1982, pp. 431-432.

HDLs
153 	Hartenstein, R.W. (Ed.), Advances in CAD for VLSI, Vol. 7, 1987.

- 156 -

154 Campbell, R.H., Koelmans, A.M. and McLauchlan, M.R., STRICT. a design

language for Strongly Typed Recursive Integrated CircuiTs, WE Proc., Vol 132,
Parts E and I, No. 2, March/April 1985, Pp. 108-115.

155 Marshall, R.M., Blair, G.M. and Gray, J.P., ASIC-BASIC: An Application-De-
scription Language and Compiler, Proc. 8th International Custom Microelec-
tronics Conference, 1988, pp. 29.0-29.7.

156 Rudell, R.L., de Geus, A.J. and Miles, J., HDL-based Synthesis Speeds Up ASIC
Design, Proc. 8th International Custom Microelectronics Conference, 1988, pp.
55.0-55.7

157 VDHL Tutorial for WEE Standard 1076 VHDL, (Second Draft), CAD Lan-
guage systems, Inc., 1987.

158 Hoffingworth, Paul, The rise of VHDL: 1076 and all that, WE Review, April
1991,pp139-142.

159 Hilfinger, P.N., SILAGE: A Language for Signal Processing, Umverstity of Cal-
ifornia at Berkeley, 1984

160 Marwedel, P., The MIMOLA Design System: A design System which spans sev-

eral levels, Methodologies of Computer System Design, Ed. Shriver, B.D.,
North Holland 1985, pp. 223-237.

Memory Synthesis
161 Fogg, D.C., Assisting Design Given Multiple Performance Circuits, VLSI

memo No. 88-479, Oct. 1988, pp. 36-42.

162 Verbauwhede, I. et al, Background Memory Synthesis for Algebraic Algorithms
on Multi-Processor DSP Chips, Proc. VLSI '89, pp. 209-218.

163 	Delaruelle, A. et al, Synthesis of delay functions in DSP compilers, Proc. Euro-
pean DAC '90, pp. 68-72.

164 Balakrishnan, M. et al, Allocation of Multiport Memories in Data Path Synthe-

sis, WEE Trans. CAD, Vol 7., No. 4, April 1988, pp. 536-540.

165 Kurdahi, F.J. and Parker, A.C., REAL: A Program for REgister ALlocation,
Proc. 24th DAC, 1987, pp.210-214.

- 157-

166 Failside, H. and Denyer, P.B., Memory Optimised Synthesis from A High Level
Language: A First Year Report, University of Edinburgh, April 1991.

Graph Theory
167 Tucker, A., Colouring a family of circular arc graphs, SAIM J. Appi. Math.,

Vol. 29, 1975, pp. 493-502.

168 Golumbic, M., Algorithmic graph theory and perfect graphs, New York: Aca-

demic, 1980.

169 Gabow, H. and Kariv, 0., Algorithms for edge colouring bipartite graphs and
multigraphs, SIAM J. Comput., Vol. 11, Feb. 1982, pp. 117-129.

Memories
170 Nakano, A., Yasuura, H. and Tamaru, K., Functional Memory Type Parallel Ar-

chitecturefor Image Processing, VLSI '89, pp. 329-338.

171 Hongjiang, W. and Yulin, Q., The Design of a Content Associative Memory,
Proc. VLSI '89, pp. 319-328.

172 Kohonen, T., Content-Addressable Memories, Springer, 1980.

173 Chae, S.I. et a!, Content Addressable Memory for VLSI Pattern Inspection,
WEE SolidStateCfrcui, Vol. -SC-23, No. r, 1988. -

174 Goser, K, Foelster, C. and Rueckert, U., Intelligent Memory in VLSI, Informa-
tion Sciences 34, 1984, pp. 61-82.

175 	lizuka, T., ASIC Intelligent Memory, Proc. VLSI '89, pp. 307-318.

176 Dingwall, A.G.F. and Stewart, R.G., 16K CMOS/SOS Asynchronous Static
RAM, IEEEJourn. SSC, Vol. 14, No. 5, pp. 867-872.

177 Hou, J.C.L, Design of a Fully Associative Cache Memory Controller, Dept. EE,
MIT, VLSI memo 83-133.

178 Rideout, V.L., One-Device Cells for Dynamic Random-Access Memories, IEEE
Trans. Electron Devices, Vol. 26, June 1979, pp. 839-852.

179 Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design, A Systems
Perspective, Reading, Mass., Addison-Wesley, 1985, p.354.

- 158 -

180 Chirlian, P.M., Analysis and Design of Integrated Electronic Circuits, Vol. 2,
Harper and Row, 1982, pp. 502-504.

181 	Ohwada, N., Kimura, T. and Doken, M., LSI's for Digital Signal Processing,
IEEE Journ. Solid-State Circuits, Vol. SC-14, No. 2, pp. 221-239.

Clocking
182 Mead, C.A. and Conway, L.A., Introduction to VLSI Systems, Reading, Mass.,

Addison-Wesley, 1980.

183 Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design, A Systems
Perspective, Reading, Mass., Addison-Wesley, 1985, p. 221.

184 Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design, A Systems
Perspective, Reading, Mass., Addison-Wesley, 1985, p. 211.

Adders
185 Goncalves, N.F. and De Man, H.J., NORA: A Racefree Dynamic CMOS Tech-

nique for Pipelined Logic Structures, IEEE Journ. Solid-State Circuits, Vol. SC-
18, No. 3, pp. 261-266.

186 Uehara, T. and van Cleemput, W.M., Optimal Layout of CMOS Functional Ar-
rays, IEEE Trans. Compputers, Vol. 30, No. 5, pp. 305-311.

187 Pomper, M. et a!, A 32-Bit Execution Unit in an Advanced nMOS Technology,
IEEE Journ. Solid-State Circuits, Vol. SC-17, No. 3, pp. 533-538.

188 Brent, R.P. and Ewin, R.R., Design of an nMOS Parallel Adder, TR-CS-82-06,
Dept. of C.S., Australian National University, 1982.

189 Uya, M., Kaneko, K. and Yasui, J., A CMOS Floating Point Multiplier, Proc.
ISSCC '84, pp. 90-91.

Other Hardware
190 Tsai, M.Y, High Density Parity-Checking Circuits with Pass Transistors, IBM

Technical Disclosure Bulletin, Vol. 26, No. 3A, Aug. 1983, pp. 959-960.

191 Grifton, W.R. and Hiltebeitel, J.A., CMOS Four-Way XOR Circuit, IBM Tech-
nical Disclosure Bulletin, Vol. 25, No. 1 1B, Apr. 1983, pp. 6066-6067.

- 159-

192 Whitaker, S., Pass-Transistor Networks Optimize n-MOS Logic, Electronics,
Sept., 1983, pp. 144-148.

193 Law, H-F. S. and Shoji, M., PLA Design for the BELLMAC-32A Microproces-

sor, Proc. ICCC, 1982, pp. 161-164.

194 Smith, K.F., Design of Regular Arrays Using CMOS in PPL, Proc. ICCD '83,
pp. 158-161.

195 Krejak, M. and Lipp, R., Logic Design with CMOS Gate Arrays, VLSI Design,
Oct. 1983, PP. 86-98.

196 Vergis, A. Linear-Testable Counters for Multiple Faults, Proc. ICCAD '87, pp.
156-159.

197 	Chirlian, P.M., Analysis and Design of Integrated Electronic Circuits, Vol. 2,
Harper and Row, 1982, pp. 413 - 414.

198 Smith, S.G., PhD Thesis, Serial-Data Computation in VLSI, University of Ed-
inburgh, Dept. of E.E., 1987, pp 18-20.

199 	Chirlian, P.M., Analysis and Design of Integrated Electronic Circuits, Vol. 2,
Harper and Row, 1982, pp. 426-428.

- General and Miscellany
200 Evans, Christopher, The Making of the Micro, Victor Gollancz Ltd., 1981.

201 	Evans, Christopher, The Making of the Micro, Victor Gollancz Ltd., 1981, p77.

202 Evans, Christopher, The Making of the Micro, Victor Gollancz Ltd., 1981, p 87 .

203 Evans, Christopher, The Making of the Micro, Victor Gollancz Ltd., 1981, P95 .

204 Goto, S. (Ed.), Advances in CAD for VLSI, Vol. 6, p 309, North-Holland, 1986.

205 Denyer, P.B. and Bruce, W.H., Skin Pattern Recognition Method, ISG Report -
Finger-001-C, University of Edinburgh, May 1988.

206 DTI / SERC Technical Objectives Annex A, A Research Programme in Design
Automation and Architectures, UK-DA Workshop, May 1991.

207 Grant, D.M., Optimal design of median filters in hardware,for real-time image
processing, B.Sc. Hons. Project Report HSP 621, University of Edinburgh,
1988

- 160 -

Appendix A - Author's Publications

At ICCAD 189:

Synthesis of Address Generators

D.Grant 	P.B.Denyer 	I Finlay

University of Edinburgh,

Dept. of Electrical Engineering,

Edinburgh EH9 3Th, UK.

ABSTRACT

This paper describes an approach to address generation hardware synthesis. We present
algorithms and tools that describe the hardware between a binary counter and the
address port of a block of memory, which is accessed in some repetitive pattern. These
tools match results produced manually for examples taken from a VLSI image
processing application.

Introduction

RandomAccess Meitiory,as it 	 fó
randomly addressable locations. In many applications, however, the sequence of
storage and retrieval for particular blocks of data is strongly patterned. This applies
particularly in signal processing (several examples from a vision application are
repeated below) and in other applications.

In these cases it is often useful to arrange memory allocation in one of the following
ways:

the incoming data is written to consecutive locations and the consumed data is read
in the required pattern;

the incoming data is written in a pre-determined pattern so that reading can proceed
from sequential locations.

It then becomes feasible and efficient to generate the necessary address patterns either
directly from a dedicated counter, or via circuit transformations (bit-shuffling and
combinatorial logic operations) applied to a counter output. Figure 1(a) shows a
generic model for this scheme, in which a counter output is used to provide a

- 161 -

consecutive address sequence, which is modified as necessary by an offset, ö, and
transform, T.

MEMORY

DATA

MEMORY

DATA L]

- Figure i--Generic- address-generation -architectures:- -

The offset ö is additive and simply accounts for an arbitrary delay in commencing the
sequence of read operations after the commencement of write operations. This offset
function may be avoided if the read sequence does not overlap the write sequence, in
which case the counter may simply be reset to commence the read access; or the offset
can be achieved by using a second counter started, or reset, to ensure read sequence
synchronisation. This arrangement is shown in Figure 1(b) and can be beneficial for
high speed applications.

The class of problems we address here are characterised by partial regularity in the
retrieval sequence. In particular, we exploit redundancies that are present whenever
patterns occur whose length is some power of two. This situation is not so contrived as
it first appears. Memory allocation in practice is commonly and advantageously
partitioned into power-of-two segments, not least because of the resultant efficiency of
address generation that we exploit here. Several examples below reinforce this
argument. The corresponding solutions for address generation are often apparently
elegant but their derivation is generally non-trivial. Again the examples below
demonstrate this point.

- 162-

A First Example

As an example, we look at a particular retrieval pattern for image processing*. This
pattern is shown in Figure 2, and is such that every second memory element on every
second line is addressed, and this is repeated four times for each 16 by 16 block taken
from a 256 by 256 image (interpreted two-dimensionally).

Here it is not obvious how to generate the retrieval sequence, and a designer would use
some intuitive knowledge and some trial-and-error to come to a potentially incorrect
solution. Unfortunately, simulation is not an effective aid in these circumstances
because of the exceptional run times required for even moderate counter lengths.

It is usually quite simple to represent the address sequence in software (Figure 3
represents in pseudo-code the generation of the scan-pattern of Figure 2), where it is
generated by a series of nested loops, or to build up the address sequence using a
graphical entry tool. As long as the address sequence can be generated and has power-
two separation, the corresponding address generation hardware may be automatically
synthesised.

a) (Repeated four times) 	b)

Figure 2: a) Retrieval pattern required for a 16 by 16 block of memory elements;
b) 256 by 256 pixel array,comprising 16 by 16 blocks from (a).

for Y = 0 to 65535 step 4096, (block height = 16 rows)
for X = 0 to 255 step 16, 	(block width = 16 columns)

for i=lto4, 	 (do 4times)
for y = 0 to 4095 step 512, 	 (every 2nd line)

for x= (y/512) mod 2 to 15 step 2, 	(every 2nd pixel)
address = x + y + X +Y,

next x,
next y,

next i,
next X,

next V

Figure 3: Address generation in software.

- 163 -

*
This is derived from an actual VLSI image processing and pattern recognition system, under

development at the University of Edinburgh. This particular example comes from an early
image filtering process which samples blocks of the image to determine an appropriate
threshold to be set for binarisation.

Synthesis algorithm for non-random address seauences

In this section we describe an algorithm to synthesise transform circuits that operate on
the linear sequence produced by the write-address counter to produce the specified
retrieval sequence.

The first stage of the process is simply to build a sequential list of the addresses to be
produced. (See Figure 4.)This list is the basis for synthesis, and may be generated by
hand, by execution of code (Figure 3) or by other methods.

Address list = [0, 2, 4, 8, 10, 12, 14, 513, 515, 517, 519, 521, 523, 525, 527, 1024,
1026,1028,1030 1.

Figure 4: List of addresses to be generated.

Now we attempt to generate this sequence from the bits of the linear sequence generated
by a binary counter. Starting with the LSB of the addresses, we look down the sequence
of bits, applying the following rules in order, unless otherwise specified:

Split list of bits, list[1 . .2n], into two halves, list[1 . .n] and list[n+ 1.2n].

For example the list:

[0,0,0,0,1,1,1,1,0,0,0,0,1,1,I ' ll

becomes:

[0,0,0,0,1,1,1,1] and [0,0,0,0,1,1,1,1]

and the list:

[1,0,0,1,0,1,1,0,0,l,1,O,1,0,0,1]

becomes:

[1,0,0,1,0,1,1,0] and [0,1,1,0,1,0,0,1]

(These lists are much larger in practice).

If the original list has a single entry, then force the current address bit to '0' or '1',
according to the state of that entry, and then go on to examine the next most significant
bit of the addresses.

- 164-

This only happens if all the entries in the original list for the bit were identical.

If the two halves of the list are identical then reduce the list by returning to (1).

This controls the use of Rule 1 by allowing the first half of the list to split, only if both
halves are identical. For the first example given above, after the first split the two halves
are identical, and so we can take the first half and split that:

[0,0,0,0,1,1,1,1]

becomes: 	[0,0,0,0] and

If the two halves are not identical, nor the logical inverse of each other, then we
cannot use any counter bits directly connected to this address bit, and we go on to use
the logic generator (section 4 below).

Rule 5 checks that the list has a length of 2m (which should always happen) and
stores the fact.that the (m+l)th counter bit, Cbltm, can be used to generate this list:

Rule 5 is invoked with the knowledge that the two halves of the list are not identical
(otherwise it would have been split again) but that they are the logical inverse of each
other. Several possibilities arise at this point, with the list having many different
possible forms:

[0,0,0,01 and

[0,0,l,1,0;0,1,1] and [i,10,0,1,1,0,0],

[1,0,0,1] and [0,1,1,0],

[0,1,0,0,1,1,0,0] and [1,0,1,1,0,0,1,1].

If all bits in the first half, list[1 ..n], are equal, then the list has been reduced as far
as possible, and Rule 7 is called.

Thus lists which conform perfectly with a binary counter bit are identified.

If not all bits are equal, then use the (m + 1)th counter bit (from Rule (5)) XORed
with whatever bit is chosen by halving the list again and returning to (2).

Rule 6b deals with the other possibilities from Rule 5. Any list which has the two halves
non-identical, but logically inverse, and not all entries in one half the same, is the XOR
function of the (m+1)th counter bit, with whatever is produced by returning to Rule 1.

MSB 	 MSB

0 - 	 -

U
N
T
E
R

T
S

T
S

Li

D
R
E
S
S

LSB 	 LSB

- 165-

cbit 3 ==> adbit 0
cbit 0 ==> adbit 1
cbit 1 ==> adbit 2
cbit 2 ==> adbit 3
cbit 8 ==> adbit 4
cbit 9 ==> adbit 5
cbit 10 => adbit 6
cbit 11 => adbit 7

'0' ==> adbit 8
cbit 3 ==> adbit 9
cbit 4 ==> adbit 10
cbit 5 ==> adbit 11
cbit 12 => adbit 12
cbit 13 => adbit 13
cbit 14 => adbit 14
cbit 15 =>adbit 15

(a) 	 (b)

Figure 5: a) Output from synthesis tool,
b) Bit mappings for scan-pattern.

If the first bit in the list is a '1' , then negate whatever counter bit, or function of bits,
has been chosen.

Print out the connections from counter bit(s) to address bit, and start at (1) with the
-next most -significant -address bit. - 	- - 	- -.

Once this process has been completed for all address bits, we have a list of connections
from counter bits to address bits - the mapping, or transform - which will produce the
correct sequence of addresses with the minimum of logic. The resulting mapping for
our first example is shown in Figure 5 (Note that this requires only a set of hard-wired
connections with no additional logic).

Logic synthesis for semi-random address sequences

Often an address sequence may contain bit sequences which repeat after a power of two
of addresses generated, but which do not map directly to a counter bit or an EXORed
combination of bits. A logic generator has been written, based on sum-of-products
logic, which synthesises the necessary logic for generation of these bit sequences from

- 166 -

a raw counter output. Once it has been decided by rule (4) in the previous section, that
some logic is needed to generate the address bit currently under analysis, the logic
generator is called. This consists of the following processes:

Find the minterm value ('0' or '1') by counting l's in sequence.

Find the next mnterm which has not already had logic generated for it.

Generate the logic for this (and possibly other) minterm(s) by exhaustive mask
generation and pattern matching. Mask generation produces all possible combinations
of counter bits, and all counter values with the same pattern of bits are checked. If this
pattern matches only those counter values which correspond to minterms, then the logic
to generate these minterms is easily read from the bit pattern.

Print out the logic generated and return to (2) if any minterms remain unmatched to
logic.

In this way a semi-random sequence of bits, which repeats every 2'' addresses, can be
generated by n counter bits plus minimal logic. An example is given below.

167 -

rand[] =10, 0, 1,0,1, 1,0,0,0,0, 1,0, 1, 1,0,1 },
for Y = 0 to 65535 step 4096,

for X=Oto 255 step 16,
for y = 0 to 4095 step 256,

for x = 0 to 15 step 1,
address = rand[x]*x + y + X +

next x,
next y,

next X,
next Y.

Figure 6: Loops for a semi-random scan-pattern.
MSB 	 MSB

(b)

bit 1

(cbit0.cbitl bar.cbit2 +
cbito.cbit2.cbit3) ==> adbit 0
(cbitobar.cbitl .cbit2bar +
cbit0.cbitl .cbit2.cbit3) ==> adi
(cbitl bar.cbit2 +
cbit0.cbit2.cbit3) ==> adbit 2
(cbitObar.cbitl .cbit2bar.cbit3 +
cbitl bar.cbit2.cbit3 +
cbito.cbit2.cbit3) ==> adbit 3
cbit 8 ==> adbit 4
cbit 9 ==> adbit 5
cbit 10 => adbit 6
cbit 11 => adbit 7
cbit 4 ==> adbit 8
cbit 5 ==> adbit 9
cbit 6 ==> adbit 10
cbit 7=> ádbit 11
cbit 12 => adbit 12
cbit 13 => adbit 13
cbit 14=> adbit 14
cbit 15 => adbit 15

(a)

C-
0- 	 - D

I 	I 	-D
I 	I T_ N A

E 	I 	I 	- S
R_ 	 _s
B

I 	I
S - 	rr'_ 	S

Figure 7: a) Output for semi-random example,
b) Bit mappings & logic.

Further work

If the semi-random sequence of address bits is longer than some number of bits, then

W-1:2

we consider it to be fully random, and must look to other methods to generate the
addresses.

Possible solutions include the use of either local or controller ROM space to store the
addresses, or some combination of the two. It may also be possible to re-allocate the
memory space itself, so that the addresses can be more economically generated. The
cost involved in each of the possible solutions is calculable from the relative areas of
ROM and RAM bits, and of flip-flops (for the counter). The area of wires is not
calculable until their lengths are known, but an n-bit bus can be taken to be n times the
area of a single wire, of an arbitrary length.

Work is proceeding on a goal-directed tool which will attempt to automatically
synthesise address generation hardware for any sequence of addresses of any length.
This tool is targeted at address generation for memory requirements incurred during the
design of a system, rather than those inherent in the system's specification.

Status and performance

The synthesis procedures given here have been implemented in 'C' and used to
generate the above examples. It was found that execution time varied linearly with the
length of the address sequence, and depended very little on the complextiy of the
solution, as shown in Table 1 below.

Length of sequencel Execution time
(No. of addresses) (seconds)

4096 3.5
8192 7
16384 14
32768 28
65536 56

Table 1: Performance statistics on a Sun 3/60.

Conclusion

Address generation is an important element of a whole synthesis system. Memory
allocations which emphasise power-of-two patterns encourage efficient address
generation and we have reported general synthesis techniques to realise address
generators which exploit this potential. The tool has been written and used to
synthesise examples drawn from a real VLSI vision system. The results match those
produced manually and have led to the adoption of this tool in a second generation
design for the system.

Acknowledgements

- 169 -

The authors acknowledge the support of the Silicon Architectures Research Initiative,
and the Science and Engineering Research Council.

- 170 -

At DAC '90:

Memory, Control and Communications Synthesis for Scheduled Algorithms

Douglas M. Grant* and Peter B. Denyer

Silicon Architectures Research Initiative
Department of Electrical Engineering

University of Edinburgh, Scotland, EH9 3JL

This paper explores a method of grouping individual memory requirements from a hardware-con-
strained schedule of an algorithm, such that control and communications maybe optimised. A new
representation of memory requirements is introduced to explain the method. The technique may
also be used to allocate operations to hardware resources. This, and control and communication
optimisation are illustrated with an example.

- 	 1. INTRODUCTION.

An important step in any ASIC synthesis system is that of memory allocation for intermediate variables,
which may come before or after the operator (hardware resource) allocation step, working on a validly
scheduled algorithm. This step will in turn introduce communications and control requirements, for
which an optimum solution must be found.
The intractability and interdependency of each of these steps can result in an iterative synthesis method
in order to obtain a good result. In order to produce real-time feedback to an interactive scheduler how-
ever, a faster, one-shot synthesis method is more useful, and this paper describes such a scheme. Section.
2 sets the limits of the problems we aim to solve. Section 3 gives an overview of related work. The ex*_
ample which the- method- is explained -,- is -introduced in Section4andSections5; 6- and 7-describe-
the memory, communications and control synthesis steps respectively. Results and comparisons with
other work are presented in Section 8, and conclusions are drawn in Section 9.

2. LIMITS OF THIS WORK

The schedule on which data-path synthesis depends, is passed to the tool as a database of Edinburgh-Pro-
log facts, which defines a directed (a)cyclic graph, as well as information about the hardware constraints
in force. Pipeline delays may be declared explicitly in the schedule. The synthesis tool then extracts all
memory requirements and, inserting delays if necessary, groups these requirements into memory blocks,
having one Read and one Write port. A bus-based communications network is then constructed between
hardware resources and the memory blocks, and its multiplexers' control requirements extracted and
minimised. No attempt is made to further reduce the size of the memory blocks by register sharing, since
this will be carried out by a separate tool, currently under construction, with address generation costs in
mind.
The whole process may be carried Out before or after operator allocation, but if done before, will return
such an allocation, derived directly from the memory allocations.
The output from the system consists of a netlist of connections between operators, memory blocks and
2-to-1 multiplexers (2tolmuxes), along with optimised control sequences for those muxes, and the vir-
tual address sequences for the memory blocks.

• Supported by the Science and Engineering Research Council, and by
British Aerospace.

-171 -

Conditional branches are treated as separate, since the memory requirements of each branch may be dif-
ferent, and so all possibilities must be allowed for.

3. RELATED RESEARCH

Several different approaches to the problem of register allocation have previously been attempted. In
CATHEDRAL II [1], memory requirements suited to register files and FIFO's are extracted from the al-
gorithm description by a Background memory manager, which passes them to a Foreground memory
manager. CMU-DA [2] uses a linear programming approach to group registers to multiport memories
such that interconnect costs are reduced by judiciously assigning registers to the ports of the memories.
This may be done before or after operator allocation, but does not take into account register sharing or
the functionality of the operators.
REAL [3] uses a greedy Left-edge algorithm to minimally colour a set of data lifetimes and thus find an
optimal set of registers before operator allocation, and EASY [4] does the same, but after allocation, and
includes interconnect costing, before attempting to group registers into register files, again with intercon-
nect costs in mind. However, results are not presented for this. FACET [5] uses formal clique-partition-
ing techniques to group variables onto registers, which are then grouped into files, if possible, before op-
erator allocation takes place. SPLICER [6] utilises a recursive synthesis method, on small sections of a
schedule at a time, to construct a bus-based interconnection network, but predefines a possibly incorrect
minimum number of registers on which to work, while SCHOLAR [7] synthesises a point-to point inter-
connection network, with single-level multiplexing. SPA]D [8] groups memory requirements into reg-
ister files before attempting to share registers between requirements. However, duplication of data is
sometimes necessary, to reduce the interconnect costs, and a two phase clocking scheme allows simulta-
neous Reads and Writes to the same location.

4. INTRODUCTION TO THE EXAMPLE

The example with which the synthesis method is explained, is that of the wave-digital filter, for which
Paulin's [9] force-directed schedule is shown below. The available hardware consists of two adders
which operate in a single control step (cstep), and a single,pipelined multiplier,-operating in two csteps

- 172-

One input to the multiplier is always a constant, and has been omitted from further use of the example.
Control 	 38 Rtfl 	 18

•
__•__. - - •
__•__ ______

__ __-• r __

 • VALA • •
ONAWA

___V1 IL Is iIk1 _ ____
MINE

•UU!.____

-
13 18 26 38 33 	 39ouT

Paulin's force- directed schedule of wave filter.

5. MEMORY SYNTHESIS

Assuming no operator allocation has Yet been attempted, memory synthesis proceeds as follows.

5.1 Latch Insertion

Examining the schedule above, it is noted that data produced by operations 17 and 37 are not finally used
until the same cstep as they are produced in the next cycle of the system. Since data may not be read
from and written to the same location in a single cstep (assuming single phase clocking) to avoid over-
write errors, two memory elements (memels) are needed to store each datum. In order that subsequent
address generation may be done on a single cycle of the system, a dedicated latch is introduced in cstepO
for each datum, as shown by the dotted boxes - the latch "operations"- in the schedule.

5.2 Grouping memory requirements into memory blocks

We now attempt to group the individual memory requirements extracted from the schedule into memory
blocks, so that there are no two simultaneous Reads or Writes to a block. Each memory requirement (op-
eration) is given a private memory element (memel), identified by the same number as the operation
which will Write to it. To increase the tractability of this step, and with communications (bus and mul-
tiplexing) costs in mind, we do this separately for each resource type in turn. This also allows us to ignore
data width information at this point. A clique-partitioning approach is possible here, but we have used a
simpler heuristic search technique to produce a result more quickly.
A weight is given to each memel by counting the number of simultaneous Reads or Writes with other
memels of the same resource type. If there is only one resource of a type available (eg: one multiplier),

- 173 -

WEIGHTS (No. of access clashes)
Easiest 	 > Hardest

Figure 1: Square-graph of Read (r) and Write (w)
access clashes between adder-type memels.

then there will be no Write clashes. These access clashes, and their bearing on the problem, may be clear-
ly understood by examining the Square-graph below, which contains information on the add operations
only, for which there are two adder resources available.
The memels on the axes of the graph have been sorted according to the number of access clashes each
has. We now wish to draw the minimum number of boxes on-the diagonal of this graph such that no box 	- -
contains an access clash, and no boxes overlap, as shown by the example shaded boxes on the diagram.
To get the minimum number of boxes, however, there will be some re-ordering of the memels on the
axes. If we start by examining the memel with the least number of access clashes (the 'Easiest' memel
- no. 28), then we will have the best chance of finding another memel to group with it. This tends to
produce a solution with a few large groups and several small groups. If we start with the 'Hardest' memel
first (no. 27), then the solution tends to have a few, similar sized groups.

5.3 Results of Memel Grouping

Shown below are the Square-graph, obtained using the "Hardest-first" heuristic on the adders' memels,

- 174-

Input Memory 	Latch 1 	Latch 2

1(1) 	 Latch1 (1) 	ktch2 (1)

Multiplier 	Adder 	 Adder
Memory 	Memory 1 	Memory 2

I 6,9,16,21, I 	27,42,8,37, I 	13,31,32,12, I
I 24,30,36, I 	141,20,11, I 	117,7,4,5.

14,28. (9) 	 (8)

Adder 	 Adder
Memory 3 	Memory 4

19,15,22, 	I
I 23,35,10. I 	I 25,29,34.

(6) 	 (3)

Memel-grouping solution using Hardest-first method.
The numbers in the memory blocks are those of the
operations whose data will be stored there, and the
numbers in brackets are the number of memels in each
block.

and the full solution for all resource types, using the same heuristic.

6. COMMUNICATIONS NETWORK SYNTHESIS

We must now construct an optimal, bus-based communications network between computational resourc-
es (eg: adders, multipliers) and these memory blocks, as well as allocating operations to any multiply-
available resources.

6.1 Optimising the Write-bus network

As stated previously, we wish to find some groups of memory blocks which are written to by a single
resource, ie: There are no simultaneous write accesses within the group of blocks.
For singly-available resources, this poses no problem, and all memory blocks dedicated to each single

- 175 -

nrJM1 Nflfl
1F1JI

	

(a) 	 (b) 	 (c)

Figure 2: a) Square-graph of Write clashes between
adders' memory blocks; b) after regrouping;
c) after reordering a solution is found.

Adder 1
3,31,32,12,17,7,4,5,1Ac1c1er 	AclaeI
8,25,29,34. 	 I Mem1. Mem

(12) 	ii 2 	4

Adder 	A 	27,42,37,41,20,11,14,28,
Mem 	Mem
	

19, 15,22,23,35,10.
3 	 (14)

Adder2

	

Input 	Multi her

J1
Mem

Figure 3: Write-bus architecture with adder allocation.

resource can be grouped onto a single -Write bus. -Where there is -more than -one resource of a type avail-
able (eg: two adders), we wish to find the same number of groups of memory blocks as there are resources
(two).
Constructing another Square-graph (Fig. 2a) for the adder memory blocks, with a count of the number of
simultaneous Write accesses between each pair of blocks, we wish to draw two boxes (since two adders)
on its diagonal, as before, containing no Write access clashes. However, this is not possible as the graph
stands, and we must regroup the memels into blocks to make it possible. This does not involve back-
tracking all the way to the original grouping algorithm, but uses simple heuristics to choose and relocate
any obstructive memels as necessary. For instance, as shown in Figure 2a, there is only one Write clash
between blocks 1 and 3, and identifying the clashing memels as 8 and 23 respectively, memel 8 is chosen
and moved from block 1 to block 4. Now we can redraw the Square-graph (Fig 2b), and draw two boxes
to cover the diagonal, after
reordering the blocks on the axes, as shown in Figure 2c. Also shown above (Fig. 3) is the corresponding
Write-bus architecture for this solution, which includes the operation allocation information for the
adders. The two latches have been omitted since they are written to by the memory blocks, via a Read-
bus network which does not exist yet.

6.2 Read-bus network requirement extraction

We now look to create a bus-based communications network between the Read ports of the memory
blocks and the inputs to the computational resources (and latches also).
Allowing for commutative properties of some resources (as specified in the input database, for each re-

- 176-

source type), the minimum number of paths between memory blocks and resources is compiled. Each
path has a source (a memory block), a destination (a resource input) and a list of control steps during
which that path is used. Path making is done for each cstep in turn, starting at a user-specified cstep,
which should contain the use of all resources of a type. For example, both adders and the multiplier are
first used together in cstep 11, so that should be chosen as the starting point for path-making.
The list of paths, some of which are shown below, constitute the Read-bus requirements of the system,
and must then be rationalised into an optimum multiplexer network.

PATHS TO ADDERS (Start at cstep 11)

From To Port Csteps when used

Latch 2 Adder 1 1 [161
*1 Adder 1 2 [11,13,15,16]
+3 Adder 1 2 [19]
ml Adder 1 1 [1,15]
+2 Adder 1 1 [11,12,18]
+4 Adder 1 2 [3,12,18]
+1 Adder 1 1 [2,3,4,10,13,19]
+2 Adder 1 2 [1,2,4,10]
Latch 2 Adder 2 2 [13]
+1 Adder 2 [11,14,15,16]
Latch 1 Adder 1 [15,18]
+2 Adder 2 2 [3,8,17]
+2 Adder 2 1 [7,9,14,16,19]
*1 Adder 2 2 [7,9,18,19]
+3 Adder 2 1 [3,8,10,11,12,13,17]
+4 Adder 2 2 [10,12]

IX: *1 = Multiplier Memory
In I = Input Memory
+n = Adder Memory n

- - 	- 	 - 	6.3Optimising the Read-bus network 	 - 	- - 	- -

As a starting point for optimisation, each input to each resource has bound to it an n-to-1 multiplexer
(muxntol), where n is the number of memory blocks which must feed data to that input. The value of n
should have been minimised by the previous synthesis step. 2-to-1 multiplexers (2tolmuxes) are then
extracted from these muxntol 's, reducing the value of n by 1 each time, and erasing csteps from the re-
spective path's list, until no muxntols remain. The most used path is examined at each pass of the syn-
thesis algorithm, increasing the amount of Don't Care values in the subsequent control requirements for
the 2tolmuxes, which is valuable in optimising the control sequences (Section 7).The result of this step
is a netlist of connections from memory blocks or 2tolmuxes, to resources or other 2tolmuxes. Figure
4 presents the final architecture synthesised for the example. There are 14, 2tolmuxes, some of whose
inputs have been swapped by the control optimiser described in the following section.

7. CONTROL SEQUENCE SYNTHESIS

In the controller, a PLA-FSM or Counter-ROM method may be utilised to generate the control sequences
for the multiplexers, and the address sequences for the memories. Setting the address generation aside,
as a subject too complex to explore here, we must find some way of reducing the area of the controller's
PLA or ROM.

177-

KEY: IM = Input Memory
MM = Multiplier Memory
AMn = Adder Memory n

Figure 4: Resulting Architecture for Wave Filter

- 	- 	 7.l Extraction of Control Bit Sequences

Using the interconnection netlist generated by the previous step, and the Read-bus requirements for the
system, we can trace a path back through the multiplexer network, from resources to memories, noting
the necessary values of the multiplexer control bits as we pass through them. This is done for each con-
trol step in turn, until we have a complete control bit sequence for each 2tolmux in the network, some
of which are shown below for our example. To avoid confusion between real and virtual bit values, the
control bits may have (virtual) value '1' or '2' and any Don't Care values are denoted by a V. The real
values corresponding to '1' and '2' will be decided on later.

CONTROL BIT SEQUENCES

(csigl,[muxl],[0,O,O,1,O,O,0,2,1,2,1,1,l,l,2,2,2,1,2,2])
(csig2,[mux2],[O,2,1,1,1,0,O,0,0,O,l,2,2,l,O,2,2,0,2,1])
(csig3,[mux3],[l,1,l,2,l,0,0,0,0,0,l,2,2,2,0,2,2,0,2,2])
(csig4,[mux4],[0,0,0,0,0,0,0,1 ,0,1,0,0,0,0,l ,2,1,0,2,1])
(csig5, etc.

7.2 Optimising the Control Bit Seciuences

Firstly, we calculate the "overlap" for every pair of control sequences. Three types of overlap are pos-
sible: A "straight" overlap is where two sequences have the same virtual values during some csteps, and
never have different values during any others. The number of overlapping values is used as a weight for

- 178-

that pair of sequences. An "inverted" overlap exists when two sequences have opposite, and never the
same virtual values in some csteps, and again a weight is calculated from the amount of overlap. This
inversion of the virtual values will merely cause the inputs to the corresponding 2tol mux to be swapped,
at no cost. A "negative" overlap happens when two sequences have only Don't Care values in common,
and the number of overlapping Don't Cares is the weight for that pair of sequences. A fourth type of
overlap is the "null" overlap, which means that two sequences may never be generated along the same
control line, because their virtual values clash at some point.
For example, sequences (a) and (b) below have a straight overlap of weight 5:

0012211012

2012210202.

The control bit sequences are ordered by the number of Don't Care values in each, and the "busiest" se-
quence - that with the fewest '0's - is examined first for possible folding into the others. if several other
sequences may share a control line with this one, then the sequence with the largest overlap is chosen,
the two sequences are merged into a new control sequence, and the whole operation is repeated, until no
more possible folds are found.

7.3 Results of Control Bit Oqtimisation

Shown below are the 7 maximally-folded control bit sequences for the example, which originally num-
bered 14.
In another example, a set of 40 multiplexer control sequences of length 14 bits was reduced to just 8 se-
quences.

FOLDED CONTROL SIGNALS
(csig2,[mux2],[0,2,1,1,1,0,0,0,0,0,1,2,2,1,0,2,2,O,2,1])
(csig5,[mux5] ,[0,0,0,2,0,0,0,2,2,2,2, 1,2,2,1,1,1,2,2,2])
(csig6,[mux6],[0,0,0,2,0,0,0,0,0,0,0, 1,2,1,0,1,1,0,2,21)
(csig 1 6, [muxi 2,muxl ,mux8],

[0,0,0,2,0,0,0,1,2,1,2,2,2,2,1,1,1,2,1,1])
(csig 17, [mux3 ,mux 10],

[1,1,1,2,1,0,0,0,0,1,1,2,2,2,2,2,2,1,2,2J)
(csig 1 9,[mux7,mux9,mux 14],

[2,2,0,1,0,1,0,1,0,2,1,1,1,2,2,2,2,2,1,2])
(csig2l,[mux4,muxl3,muxl 1],

[0,2,0,1,0,0,0,1,1,1,2,0,2,2,1,2,1,1,2,1])

Any Don't Care values remaining in the control bit sequences are then given values '1' or '2', in such a
way that the sequences are maximally symmetrical. If it is possible to generate a bit sequence using a
shorter, repeating sequence, then this solution will be found. For instance, it can be found that the se-
quence for control signal 1 (csigl) may be generated from the shorter sequence, [1 2 111 2] ,as follows:

csigl: 0,2,1,1,1,0,0,0,0,0,1,2,2,1,0,2,2,0,2,1
1.2,1,1.1. 211,2,1,1,1,212,1,2,2,2,112,1

(Inverted after two runs)

Control signal 6 (for mux6) may be similarly generated using the sequence [1 2 2 2] as a base, inverting
its values after every two runs, and so on for the rest of the sequences.
The control for the latches will be left for now, since a choice of rising/falling edge-, or level-triggered
latch is possible, and is technology dependant.

8. RESULTS

- 179-

The following results have been found for some examples. The need for a validly scheduled algorithm,
without operation chaining or allowing simultaneous Reads and Writes to the same physical location, has
restricted the number of examples. Also, since this technique is targeted at algorithms with a larger
number of operations (>20), scheduled with tight hardware constraints, there are very few applicable ex-
amples available. A fast discrete cosine transform (FDC'O algorithm was tried, containing 50 opera-
tions, scheduled in 13 control steps, with 2 adders, 2 multipliers and 2 subtractors available. Shown be-
low are the results for the wave filter example, and comparisons with other work, as well as the results
for the FDCT schedule. The minimum number of registers in each memory block after possible sharing,
was calculated by hand using well known graph-colouring techniques [101.
The synthesis system has been coded in Edinburgh-Prolog, running on a Sun 3/60 workstation.

Example # Mux
Inputs

Control!
Address

Regs

Comms

CPU
Time

Bits buses (sees)

Wave 18
Filter (14, 2tol 14/8 17 29 35

muxes)

Ditto: 360
HAL [9] 26 NA 12 47 (including

scheduling)

Ditto:
Splicer [6] 43 NA NA NA 55

FDCT 53 31/12 33 NA 180

Results for Wave filter and FDCT examples
CONCLUSIONS

Due to the lack of applicable benchmarks, this synthesis method has not yet been fully proven to be better
than any other method, in general. However, the result obtained for the wave filter example shows a
marked reduction in communications and control complexity, although there is an increase in the number
of registers.
As stated previously, the original purpose of the system was to generate virtual address sequences with
which to test an Address-Generator Synthesiser, which it does, so the use of the system to produce data
paths is simply a useful sideline.

REFERENCES

Verbauwhede, I. et al., "Background Memory Synthesis for Algebraic Algorithms on Multi-Proces-
sor DSP Chips," Proc. VLSI 89, pp. 209-218.

Balakrishnan, M. et al., "Allocation of Multiport Memories in Data Path Synthesis" IEEE Trans.
CAD. Vol. 7, No. 4, April 1988, pp. 536-540.

Kurdahi, F.J. and Parker, A. C., "REAL: A Program for REgister ALlocation," Proc. 24th Design Au-
tomation Conference, 1987, pp. 210-215.

Stok, L. and Van Den Born, R., "EASY : Multiprocessor Architecture Optimization", in Proc. Int.
Workshop on Logic and Architecture Synthesis for Silicon Compilers, ed. Saucier, G. and McLellan,
P.M., Grenoble, May 1988, pp. 313-328.

Tseng, C. and Sewiorek, D.P., 'Automated Synthesis of Data Paths in Digital Systems," IEEE Trans.
Computer-Aided Design, Vol. CAD-5, July1985, pp. 379-395.

Pangne, B.M., "Splicer: A Heuristic Approach to Connectivity Binding," Proc. 25th Design Automa-
tion Conference, 1988, pp. 536-541.

Haroun, B.S. and Elmasry, M.I., "Architectural Synthesis for DSP Silicon Compilers", IEEE Trans.
CAD., Vol. 8, No. 4, April 1989, pp. 431-447.

Bergamaschi, R.A. and Allerton, D.J., "A Graph-Based Silicon Compiler for Concurrent VLSI Sys-
tems," IEEE CompEuro., 1988, pp. 36-47.

Paulin, P.G., "Force-Directed Scheduling in Automatic Data Path Synthesis," Proc. 24th Design Au-
tomation Conference, 1987.

Tucker, A., "Applied Combinatorics," Pub. John Wiley & Sons, 1980, ISBN 0-471-04766-X, pp.
261-274.

-181 -

At EDAC '91:

Address Generation for Array Access Based on Modulus m Counters

Douglas M. Grant 	Peter B. Denyer

University Of Edinburgh,
Kings Buildings,
Mayfield Road,

Edinburgh, EH9 3JL.

Abstract

The necessary task of Address Generation for RAM and ROM accesses can often result
in hardware taking up an appreciable fraction of the area of a data processing IC.
Close examination of the address sequences can reveal symmetry which may be
exploited to automatically devise small and simple address generators, based on
counters. This paper will describe automated techniques used to recognise and
develop symmetries in address sequences, and to synthesise the necessary address
generation hardware.

Introduction

In contemporary High Level Synthesis systems, the task of designing address genera-
tors usually comes late in the design process, after data-path, memory and communi-
cations s'nthesis steps. - But with address generation hardware taking up to half the
final chip areat, it is clear that this step is one of importance, and so deserves a closer
investigation.
Address generators can be partitioned into three main types. There are those for data-
dependent address generation, where an address is some function of internal variables,
and specialised hardware should be constructed to perform this function. The second
type of address generator cannot be constructed until memory synthesis has been
completed, and must generate the addresses to access temporary storage areas, which
are the result of grouping registers into register files or RAMs [1]. These generators
can take the form of a ROM lookup table, although some clever assignment of values
to actual memory locations may allow a significantly smaller solution to be found [2].
The third type of address generator, and the one dealt with in this paper, is that for
array-type memory accesses. Here, very often a regular sequence of addresses is
required, and since this sequence can often be determined directly from the behav -
ioural description of the chip, the synthesis and optimization of the generator can
precede, or run in parallel with other design stages.

* Supported by SERC and BAe.
tAround half of the active area of an image processing chip, designed using Solo 1200, com-
prised Address Generation circuitry.

- 182 -

As the address sequence can be rather long, the definition of address generators by
hand, and especially the simulation of their correctness, becomes very difficult. The
description of an array-type address sequence may be a set of nested loops, whose
variables are combined to give each address at successive passes of the loops, and it is
possible to examine the loops' variables and increments and to build an address calcu-
lation unit (ACU) to realise the loops' function in hardware [3,4].

It may also help to map the memory addresses onto actual memory locations to allow
simpler addressing schemes [5]. PLA FSMs based on counters may also be used to
generate address sequences [6], and simple binary counters can be very effective in
some circumstances [7]. Combinatorial logic plays a large part in many address gener -
ator designs, although the large size and low speed of the circuits can be prohibitive.

Many problems arise in address generator design when the regular addressing pattern
is not based on a binary sequence, and this paper is targeted at those situations, and
solutions based on non-binary counters. This is a generalisation of previous work [7],
which could only deal with binary sequences.

Firstly the situation is explained more clearly, along with the introduction of a working
example, and then the primary stage of synthesis, that of developing the problem to
suit the algorithms, is examined. The next part of the synthesis process is then
described, in which an address sequence is matched to a suitable address generator.
Finally, some examples are given to demonstrate the power of the tool, before conclu-
sions are drawn and future work laid out.

Problem Definition

The task of automatically synthesising an address generator is simply defined: Given
- -- - predetermined sequences of memory addresses to be generated regularly in time ;

synthesise the hardware which will do just that (Figurel), hopefully comprising
various counter bits.

The address sequence may be extracted from a software description, usually in the
form of a set of nested loops, at the centre of which the address is specified by some
function of the loop variables. However, to give a more general view of the tool, the
working example shown in Figure 2 does not follow this premise, but contains several
different bit sequences, each included to show some feature of the tool, which together

- 183 -

define a

Address Sequence 	Bit Sequences
7 	6 5 4 3 2 1 0

48 00110000

160 1 	0 1 0 0 0 0 0
177 10110001

166 1 	0 1 0 0 1 1 0

39 0 0 1 0 0 1 1 1

55 0 	0 1 	1 0 1 1 1

44 00101100

253 1 	1 	1 	1 1 1 0 1

234 1 	1 	1 	0 1 0 1 0

234 1 	1 	1 0 1 0 1 0

123 22 	0 	1 	1 1 1 0 1 1

104 0 	1 	1 0 1 0 0 0
241 1 	1 	1 	1 0 0 0 1
97 01100001

102 01100110
119 0 	1 	1 	1 0 1 1 1
196 1 	1 	0 0 0 1 0 0
212 1 	1 	0 	1 0 1 0 0

205 11001101

74 01001010

91 0 	1 	0 1 1 0 1 1

11 ' 	 00001011

Figure 2. The working example:
a) The address sequence,

b) Its constituent bit sequences.

mingIy ranuom aaclress sequence.
I Clock i I 	Goi 	Clock21 Goli Go21 Go3

COUNTER 	..cP!: COUNTER

COUNTER
LOGIC

LOGIC ROM{ ROMI LOGIC ROM

MEM I 	I MEM I 	I MEM I I MEM

Figure 1. Target Address Generation Architecture Components

One major problem a designer faces with this task is the long length of the address
sequence, often comprising tens of thousands of addresses, and this makes full exami-
nation of the sequence rather arduous. However a computer is ideal for processing the
address sequence, if only we can give it a designer's intuitive knowledge of what to

- 184-

look for in a sequence in order to match it to an address generator.

Developing Possible Sequence Symmetry

Symmetry, or regularity of an address sequence, easily recognised in a graphical
description of the sequence on the memory space, can be exploited to allow simpler
generation of the sequence, by output bits from a counter. To automate the recognition
of symmetry however, we first split the address word sequence into a set of bit
sequences, and apply the algorithms to each bit sequence in turn.

The Hint

Very often the designer will be in a position to give the algorithm some indication of
the solution expected, without any knowledge of the detailed solution. This "hint" is
simply an integer, which should be the number of memory accesses in the most basic,
repeating access pattern involved, which is repeated to cover the memory space, thus
building up the entire address sequence.

If the designer is not in a position to specify this hint, as for our working example, then
it may be found automatically for each bit sequence by exhaustively searching the bit
sequence to find the length of the shortest repeating sequence of bits, and then defining
the hint as the lowest odd factor of this length. For instance, if the shortest repeating
bit sequence has length 40 bits, then the hint can be found thus:

40/2=20, /2= 10, /2=5=Hint.

Padding the Bit Sequences

Once the hint-has been specified-for a bit sequence (it will often be common to all-bit
sequences), it is used to develop any possible symmetry or regularity in the sequence.
To allow the forthcoming algorithms to work, we "pad out" the bit sequence so that it
has a length equal to some power-of-two times the hint. This is simply done by
appending the correct number of bits from within that sequence, inverting their value
if necessary.

Padding to a Whole Number of Basic Patterns

In some cases, as for the working example, the original bit sequence will not contain a
whole number of basic patterns. We must first pad this sequence to a length (i x hint),
where i is the next integer above (Orig_length / hint).

Padding a Bit Sequence to Length 2 * Hint

Once a whole number of basic patterns is available, the bit sequence can then be
padded to its final length of 2 * Hint (j = integer), again appending previous bits in the
sequence, inverting their logic values (0 or 1) if necessary.

All this means that the resulting bit sequences will at least be symmetrical for the
copied bits, allowing us to prepare for the next stage of the synthesis algorithm, by
finding the Repetition Sequence for the bit sequence.

- 185 -

Shown in Figure 3 are the bit sequences for our working example, after padding.

Bit 7, flint =3
011 100011100100011100011

Bit 6, Hint =7

0000000111111111111110000000

Bit 5, Hint =1
11111111111111110000000000000000

Bit 4, Hint =5

1010010100101001010010100101001010010100

Bit 3, Hint =3

000000111111000000111111

Bit 2, Hint= 11
00011111000000111 11000

Bit 1, Hint = 1
00011100111000110001110011100011

Bit 0, Hint= 1
00101101001011010010110100101101

Figure 3. Padded bit sequences

The Repetition Sequence

To reduce the complexity of the synthesis task, and allow the algorithms to function
correctly, the padded bit sequence is converted into a sequence describing the repeti-
tion of similar bit values - The Repetition Sequence.

This consists of a polarity value, which is simply the first bit in the bit sequence,
followed by a sequence of integers specifying the number of successive bits of each
value. To clarify, the working examples are given below (Figure 4), some of which

:.

exemplify the reduction in complexity this conversion allows.

Bit number 	Repetition Sequence

7 	0, (1,3,3,3,2,1,3,3,3,2)

6 	0, (7,14,7)

5 	1,(16,16)

4

3 	0, (6,6,6,6)

2 	0, (3,5,6,5,3)

0, (3,3,2,3,3,2,3,3,2,3,3,2)

0 	0, (2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,
1,1,2,1, 1)

Figure 4. The Repetition Sequences

Collapsing the Repetition Sequence

Once formed, the repetition sequence may be iteratively bisected, according to a
number of rules, in such a way that a bit sequence generator may be found.

Bit Sequence Generator Structure

To allow an understanding of the principles involved here, a view of the internal struc-
ture- of abitsequence generator (B SG) - is- necassary.

A BSG must obviously know which bit of the address word it is generating, and there
is also a flag specifying whether the output of the BSG must be inverted (if the polarity
bit of the repetition sequence = '1'). There are seven different types of BSG:

SIMPLE: The output from bit b of a modulus m counter.
EXORED: As above, but EXORed with the output from another BSG.
LOGIC: Where no counter bit(s) can generate a bit sequence directly, the "random"

bit sequence is saved, to be handed to a logic synthesis tool as a Truth Table output.
HARDWIRED: Where a bit sequence consists of only '0's or '1's, the address bit

should obviously be hardwired to logic '0' or '1'.
ROM: When the type of bit sequence generator synthesised is more expensive than

the cost of placing the bit sequence in the controller ROM, this type of BSG is used,
which defines which of the ROM output bits produces this bit sequence. This will be
used during the optimization stage.

CLOCKED: When a bit sequence may be generated by using some other existing
sequence to clock a JK flip-flop, then the information on this other address bit is held
here.
g) WHOLLY—RANDOM: A BSG of this type is used if the bit sequence involved is

187-

random and too long for the simple logic synthesis tool to handle.

A Note on Modulus m counters
A modulus 5 counter is defined as follows
(a modulus m counter is the generalization):

1— Lesser Bits 	10 *— Upper Bits 	01

0 	0
m= 	1 	0

0
0

0
0

0
0

10 	1
II- 	 1

0
0

0
0

0
0

1 	 a 	0 	1 	0 0

1 	0
0 	1

0
0

1
1

0
0

The Rules

e repetition sequence, m = L_RS /2.

There follows a list of the rules which are used when collapsing the Repetition
Sequence:

L_RS = length of th

la) IF L_RS is even THEN Rule 2.
lb) IF L_RS = 1 THEN flnd_BSG using remaining sequence.
lc) IF rep_seq(2..(m-l)) = rep_seq((m+1)..(L_RS-1)) AND
- jep_scq(1)
id) flnd_BSG using remaining sequence.

IF rep_seq(1..m) = rep_seq((m+1)..L_RS) THEN Rule 3.
flnd_BSG using remaining sequence.

IF L_RS/2 is odd THEN Rule 4.
Bisect the sequence and recurse using the first half.
EG: Bit 1: (3,3,2,3,3,2,3,3,2,3,3,2) => (3,3,2,3,3,2).

IF L_RS/2 = 1 THE N bisect the sequence and recurse.
EG: Bit 5: (16,16) => (16).
IF we can generate the corresponding bit sequence, as the
repetition sequence stands, with a single counter bit, then
flnd_BSG using the current repetition sequence.
The corresponding bit sequence is the result of EXORing
a counter bit (found from L_RS), with whatever BSG is
found by recursing using the first half of the sequence.
EG: Bit 7: (1,3,3,3,2,1,3,3,3,2) => (1,3,3,3,2) EXOR 2(3).

IF (L_RS+1)/2 is even THEN as for RULE 4c.
Bisect the seq uence and recurse.

Bit -3 Bit -2 Bit -1 Bit 0 Bit 1
-3(5) -2(5) -1(5) 0(5) 1(5)

EG: Bit 2: (3,5,6,5,3) => (3,5,3).

la IF..
2a IF..

3a IF..
4a IF..
4b_ELS IF.
4c—ELSE..

3b ELSE..
2b ELSE..

1 b_ELSIF..
ic_ELSIF..

5a _IF..
5b_ELSE..

Id ELSE..

The Repetition Sequence Characteristic

Now the repetition sequence has been collapsed as far as possible, the remaining
sequence is sent to be matched to a bit sequence generator (the find_BSG routine
mentioned above). The sequence is first converted into another format, to ease this
matching, which consists of four parameters, as shown in Figure 5.

Repetition Sequence Characteristic:

Polarity, P 	First repetition, R 1

Some examples help to explain this: 	
0 1

Bit 7's repetition sequence collapses to (

M

0 (1,2)) =>

116
Bit 5=> 	 Bit 4=> ____

10 32

1 3 	 0 0 This is a special
Bit 1 => 	 Bit 0=> 	case, denoting

2 2 	 0 0 semi-random
sequence (2,1,1

Figure 5. Repetition Sequence Characteristic Formulation

Final repetition Repetition of R 1 , RR 	-(if -different)

Matching the Characteristic to a Bit Sequence Generator

Now we are ready to find the counter bit(s) which will produce the bit sequence, char-
acterised as above. The counter bit is described by its bit number, b, and th e modulus

of the counter, m. The polarity in the characteristic determines whether a counter bit's
output should be inverted by a NOT gate.

Finding the Counter Modulus

If there is a single repetition left in the repetition sequence, then its characteristic will
look something like this, where, R 1 is the remaining bit repetition length:

0 R1

10

The modulus of the counter needed is found from R 1 by finding the lowest odd factor
of R1, i.e.: By dividing it by 2 until an odd quotient is found. The number of times R1
can be divided is the bit number of an upper (>= 0) bit of the counter. For example, a

0 16
characteristic: _______ will be generated by bit 4 of a

10

modulus 1 counter (a simple binary counter).

However, if there is more than one repetition left, then the modulus is calculated as:

modulus(P R 	
= (R1 * RR) + r = in

RR .r

i.e.: The sum of the remaining repetitions. This should represent the sequence gener-
ated by a lesser (<0) bit of a modulus in

counter. For example a characteristic: 	0 2 	will be
31

generated by bit(-2) of modulus7 counter.

If a random bit sequence is characterised, then for consistency its modulus is set to 0,
as a flag. Also, if a repetition sequence remainder (r) is greater than the first repetition,
then it is possible that this may characterise a bit sequence generated by EXORing
lesser bits of a counter, and these lesser bits can be found by expanding the character-
ised repetition sequence to its bit sequence, and then repeating the whole synthesis
process for that sequence (Padding first, using a hint of 1). For example the

characteristic: 	
1 1 	

represents the bit sequence
32

10100, which is the result of EXORing sequences 10101 and 00001, which are
produced by NOT.bit(-3) and bit(- 1) of a modulus 5 counter, respectively.

_190 -

Finding the Lesser Bit Number

If, once the modulus has been found, it is greater than the first repetition, then a lesser
bit of the counter is desired, and the correct bit is derived simply from the modulus,
which determines how many lesser bits there will be, and from the first repetition,
which should be a power-of-two.

Finding Clocked-type Bit Sequence Generators

To find any address bit sequences which may be produced at the output of a JK flip-
flop which is clocked using some other bit sequence of that address, a list of all repeti-
tion sequences with original length> 1 is collected. This list is sorted so that the
sequence with the shortest first repetition(s) comes first, and then the rest of the list is
searched for a sequence which may be used as the clock.

This may find the same solutions as the main synthesis process, but can also find some
surprisingly elegant solutions, which were not otherwise discovered. For example,
address bits 1 and 2 in our working example, can be generated by using bit 0 to clock a
pair of JK flip-flops.

Optimization of Address Generators

Although no optimization stage has yet been implemented, it is imagined that it will
take a global list of all bit sequence generators, perhaps supplying several memories,
and formulate a cost for each one. For example, if there are three users of a particular
counter bit, then the individual cost of each of the three, is one-third of the cost of
implementing the counter bit in hardware. These costs may be compared with the costs
of embedding the bit sequences within a ROM, or perhaps just as one output from a
ómbihätöriã{lbgic network.

Choosing the globally cheapest solution will most likely be done using some heuris-
tics, since it is an NP-complete problem.

Solution to Working Example

Shown below is the circuitry which was specified by the tool, when given the working

- 191 -

example:

Mod 5 Counter 	 Mod 7 Counter
321 	 1 -3 1 -2 	O 	1 	2

Binary Counter (mod 1) 	Mod 3 Counter

1 0(1)1 	1 	1 	23 	4 	L21 -1
	

01 	2

—all

II
Bit 01234567

Figure 6. Synthesised Address Generator for Working
Example

- 192-

More Examples
Address. sequence 	 Synthesised Solution
0,11 ,26,27,8,1 6,17,0,1,18,13 	Modulus 5 counter

	

-2 	-1 1 0 1 1

4 3 1 2 1 1 	0

0 	 Address Bits (Adbits)
256
512
1
257 	 Modulus 3 counter
513 	1 -2 1 -1 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1
258 	 I______________________________
514

255 	 1 12131415161718191
511 	 Adbits
767.

Obviously the examples given in this paper needed to be rather simple, so that the
address sequences could be fully specified in the limited space available. Real address
sequences can range in length from that of the examples given here, to sequences
containing tens of thousands of addresses, each with perhaps a dozen or more constit-
uent address bits. Solutions synthesised for complex examples were found to match
those constructed by hand.

Conclusions and Further Work

This paper has presented a novel technique for the synthesis of address generation
hardware from a specification of the address sequence to be generated. The method is
extensible to almost any sequence generation problem where the sequence may exhibit
some symmetry or regularity, for example on-chip ATPG or controller synthesis.

The results presented matched, or were better than, those designed by hand, and were
completed in a fraction of the time. Typical run times range from a few seconds, for
short sequences, to around one minute, for the longer sequences.

Although the tool is not suitable for all address generator synthesis problems, as part
of a set of address generator synthesis tools, it can perform a much-needed and fairly
complex task with the ease of an experienced designer, and perhaps better.

-194-

Appendix B

The following pages show annotated extracts of output from AG2, sampled from
the working example's bit generator synthesis process.

Start of program:
DRIVE FILE or SINGLE FILE (d/s) => d
DRIVE FILE NAME => Thesis_aII.drv
Information density? (Lots—and—lots I a_Bit I Result—only: Vb/r): b

Memory and access sequence info:
File name = Thesis_memi .wacseq

ADDRLISTSIZE (Bits) = 176
MODE=W
START—AT= 0
STOP—AT= 21
CLOCK= clocki

STROBE= strobe_a

COMMS= inputi

MAXADDRESS= 253
HINT= 0

Start of synthesis:
Trying Incrementor solution
No incrementor-based solution found
Second Pass

BIT 2(3) EXORED_WITH
	

I.E.: Bit 2 of modulus 3 counter
BIT 0(3) EXORED_WITH
BIT -1(3) EXORED_WITH
BIT -2(3) => AdBit 7
Of address port 1, of memory Thesis_memi

- 195 -

BIT 1(7) EXORED_WITH
BIT O(7) => AdBit 6
Of address port 1, of memory Thesis_memi

NOT BIT 4(1) => AdBit 5
Of address port 1, of memory Thesis_memi
BIT -1(5) EXORED_WITH
NOT.BIT -3(5) => AdBit 4
Of address port 1, of memory Thesis_memi

BIT 1(3)=>AdBit3
Of address port 1, of memory Thesis memi

11(0,0,0,1,1,1,1,1,0,0,0)(1,1,1,1,1)A =>AdBit2
Of address port 1, of memory Thesis_memi
I.E.: A bit sequence 11 bits long will produce the entire sequence if repeated.

The five extra bits are used as padding by the logic synthesis tool which
requires a sequence length of a power of two.

BIT 3(1) EXORED_WITH
8(0,0,0,1,1,1,0,0) A => AdBit 1

Of address port 1, of memory Thesis memi

BIT 2(1) EXORED_WITH
"4(0,0,1,0)" => AdBit 0
Of address port 1, of memory Thesis_memi

Third Pass 	To look for clocked type bit sequence generators:

'A_BIT_CLOCKED_BY UNNOTTED OUTPUT FROM...
BIT 2(1) EXORED_WITH
(0,0,1,0)
=> AdBit 1

Of address port 1, of memory Thesis_memi

1-1

- 196-

A—BIT—CLOCKED—BY NOTTED OUTPUT FROM...
A_BIT_CLOCKED_BY UNNOTTED OUTPUT FROM
BIT 2(1) EXORED_WITH
(0,0,1 ,0)
=> AdBit 2

Of address port 1, of memory Thesis_memi

Move onto next access sequence:
File name = Thesis_memi .wracseq
ADDRLISTSIZE (Bits) = 180
MODE= WR
START—AT= 22
STOP—AT= 57
CLOCK= clocki

STROBE= strobe_a

COMMS= input2/adderl/multl

MAXADDRESS= 18
HINT=0

Trying Incrementor solution
Incrementor type solution found

Last access sequence to be handled:
File name = Thesis_csig2l .cseq

ADDRLISTSIZE (Bits) = 20
MODE= C
START—AT= 22
STOP—AT= 41
CLOCK= clocki

STROBE= dummy

COMMS= muxl /mux5/muxl 0

- 197-

MAXADDRESS= 1
HINT= 0

No Incrementor-based solution possible for a single bit sequence
Second Pass

BIT 4(1) EXORED_WITH
16(0,1,1,0,1,1 ,1 ,0,1 ,1 ,0,0,0,1 ,1 ,0)" => Thesis_csig2l

Third Pass 	No clocked type bit generators found.

Any bit sequence may be generated by using a ROM to store the sequence in or by
a SINGLE other method. Any clocked-type bit sequence generators will aave a
second non-ROM based solution, which must be either discarded or enforced, to
allow the costing routines to function.

Address bit 1 of Port 1 of memory Thesis_memi.
From click 0 to click 21

There is a clocked type bit generator, costing 28 units of area.
This entails a skew of 1 OOns on this address line.
The alternative bit generator could cost 117 units of area.

Do you need to see the latter?:
n

Do you want the clocked type bit generator?:

y

Address bit 2 of Port 1 of memory Thesis_memi.
From click 0 to click 21

There is a clocked type bit generator, costing 28 units of area.
This entails a skew of 200ns on this address line.
The alternative bit generator could cost 117 units of area.

Do you need to see the latter?:

y

•:

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = (0,0,0,1,1,1,1,1,0,0,0)

=>Adbit2
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 117000

Do you want the clocked type bit generator?:

y

Start of initial costings:

Thesis_csig2l
Acseq Start.. Finish = 22.. 41 Mode = C
Access ID = 4 Port 1

Bit Generator Element = (0,1,1,0,1,1,1,0,1,1,0,0,0,1,1,0)
=> Thesis_csig2l

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 11720000

Thesis_csig2l
Acseq Start.. Finish = 22.. 41 Mode = C
Access ID = 4 Port 1
Bit Generator Element = BIT 4(1) EXORED WITH THE ABOVE =>
Thesis_csig2l

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 140-1 00
I.E.: The total non-ROM based cost of producing csig2l is 257 units.

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Sizes are: Declared size, Rounded size, Dec. width, Rnd. width, X-dim, V-dim
Acseq Start.. Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 4(20), Preset to 5
I.E.: Bit 4 o a modulus 20 incrementor (one which resets at 20)
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069

- 199 -

Memory = Thesis_memi

Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)

Bit Generator Element = BIT 3(20), Preset to 5
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 3
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 2(20), Preset to 5
An incrementor, INC = 3

With clock gated by gating_sig3 => Adbit 2
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069

Memory = Thesis_memi

Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 22.. 57 Mode = WR
Access lD=2 Port l (Type RW) 	- -
Bit Generator Element = BIT 1 (20), Preset to 5
An incrementor, INC = 3

With clock gated by gating_sig3 => Adbit 1

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069

Memory = Thesis_memi
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 22.. 57 Mode = WR

Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 0(20), Preset to 5
An incrementor, INC = 3

With clock gated by gating_sig3 => Adbit 0
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069

- 200 -

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = A_BIT_CLOCKED_BY NOTTED OUTPUT FROM
ADBIT l's BIT GENERATOR => Adbit 2
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 44 28 0

Memory = Thesis_memi
Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = A_BIT_CLOCKED_BY UNNOTTED OUTPUT
FROM ADBIT 0's BIT GENERATOR => Adbit 1
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 44 28 0

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = (0,0,1,0)
=> Adbit 0 	 -

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 61 4400

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 2(1) EXORED WITH THE ABOVE => Adbit 0
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 84-1 00

Memory = Thesis_memi
Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 1(3) => Adbit 3
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400

- 201 -

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = NOT.BIT -3(5) => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400

Memory = Thesis_memi
Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT -1(5) EXORED WITH THE ABOVE => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 56-1 00

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = NOT.BIT 4(1) => Adbit 5
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400

Memory =Thesis_mernl 	-
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8,256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 0(7) => Adbit 6
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 1124400

Memory = Thesis_memi
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 1 (7) EXORED WITH THE ABOVE => Adbit 6
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00

- 202 -

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT -2(3) => Adbit 7
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT -1(3) EXORED WITH THE ABOVE => Adbit 7
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 0(3) EXO RED WITH THE ABOVE => Adbit 7
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00

Mernory=Thesis_rneml 	- - - 	
- . Sizes (OS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 2(3) EXORED WITH THE ABOVE => Adbit 7
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00

Do you want to interact?: n

Start of iterative cost optimisation:
..
Old cost = 1110 	 The sum of cheapest costs.
ROM—based—cost = 937 	 As ROM-based as possible.
Other cost= 1195 	 As non-ROM-based as possible.
ROM_based_cogi < Other_cost so:
Forcing the following into ROM

- 203 -

Memory = Thesis_memi
Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = (0,0,1,0)
=> Adbit 0

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 61 4400

New cost= 1126 	 Sum of cheapest costs.

..
Old cost = 1042
ROM—based—cost = 937
Other cost = 1122
Forcing the following into ROM
Memory = Thesis _memi

Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 0(7) => Adbit 6
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 1124400

New cost= 1154

++
Old cost = 905
ROM—based—cost = 937
Other cost = 905
ROM_based_cost > Other_cost so:
Forcing the following away from ROM
Memory = Thesis memi
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)

- 204 -

Bit Generator Element = A_BIT_CLOCKED_BY NOTTED OUTPUT FROM
ADBIT l's BIT GENERATOR => Adbit 2
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 44 28 0

New cost= 920 	 -

Old cost = 920
ROM—based—cost = 942
Other cost = 920
Forcing the following away from ROM
Memory = Thesis_memi

Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = A_BIT_CLOCKED_BY UNNOTTED OUTPUT
FROM ADBIT 0's BIT GENERATOR => Adbit 1
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 47 28 0

New cost = 940

Old cost = 940
ROM_based_cost = 947
Other cost = 940
Forcing the following away from ROM
Memory = Thesis_memi

Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 4(20), Preset to 5
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069

New cost = 940

- 205 -

Old cost =940
ROM_based_cost = 983
Other cost = 940
Forcing the following away from ROM
Memory = Thesis _memi

• Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start..Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 3(20), Preset to 5
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 3
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 088069

New cost = 940

Old cost =907 -
ROM—based—cost = 907
Other cost = 907
New cost = 907

++
End of iterative optimisation.

The following describes the binding to a specific form of generation:

Thesis_csig2l

Acseq Start.. Finish = 22.. 41 Mode = C
Access ID = 4 Port 1

Bit Generator Element = (0,1 ,1 ,0,1 ,1 ,1 ,0,1 ,1 ,0,0,0,1 ,1 ,0)
=> Thesis_csig2l

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 200-1 -1

- 206 -

Memory = Thesis_memi

Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 22.. 57 Mode = WA
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 4(20), Preset to 5
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069

Memory = Thesis memi

Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 22.. 57 Mode = WA
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 3(20), Preset to 5
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 3
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069

Memory = Thesis_memi

Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 22.. 57 Mode = WR
Access lD=2 Port l (Type RW)
Bit Generator Element = BIT 2(20), Preset to 5
An incrementor, INC = 3

With clock gated by gating_sig3 => Adbit 2

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069

Memory = Thesis_memi
Sizes (OS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 22.. 57 Mode = WR

Access ID = 2 Port 1 (Type RW)

Bit Generator Element = BIT 1(20), Preset to 5
An incrementor, INC = 3

With clock gated by gating_sig3 => Adbit 1

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069

- 207 -

Memory = Thesis_meml
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 0(20), Preset to 5
An incrementor, INC = 3

With clock gated by gating_sig3 => Adbit 0
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069

Memory = Thesis_memi
Sizes (OS, AS, OW, AW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = A_BIT_CLOCKED_BY NOTTED OUTPUT FROM
ADBIT l's BIT GENERATOR => Adbit 2
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 280

Memory = Thesis_meml
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = ABIT_CLOCKED_By UNNOTTED OUTPUT --

- 	FROM ABIT 0's BIT GENERATOR => Adbit 1
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 280

All remaining bit sequence generators are to be ROM-based:
Memory = Thesis_memi
Sizes (OS, AS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = (0,0,1,0)
=> Adbit 0

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 1(3) => Adbit 3
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1

Memory = Thesis_memi
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = NOT BIT -3(5) => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1

Memory = Thesis_memi
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = NOT.BIT 4(1) => Adbit 5
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1

Memory = Thesis_memi 	 - 	 - 	- --
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT 0(7) => Adbit 6
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1

Memory = Thesis_memi
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = BIT -2(3) => Adbit 7
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1

Any RUM-based bit sequence generators must now have the RUMs
synthesised, along with their own address generators:

- 209 -

Commencing ROM extraction

The ROMs have their contents constructed as a conglomeration of their
constituent bit sequences.
ROM access sequence info:
ADDRLISTSIZE (Bits) = 110
MODE= R
START AT= 0
STOP—AT= 21
CLOCK= clocki

STROBE= strobe_a

COM MS= Thesisp 1 /Thesispl /Thesispl /Thesispl /Thesispl /Thesispl /
I.E.: 6 bits of Thesis_mem's address port 1.
MAXADDRESS= 21
HINT= 0

Trying Incrementor solution
Incrementor type,solution found
The incrementor based solution should always be found, as the ROM access
sequence is constructed as an incremental sequence. - - - 	- - - 	 - -

ADDRLISTSIZE (Bits) = 100
MODE=R
START—AT= 22
STOP—AT= 41
CLOCK= clocki

STROBE= dummy

COMMS= Thesis_csig2l/

MAXADDRESS= 19
HINT= 0

Trying Incrementor solution
Incrementor type solution found

-210-

ROM address generator information:
Memory = ADDRESS_ROM1000
Contents:
0
1
1
0
1
1
1
0
1
1
0
0
0
1
1
0
1
0
0
1

• Sizes (DS, RS, DW, RW, X, Y) = 20, 1, 1, 0, 1, 1
Acseq Start.. Finish = 22.. 41 Mode = R
Access ID = 1001 Port 1
Bit Generator Element = BIT -1(32), Preset to 0
With clock gated by gating_sig6 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 19-1 0 1

Memory = ADDRESS_ROM1000
Contents: As above.

Sizes (DS, RS, DW, RW, X, Y) = 20, 1, 1, 0, 1, 1 -

- 211 -

Acseq Start.. Finish = 22.. 41 Mode = R
Access ID = 1001 Port 1
Bit Generator Element = BIT -5(32), Preset to 0
With clock gated by gating_sig6 => Adbit 0
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 19-1 0-1

Memory = ADD RESS_ROM1002
Contents:
12
40
45
40
9
13
10
63
58
58
31
26
61
25
24
29
48
52
51
18
23
3
Sizes (OS, RS, DW, RW, X, Y) = 22, 8, 6, 0, 8, 1

Acseq Start.. Finish = 0.. 21 Mode = R
Access ID = 1003 Port 1
Bit Generator Element = BIT -1(32), Preset to 0
With clock gated by gating_sig5 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 21 -1 0-1

-212-

Memory = ADDRESS_R0M1002
Contents: As above.

• Sizes (DS, RS, DW, RW, X, Y) = 22, 8, 6, 0, 8, 1
Acseq Start.. Finish = 0.. 21 Mode = A
Access ID = 1003 Port 1
Bit Generator Element = BIT -5(32), Preset to 0
With clock gated by gating_sig5 => Adbit 0
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 21 -1 0-1

Final bindings of bit sequence generators to hardware:
Thesis_csig2 1
Acseq Start.. Finish = 22.. 41 Mode = C
Access ID = 4 Port 1
Bit Generator Element = Bit 0 of some ROM called ADDRESS_ROM1000
=> Thesis _csig2l

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 00

Memory = Thesis_memi
Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1

Acseq Start.. Finish = 22.. 57 Mode = WR
Access ID = 2 Port 1 (Type RW)
Bit Generator Element = BIT 4(20), Preset to 5
An incrementor, INC =3

With clock gated by gating_sig3 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069

Memory = Thesis_memi
• Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1
Acseq Start.. Finish = 0.. 21 Mode = W
Access ID = 1 Port 1 (Type RW)
Bit Generator Element = Bit 5 of some ROM called ADDRESS_RQM1002
=>Adbit7

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 00

1.

0

f-I)

0

I
0

a
0

CD

Q.

00
CD

0.

N)
-,,
CA)

Oct 1989 	Jan 	Apr hA I Jul A C Oct 1, 1 rN Jan 	 Jul A 	Oct 	Jan r- A Apr A • Jul A 	Oct 	C/)

__ II 	IIII II
lvi 	U ' IN 	Li r 	lvi 	IVI 	U

1

Sage
rO

ADA
______ 	 Prolog —

3
ICCAD 89 	 — 	 —

DAC90
EDAC 91 	 — 	 —

4

5 —

6

7

8

Key: 1. Literature Survey
Language and System Familiarisation
Conference Paper Prep. and Presentation
C Programming and Development (AG1)

Prolog Programming (MG 2)
Ada Programming (AG2)
Ada Programming (SAGE)
Other Documentation

- 214 -

Appendix D

AG1 User Guide

There are four specific ways in which to introduce the address sequence into the
synthesis algorithm of AG 1. The first requires a software description of the address

sequence, and the second method is by using a graphical entry method. The two

remaining data-entry formats are specifically aimed at very random sequences, for
immediate logic synthesis.

For the first data-entry method, using the '-s' command-line option,' a function

(doloop/O) is called, and this should fill up the global address sequence with values

calculated by a set of loops, of perhaps with values explicitely declared within doloop/

0. This function should also return the value equal to half the address sequence length,
which must be a power of two. [Put eg of this in agmain4/doloop]. The function should
exist within the same file as the AG1 source code, necessitating full recompilation for
each different sequence, but perhaps could be compiled in a separate file in the future.

The second option (-g) is to use the built-in graphical entry tool, which allows an
addressing pattern to be laid out, taking a macro-oriented, hierarchical approach if
necessary, on a two-dimensional representation of memory space.

Sequences created in this way may be saved to file in a format

compatableto AG2,4escribedinSectionj.4. 1 .-_-____ -- - -- -

The graphical entry method commences with a prompt for the unique name of the
address pattern to be specified. There are three reserved names:

'' is the name of the smallest pattern to be defined in a hierarchical description,
within which the order of accesses does not matter;

'.' is the name given to the entire memory space, as the last stage of the description;

'memel' is the third reserved name, relating to a single memory element: A pattern
of dimensions x = 1, y = 1.

Next the dimensions of the pattern are required, which should be within the limits:
1 !~ x :!~. 32, 1 < y :!g 16. The user is then prompted for the name of the pattern which is

to be mapped to each coordinate in the present pattern. Usually the smallest pattern, "i",

will be defined as an array of 'memel's. The system then reports the actual number of

- 215 -

memory elements in the present pattern, displays it as an array of points on the screen,

and waits for commands to move around the pattern, selecting the points in the correct
order. If the pattern name is 'i", then any coordinates selected during its specification
(including those in any hierarchically lower patterns, used to construct '*') are sorted
into ascending order, since this should result in the simplest possible addressing
scheme. Otherwise the selected coordinates are left in the order selected.

The maximum dimensions of any pattern (x :! ~ 32, y :!~ 16) are necessarily limited by

the ability of the user to select the desired coordinates from a large array, and by the

present simplicity of the interface. Given a mouse-driven selection procedure, on a

high-resolution display, far higher limits could be placed on the patterns' size, at the risk
of wasted effort through loss of hierarchy.

Neither the address sequence length, nor its constituent patterns' dimensions need
to be powers of two, if the sequence is simply to be saved to a file for use elsewhere. If,

however, the sequence is to be handed to the main algorithm in AG 1, described in

Section 4.3.2, then the address sequence should definitely have length 2r, and the value
1 is then returned to AG 1.

A third command-line option, -1, allows a single sequence of binary values to be
loaded from file, along with the length of that part of it which should have logic

generated for it, as illustrated in Figure D. la. The sequence may contain '()'s, ','s, and

carriage returns; n iUthãVe

required, the the length actually needed corresponds to the modulus of the binary
counter which will be used to drive the logic, which in turn will produce the sequence.

The final option for AG1 is -L. This allows a number of different binary sequences,
of perhaps different lengths (but still some powers of two), and delimited by 'A'5, to be
accessed by the main algorithm. The first sequence encountered in a serial search of the

- 216 -

input file, will be produced by the LSB of the synthesised address generator, and so on

the last sequence - the MSB. An example is given in Figure D.lb.

25(1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,1)(1,1,0,0,0,1,1,0,0)

A15(0,0,1,1,1,0,1,1,1,0,0,0,1,0,0)(1)A
A9(O, 1, 1 , 1, 1,0, 1,0, 1)(1,1,1, 1,0, 1,0, 1)"
A9(l,1,0,1,0,0,1,1,0)(1,0,1,0,0110)A
A23(etc.

Figure Di a) Specification of a binary sequence for AG1.
b) Specification of several binary sequences together.

to

MPAWA

AG2 User Guide

AG2 is a very simple tool to use. Two options are available on the specification of
the file(s) containing the.access sequences: "s" loads the access sequence from a single
file, and later enquires as to the width of the corresponding memory's data; "d" prompts

for the name of a drive file which should contain the name of each access sequence file

to be examined, followed by the corresponding memory's data width. If a control bit

sequence is to be generated, then no memory exists and the width should be set to 1.

The name of the access sequence file is important also, since any characters up to the

first '.' will be taken as the name of the corresponding memory. A good hint is to use:

mem_name.c/r/wacseq[n],

where a 'c' denotes a control bit sequence and 'r' and/or 'w' denote the access mode of
an access sequence. 'n' would be an integer if more than one access sequence of a single
mode was present for a given memory.

The next prompt allows the output information to be filtered, before the algorithms

start to work in earnest, and you sit back and watch! Depending on the level of
information requested the following may, or will (denoted by a '!'), appear.

! Firstly, the name of the current access sequence file will appear, followed by

information echoed or derived from that file, including the size of the address sequence,

in bits, and if this is too large (> MAXADDRLISTSIZE) then the decision to

commence a bitwise investigation of the sequence is reported. An example of the
information to expect is shown below.

DRIVE FILE or SINGLE FILE (d/s) => d
DRIVE FILE NAME => a113.drv
Information density? (Lots—and—lots I a_Bit I Result—Only: I/b/r): r

File name = h0testl.acseq

ADDRLISTSIZE (Bits) =90
MODE= R
START—AT= 12
STOP_AT= 29
CLOCK= clock 1
STROBE= strobe _a
COMMS= comms_name
MAXADDRESS= 30
HINT= 0

-218-

The first algorithm to run, in a non-bitwise approach, looks for incremental/

decremental sequences, which may have irregular timings for these increments/
decrements, and reports back if such a situation exists.

If not, then a second pass is tried on the sequence, with a different algorithm, which

looks for bit sequences generated by (a collection of) counter bits. Details on the

generation of each bit sequence may then be shown, and then a third pass of the access

sequence is made by an algorithm which inspects the bit sequences in the hope of

finding some which may be generated by using another bit sequence to clock a flip-flop.
This is how a ripple counter may be constucted, but the skew on the outputs may be too

large to handle. Again, any new information may be printed out, before the final stage

commences. Some annotated details of the information which will possibly appear are
given below.

Trying Incrementer solution

Second Pass

BiT -1(3) => AdBit 4

Of address port 1, of memory hOtesti

BIT 1(3) EXORED_WITH

BIT 0(3) => AdBit 3

Of address port 1, of memory hOtesti

NOT.BIT -2(5) => AdBit 2

Of address port 1, of memory hOtesti

BIT -3(7) => AdBit 1

Of address port 1, of memory hOtesti

BIT -1(5) EXORED_WITH

BIT -3(5)=>AdBitO

Of address port 1, of memory hOtesti

Third Pass

None was found

Means "Bit -1 of

modulus 3 counter"

-219-

Firstly the details of every possible bit sequence generator for each bit sequence will

be displayed, along with initialised costs for each one, determined using costing
functions based on area, usage and control overheads.

/* Clocked bit sequence generator *1

Declared + Rounded Size and Width of Memory Memory = inc_test3b
Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 30, 32, 32, 1

Acseq Start. .Finish = 0.. 19 Mode = W
Access ID = 12 Port 1 (Type W)
Bit Generator Element = NOT.A_BIT_CLOCKED_BY NOTFED OUTPUT FROM
ADBIT 0's BIT GENERATOR => Adbit 1

COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 0-1280

/ Exored combination of counter bit and 'random' sequence 	prohibits
ROM-based

Memory = inc_test3b 	
soln. for this
bit gen'r.

Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 30, 32, 32, 1
Acseq Start. .Fimsh = 0.. 19 Mode = w 'Random' bit sequence, to be

~(Onlyfirst
generated using a counter + logic.

Access ID = 12 Port 1 (Type W) 	section to be actually gen'd)
Bit Generator Element = (1,0,0,1,1,0,0,0,1,1,1,1,0) (0,0,0) => Adbit 1
COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 615600

Memory = inc_test3b.

Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 30, 32, 32, 1
Acseq Start. .Finish = 0.. 19 Mode = W 	 Means Exor with \
Access ID = 12 Port 1 (Type W) 	 generator above -'

Bit Generator Element = BIT 0(13) EXORED WITH " => Adbit 1
COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 28 -10 0

/ Incrementer type bit sequence generator with preset and reset at 27*!

Memory = mc_test3 . Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 29, 32, 32, 1
Acseq Start. .Finish = 0.. 20 Mode = W
Access ID = 10 Port 1 (Type W)
Bit Generator Element = BIT 4(27), Preset to 6
An incrementer, INC = 3
With clock gated by gating_sig 11 => Adbit 4
COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 050062

- 220 -

Optimisation is then based on finding the best generation method for each bit

sequence, in a global context. This involves choosing between adder/counter-based and

ROM-based solutions, and perhaps a clocked flip-flop approach. By grouping
otherwise expensive bit sequences into a ROM, the expense of the ROM's creation may

be justified, and judging from the comparative costs of a wholly ROM-based and a

wholly otherwise approach, along with the cheapest possible cost overall (without

taking ROM sharing into account), bit sequences are selected in turn to be bound to a
single generation method, until a globally good solution is found.

Once every bit sequence has a definite generator, any ROM-type bit sequence

generators then have the memory and access sequence information constructed for that
ROM, before it is handed back to the mouth of the tool, where the whole process is

repeated to synthesise the address ROW own address generators, which are reported

in the same way. Finally the total cost is displayed, followed by the details of all bit
sequence generators, including those for accessing address ROMs. The construction of

the netlist of bit sequence generating components and memory address / control bit

destinations, remains a manual task, but a simple schematic is not difficult to produce.

- 221 -

rgic2 User Guide

This is probably the simplest tool to use, in that little or no interaction is required,
and the output is to file, for easy browsing.

The system comes in three main parts: msyn, acreqs and acgen. To run the first
stage, enter Prolog and consult the files msyn, stdlib and the file containing the data-
base of schedule information. Msyn is then run with the goal go(Cstep, Sort,nethod,
Outfilel), where Cstep is an integer within the range of the current schedule and
Sortmethod is either 'e' or 'h' - Easiest or Hardest-first method of synthesis.

Once msyn has been completed, the next stage is to enter Prolog again, this time
consulting acreqs only. This extracts all address and control generation requirements
from the data path defined in Oulfllel and using the goal go(Outfllel, Oulflle2), these
requirements will be stored in Outfile2. The third part of the process necessitates
entering Prolog once more, this time consulting the file acgen which should be run with
go(Outflle2, Oulflle3), and this produces the final bindings of data to memory locations,
perhaps using the interactive mode to specify more than the minimum required number
of memory elements in any RAM.

The data in Outfile3 explains the address and control requirements of each memory
and control wire on a bitwise basis, and this may be translated to a format compatable
with A02 by using the program date. This should be consulted and run with the goal

- go(Outflle3) to produce-a set of access sequence -files in the correct format. - -- -

- 222 -

Appendix E

This appendix presents the address generators synthesised by AG2 for all the

examples described in Chapter 6. The first is for the digital wave filter, and then

Figure E.2 shows the address generator for the FDCT example. Figure E.3 illustrates

the generator for the FIR filter and finally Figure E.4 shows that for the differential

equation example.

12 	Control Signals

Modulus

-2
Counter

-1 i 	Memories

R 	 ROM1
LSB

2
• - -

• 	 0 • _
Modulus 20

111J 	

" 	I

_ 	
-ri--

M 	 1+4
Counter - 	 - - ______

- -----T _ -- ---I--I---I----------- -
I 	II 	I "2

Figure Ed Address and control generator for wave filter example.

- 223 -

Figure E.2 Generator for the FDCT design.

Control Signals

- 224 -

0 	
> Binary Counter

Clock 	0

All 49 Ad ress/Control Sequences

Ftgure LJ tiR example aaaress ana control generator.

Figure E.4 Differential equation example's synthesised generator.

