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Abstract of Thesis 
Increasing complexity of Application Specific Integrated Circuits (ASICs) has 

demanded a corresponding increase in the power of Computer Aided Design (CAD) 

tools, so that contemporary design tools can now synthesise an entire silicon 

architecture, given only a description of its functionality. Specialised automated 

synthesis techniques have now been applied to almost all parts of the architecture, but 

one area which remains unresolved is that of memory address generators. 

Previously combined with other logic synthesis techniques, less than optimal 

solutions were often found for generating memory address sequences, and this thesis 

examines address generator synthesis as an individual step in the design process, as part 

of an investigation into high level synthesis. The synthesis techniques developed for 

address generators in the AG1 and AG2 tools presented, target specific architectural 

forms including counters, incrementors and ROM look-up tables, and the details of 

these are gathered within a comprehensive data structure which allows optimisation 

through hardware sharing to occur. 

At a slightly higher level, the specification of address sequences as a stage in 

memory synthesis is also investigated and a behavioural to register-transfer level 

silicon compiler; MC 2  is presented. The data path and memory architectures 

constructed by this tool are used to produce realistic address generation requirements 

whose implementations are also presented, synthesised by AG2. 

It is shown that both array and non-array memory can benefit from more specialised 

address generator synthesis over the existing, mainly logic synthesis approach. 
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Preamble 

This thesis examines high level synthesis of data path architectures and in 
particular, address generation hardware. This is based upon the recognition of certain 

characteristics of binary sequences which relate directly to certain generation methods. 

The first chapter introduces the concept of address generation, and gives an overview 

of related work in this area, and then the motivation for this work is stated. Chapter 2 

introduces the hardware involved in address generation, including counters, single 

logic gates and ROMs, and the next chapter illustrates the possible requirements for an 

address generator, before Chapter 4 looks at a simple address generator synthesis tool 
- AG1. 

Next, in Chapter 5, the many and varied approaches to contemporary behavioural 

synthesis are documented, and then Chapter 6 presents a heuristic approach to memory, 

communication and control synthesis for scheduled algorithms - MC 2, which has been 
coded in Prolog. This step was necessary in order to produce some realistic address 

sequences for otherwise well-known examples. 

Chapter 7 returns to address generator synthesis with a more complex address 
generator synthesis tool - AG2, and in Chapter 8 its application within a general 

behavioural synthesis tool is investigated. Finally, Chapter 9 presents conclusions and 

directions for future work. 

Appendix A contains the author's publications and then Appendix B presents some 

annotated output from the tool described in Chapter 7. Appendix C gives account of 

how time was spent on this project, and Appendix D holds the user guides to the tools 
presented in this thesis. Also included with this thesis is a disc which holds all the code 
described in the text. 
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Chapter 1 Introduction to Address 
Generation 

1.1 Address Generation in Digital Systems 
Since the first digital systems were constructed in the mid-1930s [200], great 

advances have been made in both their design and physical implementation. From the 

earliest vacuum tube transistors used by Newman and Pinkerton [201, 202],  evolved 
solid-state logic [203], and with that came the first great improvement in the size, power 
consumption and reliability of digital circuit components. 

As the properties of silicon as a substrate for both transistors and interconnect were 
developed in the early 1950's, a second step was taken in circuit performance, so that 
we now have highly complex micro-computers and data-processing hardware, 
integrated on a single chip (IC), less than three square centimetres in area. 

Figure 1.1 shows a typical Von Neumann data-processing architecture [204], in 
which data is guided between computational hardware and memory of some sort, under 

the direction of a process controller and ancillary hardware. 

Figure 1.1 A typical data-processor architecture (NEC7720). 

Computational hardware performs any calculations required on the data, for 
instance adding and multiplying, and this may be done by hardware dedicated to that 
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specific calculation - adders or multipliers - or by multi-function Arithmetic Logic 

Units (ALUs). The memory hardware implements storage for either long-term data, for 

fast, on-chip access, or for data being transferred between computational hardware 
elements. 

Memories may be Read Only Memories (ROMs), Random Access Memories 

(RAMs), registers (latches) or register-files, shift registers, stacks, or any other data 
storage device, and in the case of ROMs, RAMs and register-files, these memories will 

need an address to be generated before data may be accessed. 

The steering logic, including multiplexers and demultiplexers, guides the data 

between all this circuitry, and is controlled by signals generated by a controller, which 
may be micro-programmed [84, 85],  or have some simpler implementation [193, 194]. 
This controller may receive feedback from computational hardware, for decision-

making, as well as interpreting externally applied information, and generating any 

-- clocking signals required by synchronous circuitry, -Its other- main task, is to generate the 

control necessary for the memory hardware, consisting of Read/Write enable signals, 

the memory addresses, and any other Shift/Load/Push/Pull control signals. A simplified 
description of the architecture is shown in Figure 1.2. 

I/O INTERFACI 

CONTROLLER 

- *-- 1- 
COMPUTATIONAL 

MEMORY 
HARDWARE R 

G 

Figure 1.2 Simplified data-processing architecture. 

The huge rise in integrated circuit complexity, through Large Scale Integration 

(LSI), to Very Large Scale Integration (VLSI), soon overwhelmed the wholly manual 
approach to digital system design, but also provided a solution, in the form of Computer 

Aided Design*.  As more complex and powerful computers were designed, they were 
used to aid the design of even higher-performance systems (The DEC MicroVax 

* The IEEE Transactions on Computer Aided Design was created in 1982 to handle the increas-
ing activity in this area. 
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prototype was designed using GenesillM).  At first the drafting of the physical layout of 

the circuits was the only design stage to benefit from these advances [95, 96],  but more 
and more of a digital system designer's "toolkit" of methodologies have since been 
automated. These provide support in areas, from the geometry-level view of the chip, 
right up to the design of an entire IC, almost at the press of a button. Placement and 
routing, design-rule checking, combinatorial logic synthesis [62..68], and increasingly 
important, test {88..92], have and will continue to benefit from the increase in the power 
of the computers used to automate them. 

Having automated what used to be the repetitive and error-prone tasks of a VLSI 
designer, more time could be devoted to the investigation of the design space, to 
perhaps find more efficient implementations of existing processors, or to develop 
wholly new architectures. Schematic capture of designs was developed to aid this 
investigation [127, 128],  and it naturally followed that high-level synthesis of complete 
data-processing architectures was targeted next for automation [3 1,108]. 

01-13.111 iflW 

:IL 27

IL  

II 	
IpuIl!1I11I 

oil N ii ri H 

Figure 1.3 Architecture and chip layout by PHIDEO [61]. 

Contemporary high-level synthesis systems may be based on procedural, Hardware 
Description Languages (HDLs) [153.. 156], or on the more complete, VHSIC (Very 
High Speed IC) Hardware Description Language (VHDL) [157, 1581 (now 
standardised - IEEE 1076), or Behavioural Description Languages [24,34] (usually in-
house), and can be used to produce gate-array [102], standard-cell [14],  and other semi-
custom design method implementations of Application Specific ICs (ASICs), in the 
latest VLSI technologies [99, 100, 46, 36, 30]. 
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One area of high-level synthesis which has been under-developed, is that of 

synthesis of application-specific address generators, as separate entities to the general 

controller on an IC. The hardware required for address generation can make up a large 
percentage of the total chip area (up to 50%), so there should be at least as much work 
done on its synthesis as there is for the computational part of the design. Some 

contemporary systems treat address generation as just another computation and design 

the hardware as a data path, but in [141] sequence generation is identified as a distinct 

basic block in a functional block environment, and it is the field of sequence generator 

synthesis which is targeted by this thesis. 

1.2 What is address generation? 
To generalise as far as possible, address generation is the production of some 

sequence of binary words, of some width. 

Since the primary use of these words is by memories, as addresses, the generation 
of them is known as address generation. 

An address generator is therefore the hardware which actually produces these data, 
and may produce several addresses as part of its data word. 

1.3 The scope of address generation 
As stated above, an address generator does of course generate addresses for 

memories, but can have other uses: 

To generate control bit sequences for steering logic (such as multiplexers). 

To generate control bit sequences for selection of function in ALUs, and for 
other selection requirements. 

To generate test patterns for a processor, on the same IC. 

In order to place some limits on the scope of this thesis however, address generation 
is defined as being the production of a predetermined sequence of binary words of some 
width. 

This precludes applications for which a sequence is dependent on internal variables 
or data, for instance the output from an adder during successive uses. 

/ 
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1.4 Overview of address generation techniques 
There follows an account of related techniques in sequence generation, both for 

control purposes and for memory access. 

1.4.1 For control 

To date there are very few ASIC design systems which deal with the memory 

addressing problem as separate entity from the more general and possibly non-

deterministic control problem. So control generation has dominated address generation 

techniques with most address generators eventually embedded in the controller. 

Conventional approaches to control generation are, like most tried and tested 

means, too general in their methods to produce the most optimal architectures. They 
will produce passable results all the time but are not ideally suited to ASIC design. 

The problem is usually one of mapping state numbers to actual control signals as - 

fast as possible, using the least area of silicon. If there are just a few simple mappings 

then full combinatorial logic would be used, but as the number of inputs and outputs 

increases, a ROM look-up table may be used in conjunction with a (state) counter to 

produce any deterministic sequences, or as part of a FSM. However, as the number of 
inputs increases further, the ROM becomes outsized and a PLA is more likely. ROMs 
are also used as look-up tables as the basis for micro-programmed logic. A PLA may 

be used in conjunction with a binary counter to implement any combinatorial logic 

functiOns which map the linear state count to the control outputs, and this is certainly 

the most common form of controller architecture both for deterministic and non-

deterministic sequences. The area of a PLA may be reduced by folding parts of the logic 

array, and their ease of programmability makes them very popular, but testing them as 
they stand is very difficult. By adding special structures to allow selection of each 
crosspoint on the PLA however, some PLAs may be used to test themselves [140]. 

Various other sequence generators and detectors are discussed in [152]. 

1.4.2 For memory access 

Several different address generation schemes have been reported, especially for 

array processing, based on adders [144], and on ALUs [145] which can use three types 
of address arithmetic to produce eleven different addressing modes in the Motorola 

DSP56000 chip. Address Calculation Units are also used in the Tektronix M275 
programmable array processor [146] along with pointer registers. Counters have been 
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used in many cases, especially where the address sequence is to be used for array 
access, in a regular pattern [205]. 

1.5 Overview of address generator synthesis techniques 
Now we examine the diverse techniques for automatically synthesising sequence 

generators, for general control, and as a separate entity for memory access. 

1.5.1 	For control 

Devadas et al.'s MUSTANG system attempts to synthesise FSMs [64] using state 

assignment techniques to optimise a multi -level logic (multiple PLA) implementation 

[62], while Amman et al's SUCIM tool [66] aims at both optimal state assignment and 
state sequences. Here too, multiple PLA/ROM-structured FSMs are targeted for use 
with binary counters [65]. 

Micro-programmed controller synthesis has been around a relatively long time, 
with Grass and Lipp's LOGE system being a fair example[84, 85],  and the Cathedral II 
system [81] synthesises micro-programmed control also. 

The principals of combinatorial logic synthesis are described in [63] and the 

optimisation or minimisation of such logic is a popular subject [67, 681. 

The Yorktown Silicon Compiler [73, 74] is one of the earlier systems for controller 
synthesis, and others include CPC [72] for use in the SYCO compiler, the SILC 
compiler [75],  and work reported in [76, 77, 79, 80, 821. 

1.5.2 For memory access 

A schematic capture method is reported in [142] which can be extended to the 

capture of address generation hardware, and in [143] address sequences for scheduled 

memory are produced automatically for multi-port memory allocations, but the 
problem of virtual to real address conversion is ignored, and no real synthesis is 
attempted. 

In the Cathedral II system [162], background memory is synthesised in the form of 

Pointer Addressed Memories (PAMs), which only require an incremental address 

sequence, thus avoiding the construction of complex Address Calculation Units. For 

high speed circuits, the PHIDEO system [61] allows exploration of the address 
generation costs/ memory costs domain, and can synthesise address generators based 

on relative addressing using pointers, for a minimal sized memory structure, or based 
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on counters for a possibly redundant memory, or based on otherwise minimised 

memory structures, which can lead to rather complex generators. 

The author's own address generator synthesis systems, AG1 [149] and AG2 [148, 

151], use decompositon of address sequences in trying to find a better hardware 

implementation than would normally be found using logic synthesis. 

1.6 Other related approaches 
There are other applications for sequence generators. BIST (Built-In Self Test) for 

PLA's [138], and more general use [135, 139],  as well as other design techniques [136, 

137] can utilise the same sort of architecture as address generators. 

1.7 The case for address generators based on counters 
Counters are reliable, reuseable, testable and efficient, which makes such adaptable 

circuitry invaluable in chip design. 

The use of counters in address generators is not a new concept [65],  and in fact the 

subject matter for this thesis was originally inspired by some address generation 

hardware, manually designed for an image-processing application [205]. One such 

address generator is illustrated in Figure 1.4, along with a graphical description of the 

memory access sequence it produces. The gate array chip layout which includes this 
architecture can be seen in Figure 1.5. 

Once this, and other solutions had also been produced automatically, it became 

apparent that counters could form a part of much more general-purpose address 

generators, if only the techniques for recognising their possible use could be developed. 
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Figure 1.4 Example of a counter in an address generator. 
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Figure 15 Chip layout of which about 50% of active area is address generation circuitry. 

1.8 Comments 
The DTI and the SERC have recently specified a new jointly funded collaborative 

programme - VLSI Design Automation for Information Technology Systems - whose 
workplan includes a sub-section on memory architectures which calls for "Novel 
configurations of memory and address generation, leading to reduced hardware 
requirements, involving automatic generation from system requirements" [206]. 

The design of address generators is at present an expert's task. The intuitive 
decisions made in their conception are based on a collection of experience of this and 
similar problems, from many different angles. It is only by utilising this experience that 
the human designer may hope to overcome the size and complexity of some of the 
design problems, to realise a working solution. But then a careful and often lengthy 
check must be made, perhaps using simulation, to ensure that no errors have occurred 
during the design. The size of the problem, however, will often make exhaustive 
simulation prohibitively expensive, so often the expert must be recalled to intuitively 
check the solutions by hand. 

We believe that an address generator synthesis tool should not only guarantee 
correct solutions, which will also be testable, but should also do so with a vast 
improvement in design time. We will report later on such a tool which has mirrored 
manual designs with an increase of between one and three orders of magnitude in 
performance. 
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2 Introduction to address generatér 
architecture 

In Chapter 1, an address generator was defined as producing a predetermined 

sequence of binary words, of some width. To complicate proceedings a little we may 

add constraints of timing on both the address sequence as a whole, and on the speed of 
production of the data words. Area considerations may force re-use of all or some part 
of the address generator, so some outside control may be necessary, as well as the 

associated logic to implement that control. Power consumption may also figure in 

deciding on a specific address generator architecture. 

Commencing with a description of the types of memories for which addresses may 
be generated, this chapter defines the constituent parts of successively more complex 

and generic address generators, starting with some different implementations of the 

most basic element - the binary counter. This is then generalised to a modulus m 

counter, before other pieces of the architectural jigsaw are examined. Finally, a 

breakdown of the costs of these address generator elements is presented. 

2.1 The memories 
Before defining possible address generator architecture, we first examine the 

memories which can require addressing. 

On the physical level, a RAM cell (bit) may be reduced to just five transistors for a 
slower, static approach [176], or to a single transistor in the faster, dynamic mode [178] 

which has refresh overheads. A ROM cell may also be reduced to a single transistor due 

to its simplicity [179]. Other novel approaches include magnetic bubble memories 
[180]. 

Memories may be Content-Addressable [172, 173, 177],  or Content-Associative for 
faster access [171], or have other added features [174], and may be designed using 
many different styles [175] including Standard Cell, Super Integration and Structured 
Array to develop RAMs and Cache memory. 

A highly parallel memory structure may be defined for parallel processor 

applications [170], and multi-phase clocking schemes may introduce other possibilities 

[181, 182..184]. A RAM may have one or possibly several pairs of address and data 
ports. 
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2.2 The binary counter 
Being such a well-known piece of hardware, the binary counter can take one of 

several proven forms, and more specialized architectures are possible with differing IC 

technologies [195, 196, 198]. The basis for all counters in this thesis is a series of JK 
master-slave flip-flops, whose values toggle at certain times. 

22.1 The ripple counter 

Simplest to construct is a ripple counter, which has all of its flip-flops, or bits, set to 

toggle at any time, by tying both J and K inputs to logic '1'. The first flip-flop, Bit 0, is 
clocked by an external clock, and its Q(time t) output is then used to clock the second 

flip-flop, Bit 1. The Q(t) output from this is used to clock Bit 2, and so on until a counter 

of the correct size (number of bits) is produced. The Q(t) outputs form the count word 
at time t - an output from the counter module - which may need to be strobed by a 
ontrol signal to synchronise the signals. 

Strobecr 

CPL. 

Figure 2.1 The ripple counter with strobe. 

2.2.2 The serial carry counter 

To avoid the problem of synchronisation, and so the need for a strobe, the serial 
carry counter is constructed a little differently to the ripple counter. The first bit of the 

counter is set to toggle at any time as before, but instead of using its output to clock the 

next bit, this is done by the external clock itself. The second bit will only toggle if the 

Q(t-1) output of the first bit is in the high state. All other bits of this counter are also 

clocked by the same clock, and the value on their J and K inputs is set by the result of 

Q, 	25 

  : 0  P : i CP: 
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ANDing the next lower bit's Q(t- 1) output with its J (and K) input. In this way, the delay 

Figure  2.2 The serial carry counter. 

2.2.3 The parallel synchronous counter 

To increase the speed of the counter further, one must take a more parallel approach 

in its construction. Here, the first three bits work in the same way as for a serial carry 

counter, but any further bits will have their J and K inputs set by a logical AND of all 

lower Q(t-1) outputs. 

1 	 Qo. 	Q1 9 	 Q2 

a' 	 i_ 	

TJ3JO 	Qo H' 	Qi 	 Q2

KO Qo K1cP 	 LK2cQ2 	 3 CP 

CPa 

Figure 2.3 The parallel synchronous counter. 

2.2.4 The serial/parallel synchronous counter 

Since the parallel counter described above requires an (n- 1) input AND gate to 

implement an n-bit counter, then as the number of bits increases so does the likelihood 
of AND gate fan-in rules being broken. This problem may be partially solved, at the 

expense of some speed, by placing an upper limit on the number of counter bits 
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connected in this way. If this limit is reached during the construction of the counter, then 

t senal carry is taKen to me next Dit, and 	:arrymg is commencea trom there. 

	

Parallel carry, as above 
	

Parallel carry, as above 

3 
	

4 
	 J7 	Q7 

	

3cp 
	

cP 
	K7  pQ7 

cP 

Figure 2.4 The serial/parallel synchronous counter. 

2.2.5 The pseudo-parallel synchronous counter 

Another possible conglomeration of basic counter architectures is shown in 
Figure 2.5, where a large (Say > 4 bits) ripple counter is divided into equal slices, and 
each of these slices is clocked by a parallel carry from the previous slice, but remains, 
internally, a ripple counter. 

	

Ripple carry, as before 	 Ripple carry, as before 

Jo 	Qo} 	 J7 

KO Cp  Qo 	-k3 Cr' 3 	
Lfr4  Cp 04 	k7 Cp 07  

cpc~_ 
............................. 	 ------------------------------------------------------------- --------- 

L 	I 	 L. 	I
----------------------- 

— _j 

Figure 2.5 The pseudo-parallel synchronous counter. 

2.3 The modulus m counter 
A useful generalisation of the binary counter is the so-called modulus m (or modulo 

m [197]) counter. Instead of each counter bit producing streams of bit values which 
change value after some power-of-two of bits, the modulus m counter produces 
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streams of bit values which change after m.2' t  bits, where ii is the bit number on the 
counter (n ~ 0). Thus a binary counter is in fact a modulus 1 counter. 

A modulus in counter is basically two binary counters connected in series, with the 

first counter having the logic necessary to reset it after m clock ticks (or rather, when its 

count value would otherwise have reached m). 

The bits of this first counter make up the lesser bits of the modulus m counter, as 
illustrated in Figure 2.6, which shows the architecture of a modulus 7 counter. The reset 
logic shown on the outputs of the lesser bits will henceforth be omitted for simplicity, 
and because the cost of this logic is minimal. 

The second counter, clocked by the MSB of the first counter (or a combination of 

bits, if a more parallel carry counter is used), implements the upper bits of the modulus 

in counter, whose bit sequences follow the m.2" repetition rule as defined above. 

Lesser Bits Upper Bits 

_ ___ 

Outputs: 	Q..3 Q2 Qi Qo Q. 
o 

Time 
0 0 

8 
0 

8 
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1 0 1 
8 
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7.(2") 
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1 

1 
0 
0 

1 
0 
0 

0 
1 
1 

0 
1 

o 
1 

1 
3. 

0 
0 

1 
1 7.(2) 

1 0 
o  

1 1 

Figure 2.6 A modulus 7 counter. 

By using modulus m counters prudently, it is possible to realise very cheap and 

simple address generation schemes which implement complicated, non-binary access 

patterns, for array access. It is also possible to produce some very efficient schemes for 

scheduled memory address generation and even general control, usually the final 
element of a processor to be examined, can benefit from the use of modulus in counters. 
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There are two, very basic address generation architectures which use a modulus m 

counter (Figure 2.7). The simplest is the preset-modulus counter, which has reset logic 
built directly onto the counter, as for the modulus 7 example above. The second address 
generator contains a parametrizable-modulus counter, which has an input dedicated to 

receiving the modulus parameter. It also contains a comparator, to generate the reset 
signal when needed. 

Modulus - 1 

Address H u Address 

Dock 
Clock 	LZI 

-N~M Reset 

Figure 2.7 Two basic address generators: 
a) Simplest counter; b) Parametrizable-modulus counter. 

2.4 Other address generator elements 
Other address generator elements include: ROMs, dedicated to storing a sequence 

of addresses; incrementors (simplified adders); exclusive OR gates, and random logic. 

2.4.1 Address ROMs 

Address ROMs, and their own address generation schemes, have three distinct 
architectures, as illustrated in Figure 2.8: 

A minimum-sized ROM, which contains only one copy of any address 

required. 

A medium-sized ROM, which contains multiple copies of addresses needed 

more often. 

A maximum-sized ROM, which contains an address, required or not, for 

every control step of a process. 
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Address Sequence: 0 13 2 6XX54X 100463 

ROM Address 0 	 6 	 0 	 12 

ROM Contents 	 O04 6 3 

a) 	 b) 

0 	 15 

101  11  312161XIXI 51 41XI  11 01 01  416131 

Figure 2.8 The three address ROM architectures: 
a) Minimum-sized; b) Medium-sized; c) Maximum-sized. 

Often the choice of address ROM will be forced, by factors inherent in the overall 

address generation requirement. For example, in array access, one element of that array 

can be accessed in each control step, implying a maximum-sized ROM. But in the case 
of scheduled memory access, any form of address ROM is possible. 

A maximum-sized ROM is created for scheduled memory, by filling any "Don't 
care" times in the original access sequence, with real addresses. This may seem strange, 

but it allows us the simplest of ROM-address generation schemes - A simple, binary 
counter. The very action of filling the "Don't care" times is a complicated one, and this 

should be done on a bitwise, rather than wordwise basis. This may even allow a cheaper 

address generation scheme than a ROM-based one. This problem is dealt with in 

Section 6.4.3.3. 

A medium-sized address ROM can be created simply by storing in it only those 
addresses actually required, in that order, and allowing multiple copies of addresses. 
This slightly complicates matters for the ROM-address generator, in that the counter's 
clock must be gated by a control signal, which must be generated elsewhere, and which 
allows the counter to be clocked only once the current address in the ROM has been 

read out. With some care, it is possible that the gating control sequence for the ROM-

address counter could be given regularity by utilising any "Don't care" times available, 

and perhaps clocking the counter a little earlier than necessary. 

A minimum-sized ROM is created if only one copy of any address required is stored 
within it. This can save a lot of ROM area, but unless the addresses are only ever needed 
once, or they are required often, but in a regular order, the address generation for the 



-18- 

ROM access can result in yet another ROM-based address generator! This is obviously 
pointless, if we consider the example below. 

Address Sequence:3 12031203120 

ROMI 3 1  1120 

ROM Address Sequence: 
012301230123 

(Easy to generate) 
a)  

Address Sequence: 12 0  1 2 3 2 12 0  3 1 

ROM I 1 1 2 1 0 1 3 1 
ROM Address Sequence: 
012013101230 

(Just as difficult to generate 
as original sequence) 

b) 

Figure 2.9 Examples of a): good and b): bad uses of Minimum-sized ROMs. 

2.4.2 Exclusive OR gates 

Exclusive OR (EXOR) gates are often essential to a good address generation 
solution, especially when used in conjunction with counters. An exclusive OR gate can 
be used to invert the polarity of some bit sequence, after some number of bits, as shown 

in Figure 2.10. The original bit sequence is input at A, and the second sequence, which 

controls the inversion of polarity, is applied at B. When the value at B is logic '0', the 

polarity of C follows that at A, and otherwise is the inversion of A. The bit sequence 

produced at C is then exclusive ORed with yet another bit sequence, and the same rules 

apply to that combination. 

Usually the sequences fed in at B and D will be generated by a counter, causing a 

regular inversion of polarity, and often the sequence at A is produced by one or more 

bits from the same counter. In Figure 2.10, all bit sequences applied to the EXOR 
network are generated by a 4-bit, modulus 3 counter. 

A0__001001001001  
B o 000111000111 

	
C 001110001110 

D0 010010010010 0 E JE)  
Figure 2.10 The effect of an EXOR network. 

The sequence produced at E bears only a little resemblance to those used to generate 

it, and it is here that many problems arise, in recognising possible bit sequence 
generators. 
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2.4.3 Clocked-bits 

It is often the case that one bit sequence within an address sequence may be 

generated by using another of its constituent bit sequences to clock a T-type flip-flop. 
Thisis: uiustrateu in i-igure z. ii. i. nppie counter is rormea in mis way. 

Bit 
Generator 

01000100110 	
.::::.: 00111100001 

Address Word Out 

Figure 2.11 Example of Clocked-type bit sequence generator. 

2.4.4 Incrementors 

Another commonly occurring element of address generators is the adder. This is 

perhaps most useful when the 'sum' output is fed back to one of the adder inputs, and 

the other input is hardwired or set externally to a constant binary value, thus creating an 
Incrementor. The adder can of course take one of several hardware implementations, 
including lookahead-carry in bit-parallel adders [185.. 189],  and various bit-serial 
approaches [198].We will concentrate on the bit-parallel adders in this thesis, since the 
feedback is much simpler. 

A simple incrementor is shown in Figure 2.12,where the increment is 3, and since 

this contains no reset circuitry, the address sequence produced does not repeat until after 
the third cycle, as shown. 

Figure 2.13 shows a more commonly used incrementor, which has circuitry to cause 

a reset of the incrementor at a value which will produce a shorter cyclic address 

sequence. Finally Figure 2.14 illustrates a general purpose incrementor, whose 

increment may be set externally, along with the value at/above which to reset, and also 

an optional preset value. Also included is an optional gating circuit, and corresponding 

gating signal, which enable the incrementor to remain at the same value for several 
control steps. 
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0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13,0,3,6,... 

Figure 2.12 A simple incrementor. 

Reset—at (n *i) 

Increment (i) 

Clock 

0, i, 2i, -3i, 4i,...(n-1)i, 0, i, 2i, 3i,.. 

Figure 2.13 incrementor with reset. 

Reset—at (n *i)

Out 

Increment(i)I _

. 	

CO) 	

Addresses 
Preset to 

Enable 

Clock 

~ 

 

Gating Signal o 

Figure 2.14 A general purpose incrementor. 

2.4.5 Logic 

The vague classification "logic", represents here either a Boolean network of any 
size, which is fed by some counter bits to produce address bit sequences, or that 
combinatorial logic required for any very local control (eg: Reset logic for counters). 
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2.5 Cost breakdown of address generator elements 
The area and speed of the hardware described are both technology-dependent, 

making costing a rather localised matter. For our purposes, ES2 's Solo-1400 1.2 micron 

parts library [102] was suitable as the source of costs, where a "stage" is two transistors, 

or half a gate. 

2.5.1 Area-costs 

Table 2.1 below shows the approximate areas of each address generator element in 

terms of the number of "stages" of logic which they will require. 

Component Actual 
Area cost in stages 

Relative 
Counters: Ripple (per bit) 27.4 1.00 

Serial 47.5 1.73 
Parallel 49 1.78 
Serial/Parallel 
Pseudo-Parallel 

48 1.75 
48 1.75 

ROM (per bit, not mci. overhead) 1 NA 
EXOR Gate 7 NA 
JKFlip-Flop 30 1.10 
Incrementors:Simple 49 1.78 

General Purpose 58 2.11 
Logic (per two-input gate) 2 NA 

Table 2.1 Comparative area of address generator components. 

The area of a ROM-based address generator can only be defined once the size of the 

ROM has been decided upon, since the ROM will have a certain overhead-cost for 

creation (address decode, etc.) which will be shared between all bit sequences contained 

in the ROM, as will the cost of the address generator for the ROM itself. 

The ripple counter, although quite small, is unlikely to be used because of the 
problems its asynchronous output signals introduce, and because of the slow speed 

when used with strobing circuitry. 
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2.5.2 Speed-costs 

The approximate delay of each component, in terms of the delay through a single 

JK flip-flop, are given in Table 2.2. 

Component Actual 	
Delay 

Relative 
Counters: Ripple n  iOn 
(n bits) 	Serial 2 20 

Parallel 1 10 
Serial/Parallel n/4 2.5n 
Pseudo-Parallel(4) 4 40 

ROM 3 30 
EXOR Gate 0.1 1 
JK Flip-Flop 1 10 
Incrementors:Simple 

General Purpose 
1 (fast lookahead carry) 10 
3 30 

Logic <1-4 00 <104°° 

Table 2.2 Comparative speeds of components. 

2.6 Comments 

An address generator is composed of a set of bit sequence generators, which may 

take any of the forms mentioned in this chapter. The next chapter will describe the 

different possible requirements for an address generator, for different memory 
architectures and for control purposes. 
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3 Requirements for an address generator 

This chapter investigates the possible causes of requirements for an address 
generator. 

3.1 Data-dependent addressing 
Data-dependent addressing requires an address generator to produce an address 

rom vanable data, elmer directly, as in case () below, or indirectly, as in case (b): 

PROBLEM 	SOLUTION 

Access Memory Location + 	* HM1   
M1((x+y)*Z) 

a) 

PROBLEM 
IFx== yTHEN 
Access Memory Location 

M1(K * Z) 
ELSE 

b) 

Figure 3.1 Data-dependent addressing schemes. 

Neither of the cases above are applicable to the automatic address generator 

synthesis techniques targeted by this thesis, but in each case there is a definite direction 

to take for automation. In the case of direct transformation of available data, this can be 
recognised at a behavioural level, from the corresponding High-level description 

language, and address generation hardware constructed as part of the computational 

base [163]. Indeed, it is this approach which is taken in SAGE (See Chapter 8), a 
behavioural synthesis tool developed at the University of Edinburgh[ 1501. 

In the second case of data-dependent addressing - That of indirectly using available 

data to specify a wholly different address, or sequence of addresses (if a branch runs for 
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several  control steps, or perhaps branches further) - no such scheme is possible. The 

simplest approach seems to be to use the branch conditions to select from a variety of 

ROM's which hold the possible address sequences, or to embed the address generator 

in the chip controller. 

3.2 Scheduled memory addressing 
In a design with many operations and few resources, the data produced by 

operations may need to be stored over more than one clock tick, perhaps accessed 

several times during the lifetime of that data. Instead of assigning a single register to 

store each group of temporally disjoint data, a RAM or register file may be used which 

can hold much more data but which will require an address sequence to control access. 
Very often there will be times when no address is actually required, so that the address 
produced at that time may be any of those possible, and choosing one may have a 

significant effect on the cost of producing the address sequence. This is a problem 

which must be tackled before the address generator synthesis stage-proper, as part of - 

the memory synthesis task (See Section 6.4.3.3). 

3.3 Array access 
The final, and perhaps the most promising situation as far as synthesis is concerned, 

is that of array access. Here, one, two or more dimensional data arrays are written to 
and read from usually large memories. Commonly the access sequence will be 
predefined at synthesis time, most usually as a set of (nested) loops. It is a simple matter 
to deduce the access sequence thus required and to use decomposition methods to 
recognise the use of counters in its generation. 
It is also possible that the synthesis stage could recognise oversized memories or 

redundant accesses and optimise them accordingly [166]. Figure 3.2 shows an example, 
where data is to be written to a memory in locations a[O]  to  a[255],  and then read out 
again in four separate passes. 

for i=Oto255loop 
get x; 
store x in a[i]; 

next i; 

for j = 0 to 3 loop 
for i = (((j+l) * 64) —1) downto j*64  loop 
read a[l]; 
next i; 

next j; 

I.E.: i_=63,62,...O,127,...64,195,...128,255,...196. 

Figure 3.2 Example of array access specification. 
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This obviously implies a 256-word RAM, with a simple counter to generate the 

write address sequence, and something a little more complex for the read address 

sequence, detailed in Figure 3.3a&b. Since the two most significant bits in each 

addressing scheme are produced by the corresponding bits from the (shared) counter, it 

is possible to reduce the memory size by half, and if the RAM may have two ports then 
the read and write sequences may be interleaved, as illustrated in Figure 3.3c. 

0..255 	256 x 1 	 0..255 	 256 x 1 
Counter 	RAM 	 Counter 	 RAM 

(a) 	 (b) 

R 	X .... X,64..O,127..65,64..O,.. 

O..127 / 	128x1 
Counter /7 	RAM 

W 

	

0..64,65.327,0..64,65.327,.. 

(c) 

Figure 3.3 Synthesis and optimisation of array access example. 

This generalises to the rule: "If the top n bits of the address word may be generated 

by the same counter bits for two access sequences, then as long as circumstances allow, 

the top (n- 1)bits may be discarded, the memory shrunk by a factor of 2(n-1)  and the 
new most significant address bit inverted for one sequence. This is pictured in 

Figure 3.4. 
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O..2(m)1 	2m x 1 
Counter 	R" 

(a) 

P(MSB 

Counter 	i-4) 

2 x 1 
Counter 	RAM 

(b) 

R 
2(m-3 ) X  1 

RAM 

(c) 

Figure 3.4 Generalisation of memory optimising transformation. 

3.4 Control 
Wherever a control bit sequence can be predefined, we can use the address 

generator synthesis techniques to try to find a cheap hardware implementation to 

produce it. As for scheduled memory address sequences, the binding of Don't Care 

values to actual values can be critical if such a solution is to be found. Requirements 

targeted here are multiplexer control, write enable signals for memories and ALU 
function-selection, amongst others. - 

3.5 Comments 
It becomes obvious that almost any deterministic sequence of binary words has the 

potential to be produced more cheaply than by the usual combinatorial logic methods. 

Not mentioned here are sequences to be produced by built-in self-test (BIST) circuitry, 
whose manual solutions bear a striking resemblance to those produced automatically 

for other sequence requirements. The next chapter will detail some of those solutions 

obtained using AG 1 - a first attempt at an address generator synthesis tool. 
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4 Address generation based on binary 
counters 

4.1 Some traditional problems 
Many of today's sophisticated digital signal processors, be they bit-serial, bit-

parallel or distributed [361,  have one thing in common: Arrays of data are processed. 
And it is today's chip designer who has to provide the knowledge to obtain an efficient 

memory-array access scheme. Very often, array data will be written to the memory in 

serial fashion, from the start of memory to the end, and the best way to generate the 

memory address sequence is with a simple binary counter, whose output is used directly 

as the address word. It is in reading the data back from memory, however, that address 

generation problems arise. The read-address sequence is rarely a simple count, and is 

more likely to be a steadily increasing sequence of addresses, but not necessarily of 
adjacent memory elements. 

These memory elements (memels) can be likened to pixels (picture elements) of a 

digital image, and the two-dimensional memory "image" is simple to understand and 

useful also, as we will explain. In fact, digital image processing is one field which 

places great demands on the designer of array access hardware, and the examples given 

below could, or do, form part of an image processing system*. 

* 
16 by 16 pixel block 	 256 by 256 pixel block 

a) (Repeated four times) 	 b) 

The numbers represent the order of selection of memory locations. 

Figure 4.1 Threshold-determination filter access pattern. 

* Examples marked with a * are real examples. Others are contrived, but still useful. 
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The first example is that of a thresholdmg filter, which must sample the image data 

in the pattern described in Figure 4. 1, in order to find the correct quantisation level for 

each block of data. The address sequence for this access pattern is 64kwords long, as is 

the sequence for a second example, shown in Figure 4.2. Here, the access pattern has 

been skewed slightly from the first example, but remains a valid thresholding pattern. 

Figure 4.2 Alternative thresholding access pattern. 

A final thresholding pattern is shown in Figure 4.3. This also requires 64k accesses, 

in which the pattern from the first example is shifted one pixel between each of the four 

passes, in order to cover the whole area of memory. 
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Figure 4.3 Further alternative thretholding access pattern. 

Following the determination of a local threshold for each block of data, the image 
will pass through a binarisation stage, producing the binary - black and white - image, 

and this too can have a non-linear address sequence. One such sequence is described 

below, and is much simpler than the thresholding patterns given before. 
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Figure 4.4 Binarisation stage access pattern. 

If the image processing application is one of image recognition, then the binary 
image will probably be passed through a correlator, which gives a measure of how well 
segments of the image match the same segments of a previously stored image. This 
could have the access pattern shown in Figure 4.5, which samples the data in four pixel 
by four pixel blocks. 



-31 -  

4 by 4 pixel block 

 ./ 
1 6by 16'pixel block_____ 256 by 256 pixel block 

2 	 ffhiifi 
- 

1 I 4 

---- 

 
C) 	 -- 

The numbers represent the order of selection of memory locations. 

Figure 4.5 Possible correlation filter access pattern. 

4.2 Some manually designed address generators 
Shown below are the address generation solutions found manually for some of the 

examples given in Section 4.1. It should be said that these designs originally took a 

matter of man-days to produce, and considerably longer to verify by simulation 

(Indeed, exhaustive simulation of all 64k steps was never attempted). The address 

generator for the original thresholding filter consists of a 16-bit binary counter, whose 

output bits are "shuffled" by wiring only, before being connected to the 16-bit address 
port of the memory. 

1234 

5678 

9 10 	11 	12 

13 14 	15 	16 

1 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 
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Figure  4.6 Original thresholding filter address generator. 

The other two thresholding filter patterns produced the following address 
generators respectively. 

MSB 

C 
o 

U 
a) 	N FJS  Memory 

T 
E 

LSB 

_____ MSB ______  

C ___ 

o = 
U 

__ 

L4)___ 

b) 	N : Memory 

T = 
E - ___ 

____ 

R 

LSB 

Figure 4.7 Other thresholding filter address generators. 
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The second real example, of the binarisation process, produced a much simpler 
shuffling of the counter bits, as shown in Figure 4.8. 

MSB 

c 

0

u 
N 	 Memory 

EID 
T 

E 
R  

LSB 

Figure 4.8 Binarisation process address generator. 

From the third contrived example of a possible correlation filter access sequence, 

was obtained a more complex transformation of the address bus, and this demonstrates 
some of the rules which could be used to automate this design process. 

MSB  

C 
0 
U 
N 

T 

E 
R 

4 _ 
R 	Memory 

__ __ =  
= : = 
LSB 

Figure 4.9 Address generator for possible correlation filter. 

4.3 AG1 - Address generator synthesis based on binary 
counters 

There follows a description of a tool developed to automatically design (describe) 

address generators of the type described above, based on the specification of the address 

sequence to be generated. A brief outline of modes of data entry is followed by the 

method behind the synthesis algorithms. A short description of how combinatorial logic 
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synthesis  proceeds is then given, and finally the output format from the tool is 
explained. 

For a more detailed description of the tool's functionality, and the source code itself, 
refer to Appendix D, and the diskette enclosed. 

4.3.1 Data Entry types 

Four different methods exist to introduce the access sequence into AG 1. The first 

allows generation of the sequence by software, possibly as a set of nested loops, as 

shown in Figure 4.10. The second data-entry method uses a built-in graphical entry tool 

to lay out the access pattern on a two-dimensional representation of the memory space. 

Like the first method, this is very amenable to the non-expert designer. 

for V = 0 to 65535 step 4096, 
for X =0 to 255 step 16, 

for I = 1 to 4, 
for y = 0 to 4095 step 512, 

for x=(y/512) mod 2 to l5 step 2, 
address(tjme t) = X + / + X + 

next x, 
next y, 

next i, 
next X, 

next  

(block height =16 rows) 
(block width = 16 columns) 
(do 4 times) 
(every 2nd line) 
(every 2nd pixel, skewed) 

Figure 4.10 Sequence specification by software. 

The final two data-entry options deal with loading predefined bit sequences from 

file: Primarily sequences which follow no specific pattern, or which are not of length 
bits. These sequences should, however, have 'padding' bits added to make the total 
length a power of two, since the main pre-requisite of all input sequences is that they 

have length 2's . 

4.3.2 Method 

The basis for the synthesis method involves iteratively bisecting each bit sequence 
in the address sequence from the LSB to the MSB, recognising the presence of various 

binary counter bits in their generation. The length of the first and subsequent halves of 
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the sequence, which should be length 2,  give indication as to the binary counter bit(s) 
involved, as described by the rules listed below. 

Split sequence of bits, list[1 . .2n], into two halves, list[1 . .n] and list[n+ 1. .2n]. 

For example the list: 

[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1] 

becomes: 

[0,0,0,0,1,1,1,1] and [0,0,0,0,1,1,1,1] 

and the list: 

[ LOA 1,0,1, LOA 1,1,0,1,0,0,1] 

becomes: 

[1,0,0,1,0,1,1,0] and [0,1,1,0,1,0,0,1] 

(These lists are much longer in practice). 

If the list has a single entry (n = 1), then force the current address bit to '0' or 
1', according to that entry, and then go on to examine the next most significant bit 

of the addresses. 

This Only happens if all the entries in the original list for the bit were identical. 

If the two halves of the list are identical then halve the list by discarding the 
second half, and return to (1). 

This controls the use of Rule 1 by allowing the first half of the list to be split 
further, only if both original halves are identical. For the first example given 
above, after the first split the two halves are identical, and so we can take the 
first half and split that: 

[0,0,0,0,1,1,1,1] 

becomes: 

[0,0,0,0] and [1,1,1,1]. 

If the two halves are not identical, nor the logical inverse of each other, then we 
cannot use any counter bits directly connected to this address bit, and we go on to 
use the logic synthesis tool. 
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A  list of bits must be symmetrical about the midpoint for things to procede 
further. 

5) Rule 5 checks that the list has a length of 2m  (which should always happen) and 
stores the fact that the (m+1)th counter bit, Cbltm  can be used to generate this list. 

Rule 5 is invoked with the knowledge that the two halves of the list are not 
identical (otherwise it would have been split again) but that they are the 
logical inverse of each other (otherwise Rule 4 would have been invoked). 
Several possibilities arise at this point, with the list having many different 
possible forms: 

[0,0,0,0] and  

[0,0,1,1,0,0,1,1] and [1,1,0,0,1,1,0,0], 

[1,0,0,1] and [0,1,1,0], 

[0,1,0,0,1,1,0,0] and [1,0,1,1,0,0,1,1], etc. 

If all bits in the first half, list[1 . .n], are equal, then the list has been reduced as 
far as possible, and Rule 7 is called. 

Thus lists which conform perfectly with sequences produced by a binary 
counter bit are identified. For example, the sequence: 

[0,0,0,0,1;1,1,1,0,0,0,0,1,1,1,1] 

may be generated using Bit 2 of a binary counter. 

If not all bits in list[1 ..n] are identical, then use the (m + 1)th counter bit (from 
Rule (5)) XORed with whatever bit is chosen by halving the list again and returning 
to (2). 

Rule 6b deals with the other possibilities from Rule 5. Any list which has the 
two halves non-identical, but logically inverse, and not all entries in one half 
the same, is the XOR function of the (m+1)th counter bit, with whatever is 
produced by halving the list again and returning to Rule 2. The XOR gate will 
allow the first half of the sequence to be inverted after a constant number of 
bits. 

7) If the first bit in the list is a '1' , then negate whatever counter bit, or combination 
of bits, has been chosen. 

This implies that all bit sequences produced by counters begin with a '0', 
which is quite natural. 
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8)  Print out the connections from  counter bit(s) to address bit, and start at (1) with 
the next most significant address bit. 

Once this process has been completed for all address bits, we have a list of 

connections from counter bits to address bits - the mapping, or transform - which will 
produce the correct sequence of addresses with the minimum of logic. 

4.3.3 Logic synthesis 

Logic synthesis is done in two distinct steps in AG 1. The first step is carried out on 

a bitwise basis across the address sequence, for any bit sequence which fails at Rule 4 

above. The second step is one of global optimisation. 

Firstly, the minterm value is determined as the binary value which appears least in 
the bit sequence. Then an algorithm iterates down the bit sequence and for every 
minterm a new logic function is produced in terms of a product of binary counter bits. 

Figure 4.11 shows the relationship between the binary counter which will be used to 
feed the logic, and the bit sequence to be produced. 

3 	0000000011111111 
Counter Bits: 	2 	0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

10011001100110011 
0 	

olololololololol 

Target Sequence: 	0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 

Figure 4.11 Counter output against target bit sequence. 

In order to get the minimum number of counter bits required to generate each 

mintenn, an increasing number of bits of the counter are examined, and all possible 
combinations of each set of bits are tried, until the selected counter bits' values only 
ever correspond to a minterm. This is illustrated in Figure 4.12 where a mask is created 
to select the counter bits and the bit pattern seen through the mask appears at several 
locations in the count sequence.Only if all locations correspond to minterms is the 

combination of, and values of unmasked counter bits accepted, and the next minterm 

examined. Masked counter bits are stored in the pattern as '0's. 
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3 	0000000011111111 
Counter Bits: 	2 	0000111100001111 

1 	0 0 1 	1 0 0 1 	1 	0 0 1 	1 0 0 1 1 
0 	0101010101010101 

ABC 	D E F X 
Target Sequence: 	0 1 1 1 0 1 0 0 0 1 0 	1 0 0 0 0 

Mask: 	at A gives Bitl.Bit0 which corresponds to minterms at D and E but 
not at X, so reject this mask (0011). 

at A gives i.Bit0 which corresponds to minterms at C, E and F 
Mask. 	and to no maxterms, so the mask (0101) and pattern at A (0001) 

define the logic required for A. (The same would be found for C,E 

Figure 4.12 Masks and patterns for minterms. 

Once each minterm has been defined in terms of a mask and pattern, in each random 

bit sequence of the same length, and attempt must be made to match all or part of each 
corresponding logic function to other minterms' logic, to get an optimised multi-level, 

multiple-output logic implementation of the sequence generator. A heuristic weighting 
system is employed to reduce the run-times of what is a complex problem, with the 
weights calculated as follows. Given that minterms A and B have masks MA  and  MB 

and counter bit patterns PA  and  PB  the weighting between A and B is taken as the 

number of '1' bits in 

(mA® m& . (PA® PB). 

In other words, we give a high weighting between two minterms whose logic 

functions are identical, and a low weighting between those which are not at all alike. 
Figure 4.13 shows some examples of this. 

MA= 0101  MB= 1111  m= 01O1 MD= 0101  

PA°°° 1 	PB 001 ° 	Pc 0001 	PD° 101  

Weightings: w(A,B) = 1, w(A,C) =4, w(A,D) = 3, etc. 

Figure 4.13 Examples of minterm weighting. 
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Once all minterrns have been compared and weighted against all other minterms 

and the weights stored in an adjacency matrix (Figure 4.14), the total of all weights for 

each minterm in turn is calculated. if the number of '1' bits in the corresponding mask 

(Number Of Bits In Mask -: NOBIM) is greater than one (i.e.: More than one counter 
bit is involved in its generation) then this total is normalised by multiplying it by 

(Maximum_possible_NOBIM / NOBIM), and the result is stored in another, one 
dimensional table, as the true weight for that minterm. if only a single counter bit is 
involved (NOBIM = 1) then the true weight should be zero, since we will use the logic 
for the minterm with the highest weight to help generate other minterms, and the single 

counter bits are already available. Figure 4.14 gives the weightings for the sequence in 
Figure 4.12. 

Choosing the minterm with the highest true weight (A), we then give it a unique 

function number, and then search through the original weight table for any similar logic 
functions. If the weight between two minterms is equal to the 

Maximum_possible_NOBIM, then they are given the same logic function number (C, 
E and F), but if the weight is smaller, but still >0, and 

(MA • m& • (PA PB) == MA, 

then the current function number is stored alongside the other minterm as part of a sum 
of products. The weights against any completely specified minterms are zeroed in the 

original weight table, and a new set of true weights constructed, until no weights > 0 

remain. Then any remaining 'minterms not so far given a function number have this 

added, and finally the logic functions are extracted from the mask and pattern 

information and printed out. Figure 4.14 shows the logic generated for the example. 
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Minte 

True Wei 

•ilAAU IJu.uuuu •uiiuucici 

iuociixii 
MEN  MKIMIE 

mA=O101 mD=O101 
PA 0001  PD 0101  

MB= 1111  mE=O101 
PBOO 1 O PE= 0001  

mc=O101 mF=0101 
PC= 0001  PF= 0001  

Output: 
fl = Bit2bar.BitO 
f2 = Bit3bar.Bit2bar.Bit1bar.Bjt0bar 
f3 = Bit3bar.Bit2.Bit1bar.Bjt0 

fl+f2+f3 ==> Target Sequence. 

Alternative Output (b(l) = Bit b of binary counter (modulus 1)): 

f  = 2(1) bar. O(1) 
f2 = 3(1)bar.2(1)bar.1(1)bar.0(1)bar 
f3 = 3(1)bar.2(1).1(1)bar.0(1) 

fl+f2+f3 ==> Target Sequence. 

Figure 4.14 Weights and true weights for example sequence. 

4.3.4 Output format 

The output produced by AG1 is very simple to understand. Each bit of the address 

word is described in sum-of-products form, which can vary from involving a single 

binary counter bit to a multi-level logic description using several counter bits. The use 
of inversion and EXOR gates is also made perfectly clear. Figure 4.15 contains the 
description of a benchmark circuit, WGT(5) [69],  which must produce a binary count 
of the number of '1' bits in a five-bit input word. Note that the modulus 32 counter is 
equivalent to a 5-bit binary counter. 
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fl = -5(32).-4(32).-3(32).-2(32) 

f2 = -5(32).-4(32).-3(32).-l(32) 

£3 = -5(32).-4(32).-2(32).-l(32) 

M = -5(32)bar.-4(32)bar.-3(32)bar.-2(32)bar 
f5 = -5(32).-3(32).-2(32).-l(32) 

f6 = -4(32)bar.-3(32)bar.-2(32)bar.-1(32)bar 

f7 = -5(32)bar.-3(32)bar.-2(32)bar.-1(32)bar 

f8 = -4(32).-3(32).-2(32).-1(32) 

f9 = -5(32)bar.-4(32)bar.-2(32)bar.-1(32)bar 

f 10 = -5(32)bar.-4(32)bar.-3(32)bar.-1(32)bar 

-1(32) exor(-2(32) exor(-3(32) exor(-4(32) exor(-5(32))))) ==> adbit 0 

not(f4+f6+f7+f9+f10+fl+f2+f3+f5+f8)==>adbitl 

fl +f2+f3+f5+f8 ==>adbit2 

Figure 4.15 Example of output from AG1 - Description of WGT(5). 

4.4 Address generators designed using AG1 
All the address generators described in Section 4.2 were mirrored by AG!, and it is 

pleasing to note that the synthesised designs are identical to those produced manually. 

Examining the address generators in Figure 4.6 and Figure 4.8, a useful fact becomes 

apparent - we do not need such a large (64kword) memory. As long as the original data 
is available somewhere (if the image has not changed), then we need only store one 

sixteenth of the whole image at one time, and we can discard the top three bits of the 
address as unnecessary, inverting the fourth and so reducing the memory size 

drastically. This conclusion can be reached from the fact that all four top bits have no 

shuffle applied. 

4.5 Comparisons 
The logic synthesis tool, which was coded in a matter of weeks, nevertheless stands 

up to comparison with other logic synthesisers. 

One benchmark example used was WGT(5), which must output the number of logic 

'l's in its 5-bit binary input. Its logic circuit as synthesised by Gatemap [71] is shown 
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in  Figure 4.16, and the equivalent logic as defined by AG1 appears in Figure 4.17. The 

chain of exclusive OR gates was created by the core algorithm of AG 1, while the other 

logic was synthesised by the logic synthesis part -: A joint effort. 

1N2 
IN 4 

OP 1 
IN   

1N3 
1N5 

1N4  
IN 
1N5  
1N3 

IN 2 

IN 3 

IN 2 

1N3 
OP 2 

IN 1  

Tr 

1N4 
1N5 

IN 3 	
IN 2 

IN 

1N3 

4I1Yf 	
OP 3 

IN 5 	

1N4 	 1N3 
IN 3 	 IN 

IN i_f>o_IN I IN 	 1N4 

IN 3 
—>o-- 

 IN 3 	
1N5 

IN4>o_ IN 

IN 5-4>0---3  

Figure 4.16 Logic Synthesis results for WGT(5) benchmark by Gatemap, which requires 96 transistor 
pairs in CMOS (8 per EXOR gate). 
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IN 5 
IN 4 
IN 3 

IN 2 OP 1 
IN I 	 D--O 

OP  
IN 1 

INS___________ - - 
1N4 - - - 
1N3  
1N2 	 - - - 	 —oOP3 
IN 	 -- - 

INS—>— INS 	- - 	 - 

IN a->---- IN 

IN 3—[>o_  IN 

IN 2—{>o--_  IN 2 

IN 1 

Figure 4.17 Logic synthesis result for WGT(5) by AG1 ,which requires 89 transistor pairs. 

The address generators described in Section 4.4 matched exactly those designed 
manually, and those which were not originally designed manually were carefully 
checked. Producing the same results as a human designer is no small victory for AG 1, 
and coupled with the marked reduction in design time, as described in Table 4. 1, AG 1 
is, for all its limitations, a very useful tool. 
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Example  Manual Gatemap AG1 

WGT(5) 10 mins (approx) 3.2 mins. <1 sec. 

Image Filters 10 hrs (approx) N.A. <10 mins. 

___________ 
(incl. recomp-

ilation) 

Table 4.1 Design-time comparisons. 

4.6 Use of the 'C' programming language 
The 'C' programming language was chosen for AG1, simply because it was the 

language best known to us at the time of coding. Despite this, 'C' was found to be 

almost perfect for the job, with its built-in array pointers and useful bitwise functions, 

and although strong typing and therefore code security is not encouraged, the language 
was found to be quiteameháble to algorithm development 

4.7 Comments 
Obviously, despite all its complexity, AG1 is not a generally useful tool, in that the 

sequences fed to it must have length 2", and any "good" solutions found, owe this 

entirely to the binary characteristics of the original access patterns. For instance, the 
correlation filter memory access pattern described in Section 4.1 differed from that 	- - 
defined for a real correlation filter [203], in that the real filter required data in three-by- 

three pixel blocks, instead of four-by-four. The manual design for the real filter's 

address generator included two long line delays, to obtain the three vertically adjacent 

pixels needed. This seemed a rather crude method, and prompted an investigation into 

address generation using non-binary counters, which is described in Chapter 7. The 

logic synthesis part of AG1 has proved to be useful on many occasions, and is re-used 
as part of the aforementioned investigation, and consequent synthesis tool. 

The worst-case complexity of the various parts of AG1 are given below: 

Sequence length = Is = 2", 	Sequence width (bits) = w. 

Loading sequence = O(l). 

Matching sequence to solution = O(w * 1). 
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Logic synthesis (m minterms): 

Minterm detection O('s + 3l )  
2 

Minterm factorisation z 002 + 2m 3)  

From these figures we can deduce that the logic synthesis tool will be slowed 

considerably for random bit sequences greater than length =100 bits, while the main 

part of AG1 will run in linear time. 
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5  Introduction to behavioural synthesis 

5.1 What is behavioural synthesis? 
A behavioural synthesis tool will accept a description of what a processor is 

expected to do - its behaviour(s) - and generate a netlist of hardware components which 

will exhibit that behaviour, in a design anywhere from chip-level to system-level. Note 
that a processor may exhibit more than one behaviour, probably under external control. 

For instance, an Arithmetic Logic Unit (ALU), may add two numbers, multiply them, 

or utilise any other built-in functionality and so has a set of behaviours describing each 

function in turn. 

The nethst of hardware components forms the structure of the design and there can 

be only one structure for a given component, perhaps implementing several behaviours. 

The hardware components themselves may have behaviours and structure, and in order 

to generate correct and efficient hardware solutions, the simplest components should be 
chosen from a library on the merit of their ability to exhibit the required behaviour(s), 
as well as a number of other factors. The design process is summed up in Figure 5.1. 

output  I 	I 	 I 	
a—~h 

c}_j Behavioural I_ 	c 

input a,b I 	I 	 I 	 ALU 

c:=a*b I 	I 
Synthesis 

Behaviours 	 Structure 

Figure 5.1 The Behavioural Synthesis Approach. 

A major requirement of a behavioural synthesis system, is an ability to handle a 
hierarchical definition of a process [87, 93].  This allows the process to be broken down 
into ever-simpler processes, as in a typical manual design, and hopefully these simpler 

processes' behaviours will match those of some library components, which can then be 

used to implement those functions, as part of the overall processor architecture. A 
problem arises though, that decisions made at the simplified level may have major 

ramifications on the overall design, and the outcome of these decisions must be 

propagated back up through the design hierarchy - A computationally complex, and 
time consuming task. However, it is only with behavioural synthesis that we may 
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explore  the design space so thoroughly, in such an efficient manner, and perhaps with 
parallel-processing [94],  point tools [86] or some other recent development, it is 

possible that design time, from behavioural specification to netlist generation, could be 
reduced to a negligible span, by today's standards. 

To get from the behavioural description to a register transfer level description, 

before logic and layout synthesis complete the design, is the task of high level synthesis. 

It is this area which will be explored in the following sections. 

5.2 Key steps in the high level synthesis process 
Usually the behavioural description of the process will first be broken down into a 

simpler internal format before carrying out the tasks of allocating a number of library 
modules - computational resources - to be used, scheduling any computational 
operations onto these resources and creating the necessary memory and 

communications circuitry and control circuitry to support the process. These problems 

Will be examined as part of an overview of high level synthesis systems. 

Since the CMU-DA system [10] developed at Carnegie-Mellon University in the 
late seventies, and MACPITTS in the early eighties [109, 16], a great deal of research 
has gone into high level synthesis [27].  In Europe such projects include the 
CATHEDRAL systems of IMEC [103, 104, 105, 1061, the MIMOLA project at the 
University of Kiel [26],  EASY at Eindhoven [20],  CADDY at Karlsruhe [23], 
SCHOLAR at Southhampton [33],  FIRST at Edinburgh [108], Piramid from Philips 
Research Laboratories [113] and the VENUS [97] system at Siemens. 

In the United States and in Canada also, much work has been carried out, especially 

at CMU, with their original design system and more recently with the System 

Architects Workbench [114]. California has also been a centre of interest, with the three 

universities of Southern California, Berkeley and Irvine producing the ADAM [39], 
LAGER [120] and HYPER [52],  and VSS [116] systems respectively. IBM's Yorktown 
Silicon Compiler [53] and V compiler [54],  and General Electric's Parsifal system 
[117], along with the Bridge [118] and SAM (now CHARM) 

[55] 
systems at AT & T 

Bell Laboratories, are typical of systems in industrial use. 

The Canadian universities of Waterloo and Carleton have also been at the forefront 
with the SPAID [19] and HAL [15] systems respectively. Inevitably, a large Japanese 
effort is underway, and work is also going on in India, France and of course in 

Edinburgh with the University's recently ended SARI project [34], and the author's 

own MC2  system [50]. 



There follows a description of the key steps in high level synthesis, and their 
implementations in the various synthesis systems. 

5.2.1 Capture of behaviour 

Capture of behaviour from the HDL or BDL into the internal format is normally 

done by some sort of parser, and several classifications of the internal control and data 
flow representations exist. 

At IMEC a tree based description is derived directly from the Silage input language 
[159] which is actually a signal flow graph description, and the LAGER system also 

uses Silage. MIMOLA also uses a tree structure, parsed from its name-sake input 
language [160]. 

Separate data and control flow graphs are used by Camposano [22] for the 
synthesis of VHDL behavioural models, ASM (Algorithmic State Machine) charts in 
Slicer [38],  and in the VSS (VHDL Synthesis System). The latter use groups of data 
flow operations which need no control, as basic blocks in the control flow graph, while 
the former includes every operation. 

A semi data flow graph, which requires less analysis of the input description, is 
usually represented as a bipartite graph [168], and this method is used to create four 

separate data models in the Design Data Structure (DDS) of the ADAM system: For 

data flow; Timing and control; Logical structure; Physical Structure. The first two are 

based on bipartite directed acyclic graphs, and a multi-graph formulation is also utilised 

in the CADDY system, where three graphs for data flow constraints, data flow itself, 
and for timing constraints, all share the same nodes. The nodes correspond to the 

operations in the DSL input language [21]. The YSC's YIF format is another 
manifestation of a semi data flow graph. 

Using a combined data and control flow graph with fork and merge nodes can lead 
to a more coherent data structure, and both the EASY system and the System Architects 

Workbench have this distinction. The combined graph allows much simpler global 

optimisation, by avoiding the need for basic block and their boundaries. Repetition 

(loops) can also be handled better, rather than being represented outside the basic 

blocks. The SCHOLAR system also uses a combined data and control flow graph 
derived from its input description, as does FLAMEL [35] which deals with memory in 
a global sense, over all basic blocks. 
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5.2.2  Scheduling 

Scheduling of operations onto hardware resources is required whenever a 
maximally parallel approach is not feasible. The set of operations will have 
dependencies on other operations for data, and these constraints are represented by the 

data arcs between operations in the schedule. The schedule may be constrained in 

length by a target number of control steps (usually the least possible) and by a target 

number of each type of hardware resource available (again, the least possible). There 

are four main methods of scheduling, including iterative operation-by-operation 

techniques, self-organising methods, integer linear programming (ILP) and 
transformational scheduling which tries to improve on an existing schedule. An 
example of a schedule is shown in Figure 5.2. 

Control 
Step 

o 	IN 	I I EjE] 	L1 l,6I 	 I3I 	I 	91 
1 7 +3 

2 +1 

3 

4  I 6 

7 +19 - - +29 

8 +1 +22 

9 
10 

 
11 +1 	E:91  1+35 	 N 
12

3 

 

1 +7 

14 + 1 34_ 	 4 

15 X6 +14 +4 

16 	+4 

17  

I 	2 	I I_13117,81r261_3811331 	 3 	43 
OUT 

Figure 5.2 A example of a (cyclic) schedule. 
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Most scheduling algorithms cannot handle loops or hierarchical behaviours and so 

operations are commonly grouped into basic blocks, to be scheduled as possible. If 

these basic blocks form quite large schedules then this practice works fine, but if the 

blocks are small, and there are several of them in a control-dominated design, then the 

number of basic block boundaries will cause a global scheduling problem for a block-

by-block scheduler. A hierarchical extension to this [45] schedules each basic block to 
get a global timing, which is tailored by successively removing expensive and little-

used resources. Pipelining a design to increase the data throughput is a complex 

scheduling problem, and only a few pieces of work, such as SEHWA [39] and that by 
Hwang [43] and Mallon [44] have attempted to solve the problem. 

Where a lot of chained operations are desired, for a fast (short) schedule, a path 
based scheme [32] can help tremendously. Each conditional data flow path derived 
from the control flow, graph is scheduled separately, and loops are treated as ordinary 

straight line data flow which may or may not be executed. - 

In the methods for scheduling within basic blocks, iterative techniques are the most 
prevalent. These are divided between those that examine each control step in order and 
those that iterate through the operations instead. In the former group, as soon as 
possible (ASAP) scheduling, as used in the first CMU-DA system [29], which operates 
under no hardware constraints, and also list scheduling techniques, are common. List 
scheduling involves applying hardware constraints to delay certain operations from an 

ASAP implementation; using some heuristic to choose which of the operations are to 

'be delayed. A significant improvement was made in the HAL system [41] with force 
directed list scheduling. This was a logical extension of previous work on SEHWA [39] 

which uses a combination of list schedulers to get some idea of the urgency of 
operations (and can handle pipelined designs), and this is similar to the approach taken 

in the ELF [14] and CSTEP [114] schedulers. The Slicer scheduler [8] uses both the 
ASAP and the ALAP (as late as possible) schedules to determine the mobility of 
operations in the time domain. More recent work includes a time-constrained list 
scheduler [57]. 

The iterative algorithms which examine each operation in order, include critical 
path schedulers and distribution based schedulers.In [17], Parker schedules all 
operations on the critical path(s) first, and then uses a mobility factor to assign control 

steps to the others, while the CATHEDRAL II scheduler, ATOMICS [101], the length 
of each critical path is taken into account. Force directed scheduling (FDS) [42] 
distributes all the operations not on the critical path using a parallel of spring tensions 

as a guide, and the CASCH scheduler [24] uses a more conservative statistical method. 
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An extension to FDS in PHIDEO [61] includes memory costing in the overall "tension" 

calculations. 

Integer linear programming (ILP) methods have been applied to scheduling with 
some success for short schedules [58, 59].  This involves solving a linear program to 
minimise some cost. Recently a more efficient ILP formulation has been reported in 

[60]. 

Transformational scheduling applies either serialising techniques to a maximally 

parallel starting schedule, or the corresponding parallelising transformations to a serial 
schedule. Examples of these are found in the YSC [53] and CAMAD [78] systems 
respectively. A branch and bound method for optimal parallel to serial transformation 
is discussed in [7].  SCHOLAR uses a rule base for the same sort of transformations and 
FLAMEL uses a rule base to transform the behavioural description itself, to greatly 
increase possible parallelism in the eventual design. 

Other scheduling methods include the application of simulated annealing 
algorithms [51],  and a branch and bound search for an optimal solution in SCHALLOC 
[6], the scheduler in the CHIPPE system [38],  which uses the connectivity binder 
SPLICER [9] to prune the search space by costing. 

5.2.3 Resource Allocation 

Once the schedule is available, it is possible to determine the type and required 

multiplicity of resources needed, and this may have been a constraint during the 

scheduling task itself. It is possible however, that different resources' functions may be 

combined, in an ALU for instance, and this may produce a better or worse design. This 

is an area normally left to the human designer, or ignored altogether, but in both the 
MIIMOLA system and the ADPS [59] system, module selection is done automatically 
using an ILP formulation to reduce the global cost of the resources. 

5.2.4 Data Path Synthesis 

There are three specific tasks in constructing the data path to implement the 

scheduled operations in the correct order. Memory must be created to store temporary 

values, the interconnection between that and the computational resources must be 

added and operation must be assigned to a distinct resource where a choice is available. 

These three stages may be merged, but the complexities involved make this 

approach infeasible even for medium-sized problems. A serial approach can apply each 

algorithm in turn to the whole design at once - a global approach - but inherent 
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interdependencies between each subproblem can cause problems here too, as can the 

order of application of the algorithms within the general synthesis scheme. 

The algorithms themselves may be based on several different methods: Global 

algorithms, based on clique partitioning/covering methods; Iterative and greedy 

algorithms; Rule based schemes; Branch and bound search techniques; ILP 

formulations; Logic synthesis. A further approach, of interconnect-driven schemes, 

considers wiring as a first-order effect during data path synthesis. 

Most global algorithms utilise clique covering methods to cover an undirected 
graph, and Tseng [29] was the first to apply clique partitioning, based on heuristics, to 

first complete the memory (register) assignment, then operation assignment and finally 

interconnect synthesis. The heuristic approach does well in general but several special 

cases allow exact algorithms to be used. The Left Edge algorithm (See Figure 5.3), 
devised originally for a channel routing problem, can be used to allocate and assign the 

exact minimum of registers, but cannot handle cyclic schedules [167]. An algorithm is 

described in [4] which deals with this as a multi-commodity network flow problem. 

0-1eP A B C D E F G H (Eight Datum) 	P A B D F H (Five Registers) 
oil 	I  

1 	
o______ 

1 

211 	I 	I 	I 	 2 

	

JCJ 3IiFF1 	3 - - 

Left Edge  

IG 

Figure 5.3 The Left Edge algorithm groups data lifetimes to registers. 

To allow some communication between the synthesis tasks, a correlated clique 

cover approach is applicable, and is used in CADDY, HAL and EASY. In CADDY, the 

order of tasks is register, operation and then bus assignment, and all are based on 
colouring restriction and preference graphs [169]. In HAL the operation assignment is 

done first, using functional partitioning, and is followed by register allocation using 

clique partitioning weighted by interconnection patterns, whose synthesis completes 
the data path. For EASY the first synthesis scheme starts with operation assignment 

using heuristics to cover cliques with the largest weight. Then memory synthesis is 

attempted using an improved left edge algorithm to reduce the associated cost of 
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interconnect, and another clique covering algorithm as an optimisation stage. Finally 

the interconnect is added. 

A mainly rule-based synthesis scheme is used in the DAA [13] for the original, 

global memory synthesis, before partitioning the design using clique partitioning, and 
then optimising at local and global levels, again using the knowledge-base. SCHOLAR 

assigns registers to variables using a rule base, and then a point to point interconnection 
network is added before finishing with operation assignment using a clique partitioning 
method similar to that in FACET [29],  but extended to handle concurrency. 
CATHEDRAL U's Jack-the-Mapper [107] is another example of a rule-based memory 
synthesis scheme, which also examines address generation as part of its task. Operation 

assignment can be influenced by pragmas from the designer and is completed along 

with register assignment by the ATOMICS micro-code scheduling tool. MC 2  uses a 
rule base to first assign temporary variables to dual port register files, then to assign 

operations to specific resources as a side effect of interconnection minimisation. 

Finally, variables are assigned to specific locations within the register files, bearing 
address generation costs in mind, and the address sequences and optimised control 

sequences are then produced automatically. 

A branch and bound scheme is used in IvHMOLA, where register assignment is 
done first, for any straight line code. Operation assignment forms part of the 

communications synthesis stage using a branch and bound algorithm on one control 
step at a time (starting with the busiest cstep). SPLICER includes dynamic register 
allocation with operation assignment in the interconnection synthesis stage, again on 

one cstep at a time. Solutions are found quickly by this method, and then improved on 
using backtracking. 

Integer linear programming models are also included in MIMOLA now [25] for 
register and operation assignment during scheduling, but this only works on a time-
local basis (step by step). 

Iterative approaches include that taken in the ADA to standard cell compiler [14] 

which iterates through the operations in the scheduled order to assign them to resources. 

A similar approach is taken in MABAL [1, 2] but limited reiteration is possible, and 

both registers and operations are assigned together, using the partial interconnect's cost 
as a guide. The EMUCS system [115] assigns operations on a step by step basis using 
heuristics to order them (within a control step), while CHARM [56] iteratively 
performs a form of graph colouring, again using heuristics, with the register and 
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communications  synthesis built into the costing algorithm. Here sets of compatible 

operations are constructed which will eventually share the same resource. 

Logic synthesis systems such as the YSC and HERCULES [119] can play a part in 

data path synthesis, especially for control-dominated designs, but lack the intimate 
design knowledge of most other methods. 

Although many of these systems do take interconnect costs into account, it is not 
treated as an integral part of the synthesis scheme, and so work has been done on data 

path synthesis schemes driven primarily by these interconnect costs. Park [18] 

describes a method where short sequences of operations are assigned to the same partial 

structure, using a heuristic clique partitioning algorithm on pipelined designs, to reuse 

as much interconnect as possible. Register assignment is done at the same time, 
implicitly, but any remaining interconnections must be added manually. In EASY again 

[3], interconnect synthesis is done on two levels of hierarchy. After storage operation 
grouping, which groups operations' data arcs into single port register files, perhaps 
using a two-phase memory access scheme, register allocation takes place using a 

bipartite graph edge colouring algorithm. Finally a simulated annealing algorithm is 

used to assign operations to resources, which should reduce the costs of local 

interconnections between memory and computational resources. MC 2  adopts a very 
similar approach, but uses a rule base to produce control-free interconnect from 

resources to memories, and to minimise the cost of the rest of the communications 
network. - 

Table 5.1, shows the relative strengths and weaknesses of these different methods 
of data path synthesis. 
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Data Path Synthesis + - Method  

Global algorithms Formal basis; Efficient; 
Possibly exact Sometimes too general 

Rule based 
Good for Application Specific Slow; Difficult to 
Synthesis maintain 

Branch and Bound Very fast first solution Too time-intensive 

ILP Good for small designs and for 
Too time-intensive automated resource allocation  

Iterative Simple to implement A lot of expensive look-
ahead required 

Logic Synthesis Okay for control-dominated Cannot synthesise effi- 
designs cient data operators 

Interconnect Driven Good for communication- Suffers from resource 
dominated designs allocation stage 

Table 5.1 Comparison of Data Path Synthesis Methods. 

5.3 Controller synthesis 
Once the memory and communications have been added to the design, multiplexer 

and register control sequences may be extracted using the schedule, and these will 

commonly be handed to a logic synthesis tool to be assigned to a PLA-FSM or some - - - - - 
other controller. The SCHOLAR system is one which constructs a specialised control 
unit itself, as a non-deterministic FSM consisting of a Sequence Controller and some 

combinatorial logic.Where memory address sequences are required, first the 

assignment of values to actual memory locations may need to be completed, and this 

may have great bearing on the cost of generation of these sequences. Control steps 

where one does not care about a certain control value may be exploited to allow sharing 
and simpler generation of these also. This is examined in Section 6.4.3.2 and Section 
6.4.3.3. 

5.4 Resulting design format 
With the general simplicity of data path components, it is amazing how badly 

reported are the results from some of the data path synthesis systems described above. 
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The  resulting design, excluding the controller, should be a netlist of computational 

inputs and outputs, memory, buses and steering logic, as detailed in Figure 5.4. 

A 	1/1 
Computational 	D 	 1j 	 - - Steenng 
Resources 	 Logic 

R 	5 
2 	 8 

 

N. 

A 	2 
D 	 9 	IM 
D 
E 	F  Latch 
R 	 -- 

\ 	1 	3 
 

Buses 	 4t_ -.  .. 
L  

I I - 	 Memories 

M 
A A A ~ Al Latch 

Coefficient ROM 

KEY: IM = Input Memory 
MM = Multiplier Memory 
AMn = Adder Memory n 

Figure 5.4 A example of a design resulting from data path synthesis. 

5.5 Impact on address generation 
Imagining now that we have synthesised a register transfer level description of the 

required design, and that the registers have been grouped into register files as their 
access times allow, let us backtrack through the synthesis process to find any stages 
which have effected the address generation for those register files. 

Obviously the grouping and subsequent sharing of registers within the files 

ultimately defines the address sequence, but the stage of operation assignment may 

restrict this grouping due to interconnect costs. Scheduling is by far the most important 

stage as far as memory is concerned, since it is here that data arcs between the 

operations are stretched or squashed, producing different storage requirements, and 
perhaps it would be better to schedule the data arcs onto a predefined memory 

architecture, whose address generation properties are known already. The PHIDEO 
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system [61] attempts to use look-ahead memory costing to influence the scheduling 

task, but cannot attach more than a vague guess at address generation costs. 

5.6 Comments 
All the systems described deal with bit parallel architectures, but work has also been 

done on bit serial high level synthesis. FIRST [108] at Edinburgh for bit-serial design, 
and the CATHEDRAL I system for bit serial digital filter design were the earliest 

systems, and since then Hartley and Jasica [48] and Cheung and Leung [49] have 
reported such work. 
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6 A heuristic approach to memory, control 
and communications synthesis, for 

scheduled algorithms 

6.1 The joy of synthesis! 
Without a doubt, the area of behavioural synthesis is an extremely interesting one, 

offering constant challenges to an automation designer. Once the first part of the 

synthesis problem has been expanded to a dozen or more equally difficult tasks, nothing 

seems to be "simple" any more. 

The overall motivation was that to examine the possibility of using automatic 
synthesis techniques to construct scheduled memory address generators, one first needs 

some address sequences on which to test and prove the techniques. These sequences 
could have been compiled on a random basis, but would then bear no real relevance to 
scheduled memory addressing, or they could have been produced manually for several 

real examples, with high probability of errors, and with some difficulty. Therefore a 

third option was exercised: That of designing a simple, automated synthesis system, 

capable of accepting a schedule and some allocation information, and of producing any 
address sequences needed by scheduled memory. 

As coding of this synthesis system progressed however, it became obvious that 
much needed to be done before a realistic memory address sequence could be produced, 	- -- 
and it was decided that the synthesis system should also produce a netlist of 
computational resources, memories and steering logic, as well as the control bit 
sequences for that logic. These were also targeted as test vectors for an address 
generator synthesis technique. 

So the synthesis system developed, as well as becoming more general in the form 

of schedule required, until it consisted of three major programs, the function of which 
are described in Section 6.4. 

6.2 Schedules and their scheduling method 
Scheduled memory addressing becomes a problem the moment an algorithm has 

been scheduled, but little or no attention is paid by the literature to either memory or 

memory addressing costs at the scheduling stage, with few exceptions. Scheduling 

methods to date have been targeted at reduction of computational hardware and 
controlling logic, along with an optimisation of throughput, by load-balancing and tree-
based methods. 
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The  first schedule below (Figure 6.1) is for a 5th order, elliptical, digital wave filter 

[15], and has become a standard benchmark for several data-path synthesis systems [1, 

3, 6, 9, 191. There are 42 computational operations in all, with 26 adds and 8 

multiplications. One constant factor of each multiplication is held in a ROM, and a 

single multiplier, pipelined in two control steps, and with a latency of one, is available. 

Two adders, operating in a single control step, are also available. The filter algorithm 
was scheduled into 20 control steps using a Force Directed Scheduling (FDS) algorithm 
[41, 42],  which utilises load-balancing techniques. The second schedule of the same 

algorithm is shown in Figure 6.2, but this time the operations have been scheduled onto 
slightly different hardware in just 17 control steps, by a simulated annealing approach 

[51]. Again there are two adders and one multiplier available, but this time a fast 
multiplier is used which does not need pipelining. 

Control step 
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Figure 6.1 Fifth-order wave filter schedule. 
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Figure 6.2 Fifth-order wave filter scheduled using Simulated Annealing. 

Figure 6.3 shows a schedule of a 16-point, digital FIR filter. Here, again, the 

multiply operations have one input supplied by a pre-defined ROM, and in order to 

complete the 23 operations in 6 control steps (actually 3 control steps, through 
pipelimng), 5 adders and 3 multipliers are needed [18]. 
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Control 
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Figure 6.3 16-point FIR filter schedule (Pipelined). 

A third schedule, shown in Figure 6.4 is for a Fast Discrete Cosine Transform 
(FDCT) algorithm, scheduled using simulated annealing into 13 control steps, and 
requiring two adders, two subtractors and two multipliers. All multiply operations have 
one input fed from a (hidden) ROM. 
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Figure 6.4 Fast Discrete Cosine Transform schedule. 
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The fourth example is that of a differential equation, and the schedule in four control 

Figure  65 Schedule for the differential equation example. 

6.3 Constraints on this approach 
As it stands, the synthesis system described below, MC 2, has certain constraints. 

Schedules containing fork and merge operations - the equivalent of an IE.THEN..ELSE 

statement - cannot be handled properly, due to restrictions in the assignment stage. 
These schedules' corresponding memories would need data-dependent addressing 
schemes, which are not considered for automatic synthesis here. 

The allocation of an ALU resource cannot be handled correctly by MC 2, again due 
to restrictions in early stages of synthesis. 

Operator chaining is allowed, as are ROM definition (to hold constants), cyclic and 

acyclic schedules, multicyclic delays, and multicycling or pipelined computational 

resources. 

6.4 MC2  - Memory, Communications and Control synthesis of 
scheduled algorithms 

There follows a description of the MC 2  tool, from its input format through the major 
steps in the synthesis process, to the output format and some synthesised examples. 
Given a description of an operational schedule along with some allocation information, 

MC2  generates a netlist of hardware components as well as the control and memory 
address sequences required to make the design function. 

6.4.1 Schedule data-base 

The schedule which is handed to MC2  is described in terms of resources, operations, 

operation timings and data flow constraints. 
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The data-base facts: 

cstepO (X) 

cstepn(Y). 

define the first control step of the schedule to be X and the last control step to be (Y- 
1). 

Resource declarations follow the format: 

res (Restype,Nres)Ninputs, [Widths-of-Ports], [List s_of equiv inputs]) 

Restype is the type of resource ('+', 'adder', 'mult', etc.), and Nres is the number of 
resources of that type available. Ninputs is the number of input ports to that resource 

type (Number of outputs is assumed to be unary) and a ROM resource has zero inputs. 

The widths of these input ports are defined in bits for each port, and then lists of 
interchangeable inputs describe the commutativity of the resource's function. 

Operations are defined thus: 

opr(OpUID, Restype, Nres, Wtime, [Rtimes]). 

start time(OpUID, Start) 

reads from(OpUID, [Other OpUIDs]) 

OpUID is usually a number or letter for each operation. If the operation is actually 
providing a constant from a ROM, then the OpUID should be of the form: 

- 	 'c.Constant value'. 	 - 	 -- 	-- 

Restype is the resource type on which this operation can occur, and Nres is as for 
that corresponding resource definition. Again, if a ROM is being used then Nres should 
equal the number of constants to be stored, although the actual size of the ROM may be 
reduced at a later date. Wt ime is the clock tick during which the operation terminates in 
the schedule (i.e.: When its output data becomes available), and the list of Rtimes are 
the clock ticks when that data is actually required by other operations. 
The starts — at/2 fact defines the clock tick during which the operation starts, and the 
operations wch feed data to the one in question are listed in the reads _f ronl2 fact, 
which is also a tentative port assignment. If an operation is to receive data from another 

operation in the same control step - Chaining - then the supplier's UM should be 
preceded by a 'ch.' in the reads _from list. Multicyclic operations are handled by 
providing different start and Write times for that operation. Figure 6.6 shows extracts 
from the FIR filter schedule description. 

The schedule data-base will form the basis for synthesis to which structural 
information will be added to the system. 
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cstepO(0) 

cstepn(3) 

reslist(*, [J) 

reslist(+, []) 

res list (in, []) 

reslist(rom, [1). 

res (+,5, 2, [8, 8], [ [1,2]  1) 
res (*,3,  2, [8, 81, [ [1, 21 

res (in, 6, 1, [8], []) 

res (rom, 3, 0, 1], [ [] ]) 

opr (al, in, 6, 2, [ 0 ] ) 

opr(bl,in, 6, 2, [0]) 

opr (a2, in, 6, 2, [ 0 ] ) 

opr (b2, in, 6, 2, [0]). 

opr('c.1',rom,3,,[1]). 

opr('c.2',rom,3,,[1]). 

opr('c.3',rom,3,,[2]). 

opr(1,+, 5, 0, [11). 

opr(2,+, 5, 0, [11). 

opr(3,+, 5, O r  [2]). 
opr(4,+, 5, 1, [21). 

opr(5,+, 5, 1, [01). 

opr(9,*,3,1, [2]). 

opr(l0 I * • 1, [2)). 

-'I 	I opr(11. I 
* 	2 [0]) 

starts at(al,2) 

starts-at (bl, 2) 

starts _at (a2,2) 

starts _at (b2,2) 

starts at(a3,2) 

starts _at ( 1, 0) 

starts-at (2, 0) 

starts-at (3, 0) 
starts-at (4,1). 

starts at(5,1). 

reads from(7, [a7,b7]) 

reads from(8, [a8,b8]) 

reads from(a, [9,10]). 

reads from(b, [11,a]) 

reads from(c, ['ch.b',12]) 

reads from(d, [c,13]) 

reads from(e, ['ch.d',14]) 

Figure 6.6 Partial schedule for the FIR filter. 
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6.4.2 Pre-assignment or not? 

It is possible to pre-assign operations to a resource, if desired, by specifying the 
resource as a singular one. For instance, if three adders are required in a schedule, then 

to pre-assign some operations to one of these, it would have to have a name different 
from the other two adders, for example "pre_assgnd_adder", instead of just "adder". 

It is not possible, however, to assign any further operations to these resources, once 

synthesis has commenced, since they would then have to support two, distinct operation 
types - pre-assigned and normal - and ALUs are not handled by the system. 

Also, the pre-assignment of operations severely constrains the synthesis heuristics 

employed, often giving sub-optimal results, and since the assignment plan in MC 2  is, 
in fact, a direct side-effect of memory synthesis, any tinkering with pre-assignment can 
cause severe down-grading of results. Pre-assignment is a useful feature, though, when 

it comes to defining ROM access operations in the schedule, operations whose constant 

values will probably be pre-grouped to specific ROMs. It is also useful for testing 
assignment strategies produced by other work [51]. 

6.4.3 The Three Steps to Heaven 

The possible complexity of the synthesis process, and limited memory space, 
demand a partitioned programming approach. The first stage is to take the schedule 

- - - - data-base, and construct the-memory and communications - structure around - the - 
computational base. Then the second stage extracts control and virtual address 
sequences from the structure, and the final stage finds the actual control and address 
sequences, as (sets of) bit sequences. 

6.4.3.1 Memory and communications synthesis 

A major premise in this memory synthesis method is that dual port memories are to 

be used wherever possible, and that, due to a single-phase clocking scheme, no memory 
element may be both read-from and written-to in the same control step. Because of this, 

the first stage in memory synthesis is to find any operations (in a cyclic schedule) whose 

output data is not finally read until the same control step as it was written, as for 

operation 3 in Figure 6.7a. In each case a dedicated latch is added, to store the data 
between cstepO and the datum's final use (Figure 6.7b). 
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Figure 6.7 a) Simple schedule. 
b) Schedule after latch insertion. 

The changes to the schedule database for this transformation are as follows: 

	

Added: 	opr(latchUID,latchUID,1,0, [1,3]). 

res(1atchUID,1,1, [W], [[1]]). 

starts at (latchUlD, 0) 

reads_f rom(latchUID, [3]). 

	

Altered: 	opr(3,+,1,3, [1,3]). => opr(3,+,1,3, [0]) 

reads from(4, [3, in2]) .=>reads from(4, [latchUID,in2]) 

	

- 	
- reads frorn(5, [3,4]) .=>reads frorn(5, [latchUlD, 4]). 

Any operations which are chained within a single control step, to 

avoid having a latch inserted at this stage, have the marker "ch." 
prepended to their UID, which is discarded after this stage. 
For example: opr(5,*,1,3, [3,4]). and reads from(6, [ ch. 51) 

Next, any multicycic delays which have been declared in the schedule database, are 

expanded and transformed into strings of latches (shift registers). For instance, 
operations 2 and 3 would have been declared with: 

reads from(2, [1,0.1]) 

reads_f rom(3, [1,00.1]) 

In other words, operation 2 reads data from operation 1, and from operation 1 in the 

previous cycle, while operation 3 reads data from operation 1 again, but from two 
cycles previously. 
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The  same sort of transformation occurs here as for simple latch insertion, with the 

delay latch placed in the control step just before the operation requiring that delay, 

wherever possible. Figure 6.8 shows the schedule from Figure 6.7b, after delay 

insertion. 

Figure 6.8 Schedule after delay insertion. 

Once these steps are completed, memory synthesis-proper begins, by forming 

groups of operations of the same type, in two stages. If there is only one resource of a 

certain type, for example the multiplier in the Wave Filter example, then obviously all 	- 	-- 
operations of that type must happen on that resource, and are grouped together. 

Multiple-resource operations, with a choice of resource on which to occur, are also 
grouped by resource type. 

What we hope to achieve is illustrated in Figure 6.9. There should be a separate set 

of memories written to by each resource, and this allows a control-free bus structure, 

one for each resource. This may seem constrictive if a least-memory-locations solution 

is desired, but there was no serious increase in the number of memory elements found 

for the examples used here (See Section 6.6). We intend to concentrate on reducing the 

control necessary in the data path, at the expense of a few memory elements. 
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Figure 6.9 Target Write-bus architecture. 

Since it is possible that not all data from a single resource may be eventually held 
in the same, two-port (one Write-only, one Read-only) RAM or register-file, because of 

access clashes between data, those data, or rather the operations which produce them, 
must be further grouped "intelligently" so that a near-optimal solution is found. This 
further grouping allocates multiple-resource operations to specific computational 

resources, as a side effect of forming the memory structure required to support that 
allocation. 

The "intelligent" approach, using heuristics, was adopted over an exhaustive or 
iterative search, because of the complexity and accompanying run-times of those other 

approaches. By pre-grouping the operations by their resource type, we drastically 
reduce the complexity of the overall problem, and we can use a simple weighting 

system to implement the second grouping of operations, and their data, to specific 
memories. 

Multiple-resource operations are given a "Write" weight, equivalent to the number 

of other operations of the same type which require to write data to memory at the same 

time. Single-resource operations can never have Write access clashes, since only one 

Write access can ever happen in any control step. The "Read" weight is similarly 
determined for all operations, and the two weights are combined to give a number 
corresponding to the degree of difficulty of grouping one operation with others of the 
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same type. Figure 6.10 repeats the Wave Filter example schedule, annotated with the 

weights given to each operation. 
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Figure 6.10 a): Wave filter schedule and weightings given to operations. 

One simple way to understand the applicability of these weights is to examine an 
adjacency matrix, or "square graph", of operations (or their associated memory 
elements). Figure 6.11 shows the square graph of the add operations from Figure 6. 10, 

with an 'r', a 'w' or an 'rw' denoting an access clash (or two) between two data. The 
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object of the exercise is then to reorder the data on the axes so that the fewest pOssible 

squares may be drawn on the diagonal, containing no clashes, and covering all data. 

This reordering should be done using the weights gathered previously. 

Two very simple reordering schemes involve sorting the operations in each group 

into an increasing or decreasing list, by weight. The operation with the lowest weight 

is the "easiest" to group with other operations, and if we start with the easiest first, and 

work through the sorted group towards the hardest, we will usually end up with one 

large group of data, and several small groups. For all examples, the other, hardest-first 

approach produced the least number of groups (memory blocks), which were more 

balanced in size. It should be noted, however, that the size of each group, or memory 
block, bears little relation to the actual number of memory locations required to store 
all the data. 
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Figure 6.11 Original square graph of add operations in Wave Filter Example. 

Figure 6.12 shows the square graph with operations reordered into ascending order 

of weight, with arbitrary groupings shown. The hardest-first approach is used to further 

reorder them, forming the square graph in Figure 6.13, which represents four memory 
blocks. 
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WEIGHTS (No.. of access clashes) 
Easiest 	 > Hardest 

Figure 6.12 Add operations sorted on square graph axes. 

Figure 6.13 Add operations finally grouped into memory blocks. 

The final touch to memory synthesis is to make sure that each memory block may 
be bound to a single computational resource. If the data elements in two different 



Figure 6.14 Square graph showing Write access clashes only. 	 - 	- 

Figure 6.15 Resulting Write-bus architecture for the Wave Filter Example. 
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memory  blocks of the same resource-type are Written at the same time (for example 
operations 8 and 23), then those memory blocks, and their associated operations, may 
not be bound to the same resource. The square graph in Figure 6.14 shows only the 
Write access clashes between data in the example, and this information may be used in 
the same way as before, to group together memory blocks. There must be as many 
groups of compatible memory blocks as there are resources of the associated type. The 
resulting Write-bus architecture for the example is given in Figure 6.15. 
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If the target number of groups of memory blocks is not reached, then a routine 

iteratively searches for that target, by moving the causal operations to other, compatible 

memory blocks, and avoiding local loops in the iteration. The two least-clashing 

memory blocks (1 and 3, here) are searched for the "culprit" operations (8 and 23), and 
the one which is easiest to move to another memory block (operation 8), determined 

with more heuristics, is moved there (to memory block 4). if the target number of 

groups of blocks is still unattainable, then a different Write access clash is moved, until 
the target can be reached. 

Now we move on to communications synthesis. Since the Write-bus network is 

already defined, "all" that remains to be done is the construction of the network of 

multiplexers between the memories and the computational resources, completing the 
16'1 Vtn Niim,nn rihitii'tiir (Pin1ii- 	1A) 

M Multiplexing I R 	' 	Network 

 
o 

i 	PT  
Hardware Resources 

Figure 6.16 Target Read-bus architecture. 
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Control 	Adder 1 	Adder2 	Multi 
step: 	Port AB AB 	AB 

1 IPM1 AM1 
2 AM3AM1 
3 	AM3 AM1 	AM2 AM4 
4 	AM1 AM2 
5 AM1 
6 
7 	AM3MM1 AM1 
8 	AM3AM4 
9 	MM1 AM2 	 AM1 
10 	AM4 AM1 	AM5 AM2 
11 	AM1 AM5 	AM3 MM1 	AM2 
12 	AM3 AM2 	AM2 AM4 
13 	MM1 AM4 	AM2 AM3 	AM1 
14 	AM5AM1 AM2 
15 	IPM1MM1 AM3AM1 
16 	AM1 AM4 	MM1 AM3 	AM2 
17 	AM2AM3 AM1 
18 	AM1AM2 AM3MM1 
19 	AM1MM1 AM3AM2 

Figure 6.17 Read-access table for Wave Filter Example. 

This process commences with the creation of a table of Read accesses, derived from 
the "coloured" square graph, shown in Figure 6.17 for the Easiest-first memory 

- - - ---- 	configuration -Next starting-at -a control step defined-by the user (usually-cstep O),--and---------- - 
working forwards in time (going back to the start of the schedule if necessary), until all 
control steps have been examined for each resource, "paths" are created between 

memory blocks and resource inputs using the following criteria: 

B1We wish memory block B to be available on input i 	11 

of resource R, R, in cstep C, with I(i,j) meaning 
that inputs i and j are interchangeable on R: 	 + 

R 
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If: 	B 	(Block n already connected to Resource input i) Then continue. 

'if 

If: Bn  and I(i,j), and _Bm and 	Then 	and FBn] 

Rj]  

iii)If: B  and l(i,j),and 	and B m  ;Then Bm  and Bn j 

R 	 R 
	
Ri 	 FRj]  

If: B  and I(i,j), and B  but only for ; Then B 	and  B n 	 m  this cstep 

	

rn 	ri

Rj _ 	 RJ 	 _ _ 

Otherwise: 	B 

'I, 

Figure 6.18 Path making criteria for construction of Read-bus network. 

In (i) above, a path has already been created between the memory block and the 

resource input, and the present control step is added to a list associated with that path, 
holding the times when that path is needed. 

In (ii), a path has already been created to an interchangeable input on the resource. 
This interchangeability is specified in the definition of the resource, as lists of 
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interchangeable  inputs. For example, inputs 1 and 2 of the adders are interchangeable. 

Here there is also a path already existing from the block which was to have been 

connected to the interchangeable input, to the input originally (and arbitrarily) intended 

for the block in question. The blocks are swapped on the inputs, and we get criteria (i) 

for the other block, and eventually for the block in question. 

In (in), a path to an interchangeable input exists for the block in question, but no 

path yet exists for the other proposed block at all. The blocks are swapped on the inputs, 
and path-making continues for the same input. 

For case (iv), there already exists a path from the other block to the other input, but 

which has only been created in this cstep. Here the newly created path is erased, the 

blocks are swapped, and we continue with the same input. 

In (v), none of the above criteria have been found, and a new path is created from 

the block to the input, whose creation is noted for the duration of the path-making for 
this cstep. 

This path-making continues for all the inputs of each resource, until we have the 

minimum number of paths from memory blocks to each resource input, which can then 

be rationalised into a network of multiplexers. 

Now we create an optimal communications network between memory blocks and 
- resources, consisting of buses and 2tol muxes. 	 - - 

The process starts with the creation of a muxntol for each resource input, where n 

is the number of blocks which must be connected to that input. This number will have 

been minimised during path-making. if n=O (There is no memory block connected to 

the input), then the muxOtol is erased. Along with each muxntol exists an associated 
list of csteps during which the mux is needed. 

Using the path information, the muxntols are broken down into 2tolmuxes. From 

this point an "input" is either to a resource or to a 2tolmux, which has inputs '1' and 
'2', and output '3'. 

First we find any inputs which must receive data from, at least the same memory 

blocks, the data being identical whenever the blocks are Read in the same cstep. All but 

one of the common muxntols, and their associated paths, are erased, the one left being 
that with the greatest value of n. The lists of csteps when data is required are updated 

with any different csteps from the erased muxntols and paths, and a connection is made 

from the output of the remaining muxntol to the inputs whose muxntonls were erased. 
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Next we find the most-used path and extract a 2tolmux from its associated 
muxntol, if necessary: 

if n = 1, then connect the memory block where the path starts, to the input, where 

the path ends, erasing the path and the muxitol: 

Mem. 
Block 

muxitol path(Mem., Input) 

1 
Input 

Mem. 
Block 

connect(Mem., Input). 

Input 

If n> 1 then connect the memory block whose path it is, to input '1' of a new 
2tolmux, and connect the output of that 2tolmux to the input expecting the data. The 

muxntol is erased, and a mux(n-1)tol substituted, with its list of csteps updated so that 

it no longer includes the csteps when the chosen path was needed. The path is erased 

and all other paths associated with the mux(n-1)tol are redirected to lead to input '2' of 
the new 2tolmux: 

	

Most used path 	 M.Bj  

M.B JIMB  
1 	2 1- 	 mux(n-1)tol 

J7_J 	I 	MjB 	path(MB 2 , Input) 

'i%l,  muxntol 	I 	 I 

path(MB , Input) 	 2tolmux  

	

Input 	 Input 

By choosing the most used path first, we increase the amount of "Don't care" values 

in the control sequences for the 2tolmuxes, and so increase the chance of being able to 

fold the control sequences at a later stage (Section 6.4.3.2). 

Finally, any new muxitols are erased, along with their associated paths, and the 

blocks are connected to the inputs expecting the data. The whole process then iterates, 
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until there are no muxntols or paths remaining. The Read-bus network is described as 

a set of connections, from either memory blocks or 2tolmux outputs, to either resource 
inputs or 2tolmux inputs. 

The resulting Read-bus network for the Wave Filter example is shown in 

Figure 6.19, which includes the Write-bus networks from before. 

- Figure 6.19 Resulting communications network for Wave Filter example. 	 - - - 

6.4.3.2 Address and control requirement analysis 

The next step is to analyse and decide on virtual address and control bit sequences 
for the memories and multiplexers. 

It is a simple matter to construct a virtual address sequence for each port of each 

memory, where the virtual addresses are just the UTDs of operations whose output data 

are being stored or accessed. Alongside the virtual address sequence construction, a 

boolean "Don't Care" sequence is also built to denote the actual addressing needs, and 

also the lifetimes of each data item are noted. Any Write Enable control sequences are 
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also  produced at this stage if required. A sample of the information gathered for the 
lave Filter example is shown below. 

wal ( *1', [0,0,0,0,0,0,21,0,24,0,9,0,30,0,6,16,0,36,40,0]) 

ral ( * 1f, (0,0,0,0,0,0,0,21,0,24,0, 9,0,30,0,6,16,0,36,40)) 

wal( '+1', [O f  0,0,20,0,0,0,0,11,27,0,0,0,0,28,0,41,14,37,42)) 
wal( '+2', (O f  3,12,32,0,0,0,0,0,0,0,0,7,31,0,4,17,0,5,0)) 
ral ( '+1', [37,0,14,42,20,0,0,0,0,11,27,27,0,42,27,28,42,41,0,37]) 

ral ( '+2', [17,5,3,12,32,0,0,12,12,32,32,3,3,7,31,0,31,17,4,31]) 
dc_seq(*1l,r,[0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,1]). 

dcseq('+1',r,[l,O,l,l,l,O,O,O,O,l,l,l,O,l,l,l,l,l,O,l]). 

dcseq('+2',r,[l,l,l,l,l,O,O,l,l,l,l,l,l,l,l,O,l,l,l,l]). 

latch—control ( [latchll, latch2l,inl], [save, 0, 0, 0, O f  O f  0, O f  O f  O f  0, 0,0 
Of Of Of Of 0, Of 0]) 

Figure 6.20 Information produced during address and control requirement analysis. 

Latch control sequences, in the form of "save" operations (technology independent) 
within a sequence of control steps are also easily derived. It is not so simple, however, 

to extract the control sequences required for what may be a large number of 

multiplexers (say < 100). Knowing that memory M must be connected to the 
computational resource input, R 1 , during control step C, we can trace the path from R 1  

back through the multiplexing network to M, noting the input desired on each 

- multiplexer traversed. The control values of any muxes not needed in a control step are 
"Don't care" values, which are taken to be '0', whereas the muxes which are needed 
can have control value '1' or '2'. This representation is used because the real control 
values, '0' and '1', have not yet been assigned, and may be bound to either of the virtual 

values, at a later date. Examples of multiplexer and Write Enable control bit sequences 
are given in Figure 6.21. 

csigl ( [muxl] , [0,1,1,2,1,0,0,0,0,0,1,1,2,1,2,1,1,0,2,2] 
csig2 ( [mux2] , [0,0,0,2,0,0,0,1,2,1,2,2,2,1,0,1,2,2,1,1] 

csig5 ([we,  +4] , [1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2] 
csigl0 ([muxl0] , [0,2,0,0,0,0,0,0,0,0,0,2,1,0,0,2,2,0,1,1] 
csig12 ([muxl2], [0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,2,1,0,0,0] 

Figure 6.21 Example multiplexer virtual control bit sequences. 

In the controller, a PLA-FSM or COUNTER-ROM method may be used to generate 
the control bit sequences for the multiplexers, and the address sequences for the 
memories. Setting the address generation aside for the moment, we must find some way 



of folding the control bit sequences together, so that many multiplexers may share the 

same bit sequence, reducing the controller's PLA or ROM area. 

There are three distinct ways to fold the bit sequences together, each of which is tried, 
in order, on pairs of control sequences. 

Overlapping fold. 

This is where the two sequences have common values '1' or '2'. 

	

E.g.: a) 	 0 0 1 2 2 1 1 0 1 2 
* * * * 	* 

	

and b) 	 2012210002 

have a "positive" overlap of 5 bits (marked by *s). 

These sequences would fold into: 

2 0 1 2 2 1 1 0 1 2 

We can easily swap 'l's and '2's, simply by swapping the inputs to the muxes, so 

1 1 2 1 1 2 2 2 2 1 

would become: 

2 2 1 2 2 1 1 1 1 2 

which sequence (c) would fold into, with positive overlap of 8. 	- 

Non-overlapping fold. 

This is where the control bit sequences have no overlapping 'l's or '2's, but do have 
overlapping 'U's. 

	

E.g.: a) 	 210001021 
* 	* 

	

and b) 	 0 0 0 1 0 0 1 0 0 

have a "negative" overlap of 2. 

These sequences fold into: 

	

C) 	 2 1 0 1 0 1 1 2 1 

Shifted fold. 

Depending on the length of the control bit sequences, it may be useful to introduce 

delays on some bit sequences, so that they may be generated by other sequences. 

a b c d e f g h 

00 ... abcde.. 
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If some sequence starts with n '0's (b), and then continues with a sequence already 

existing, but earlier in time (a), then we can introduce a delay of up to n csteps on the 
control line of the first sequence. Sequences whose first bit is non-zero, i.e.: "Do care", 
cannot be generated using a delay, unless the first bit can be preset on the delay - a 

situation too dependent on other factors to be explored further here. 

E.g.: a) 	 210212001 

b) 	 0 0 2 1 0 2 1 2 2 

Introducing a delay of 2 on (b) to get (b"), we get: 

a) 	 210212001 
* * 	* * * 

b") 	 2 1 0 2 1 2 2 0 0 

which have a positive overlap of 5, and can be folded into: 

C) 	 210212201(=(a)&(b")). 

The maximum number of delays it is viable to introduce depends on the length of 

the control sequence, and the respective areas of control and delay. 

No possible fold. 

If the sequences follow none of the above patterns, then their overlap is null, and 

they will never be folded together. 

Order of selection 

The selection of pairs of control sequences for possible folding is not haphazard. 

The control sequences are ordered by the number of '0's in each, so that the 
"busiest" sequence - that with the fewest '0's - is examined first for possible folding. 

From the remaining sequences, the one with the largest overlap with that sequence is 

chosen as a partner for the first. If no overlap exists with any of the remaining 
sequences, then the sequence with the next fewest 'U's is tried. 

Once a possible fold is found, the sequences are merged, overlaps are again 

calculated, and folding attempted once more, until no more folding can occur. Finally, 
if the sequences are long enough to merit it, shifted folding is attempted, commencing 
with the sequence starting with the most 'U's. 

Figure 6.22 contains the original and folded control bit sequences for each 
multiplexer. 



Of an original sequence couit of 15 for the Easiest-first memory configuration, only 

7 sequences were necessary, and from 12 sequences for the Hardest-first configuration, 

only 6 sequences were actually needed. 

Shifted folding was not attempted, since the sequences were not considered long 

enough to use a delay instead of separate control bit. 

In another example, a set of 40 multiplexer control sequences of length 14 bits was 
reduced to just 8 sequences, again without trying shifted folding. 

Original control sequences: (0 -> Don't Care, 1&2 -> Logic '0' or '1') 

controlsigi -> [muxi] = [0,1,1,2,1,0,0,0,0,0,1,1,2,1,2,1,1,0,2,2] 

controlsig2 -> [mux2] = [0,0,0,2,0,0,0,1,2,1,2,2,2,1,0,1,2,2,1,1] 

controlsig3 -> [mux3] = [0,2,1,1,1,0,0,0,0,0,1,2,2,2,1,1,2,0,2,1] 

controlsig4 -> [mux4] = [0,0,0,0,0,1,0,1,0,2,0,1,0,2,1,0,1,2,0,0] 

controlsig5 -> [mux5] = [0,0,0,1,0,0,0,1,1,1,2,2,1,2,0,2,2,1,2,2] - 

controlsig6 -> [mux6] = [0,0,0,1,0,0,0,0,1,0,1,1,2,0,0,0,1,2,0,0] 

controlsig7 -> [mux7] = [0,0,0,1,0,0,0,0,0,0,0,0,1,0,2,0,0,0,1,1] 

controlsig8 -> [mux8] = [0,0,0,0,0,0,0,0,0,0,1,2,0,1,0,2,1,0,1,2] 

controlsig9 -> [mux9] = [0,2,0,0,0,0,0,0,0,0,1,2,2,1,0,2,2,0,2,2] 

controlsiglO> [muxl0]=[0,2,0,0,0,0,0,0,0,0,0,2,1,0,0,2,2,0,1,1] 

- controlsigil > [muxll]=[0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,O,1,O,O] 

controlsig 12> [mux 12] =[0,2,0,0,0,0,0,0,0,0,0, 1,0,0,0,2,1,0,0,01 

Folded control sequences: 

Some of the mux inputs may have been swapped, inverting their control bits. 

controlsig13 > [muxl,muxl0] = [0,1,1,2,1,0,0,0,0,0,1,1,2,1,2,1,1,0,2,2] 

controlsig14> [mux2,muxl2] = [0,1,0,2,0,0,0,1,2,1,2,2,2,1,0,1,2,2,1,1] 

controlsig15 > [mux3,mux8] = [0,2,1,1,1,0,0,0,0,0,1,2,2,2,1,1,2,0,2,1] 

controlsigl6> [mux5,mux11] = [0,0,0,1,0,0,0,1,1,1,2,2,1,2,0,2,2,1,2,2] 

controlsigl7 > [mux7,mux9] = [0,1,0,1,0,0,0,0,0,0,2,1,1,2,2,1,1,0,l,1] 

controlsig18 > [mux4,mux6] = [0,0,0,1,0,1,0,1,1,2,1,1,2,2,1,0,1,2,0,0] 

Figure 6.22 Control sequences for wave filter example before and after folding. 
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6.4.3.3 Address and control sequence synthesis 

As far as the control bit sequences are concerned, all that remains to be done is to 

fill any remaining Don't Care times in a sequence with 'l's and '2's so that each 
sequence is made as regular as possible, and then to bind these virtual control values to 
actual values, '0' and '1'. This also defines which input to each multiplexer is selected 
by which control value. 

The replacement of the Don't Care values can be quite complex, but the method is 

based on taking as short a sequence as possible from the start of the original sequence, 

and making it fit repetitively onto the rest of the bit sequence, as described in 
Figure 6.23. 

iuuiiiiii••••u iii•iiiuuii•••• iiuuuuuuii••••• 

----- 

!u!IIIIIuUIIIIlIIliI 
E4IIIMMUUIIIIIIIIIIIIII 
--- 
------ 
•••11111M 

UtIUII!flflli 

Original Seq. 

Sample Length = 

1St Inversion afi 
three repetitions 
2nd Inversion n 
after three rep's, 

so reject Length 
Original Seq.: 

Length =2 
1st Inversion aft 
single repetition 

Resulting Seq.: 
(Hint = Length = 

Binary Seq.: 

Figure 6.23 An incompletely specified control bit sequence is filled with values to capture inherent 
regularity. 
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The  virtual values are then converted to real binary values on an arbitrary basis; '1' 
-> '0' and '2' -> '1'. 

The assignment of data items to actual memory locations now commences, which 

defines the possibly incomplete address sequences, and their constituent bit sequences. 
Looking at each memory in turn, first the virtual read address sequence is examined. In 

an interactive mode the number of memory locations available may be set between the 

minimum number required, discernable from the data-lifetime information, and the 

maximum feasible with that number of address bits needed to support the minimum. 

For instance, if at least five memory locations are required, determined from the 

lifetimes of the data by the Left-Edge algorithm (See Section 5.2.4), then three address 

bits are needed, which can support up to eight memory locations. The default number 
of memory locations to use is the minimum required. 

For each bit of the address sequence a certain set of values will be possible. An 

example is given below, where five memory locations exist. 

Location:0 4 	2 	1 	3 
Bit 2 óJ  Fil 	1~1 If 0  1~1 UO 

Bit 0 	 SUBTREES :1[ 
Figure 6.24 Possible address bit values for a five-word memory. 

We traverse the virtual address sequence from start to end and build up the lowest 

significant address bit sequence first, and then all the others, in such a way that the 

sequences are as regular as possible. This method requires information on the lifetimes 
of the data, and on which data may share the same memory location. Data are assigned 

to one or other subtree (Figure 6.24) of possible locations depending on that 

information, in such a way that there will be enough room for all the data in each 

subtree, keeping in mind the symmetry of the resulting bit sequence, before the next bit 

of each real address is examined. Once all data have been assigned to specific memory 

locations, an algorithm similar to that used on the control bit sequences is then put to 

work, which takes into account all possible values of each bit of each address to come 
to an optimal solution. It should be noted that addresses greater than the number of 
locations available may appear, but only at Don't Care times. Figure 6.25 shows a 
virtual and the corresponding real address sequence for one of the memories in the wave 
filter example. 
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Virtual Read Address Sequence: (0 -> Don't Care). 

Cstep: 0 	 W 19 
[37,0,14,42,20,0,0,0,0,11,27,27,0,42,27,28,42,41,0,3 

Can't share memory location: 	3 memory locations available: 

	

28, 42 	11, 27 	 II I I II 

	

28, 27 	20, 42 	 BIT1 1 0 11 1 11 0 1 

	

14, 41 	41, 42 

	

14, 37 	37, 42 

	

14, 42 42, 27 	 BITO 	0 	1 
11, 42 

Real Address Sequence: 	N.B. Location 3 does not exist, but is only referenced at 
Don't Care times. 

Bitno: 
IP 

0 	[0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0] 
L Repeat 

1 	[1,0,O,0,1,0,1,1,1,0,1,1,1,0,1,O,0,1,1,1] 

Memory assignments: DataUlD Location 

37 	2 
14 	0 
42 	1 
20- 	2 
11 	0 
27 	2 
28 	0 
41 	2 

Figure 6.25 Virtual to Real read address sequence conversion. 

Since a virtual write address sequence will never be less sparse (have more Don't 

Care times) than its corresponding read address sequence, the greater degree of freedom 

this allows relegates the write address sequence to a slightly cruder synthesis technique. 

The actual locations assigned to each datum are already known from the previous 

synthesis stage, and it is a simple matter to insert these locations into the write address 

sequence, where required. The address sequence can then be split bitwise, and each bit 

sequence can have any inherent regularity retained during the filling of any Don't Care 

times, as before (Figure 6.26). 
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Virtual Write Address Sequence: (0 -> Don't Care). 
Cstep: 0 	 Mo. 19 

[0,0,0,20,0,0,0,0, 11,27,0,0,0,0,28,0,41,14,37,42] 

Incomplete Real Write Address Bit Sequences: (x -> Don't Care). 
Bitno: 

o 	[x,x,x,O,x,x,x,x,O,O,x,x,x,x,O,x,O,O,O,1] 
1 	[x,x,x,1,x,x,x,x,O,1,x,x,x,x,0,x,1,O,1,O] 

Completed Real Write Address Bit Sequences: 
Bitno: 	

- 
Repeat 	 - Repeat 	u. 	 Repeat 

0 o 	[o r  1, O r o, 0,O,O,1,O,O,0,0,,1,O,0,O,O,O,1] 
1 	[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0 ,1,0] 

L Repeat 
(inverted) 

Figure 6.26 Virtual to Real write address conversion. 

6.4.4 Output format 

The output from MC 2  describes two things:- The structure of the circuit, and the 

address/control requirements. The former is in the form of a netlist of components, with 

connections defined between specific ports on the computational and ancillary 

resources. The circuit synthesised for the FIR filter is described in part by the facts in 
Figure 627. The circuit itself appears in Section 6.5. 

group (+,'+l', [3,d,g]) 

group(+, 1 +2 1 , [ e,8,b]) 

wgroup_of blocks ( '+resl', ['+1']) 
w group of blocks ( '+res2', ['+6' , '+4' 

D.  
w group of blocks ( '+res3', ['+2' ]) 

connect (1n3, [muxl,l]) 

connect ( [muxi, 3], ['+res2' ,l]) 

connect (ml, [muxl,2]) 
connect (in4, [mux2,1]) 
connect ( [mux2, 3], [ '+res2' , 2]) 

connect(*41, [mux23,2]) 

connect (in2, [mux24,1]) 

connect([mux24,31, [muxll,2]) 
connect(1*3, [mux24,2]) 

connect ('+5', [mux25,1]) 

connect([mux25,3], [muxl4,2]) 
connect('+l', [mux25,2]) 

Figure 6.27 Netlist description of FIR circuit. 



Multiplexers are defined to have inputs numbered 1 and 2 and an output numbered 

3. The inputs will be bound to specific control values at a later date. The other 

information shown in Figure 6.27 specifies the assignment of operations (e.g.: 3, d, g) 

to resources (+res 1, +res2) and the memory allocation which that introduces (Memories 
are '+6', etc. - Adder memory no. 1, Adder memory no. 6). 

The second collection of output data specifies the address and control sequences 
which are required for memories, latches and multiplexers. Memories have their 

minimum number of memory elements calculated using the Left Edge algorithm, and 

this information is used by the sequence specification stage. If a memory comprises 

only a single memory location then the memory will be implemented as a latch, with its 

own latch control sequence. Address sequences for RAM or register files are described 

in terms of their constituent bit sequences, with arbitrary control values 1 and 2, to 

separate virtual values from actual ones. A binary sequence defining which addresses 
are actually required, for both read and write address ports is also included, if there is 
at least one Don't Care time. 

Latch control signals are defined, technology independently, as a 'save' operation 

during the correct control steps, and may share the same wire if identical. Write enable 
signals for memories and multiplexer control signals are grouped together, and so may 
have several destinations, and the signals are described in terms of those destinations 
and of course the control values. The address and control information for the FIR filter 

example is shown in part in Figure 6.28. This information maybe simply translated into 

the format used to input address sequences to AG2, an address generator synthesis tool 

descr bea in the next chapter. 
minnomemels ( '1 , 3) 
minnomemels ( 	, 2) 

adbit (w, 0 I 
*2l

I  [2,2,1], [2, [mv, 1]]) 
adbit(r,O I 

1*21
I  [1,1,2], [2, [inv,1]]). 

adbit(w,1 I 
1*11

I [1,2,1], [2, [inv,0]]) 
adbit(w,O , 1*11

I  [2,1,1], [2, [inv,1]]) 
adbit(r,1 , 1*11

I  [1,1,2], [2, [inv,1]]) 
adbit (r, 0, I*11,  [1, 2, 1],  [2, [iv, 0]]) 

dc_seq(*1I,r, [1). 
dc_seq(*2I,r, [1,0,1]). 

latch_control ( [ '+6' ,I*4I], [0, save, 0] 

control(csig74, [mux2, [not, [[we,I*3h],  [not, [muxl]]]],mux25 

Figure 6.28 Partial address and control specification for FIR filter. 
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The information following each virtual address and control bit sequence specifies 
the shortest section from the start of the sequence, which can be used to generate the 
whole sequence, if repeated, perhaps with inversion in polarity after a number of 
repetitions. It is this information which allows us to calculate a hint as to the generation 
of the sequence, to also be handed to AG2. Appendix E contains the address and control 
generators as synthesised by AG2 for all the examples given here. 

6.5 Some synthesized data-path architectures 

Shown in the next few diagrams are the circuits synthesised by MC 2. These have 
been drawn manually, following the netlist information from the system. Firstly, the 
circuit for the wave filter example is given in Figure 6.29, and Figure 6.30 shows the 
circuit for the FIR filter. The implementation of the differential equation example is 
illustrated in Figure 6.31, and finally the FDCT architecture appears in Figure 6.32. 

Figure 6.29 Wave Filter circuit. 



Figure 6.30 FIR Filter implementation. 
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Figure 6.31 Differential Equation example. 
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Figure 6.32 FDCT solution. 

6.6 Comparisons with related results 
It is very difficult to find a globally fair comparison between circuits synthesised by 

different systems, described in the literature [1, 3, 6, 9, 15, 19, 39].  This is due to a lack 
of standards in the reporting of results in this area, and such a standard is proposed in 
the following section. Table 6.1 gives some of the results from the literature alongside 

those from MC2. A second table shows the same results normalised to the best result in 
each column. 
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Multiplexer trees are taken to be autonomous networks of multiplexers; Multiplexer 
inputs are all primary inputs to muxes (i.e.: not from other muxes); Multiplexer 
equivalent is simply a count of all 2 to 1 multiplexers in a design - A multiplexer tree 
with n primary inputs will need (n-i) 2 to 1 mux equivalents, or less if multi-level 
optimisation has occurred. The number of local interconnections is given as the total 
number of wires with only two ends - Point-to-point links - and this may include wires 
from computational resources to memories, from memory outputs or chip inputs to 
multiplexer or resource inputs and links within multiplexer trees. To find the number of 
buses in the designs, all connected wires (nets) with more than two ends are gathered 
together as a bus, and this should include any wires not labelled as local interconnect. 
shows the wave filter architecture with buses in grey and the local interconnect in black. 

Registers are either RAM locations or single latches. A register file with a single 
location should be converted to a latch, so that any register file will contain more than 
one location. Control Bits is a count of all different bit sequences to be applied to the 
circuit, including latch control, mux control, memory write-enable and address wires. 
Any control bit sequence may have several destinations. 

CPU Time is given as an approximate guide to run-times, but is only important in 
that all the time given are quite short, considering the complexity of the examples. The 
use of different hardware on which to run the software precludes any real comparison 
of speed between systems. 

Figure 6.33 Wave filter architecture with buses highlighted in grey, and local interconnect in black. 
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Systems: A-Easy; B-SPAJD; C-Splicer; D-Sehwa; E-SCHALLOC; F-MABAL; 

I-HAL; J-EMUCS; H-MC 2 . 

Wave Filter: 

System Cycles + * M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T. 

F 17,19 2 ip 13,10 45,32 32,22  -,2 16,10 <15 

A 19 2 l  25  15 8 

C 21 1 21 9 43 1 55 

I 19 2 1 6 26 20 45  12 —600 

J 19 2214 50  36 12 

B 19,21 2 ip  7(51  14,13 5,4 19 5,4 —60 

E 21 2 ip 13 57,53 28,27  11,9 13 —150 

H 19 2 ip  5 16 14 17 8 16 5 28237 

FIR Filter:  
System Cycles + * M.T. Mi. M.E. L.I. Buses Regs R.F. C.B. C.T. 

D 3(6) 5 3  23 34x8  18 

B 3(6) 4 3 

3(6) 5 3 

H 3(6) 5 3 16 41 25 33 19 20 8 4 563 

Differential Equation: - 	 - 
Sys. Cyc. + - * < M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T. 

F 4 1 112 1 6-8 13-17 7-9  5-6 <1 
I 4 1 1 2 1 6 13-14 7  5 140 
C 41121 5 12 7  6 291 

E 11,4 1 1 2 1 3-7 11-16 6-8 6 11
423 

H 4 1 1 2 1 6 13 7 12 8 9 3 8 57 
FDCT 
Sys. Cyc. + - * M.T. M.I. M.E. L.I. I Buses Regs R.F. C.B. I .c..I. 
H 13 1 	2 1 	2 2 1 	11 51 43 41 F  27 24 8411121 

Key: M.T. - Multiplexer Trees. 
M. 1. - Multiplexer Inputs. 
M.E. - Two-to-one Multiplexer Equivalent. 

L.I. - Number of local interconnection wires 

R.F. - Register files. 
C.B. - Number of different address/control 

bits to be generated. 
C.T. -Approx. CPU time in seconds. 

Table 6.1 Results from literature against those from MC2. 
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Wave  Filter: 

System Cycles + * M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C . T. 
F 19 21p2 2 1.5 - 1 1 - - 1 
A 19 2 ip - 1.6 - - - 1.5 1.6 - - 

H 19 2 1pj 1 1 1 1 4 1.6 1 28 16 

I 19 2 ip 1.2 1.6 1.4 2.6 - 1.2 - - 40 

J 19 2 2 2.8 2.6 2.6 - - 1.2 - - - 

B 21 2 ip - 1.3 - 13 1 1.5 4 - 1.1 

E 21 2 ip  1.2 1.3 27 - 2.3 1 - - 2.7 

C 21 21 1 1 - - - - --1 

FIR Filter: 
System Cycles + * M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T. 

D 3(6)53 - - 

B 3(6) 4 3 - - - - - - - - - 

3(6) 5 3 - - - - - - - - - 

H 3(6) 5 3 16 41 1.1 1 19 1.1 8 4 563 

Differential Equation: 
Sys. Cyc. + - * =? M.T. M.I. M.E. L.I. Buses Regs R.F. C.B. C.T. 
F 4 1 1 2 1 1.2 1.1 1 - - 1 - - 1 
I 4 1 1 2 1 1.2 1.1 1 - - 1 - - 140 

C 41121  1 1 1 - - 1.2 - -291 

E 4 1 112 1 1.4 1.3 1.1 - - 1.2 - - 11 

H 4 1 1 2 1 1.2 1 	1.1 1 12 8 1.8 3 8 57 

Where no comparison could be made, the original figures have been retained. 

Table 6.2 Normalised results. 

From these tables we can deduce that MC 2  tends to produce better results for 
communications and control circuitry at the expense of local memory space. This is an 

effect of the memory-first synthesis approach taken in MC 2  and is not terribly 
detrimental to the size of a design, since RAM locations come quite cheaply. 
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6.7 A Standard for behavioural synthesis results 
presentation 

It is always useful to know the number of cycles into which an algorithm has been 

scheduled, but commonly the given figure does not include any input or output control 

steps. This is all right because any input or output steps may be wrapped round to the 

end/start of the schedule, so that the number of cycles scheduled - Cyc - should include 
all computational operations. Whether the schedule is cyclic or acyclic is important, 
and for pipelined designs, the delay for the first output should also be given, in brackets. 

Since we want to be able to compare as many different architectures as possible, all 

results should be technology independent. In other words, instead of giving the actual 

area of any computational resources, we should simply present the number and type of 

such hardware, for example: 2 adders, 3 multipliers, etc. 

The number of multiplexer trees and primary inputs are not as important as the 
number of 2 to 1 multiplexer equivalents, which should be given as the total number in 
the design - N2m1. We are also interested in the number of different multiplexer control 

wires required - NCm . Other communications information should include the number of 

buses - NB and the number of local wires as defined in the tables above - NWL. 

From the memory side of things, we wish to know the number and average size of 

any RAMs or register files ARAM,  SRAM; The number of registers (latches) - NREG - 

andalso the number of different address wires and latch control wires required - NCA, 

NCREG. 

Finally, the CPU time should be given - CPU - as well as a note of the hardware 
used in producing that run-time. 

If any of the above factors are not automatically produced by a system, they must 
be compiled by hand and reported as such in the results table. 

Example Cyc N2m 1  Ncm  NB I  NwL NRAM SRAM NEG NcA NcREG cpul 
IWave Filter 19 14 12 8A 17 5 2.7A 3 11' 1 237 

* Including 3 ROM address bits. A signifies hand compilation 

Table 6.3 Example of standard result. 
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6.8 Prolog for fast development 

Indubitably it was Prolog that allowed such fast development of MC 2. Having used 
the language previously, the re-learning curve was steep, and although the code can get 

rather unintelligible, the ease of handling the data is a boon. Any new facts can be 

simply added to the data-base in a meaningful format, and old data may be removed just 

as easily. The data structure may not be hierarchical or coherent, but is sufficient for our 
purposes and took very little time to develop. 

6.9 Comments 
Even at this point, there are several problems still unaddressed in this area, but sadly 

these have to remain so, while the over-riding task, that of automating scheduled 

memory address generator synthesis (and now also, control bit sequence generator 
synthesis) is completed. 

The complexity figures for the algorithms used in MC 2  are almost impossible to 
compute due to the recursive nature of much of the code. However, Table 6.4 below 

shows the run-times for the various sections of MC 2  for the examples used, along with 
some information on the complexity of the original schedules. 

CPU time (s) 

Data path, memory and 
communications synthesis 44 242 17 257 

Control and Address 72 281 21 748 sequence extraction and optimisation 

Control and Address sequence 121 40 19 116 analysis, and final memory synthesis 

No. of Operations 	42 39@ 11 50  
140 5 No. of Resources 	3 14 9) 

No'. of Csteps 	19 13 3 4 
25 7 No. of Multiplexers 	14 43 

_ o 
 

(D Including 16 input operations. 	Example: 	. 

I ® Inclu ding 6 input ports. Cd 

a) I © Including 8 input operations. 	 . 
) Including 8 input ports. 	 Cd 

-I 

Table 6.4 Runtimes for the three sections of MC2  for the examples. 
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From  these figures we can determine that a busy schedule with a large resource set 
slows down data path and memory synthesis, a long schedule effects the control and 

address sequence analysis, and a large number of multiplexers badly effects the time for 
control and address sequence extraction and optimisation. Formulae obtained for the 
run-times of the two latter stages are: 

CPUSTAGE2 (0.64 *N2m1 )2 

CPUSTAGE3 sw 5(I(Ops.Csteps) -2.8) secs. 

MC2  turns out to be a highly adaptable and functionally complex data-path 
synthesis system, as well as fulfilling its seemingly simple original purpose. 

If a partial target solution to a design problem can be found quickly, then we can use 

exhaustive techniques to perfect this. It is the compilation of the target architecture 
which requires all the planning of a chess master, such that the game is almost over after 
the first move. The chess master will look ahead not to all possible moves in the game, 

but only to those probable in the situation reached. We have the same planning problem 
in behavioural synthesis, in that every decision made will effect our choice of further 

decisions, but unlike the chess master, our opponent is neither inscrutable nor 

unpredictable. We should know exactly what will happen after the very first decision 

has been made, since our synthesis algorithms tend to be serial and predictable. 

- Synthesis systems cannot hope to achieve anything near as good as a manual - 

-approach while they are based on a single, very general algorithm. If the algorithm is 

tailored to a specific example, then it will be better at similar problems, but worse than 

the general approach for different ones. To be as good as manual designers in general a 
system must be able to select and alter the algorithms to be applied. The synthesis 
is then targeted directly at the individual problem, for best results. 

For instance, the time taken to find a solution using each individual algorithm 

should be known from its complexity order. If a solution is required very quickly, 

perhaps as an innovative suggestion or trigger, then only the fastest algorithms should 

be chosen from. If in a chip design problem there are a large number of operations, then 

we will most likely need to schedule them onto a fewer number of computational 

resources. If there are a large number of data arcs in the schedule then point to point 

communications will probably prove to be unworkable, and memory synthesis is very 
important. 



•: 

By fine-tuning the available algorithms as best we can, very good solutions should 

be found quickly, and it is only this lack of interface between the synthesis algorithms 

and the human designer that inhibits the possible generality of our tools. 
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7 A general approach to address generator 
synthesis 

7.1 The need for generalization 
After the completion of the first part of this work, described in Chapter 4, we 

accepted that we were still very constrained in terms of the problems targeted. For some 
digital image processing filters for example, it is known that more efficient designs can 

result from sampling the image data in blocks not sized by a power of two [207], but by 
three or five or some other number. Also, much of the control of these processes should 

also be based on that size of sample, and any FSM built to generate that control would 
be more efficient when driven by a non-binary counter. 

So the decision was made to attempt to construct a more general and complete tool 

which would seek the same sort of solutions as AG1, but which would do so using an 

intelligently-chosen counter modulus. The bitwise approach was adopted from AG 1 but 

a much more comprehensive data structure in AG2 allows a whole design's address and 

control generators to be optimised in terms of their total area. Many other methods of 

address generation other than using counters are also identified in AG2. 

7.2 The inevitable data model 
The possible complexity of the situation demands a coherent and comprehensive 

data structure, in which to store and process all the necessary information. The 

hierarchical approach taken here is both necessary [87, 93] and natural, with each 

memory requiring a set of address generators, which are in turn formed from a set of bit 

sequence generators (See Figure 7.1). 

At the top level is a list of the memories required in the design. Each memory has a 
name and a UID, as well as a possible pointer to an actual hardware component (in a 
general design environment - See Chapter 8). The type of memory should be known, 

and if this is given as "control" then then addresses are actually to be generated as 

control words for use elsewhere. Information on the dimensions of the memory are 

available, and a list of the names of any arrays (or groups of data) to be stored in the 

memory, corresponds to the address generators needed to access that data. 

An address generator data structure is tied to a single data-array, and as such has 

well defined time limits on its use, as well as a clock signal, which may be gated by a 

second, strobe signal. The mode of memory access for which this address generator will 
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NAME 
HARDWARE 

DECLARED SIZE, WORDSIZE 
ROUNDED SIZE, WORDSIZE 
X-DIM, Y-DIM 

CONTENTS 

No_Of_Ports  

Types_Of_Ports 	 A.G. 

ARRAY_NAMES 

ACCESS—ID 	 PORT—NO 
ACCESS—SEQUENCE 
DON'T—CARE—SEQUENCE 
START—CLICK, LAST—CLICK 
CLOCK—NAME, STROBE _NAME 
COMMUNICATIONS 

ARRAY 

R W RW C 

ADDRESS_BIT_NO 	INVERTED? 

•EI 
BIT —SEQUENCE 

INCREMENT 
BIT—NUMBER PRESET—TO (01101011011...) 

MODULUS GATED—BY  
GATING—SIGNAL 

- ROM_DEFN. 
'0' OR '1' 

BIT—NUMBER 

Ell 	ON 11 	1~  

WITHLNVERSION 

EXORED_WITH CLOCKED_BY 

MEMORY I I A.G. I I B.G. 	COST—INFO 

Figure 7.1 Address Generation Data Structure. 
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be used will be important, as will the port number on the RAM (if a multi-port RAM is 

involved). 

The destination of stored data, suppliers of data to be stored, or in the case of control 
generation, the destinations of control signals, may be defined, as well as a list of 

behavioural function calls for addresses, and which of these are actually required 
(There may be dummy calls inserted). 

The address generator also comprises a number of bit generators, which may be one 
of several types: 

A Simple bit generator is defined as the bth bit of a modulus m counter; 

An EXORed bit generator is some bit generator, as above, exclusive ORed 
with the output of some other bit generator; 

A Clocked bit generator is a simple flip-flop, clocked by the (possibly 

inverted) output of some other bit generator; 

An Incrementor-type bit generator is bit b of some incrementor, which may 
be preset, reset and have a gated clock; 

A ROM bit generator is some output bit b from an address ROM, which may 
be constructed as part of the optimisation process; 

A Logic-type bit generator is the output from some combinatorial logic or 
- 	- 	 PLA, characterised by a binary sequence; - 

A Hardwired bit generator is simply a constant logic 6 0' or '1'; 

A Wholly Random bit generator is one whose required bit sequence is too 
long and too random to consider here; 

Finally, a bit sequence may have an as-yet-Unknown bit generator. 

The outputs from these bit generators together form the address words to be 
generated, and may be inverted in polarity. 

The final element of the data model, to allow bit generator costing and optimisation 
at a later date, is a cross-referenced list of all bit generators, along with space for their 
costs, further discussed in Section 7.4.5. 

Taking a general view of this data structure, it can be seen that a RAM may have 
several ports of different types, each of which may be utilised to store or access some 

group of data in some predetermined sequence. Each group of data will have addresses 
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generated  by a set of bit generators, and, most importantly, these may be implemented 
on hardware shared with other address generators. 

A data ROM access sequence may be defined as for any other memory, along with 
its contents, and this may possibly have addresses generated by another, address ROM, 
which will in turn need addressing, most likely using an incrementor. The "Unknown" 

bit generator may in the future be expanded to handle other types of bit generator, for 
instance ring-counters or more complex structures [196, 199],  with corresponding 
extensions to the data structure. It is felt, however, that what we have now is sufficient 

to handle most situations. 

7.3 Requirements of an address generator synthesis tool 
As stated, AG2 can perform global optimisation of address and some control 

generation hardware. This is a major requirement of a synthesis tool since the bias 
towards the use of counters is not only for their simplicity, but also their re-usability. 
Other requirements include explicit definition of address sequences for RAMs and 

ROMs, and the ROM contents if applicable. Deterministic control bit sequences should 

be handled and any sequence must be able to express whether each address is actually 

needed or is just a dummy address filling an unnecessary part of the sequence. 

A number of options for the generation of each sequence should be considered, and 

hardware sharing should be encouraged where it is effective in reducing the total area 
of all the generation circuitry. 

7.4 AG2 - A general address generator synthesis tool 
In the following sections we examine the human interfaces to AG2, as well as 

describing the method used to recognise various types of bit sequence generator, and 

then investigating the optimisation stage where the bit sequences are bound to their 

cheapest possible generator. A user guide for AG2 appears in Appendix D and the code 
is included on the disk. 

7.4.1 Input format 

There is a standard, file-based input format for AG2, with the input file(s) 
containing the following information: 

• Memory Name - This is derived from the name of the access sequence file 
itself. 

• Memory Type - May be 'ram', 'rom' or 'control', in which case the 
sequence is to be generated for control rather than memory access. The 
memory name should reflect this. 
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 Start Click - An integer defining the clock tick (click) on which the first 
address is to be generated. 

• Clock Name - The clock which will be used to iterate through the sequence 
(and it is this clock which should be used to determine the Start Click). 

• Strobe Name - This may simply be 'dummy', but if the sequence is to be 
generated using a gate on the aforementioned clock, then the strobe name 
should be defined as the UID of that gating signal. This may be done 
automatically if necessary. 

• Access Mode - 'W', 'R', 'WR', 'RW' or 'C'. This defines the mode of 
memory access for which this sequence will be used. 'C' denotes a control 
sequence. 

• Communications Name - This should be a list of all computational resources 
which read/write data from/to the memory, or a list of all destinations of a 
control sequence. 

• Hint - A very important integer which will be used by the synthesis tool as 
a basis for finding counter-based address generators. Figure 7.2 describes 
how a designer could find a good hint, which should reflect any repetitive 
pattern length inherent in the problem. If given as '0', it will be found 
automatically, but at the expense of time. 

Figure 7.2 Manually defining a hint. 

• Access Sequence - This is the list of integers which must be generated, 
terminated by a '-1'. 

• Don't Care Sequence - A binary sequence with the same length as the 
Access Sequence, again terminated by a '-1'. Where the Don't Care 
Sequence is '0', the corresponding address in the Access Sequence is not 
actually required. If a Don't Care Sequence would be all 'l's (every address 
is required), then it may be omitted, apart from the '-1' terminator. 
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 ROM Contents - The list of constants to be fixed in the ROM, in order of 
ROM address, terminated with a '-1'. This data is only included if the 
Memory Type is 'rom'. 

• Any other information. For example control connection details for 
multiplexers, in a control sequence whose destinations include multiplexers, 

as output by MC2. 

i ne rormat or mis aata witnin me access sequence me is snown in 1-figure 1.3. 

I 	sequenco ñlename=meiu1+acsect=> Memory Nanie= meni1' 
ram! rom/ control 
o 	 Start Click 
ClockUID 
StrobeUlD/dummy 
r/w/rw/wr/c 	 Access Mode 
adder l/mult2/mux3l " 	Communications 
3 	 Hint 
0 
1 
2 

Access Sequence 

99 
-1 

0 
0 
1 
1 Don't Care Sequence 
1 
0 

25  

-1 
1 

16 ROM Contents 

—1  

mux3l's input 1 is chosen by control value 1. 
mux3l's input 2 is chosen by control value 0. 

Figure 7.3 Access Sequence File Format. 



This standard format may be compiled by hand, but facilities exist in both MC 2  and 
AOl for automatically producing files in this format. 

7.4.2 Basic method 

This section will describe the support procedures which transfer the data from the 

access sequence file into the internal data structure, and also the basic method for 
synthesis, without getting into too much detail. 

The main procedure in AG2 is run twice during the synthesis process, first to pick 

up all the address sequences defined externally, and then to synthesise address-ROM 

address generators, for any ROMs which have been created as look-up tables as part of 
other address generators. In the first case, the system enquires as to the data capture 
method: Using a drive file containing the names and memory data widths of several 

memory access and control sequences (width = 1); Or loading data from a single access 
sequence file and then manually providing the data width. 

To commence the loading of information, a check is made on the total size (in bits) 

of the access sequence, and if this is too large then the system will load each bit 

sequence of the access sequence individually. The maximum address, access mode and 

memory name and type are also derived at this point, and are used to either add the 
information to an existing memory record, or to produce a new one, adding ports to 
each RAM as -required.-  Then the rest of the access sequence information is loaded and 
stored in the corresponding memory record, before the synthesis stage-proper can 
begin. 

The first type of address generator sought is an incrementor. The incrementor may 

be preset for the first clock tick, and may be reset at a fixed value after that. It should 

have a fixed increment, which may be a postitive or negative integer, and need not 
increment every click. 

If an incrementor cannot be used to generate the given sequence then it is split 
bitwise and an attempt is made to match each individual bit sequence to a counter-based 

bit sequence generator. This involves using the given hint (or derived hint, if not given) 

to pad out the bit sequence so that it is of length H.2n1,  where H is the hint. This allows 
iterative bisection of a compact representation of the bit sequence, quite like the method 
used in AG 1, to hopefully find a cheap bit generator. 
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Finally,  for address sequences which are not too large, each constituent bit sequence 

is compared with others to try to find one which may be generated using another 

sequence to clock a flip-flop. 

Once all this has been done for all bit sequences in each access sequence file, costs 
are derived for each possible implementation of each bit sequence generator, based on 
their area and possible hardware sharing. These costs are then iteratively optimised 
until each bit sequence has a single, definite generator, and then any sequences which 
have been bound to address ROMs, are collected together to form the contents lists of 
those ROMs, and the access information for the ROMs is handed back to the main 

procedure as a whole new set of access sequences, but which cannot be generated by 
yet another address ROM. 

7.4.3 A working example 

In order to show as many features of the system as possible, a set of three access 
sequences will be used as a working example. The first two contain memory access 

sequences for the same memory, and the third is a control bit sequence for a set of 

multiplexers. The first address sequence bears little resemblance to those normally 
seen, since its constituent bit sequences have been tailored to illuminate certain points, 

and then combined to give the address sequence. More realistic examples will be 
detailed in a later section. The access sequences, as handed to AG2, are given in 
Figurie 7.5, and their file names and memory widths are contained in a drive file, shown 
in Figure 7.4. 

mem 1 .wacseq 
8 
mem 1 .wracseq 
8 
csig2 1 .cseq 
1 

Figure 7.4 Contents of drive file for working example. 
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ram  
0 
clocki 
dummy 
W 
inputi 
0 	-- Hint 
48 
160 
177 
166 
39 
55 
44 
253 
234 
234 
123 
104 
241 
97 
102 
119 
196 
212 
205 
74 
91 
11 
-1 
-1 

control 
22 
clocki 
dummy 
C 
mux3/mux7/muxl 0 
0 	--Hint 
1 
1 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 
-1 
-1 

ram 
22 
clocki 
dummy 
WR 
input2/adderl /multl 
0 	-- Hint 
5 
8 
11 1 
11 1 
11 0 
14 0 
17 1 
0 1 
3 1 
6 1 
9 1 
9 1 
9 0 
12 0 
12 1 
15 0 
18 1 
18 1 
18 0 
0 0 
0 1 
3 0 
3 1 
6 0 
6 1 
9 0 
9 1 
9 0 
12 0 
15 1 
15 1 
18 0 
0 1 
3 1 
3 1 
6 0 
-1 1 

1 
I -1 

Figure 7.5 Access sequence files for working example. 



7.4.4 Method 

A primary stage, before loading an access sequence from file, is necessary to 

establish whether the size of the sequence will allow it to be loaded in its entirety, or 

only on a bitwise basis. Then the memory name is derived from the input file name, and 

an attempt is made to find this amongst existing memory records. If one is found then 

that memory record is returned to have another address generator added, and otherwise 
a new memory record of the correct type is created, with a single port of the required 

access mode. Then the dimensions of the memory are updated if necessary, for example 

if a larger address appears than in an address sequence already treated. 

Finally the rest of the access sequence information is transferred to the internal data 
structure, changing or adding ports to the memory if required. A ROM may only have 
a single port of mode R (Read), while a RAM may have as many ports as required of 
any mode, and if a RAM port of mode R or W is available for an access sequence of the 

opposite mode (W or R) then the port will be extended to be of mode RW - Read and 

Write. Now the synthesis algorithms start in earnest to examine the sequence for 

possible generation methods, starting with incrementor-based generators. 

7.4.4.1 Finding An Incremental Sequence 

In iteratively examining the address sequence, we look for several points: 

- 	 - The maximum address must be> 1. - 	-- 	 - -. 

The very first address is the preset value for the incrementor. 

• If the next address is the same as the present one then a gating signal is 
required on the clock, and it should be set to '0' for the present clock tick. 

• If the next address =0, for the first time in the sequence (apart from the very 
start) then the modulus of the incrementor is made equal to the previous 
address plus the increment value - the address which the incrementor will 
not quite reach. Also any gating signal should equal '1' for this clock tick. 

• If, when the next address =0, the present address = the modulus minus the 
increment, then any gating signal will equal '1', and if not then the sequence 
cannot be generated using an incrementor. 

• If the next address is different from the present one, for the first time in the 
sequence, then the increment is recorded as next—address minus 
this—address, and also any gating signal should be '1'. 
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• if the next address differs from the present one by the correct increment, 
then any gating signal should be '1' for this clock tick but if the increment 
is different to the recorded one then an incrementor is not suitable for this 
sequence. 

If the whole address sequence passes the above tests then a corresponding set of bit 

generators must be constructed. If the increment is unary then a counter is more efficient 
than an adder and such a counter is constructed, with possible preset and gating signal. 

The counter modulus is the maximum address plus 1, and only the lesser bits of such a 

counter are required. If the increment is greater than one then an adder will be used, and 

the output bits are numbered from 0 up to the MSB of that adder. If a gating signal is 

not required for the incrementor then the name of the dummy signal is set to 'clock' and 
otherwise takes the form 'gating sigUID'.Figure 7.6 shows how an incrementor type 
solution is found for memi .wracsea in our working examDle. 

5 8 11 11 11 14 17 0 3 6 9 9 9 12 12 15 18 

t A 	A 	A 	Check the rest 

Preset 
Value 
=5 

Increment 
=8-5=3 

Gating signal 	Modulus 
- 	is required 	=17+3  

=20 

Gating Signal: 

110011111100101 lx 

Figure 7.6 Finding An Incrementor-based Solution. 

7.4.4.2 Padding A Bit Sequence 

Assuming that the address sequence cannot be generated using an incrementor, the 

next task is to try to match each constituent bit sequence to a counter bit or logical 

combination of bits. To allow this matching process to function correctly, the bit 

sequence must first be padded out so that it has length Hint * 2''. This involves 

appending a copy of part of the bit sequence to its end, inverting the polarity of the copy 

if necessary. The hint may be predefined, and if so will be used in padding ALL bit 

sequences in the address sequence, but if it is not specified (ie: Hint =0) then it must be 
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found automatically for each bit sequence in turn. This can be very time consuming for 
very long sequences since it involves taking successively longer sections from the start 

of the sequence, which a separate algorithm attempts to fit repetitively onto the rest of 

the sequence, as explained in Figure 7.7. 

Sample Length = 2 

BitSeq: 0 1 1 0 1 1 1 0 0 1 

Sample inverted after sini 
so should be inverted again here, but is not, so reject sample length = 2. 

Sample Length = 3 

BitSeq: 0 1 1 0 1 1 1 0 0 1 0 0 
I 	II 	II 	II 	I 

I 	II.Ir 
Sample inverted after two runs 
so should be inverted again here, and is, so accept sample length = Hint = 3. 

Figure 7.7 Finding a hint where none is given. 

The padding routine consists of two stages, after the hint is discovered. The first 

stage copies a section from the first basic pattern, to get a whole number of these basic 
patterns, as detailed for a pair of bit sequences in Figure 7.8a, and then the second stage 

- adds the padding to get the final length, H*2r,  as shown in Figure -7.8b 

a) _ 	 b) 

0100100100101 	0 	10010010101 	01061001001 0 	
1101101 

 

)ifference causes 	 Difference causes inversion 
inversion 

Original sequence, 	Partially padded seq. Padded sequence, length 24 (=2 3*3) 
length 13 (= 4 .33*3) 	length 15 (5*3) 

Figure 7.8 Padding a bit sequence: a) to a whole number * Hint; b) to a power of two * Hint. 

7.4.4.3 Transformation To Repetition Sequence 

The previous stage may seem to be wasteful, in that it lengthens the bit sequence by 
up to (Original _length - 1) bits, but the next stage, during which the repetition sequence 
is formed, aims to reduce the sequence length by a lot more than that. The repetition 

sequence contains a polarity value - the first bit of the corresponding bit sequence - 

followed by a sequence of integers describing the number of adjacent bits with the same 
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values. Examples of the repetition sequence construction for the memi .wacseq example 

are given in Figure 7.9 and the final one, not from our working example, demonstrates 

the savings possible through this transformation, with a bit sequence of original length 

32k reduced to a repetition sequence of length 2. 

Bit No. 	Padded bit sequence 
	 Repetition Sequence 

7 	011100011100100011100011 -.9 	0, (1,3,3,3,2,1,3,3,3,2) 
length =24 length= 10 

6 	0000000111111111111110000000 -" 	0,(7,14,7) 
length =28 length =3 

5 	11111111111111110000000000000000 -0 1,(16,16) 
length =32 length =2 

4 	10100101001010010100 	-001. 	1,  
ioiooioiooioiooioioo  

length =40 length =32 

3 	000000111111000000111111 -u-, 0, (6,6,6,6) 
length =24 length =4 

2 	0001111100000011111000 	-9 0, (3,5,6,5,3) 
length = 22 length = 5 

1 	OOO111O01110O011OO0111O0111OOO11 0, (3,3,2,3,3,2,3,3,2,3,3,2) 
length =32 length= 12 

0 	00101101001O11010010110100101101. 0,  
length = 32  

length = 24 

16k bitt 	16k bits 
(1, (16384,16384)) 

length =32k length =2 

Figure 7.9 Construction of repetition sequences. 

7.4.4.4 Reducing The Repetition Sequence 

The length of the repetition sequence (not including the polarity value) is very 
important in the synthesis process. We can tell straight away if the bit sequence contains 

only one polarity of bit, and should be hardwired to logic '0' or '1', when the repetition 

sequence length is unary. If this is not the case then we start to iteratively bisect the 

repetition sequence, to hopefully find a counter-based solution to its corresponding bit 

sequence's generation. Different routes are taken in reducing the repetition sequence, 

depending on whether its length is odd or even, and whether half of its length is odd or 

even, as described by the following rules (BSG - Bit Sequence Generator). 
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Rules 

L_RS = length of the repetition sequence, m = L_RS /2. 

la) IF L_RS is even THEN Rule 2. 
lb) IF L_RS = 1 THEN find_BSG using remaining sequence. 
lc) 	IFrep_seq(2..(m-1)) =rep_seq((m+l)..(L_RS-1)) AND 

rep_seq(l) + rep_seq(L_RS) = rep_seq(m) THEN Rule 5. 

id) 	find_BSG using remaining sequence. 

IF rep_seq(1..m) = rep_seq((m+1)..L_RS) THEN Rule 3. 

find_BSG using remaining sequence. 

IF L_RS/2 is odd THEN Rule 4. 

Bisect the sequence and recurse using the first half. 
EG: Bit 1: (3,3,2,3,3,2,3,3,2,3,3,2) => (3,3,2,3,3,2). 

IF L_RS/2 = 1 THEN bisect the sequence and recurse. 

EG: Bit 5: (16,16) => (16). 

IF we can generate the corresponding bit sequence, as the 

repetition sequence stands, with a single counter bit, then 

find_BSG using the current repetition sequence.-- 
The corresponding bit sequence is the result of EXORing 

a counter bit (found from LRS), with whatever BSG is 

found by recursing using the first half of the sequence. 
EG: Bit 7: (1,3,3,3,2,1,3,3,3,2) => (1,3,3,3,2) EXOR 2(3) 

(Bit 2 of a modulus 3 counter). 

5a) IF (1,_RS+1)/2 is even THEN as for RULE 4c. 

Sb) 	Bisect the sequence and recurse. 
EG: Bit 2: (3,5,6,5,3) => (3,5,3). 
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la IF.. 
2a IF.. 

3a IF.. 
4a IF.. 
4b_ELSIF.. 
4c ELSE.. 

3b ELSE.. 
2b—ELSE.. 

lb ELSI1F..  
ic_ELSIF.. 

5a IF.. 
5b_ELSE.. 

id—ELSE.. 

7.4.4.5 The Repetition Sequence Characteristic 

Now the repetition sequence has been collapsed as far as possible, the remaining 
sequence is sent to be matched to a bit sequence generator. It is first converted into 
another format, to ease this matching, which consists of four parameters, as shown in 
1-igure /.IU. 

Repetition Sequence Characteristic: 

Polarity (as for repetition sequence) - P First repetition in repetition sequence -R1 

Repetition count of first repetition - RR Final repetition, if different - r 

- Some examples help to explain this: 	 - 	- 
Repetition sequence 	Rep. seq. Characteristic 	Corresponding bit seq. 

(0, (2,2,2,1)) => 	0 2 	<= (0,0,1,1,0,0,1) 

31 

(1,(4,4,4)) => 

	

	 1 4<=(1,1,1,1,0,0,0,0,1,1,1,1) 

30 

(0, (1,2)) => 	 0 1 	<= (0 1 1 1 1) 

1 2 	(=> bit(-2) , mod 3, EXORed with 
bit(-l), mod 3) 

A special case is needed to denote a random bit sequence, where all parameters =0: 

(0, (1,3,2,4,2,3)) => 	c 	<= (0,1,1,1,0,0,1,1, 
1,1,0,0,1,1,1) 

0 0 	sent to logic synthesis 

Figure 7.10 Repetition sequence characteristic formulation. 
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7.4.4.6 Matching the Characteristic to a Bit Sequence Generator 

Now we are ready to try to find the counter bit which will produce the bit sequence, 

characterised as above. The counter bit is described by its bit number, b, and the 
modulus of the counter, m. The polarity in the characteristic determines whether a 

counter bit's output should be inverted by a NOT gate. 

Finding the counter modulus, m 

If there is a single repetition left in the repetition sequence, then its characteristic 

will look something like this, where, R1 is the remaining bit repetition length: 

OR1  

10 

The modulus of the counter needed is found from R 1  by finding the lowest odd 

factor of R 1 , i.e.: By dividing it by 2 until an odd quotient is found. The number of 

times R 1  can be divided is the bit number of an upper (>= 0) bit of the counter. For 

I 0 1761 
example, a characteristic: 	I 	I 	I 

iOI 

counter. 

will be generated by bit 4 of a modulus 11 

- -- 	However, if there is more than one -repetition left, then the modulus is calculated as: 	- 	- 

modulus( 	P R1 

RRr 
) = (R * RR) + r = m 

i.e.: The sum of the remaining repetitions. This should represent the sequence 
generated by a lesser (<0) bit of a modulus m counter. For example a 

characteristic: 	1 2 	will be generated by bit(-3) of modulus 11 counter. 
51 

If a random bit sequence is characterised, then for consistency its modulus is set to 

0, as a flag. Also, if a repetition sequence remainder (r) is greater than the first 
repetition, then it is possible that this may characterise a bit sequence generated by 

EXORing lesser bits of a counter, and these lesser bits can be found by expanding the 
characterised repetition sequence to its bit sequence, and then repeating the whole 
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synthesis process for that sequence (Padding first, using a hint of 1). For example the 

characteristic: 	
0 2 	

represents the bit sequence 00111, which is the result of 
13 

EXORing sequences 00110 and 00001, which are produced by bits(-2) and (-1) of a 
modulus 5 counter, respectively. 

Finding the lesser bit number 

If, once the modulus has been found, it is found to be greater than the first repetition, 
then a lesser bit of the counter is desired, and the correct bit is derived simply from the 
modulus, which determines how many lesser bits there will be, and from the first 
repetition, which should be a power-of-two. 

7.4.4.7 Finding Clocked-type Bit Sequence Generators 

Whether or not a counter-based solution has been found for a bit sequence, all 
sequences in the address sequence are examined in the hope of finding some other bit 

sequence which may be used to clock a flip flop and produce the bit sequence in 

question. A list of repetition sequences is constructed, describing each bit sequence and 

this list is sorted using the first repetition in each sequence as a guide, so that the 

repetition sequence with the shortest first repetition is at the head of the list. This 
sequence is then compared to each other one in turn, comparing the sum of each 
successive pair of repetition values from the former with individual repetition values - 	- 
from the latter, as illustrated in Figure 7.11. 

09  

00101401001011.. 
Adding Pairs 

_ VQ 

09  (39392939392939392939392) 	JKFF 

Figure 7.11 Recognising clocked-t)pe bit sequences and their clocking bits. 

Of course the clocked bit sequence may start with a '1', in which case it is said to 

be NOTTED. The address bit which will be used to clock the flip flop is recorded and 
the algorithm then goes on to examine the next repetition sequence, until all have been 
compared. Generating a sequence in this way introduces a skew on the timing of 
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address bits, but if several flip flops are to be chained together (forming a ripple-carry 

counter), producing a large skew, then this chain could easily be given serial or parallel 

carry, to reduce the skew. This is not yet implemented as an optimisation stage. 

7.4.4.8 Multiple Access Sequences 

At this point the main procedure would reiterate, loading and analysing the next 

sequence named in the drive file, if that was the data entry option used, and this repeats 

until all sequences have been run through the synthesis algorithms. Then costs are 

found for each and every bit sequence generator before the optimisation stage 
commences. This costing will be explained in the next section. 

7.4.5 Optimisation 

Before any optimisation of hardware in terms of area can proceed, the area costs of 

each bit sequence generator must be found. The generators, or parts of them, are 

assigned one or more possible generation methods from the following, each of which 

must be costed: 

• Counter-based, including semi-random bit sequence generators which will 
by default use a counter and some combinatorial logic. 

Incrementor-based. 

-- - 	. Clocked-type. 	 •-- 

ROM-based. 

Each address bit in each sequence may be generated using a ROM look-up table, 
accessed using a counter, so this cost is estimated for every sequence, although the 
different types of bit sequence generator may be given other costs as well. 

SIMPLE bit generators are costed along with EXORed and LOGIC-type bit 
generators, and also with INCREMENTOR-based generators with a preset of zero and 
a unary increment. These counter-based costs are calculated in the following way. 

Having determined all the modulii of the counters required, for each of these modulli a 

list of all counter bits-used is compiled, with the least significant first. Then the cost of 
implementing each counter bit in turn is based on the nearest existing bit on the counter, 
the size of a JK flip flop, and on the number of bit sequence generators which can share 
this hardware, as shown in Figure 7.13 overleaf. if a bit generator is an incrementor bit 

with increment equal to one, then a gating signal may be required and the extra cost for 

this is based on the ROM area required to store the gating sequence. if a semi-random 
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bit sequence exists then it will require all lesser bits of a counter whose modulus equals 

the length of the random part of the sequence, and an extra cost for the combinatorial 

logic is based on that length also. 

The compatability of bit generators sharing the same hardware is determined by 
comparing their clock names and either their strobe names or the gating signals 

themselves, before looking at the start and finish times of the sequences. Two sequences 

are compatable if their start times and their finish times coincide, or if the sequences do 

not overlap in time, or finally if the differences between the two start times is equal to 

an integer multiple of the length of repetitive bit sequence naturally produced by the 
UOUIILI OIL 111 qUesuoll, as siiowii oeiuW. 

Clock Tick: 0 1 2 3 4 5 6 7 8 9... (=3*3) 

S eq. l: 	10011001001001001001001 
Seq.2: 	3 

3 

Figure 7.12 A pair of compatable sequences. 
These two sequences can be produced by the same (modulus 3) counter. 

INCREMENTOR-based bit sequence generators are grouped onto adders and share 
the cost of any support required, such as storage for the increment value and the gating 
sequence. 

CLOCKED-type bit generators are grouped by their interconnectivity (ie: In 
chains), and each is given the area cost of a JK flip flop. 

ROM-based bit sequence generators are grouped into ROMs by the compatability 

of the lengths and timings of the sequences and each generator is given a ROM area cost 

based on the length of the sequence, and an equal share of any ROM address generation 
costs and of decoder/driver hardware costs incurred during the creation of the ROM (a 
flat-rate cost). 

Once all possible costs for each bit sequence generator have been calculated, it 

remains to choose the globally optimal method of generation for each one. This is 

obviously another NP-complete problem, in that the sharing of costs between 

generators is dependant on them using one or another method of generation, and 
randomly selecting bit generators and binding them to, or inhibiting the use of certain 
hardware is not feasible, unless run-times are to skyrocket. 
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The approach taken here is to use the total of the cheapest possible costs of every 

bit sequence generator as a target to aim for, and then calculate the total costs incurred 

using as much ROM-based bit generation as possible, and using as little as possible. 

Comparing the latter two extremes should show one to be higher than the other and the 
bit generator with the greatest extra expense by the more expensive method is forced 
not to adopt that method in the future. The cost functions are then run again to 
determine the new costs of bit generators after this binding, and if the cheapest possible 

cost has increased by more than a small amount then then previous decision is reversed. 

This continues until every bit sequence is tied to a specific bit sequence generator and 

it is now that the main synthesis routine is run once more, with the RUM-based 

generators grouped into RUMs to be fed back as internally-supplied access sequence 

information and then to have their own address generators synthesised. At the moment 

the RUM address sequences are simple counts from zero, but it would be possible to 
take advantage of coincident 'Don't Care' times in the individual bit sequences to 

reduce the ROM size, and perhaps the size of its own address generator. 

Counter-based costs: 

If we require bit b on a modulus m counter, and there already exists the lower 
significant bit (b-i), then the cost of the new counter bit is: 

1* JKFF_SIZE 

If we require bit b on an incrementor with unary increment, preset =0, which 
requires a gating signal, and there already exists bit (b-i), then the cost of the 
new counter bit is: 

(1 * JKFF_SIZE) + (ROM—BIT—SIZE * Sequence—length) 

If we require a random bit sequence of length L, then we will need all lesser 
bits of a modulus L counter, and the cost is given by: 

(1092(L) * JKFF_SIZE) + (L /4) 

These costs should be divided equally between all bit sequence generators 
which can share the hardware. 

Clocked-type costs: 

If there exists a sequence which can be used as a clock for a flip-flop to 
generate a second sequence, then the cost of the generator of that second 
sequence is given as: 

JKFF_SIZE 

Figure 7.13 Cost Functions 
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Incrementor-based costs: 
If we require bit b on an incrementor with increment i, preset top, and there 
already exists the lower significant bit (b-i), then the cost is calculated as: 

(1 * ADDER—BIT—SIZE) + Extra_costi + Extra_cost2 

If the increment> 1 and the modulus is m then the Extra_costi is: 

(1092(i) * ROM—BIT—SIZE) + (1092(m) * LATCH_SIZE) 

The Extra_cost2 must be added if a gating sequence, length L is required: 

L * ROM—BIT—SIZE 

These extra costs should be shared equally between all bit sequence 
generators using the incrementor, while the basic cost should only be 
divided between generators using the given bit on the incrementor. 

ROM-based costs: 

Every bit sequence is treated as if it were to be placed in a ROM. 

There are three distinct costs involved in the address ROMs created 
from a conglomeration of compatable bit sequences. 

Each bit sequence (Length = L) is given the cost of ROM area it will use: 

L * ROM—BIT—SIZE 

If a ROM is constructed from N compatable bit sequences, of length L 
each bit sequence generator receives a share of the cost of support 
circuitry (decoders, etc.): 

ROM—CREATION—COST / N 

There will also be a share of the cost of addressing that ROM: 

(1092(L) * JKFF_SIZE) / N 

Figure 7.13 (continued) Cost Functions 

7.4.6 Output Format 

Appendix B contains annotated extracts from AG2's output for the working example. 
The schematic for this example is shown in Figure 7.14. 
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Clock! 

1  ROM-1000 Csig_21 6 
C R 
0 0/ 

N(o..32) 
T 

LS 
2 LSB/ 

T Flip Flops 

Gating_sig 5o 	° 
Gating_sig 60- 

1 'o'__.__ 
'0' 

Gating_sig 

3t1 

IIIII _r _ 
c  Preset 

R 
E 

'20' Mod. 	M  

N 5 u 

'3' 
T 

Inc. 'O' during ticks O..21 
'1' during ticks 22..51 

- - - 	- 	Figure 7.14 -Schematic diagram of synthesis result for working example. - 

7.5 Other worked examples and results 
The first example from the real world is that of a memory access pattern for image 

compression. A 256 by 256 word memory is to be accessed in 8 by 8 blocks of pixels, 

on a row by row or column by column basis, where the zig-zag access pattern inside the 
blocks is shown in Figure 7.15. 

Start Here 

Fimsh Here 

--- ' 7 117 / . / --- 7 - 

/77777 7 
7777777 
- 777777)- 
727Z7Z 

Figure 7.15 Access pattern of 8 by 8 block of pixels. 
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The solution to this problem is not a simple one, but with a bit of thought a decent 

attempt may be made. Having input the 64k-word access sequence in row-by-row 

format - generated automatically using the graphical entry tool - to AG2, we get the 
following result. 

15 B 	15 

5 N 	11 1'! 
A 
R  10 
Y p MEMORY 

(0..65535) 8 
C 	10 o / 

256 by 256 
7 

U 	6 

T 	5 RAoLIIJ_ 
"5 

31 

Clock----] 

Figure 7.16 Primary solution to image compression access problem. 

This is the same result as was obtained manually, for which the combinatorial logic 

block was synthesised automatically as about 100 gates * . Further examination of the 
- output from the logic block leads to the conclusion that the sequence is symmetrical 

about its mid-point, and the second half of the sequence is in fact the first half of the 

sequence, inverted in polarity and in time. To get a sequence to reverse in time is 
possible if the first half of the sequence is stored in a look-up table (LUT) which must 

be traversed in both directions. For our example, the LUT will be 32 words long, and 
the access sequence for it should be a count from 0 to 31 and then back. This may be 
generated by a 6-bit binary counter as demonstrated in Figure 7.17. 

BC 
I 0 	MSB 5 EXOR gates 

(0..63) 

R 
0 

0.31,31..0,0.31,etc. 

YRA 

Figure 7.17 Producing an up/down count from a simple counter. 

* Thanks to Martin Bolton of SGS-Thomson for this information. 
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In  order to invert the polarity of the sequence, also at its mid-point, the same method 

may be used on all the output bits from the LUT, which now needs to be half the original 

size. The final design for the zig-zag access pattern generator is shown in Figure 7.18. 

The logic equivalent of the LUT would take up just 58 standard cells, with an overhead 
of approximately 10% to reduce critical path length, for speed purposes 

B 	15 	 15 

N 	11 	 11 
A 
R 	 10 
Y 	 I 

. 	 MEMORY 

C in 	
. 	

256 by 256 
0 
U 	6 

Clock -----J 5 EXORs 	 6 EXORs 

Figure 7.18 Final zig-zag pattern generator design. 
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The next two real examples come from another vision application, and are best 
described using a set of address/time graphs. Each example has a Write and a Read 

Lddress sec 

E. 50 

75 

. 50 

w. 
Ui 
W47.SO 

ft 38 

4 2B .  so 
Is 

9.50 

0 

uence, as shown in F'igure 1.19 10 rigure I.zz. 

 

72 	143.E021S.20.G058.40430 	SOl.BOS75.20B44.80715.4000 

7:Z ME (CLk< 71k<S) 

Figure 7.19 Example 1 Write address sequence plotted against time 

Er= SO 
	

IiL 

Lo S7 

\ 
<28.50. 

o 	 I 

0.43 0.51 0.58 O. 	0.73 0.80 0.99 0.95 1.02 1.10 1.17 XtO--3 

TIr'IE 	Lk< TICKS) 

Figure 7.20 Example 1 Read address sequence plotted against time. 
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Figure 7.21 Example 2 Write address/time graph. 
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Figure 7.22 Example 2 Read address/time graph. 
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Examining these graphs we can see that the first example requires rather simple 

address sequences, while the latter requires much more complex sequences. The 

resulting address generators for the first example are shown below and these were 

derived from the output of AG2 without the temporal partitioning of the sequences, 
wnicn may nave neipea. 

Write Address Generator 

Mod 96 
Counter k/7-- 

Address Bit Number 

LOGIC I 

4 
5Bit 3 

Binary 2 
Counter 

1 
0 

Clock 1/4 

Read Address Generator 

Mod 359 
Counter ~9LOGIC  

Mod 360 I 	I 

Counter 	
ROM 

Mod 348 ' 	 I  

Counter 	Ic? 	LOGIC 

Mod 349 
Counter 	i  

Clock2 

Figure 7.23 Resulting address generators for first example. 

4 

3 
2 
1 
0 

5 

4 
3 
2 

1 

i] 
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The  Read address sequence, containing 360 addresses is obviously rather complex, 

requiring a lot of combinatorial logic to implement its generator. The specified 
architecture of several large counters stems from that fact that each individual address 

bit sequence ends with the same short (and possibly inverted) bit sequence as it starts 

with.This short repetition does not make the sequence much easier to generate through 

logic, so that it is likely that the final architecture after designer intervention would be 

as detailed in Figure 7.24, with the individual logic blocks combined to aid 

optimisation. It is hoped that this process of optimisation will be automised at the 
earilest date.. 

6 

Mod 360 	 ____ 

Clock2 	
Ow E~LOGIC*F  

Figure 7.24 Final address generator architecture for the Read address sequence. 

Another problem not yet approached is that of timing. Obiviously with all the logic 

required, as well as ROM access delays, the output signals would be difficult to 

synchronise, and the critical path through a logic network may be longer than the 

- - - - _ 	iimrnispeçfied in the problem. This is not apjobtenl we wish to approach he_ 
moment because of the difficulty in technology mapping, but let it be said that the 
results given here are not constrained by timing considerations. In fact, the Write 
address generator may also take the form shown in Figure 7.25, where the knowledge 
that there will be an appreciable delay through the logic block is used to authorise the 
use of a rioole counter-Woe architecture. 

Figure 7.25 Alternative Write address generator architecture for first example. 
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It  is probable that a more efficient solution could be found for the Read address 
generator if the address sequence was partitioned into sections of obvious regularity - 

The diagonal address/time graph sections - but because the address sequence was not 
continuous in time (There is an irregular clock signal required), making the 

optimisation unpredictable, this partitioning was not attempted. 

The second, and much more irregular pair of address sequences yielded the design 

illustrated in Figure 7.26. This again shows the signs of a sequence, length 720 words, 

whose complexity merits the construction of a single pair of logic blocks of some form, 

although it is interesting to note from the address/time graphs that the second group of 
three scans of memory in the Write address sequence is repeated exactly as the first 
group or tnree scans in me Read address sequence, and could thus share hardware 

Write address generator Read address generator 

\r\_ 8 
Mod 716  riiii_ 3 

I Counter I—~j1LOGIq----_  1 
0 

Mod 713 
Counter 10 	LOGIC  

0 0 
I Mod 719 

C Counter 10 LOGI 
Mod 718 

LOGIC  - 

• 10EfIIII Counter 

Mod 7179 
4  

r i-D 4 Mod 718 
Counter LOGI -  L) 3 r7ioE__ 107 5 

Mod 714 
_jCounter io°I 

Clockl/2 

Figure 7.26 Address generators for second example. 



- 128- 

The  final real example comes again from an image processing application and is 

certainly the most complex of the examples presented. The address/time graphs for the 

Write and Read address sequences are given in Figure 7.27 and Figure 7.28. The 

approach to synthesis here is to partition the address sequences into sections which 

show some regularity, and this is especially useful for the Read address sequence which 

shows obvious points of interest. 

Examining more closely the second half of the Read address sequence, shown in 
Figure 7.29a and b, the regularity is obvious, and handing this section to AG2, as a high 

address sequence, a low address sequence and a high-low control sequence, produces 

the address generation architecture shown in Figure 7.30. We have ignored the timing 
and clocking of this generator for simplicity, but there may be a skew problem with the 

long chain of flip-flops. This partitioning technique for address generator synthesis 

would be greatly helped by the inclusion of some graphical interface to allow easier 
sectioning of the sequences, but unfortunately the time and resources were not 

available, so this has to remain a part of future work. 
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Figure 7.27 Address/time graph for Write address sequericeforfinal example. 

1Xi0.f 

1.27 

1.11 

U10-S5  

to 
w0.79 

00.63 

0 

<0. 47  

0. 32 

0.16 

0 

0 	0.29 0.57 0.06 1.15 1.43 1.72 2.01 2.29 2.Se 2.67 xiO•-4 

TIME (CL.OD< TICKS) 

Figure 7.28 Address/time graph for Read address sequence for final example. 
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b) One section of the above. 

Figure 7.29 Closer examination of small section of Read address sequence for final example 
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Figure 7.30 Address generation architecture for section of Read address sequence. 
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7.6  ADA - Abig step 
The reason for writing AG2 in ADA was one more of necessity than of choice. It 

was originally intended to form part of the SAGE toolset, also written in ADA and it 
still uses many common items in the SAGE data model. 

To learn the necessary features of ADA takes weeks and it is not at all an easy matter 

to get even the simplest of programs running. Once the hurdles of library, family, 

package and procedural definition have been crossed however, ADA becomes a boon 
to the programmer, with its user-defined types, generic programs and overloading 

facilities. It is fair to say that the coding was done more efficiently in ADA than in C, 
after a respectable learning curve. 

7.7 Comments 
The AG2 synthesis tool is by no means a complete system. There is no guarantee 

-, that it will find a better, solution than any other system for a given address sequence. 

AG2 is envisaged as a preprocessing stage before the more common logic synthesis 
stage, through which any deterministic sequence should be passed in an attempt to find 
a cheaper solution than would normally be produced. 

The data structure in AG2 was designed to support memory synthesis as well as 
address generator synthesis and could form the basis for a more complete tool. A 

standard input format has been described along with interfaces to two other tools - MC 2  
for data path synthesis and scheduled memory access sequence specification, and AG1 

'for its logic synthesis stage. Much of the method described here may be extended to be 

more clever or more complete in the recognition and synthesis of other forms of address 

generator, and the optimisation stage especially requires a higher degree of complexity 
which was not implemented in this work. 

Several examples have been presented which prove the power of the tool in certain 
situations and also prove its applicability to scheduled memory address generation - a 

field previously combined with general comtroller synthesis. The run-times for the 

examples are quite satisfactory for real-time design, and so could be of help in an 

iterative, interactive CAD environment, for costing partial designs. 
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8 Address generator synthesis as part of a 
general behavioural synthesis toolset 

8.1 Introduction to SAGE - Concepts and Reality 
The approach taken in the SAGE design tool [34] was to provide a human designer 

with extensive design assistance in real-time VLSI architectural synthesis, but to leave 

the designer with overall control of the design process. This was to be done with no 
architectural constraints, other than that continuous-time analogue circuits would not be 
an option. Design-for-correctness was also proposed, to reduce simulation costs at a 

later date, and the whole process was to be interactive, with cost functions produced by 

the system as feedback to the human operator. This would encourage the designer to 

iteratively refine an initial architecture, devised by the expert's experience, with 

proposed design times of between five and twenty engineer-days for a 100,000 
transistor ASIC. The process-independant output from the SAGE tool would then be 

passed to existing logic and layout synthesis tools for a final design specification, and 

all stages of its design would be automatically documented to help explain the design 

strategies followed. The proposed SAGE design environment is shown in Figure 8.1. 

SPECIFICATION 

Compile 

lata-flow graph 

resource-time graph 

cost indicators 

To physical design and assembly 

Figure 8.1 The Proposed SAGE Design Environment. 
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An  important feature of the system is the resource-time graph representation of the 
design space, and an example is given in Figure 8.2 for the data-flow graph shown. 

	

a 	c  
Data-flow  
Graph: 	 2 

x = a+b+c+d; 

x 

	

' 	 ' 

' 	Resources 

::. 

:: 	 .3 

Time 

Figure 8.2 Resource-time graph for a three-adds example. 

This resource-time graph represents a maximal hardware solution with no operation 

conurrency, and the human designer would be expected to compress the graph in time 

and resource numbers to realise a more optimal solution using smart, global cost 

functions to guide the process. This is illustrated in Figure 8.3 for the three-add 
example. 



- 135 -  

E 1  

' 	R 

t . 

J_ 
T --  

POWER 	
T 

E 1  

R 

t.. 
T+ 

,t4 
POWER 

mma 

' 	R 

1.. 
-I-. 

T+ 

Design Time 

Figure 8.3 Manipulation of the resource-time space. 

There is one major problem with the resource-time graph, in that for a design of any 
appreciable size, the graph is too cluttered with information to make much sense, and 

large designs must therefore be partitioned, locallising any optimisation stage. 
Unfortunately, the proposed flexibility for SAGE introduces very complex problems in 
supporting this hierarchical design approach, which could not all be tackled within the 
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lifetime  of the project. So the SAGE tool remains for now a quite comprehensive 

template for a general behavioural synthesis system, capable of most of the sub-tasks 
proposed, but lacking the clever design techniques necessary in producing more 
optimal data paths in individual designs. 

8.2 Address generation within SAGE 
The address generator synthesis tool previously described has not yet been fully 

integrated with SAGE. Steps were taken to at least provide some sort of address 
generator synthesis in SAGE, and these are dealt with in the following sections. 

8.2.1 Scheduled memory 

The detection of scheduled memory requirements and subsequent address 

generation requirements is not a simple matter within the SAGE data model. Very 
simple address generators, actually constant generators, will have already been placed 

in the structural and behavioural descriptions by the scheduled memory synthesis stage 

{147], and these must be replaced with calls to a single address generator for each (1-
port) memory. 

As a compromise to time, with AG2's functionality unavailable, a ROM-based 

address generation solution is the default, and this would probably be chosen anyway, 

for the short, rather random sequences. A gated-clock counter of the correct length is 
also specified,to_generate.the ROM addresses, -and-like - the ROM, --is-created--
automatically (See Section 8.2.3). Figure 8.4 below shows the changes made to the 

behavioural and structural models as a result of this rather crude address generator 
synthesis. 
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Figure 8.4 Effects of simplified address generator synthesis in SAGE. 

A ROM has a single structure, of course, 
but must have a separate behaviour for each 
datum stored in it, in order to distinguish 
those contents from one another. 

8.2.2 Array memory 

Array memory addressing is at present handled by the VTIP front-end to SAGE, 

which specifies the address generator directly from the VHDL description of its 

requirements. The loops, or otherwise, are considered as part of the main process, and 

have counters, adders, comparators, etc. specified as required, as illustrated in 
Figure 8.5. It is possible that the VHDL description of the address generator could be 
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simulated, to generate the actual address sequence, to be handed to AG2, but this has 

not yet been attempted. 

Figure 8.5 Address generator synthesis by SAGE front-end. 

8.2.3 Macro-generation of counters 

As counters play an integral part in most address generators, it makes sense to allow 

a macro-based approach to their construction within SAGE. The coding of the macro-

generation tool proved invaluable experience in dealing with the SAGE data model. 

Three different specialised counter architectures are possible: A preset modulus 

version where the modulus of the counter is hardwired; A parametrisable modulus 

counter with a port dedicated to supplying the modulus; A binary counter specifically 
designed for the controller synthesis stage in SAGE, with STOP and CLEARBAR ports. 

In order to to create these specialised counters architectures, two further macro-
generators were developed. The first produces an n-input AND gate from two-input 

gates, in such a way that the minimum delay through the net is achieved, and the second 

uses this facility to produce the core counters which will be placed in the specialised 
architectures. 

Four different counter variants are provided for: Serial carry: Parallel carry; Ripple 

carry; Strobed ripple carry. The two ripple carry counter types have a parallel carry for 

every four counter bits, reducing possible skew to a managable level. 
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8.3 Future plans 
There are no plans at the moment to fully integrate AG2 with SAGE. This is not to 

say that it would be an impossible task, since the same address generation data structure 
is used in both, and the input/output formats are quite amenable to full integration, but 

simply to say that time has not allowed it. 

8.4 Comments 
The problem of developing a general design system is at the outset one of enormous 

proportions. Developing a coherent data structure is the first task, but trouble appears 

without careful definition of the interfaces between parts of the system. The user 

interface can then be drawn up, so that the testing of tools is supported from the start. 

Only then should the coding of each tool commence, with each programmer providing 

example output from his own allocation of work, so that interfaces can be matched. To 

hand-code an entire data model for test purposes requires a second user interface, which 
should be developed alongside the data structure, before the actual system visuals are 
required. 
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9 Conclusions and new directions 

9.1 Conclusions 
In this thesis we have tried to preset a coherent explanation of address generation as 

a high level synthesis step. Starting with the definition of the address sequences targeted 

and the advantages of biasing synthesis towards the use of counters, we gave an 

example of just what can be achieved by this. Some possible architectures for address 

generators have been described, including the introduction to the modulus m counter 

which can play an important part in sequence generation. 

Then the various requirements for address sequences were investigated, including 

a short description of data-dependent addressing. The areas of scheduled and array 

memory access were proposed as candidates for synthesis, as well as any deterministic 

control sequences, before the introduction to AG1 - A synthesis tool targeting the use 

of binary counters. It was found that by iteratively bisecting the individual bit sequences 

of an address sequence 2' words long, the possible use of binary counter bits in their 

generation could be recognised. At this stage it also became necessary to provide a 

graphical entry method by which memory access patterns could be manually defined in 

the minimum of time. Several real and possibly-real examples were given and their 

solutions found using AG1 were shown to exactly match those produced manually, with 
orders of magnitude reduction in design time. Putting this performance into practice in 

a much more general synthesis environment was later to prove no simple matter, but the 
experience gained in designing AG1 was to be invaluable. 

To approach the problem of less regular access patterns and even short term or 

foreground memory management required a deep investigation into automatic 

recognition of the use of non-binary counters, but before any such system could be 

tested on real examples, those examples had first to be specified. Synthesising the short-

term memory is normally the last stage in high level synthesis, apart from controller 
synthesis perhaps, and no scheduled memory address sequences were available in the 

literature, so that a diversion of attention was necessary to further investigate the field 

of high level synthesis, in the hope of constructing a very simple foreground memory 
synthesis tool to produce such example sequences. 

After the results of that investigation were presented, there followed a description 

of MC2, a mainly rule-based data path synthesis suite, which can produce from an 

operation-priority schedule and some resource allocation information, a data path in the 
form of a neffist, including registers and register files, multiplexers and ROMs, whose 
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address and control sequences are made available to allow their generation to be 

investigated. MC2  was shown to apply both well known and novel techniques in a 
pragmatic manner and to produce as a side effect of memory synthesis, data paths to 
rival those given in the literature. The memory synthesis-first approach may be a little 

wasteful in memory space but to the benefit of control and communications complexity. 

Comparisons with the literature were made with some difficulty due to the diversity of 

reported information, and so the outline for a standard format for reporting data path 
synthesis results was presented. 

Next the final, main piece of work was discussed. A general address generator 
synthesis tool - AG2 - was presented which built on the experience of AG 1 to develop 

ways of recognising non-binary counter-produced sequences, and was shown to allow 

the design of a whole system's address generation layer. This was optimised as globally 

as possible given the short run times required in the iterative behavioural synthesis 
system - SAGE - in which AG2 was envisaged to play a part. 

Based on an extension of the method of iterative bisection of bit sequences, novel 
algorithms in AG2 control the recognition and global optimisation of sequence 

generators, in turn based on both binary and non-binary counters as well as several 

other possible address generator elements. To facilitate all this, a coherent and 

comprehensive data model was presented along with a textual user interface, with 

which both AOl and MC2  are compatible. 

The three main stages of the synthesis process were all described and backed up by 

several examples of their use. Firstly the development of possible solutions was 

described. This depended mainly on the user to provide some hint as to the modulus of 

counter to be used if possible, but automatic methods were described which find this 

hint on a bitwise basis within the address word. Next, a simple transformation was 

applied which allowed iterative bisection techniques to work on sequences generated 
by non-binary counter bits. Explanations of this and other generator-recognition 

techniques were presented using a working example, which was construed to show 

most of the features of the AG2, rather than to be representative of real problems. 

Finally the area-cost based optimisation of the address generators was expounded, 

before the results of synthesis for several examples were presented. AG2's results are 

simple to interpret and were shown to be of excellent quality when compared to manual 
designs. It remains to be seen if AG2 is any better than some other synthesis tools, but 

it is felt that good advances have been made in the area of address generator synthesis. 



NEFIX 

As high level synthesis moves into its second decade and it struggles to keep up 

with the demand for more intelligent ASIC synthesis, the field is fragmenting as each 

new problem appears. It is unreasonable now to think that all of a designer's knowledge 

may be incorporated in the automata, or that every problem is foreseeable, and we are 
sure that as ASIC design progresses into behavioural synthesis, new problems will be 
encountered. However, if a pragmatic, hands-on approach is taken, as in this thesis, then 
it may soon be a reasonable thought after all. 

The main problem in developing useful tools in the past has been a lack of 

consistency in design representation. VHDL aims to change that, with the authority of 

the I.E.E.E. and the N. American D.ofD. behind it, and already CASE tool frameworks 

are being marketed to provide a systems-level design environment into which tools like 
AG2 may be designed to fit. It is possible that such frameworks may be seen as overly 
constrictive on future design plans and it may be some time before a framework is 
produced to be acceptable to all, in the knowledge that the industrials would then have 

to play by the same rules. There might then be a return to the competitive, secretive, in-
house coding that we have seen in the past, perhaps to the detriment of technical 
advancement. 

On a different note, many of the task in high level synthesis would benefit hugely 

from a multi-processor environment, and configurable processor arrays coupled with 
iterative synthesis tools could be used to provide instant simulation and feedback on 

- -- system dynamics and design constraints. An array of processors may be programmed - 

to act like the architecture defined by the synthesis tool and fundamental to this 

technique would be the coherent interface between the hardware and software. For most 

tasks in high level synthesis a depth-first approach is best - You don't know the best 

solution until you have tried then all - and hardware simulation should take the sting out 
of this infuriating truth. 

9.2 Future Plans 
Further work to be undertaken on AG1 might be an improved, mouse-driven 

graphical interface for the definition of memory access patterns, and in MC 2  a graphical 
rather than textual description of the synthesised data path would be better. 

For AG2 there is a need for another graphical interface for the analysis of long, 
complex address sequences, and other improvements might include the exploration of 

ROM contents to allow possible optimisation, automatic array memory optimisation by 
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the methods described in Section 4.4, and an output format compatible with the SAGE 

tool or even in VFIDL or EDIF. 

Other plans include the use of AG2 and its data structure as the basis for another 

project on memory synthesis in general. There is also a motive for an investigation into 

memory-based scheduling: Instead of scheduling computational operations onto a 

smaller set of resources, the chronological constraints on the order of operations - in 

effect their storage requirements - are mapped onto a given, but possible flexible 
memory architecture. 
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Synthesis of Address Generators 
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Edinburgh EH9 3Th, UK. 

ABSTRACT 

This paper describes an approach to address generation hardware synthesis. We present 
algorithms and tools that describe the hardware between a binary counter and the 
address port of a block of memory, which is accessed in some repetitive pattern. These 
tools match results produced manually for examples taken from a VLSI image 
processing application. 

Introduction 

RandomAccess Meitiory,as it 	 fó 
randomly addressable locations. In many applications, however, the sequence of 
storage and retrieval for particular blocks of data is strongly patterned. This applies 
particularly in signal processing (several examples from a vision application are 
repeated below) and in other applications. 

In these cases it is often useful to arrange memory allocation in one of the following 
ways: 

the incoming data is written to consecutive locations and the consumed data is read 
in the required pattern; 

the incoming data is written in a pre-determined pattern so that reading can proceed 
from sequential locations. 

It then becomes feasible and efficient to generate the necessary address patterns either 
directly from a dedicated counter, or via circuit transformations (bit-shuffling and 
combinatorial logic operations) applied to a counter output. Figure 1(a) shows a 
generic model for this scheme, in which a counter output is used to provide a 
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consecutive address sequence, which is modified as necessary by an offset, ö, and 
transform, T. 

MEMORY 

DATA 

MEMORY 

DATA L] 

- Figure i--Generic- address-generation -architectures:- - 

The offset ö is additive and simply accounts for an arbitrary delay in commencing the 
sequence of read operations after the commencement of write operations. This offset 
function may be avoided if the read sequence does not overlap the write sequence, in 
which case the counter may simply be reset to commence the read access; or the offset 
can be achieved by using a second counter started, or reset, to ensure read sequence 
synchronisation. This arrangement is shown in Figure 1(b) and can be beneficial for 
high speed applications. 

The class of problems we address here are characterised by partial regularity in the 
retrieval sequence. In particular, we exploit redundancies that are present whenever 
patterns occur whose length is some power of two. This situation is not so contrived as 
it first appears. Memory allocation in practice is commonly and advantageously 
partitioned into power-of-two segments, not least because of the resultant efficiency of 
address generation that we exploit here. Several examples below reinforce this 
argument. The corresponding solutions for address generation are often apparently 
elegant but their derivation is generally non-trivial. Again the examples below 
demonstrate this point. 
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A  First Example 

As an example, we look at a particular retrieval pattern for image processing*. This 
pattern is shown in Figure 2, and is such that every second memory element on every 
second line is addressed, and this is repeated four times for each 16 by 16 block taken 
from a 256 by 256 image (interpreted two-dimensionally). 

Here it is not obvious how to generate the retrieval sequence, and a designer would use 
some intuitive knowledge and some trial-and-error to come to a potentially incorrect 
solution. Unfortunately, simulation is not an effective aid in these circumstances 
because of the exceptional run times required for even moderate counter lengths. 

It is usually quite simple to represent the address sequence in software (Figure 3 
represents in pseudo-code the generation of the scan-pattern of Figure 2 ), where it is 
generated by a series of nested loops, or to build up the address sequence using a 
graphical entry tool. As long as the address sequence can be generated and has power-
two separation, the corresponding address generation hardware may be automatically 
synthesised. 

a) (Repeated four times) 	b) 

Figure 2: a) Retrieval pattern required for a 16 by 16 block of memory elements; 
b) 256 by 256 pixel array,comprising 16 by 16 blocks from (a). 

for Y = 0 to 65535 step 4096, (block height = 16 rows) 
for X = 0 to 255 step 16, 	(block width = 16 columns) 

for i=lto4, 	 (do 4times) 
for y = 0 to 4095 step 512, 	 (every 2nd line) 

for x= (y/512) mod 2 to 15 step 2, 	(every 2nd pixel) 
address = x + y + X +Y, 

next x, 
next y, 

next i, 
next X, 

next V 

Figure 3: Address generation in software. 
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* 
This is derived from an actual VLSI image processing and pattern recognition system, under 

development at the University of Edinburgh. This particular example comes from an early 
image filtering process which samples blocks of the image to determine an appropriate 
threshold to be set for binarisation. 

Synthesis algorithm for non-random address seauences 

In this section we describe an algorithm to synthesise transform circuits that operate on 
the linear sequence produced by the write-address counter to produce the specified 
retrieval sequence. 

The first stage of the process is simply to build a sequential list of the addresses to be 
produced. (See Figure 4.)This list is the basis for synthesis, and may be generated by 
hand, by execution of code (Figure 3) or by other methods. 

Address list = [0, 2, 4, 8, 10, 12, 14, 513, 515, 517, 519, 521, 523, 525, 527, 1024, 
1026,1028,1030 ...... 1. 

Figure 4: List of addresses to be generated. 

Now we attempt to generate this sequence from the bits of the linear sequence generated 
by a binary counter. Starting with the LSB of the addresses, we look down the sequence 
of bits, applying the following rules in order, unless otherwise specified: 

Split list of bits, list[1 . .2n], into two halves, list[1 . .n] and list[n+ 1.2n]. 

For example the list: 

[0,0,0,0,1,1,1,1,0,0,0,0,1,1,I ' ll 

becomes: 

[0,0,0,0,1,1,1,1] and [0,0,0,0,1,1,1,1] 

and the list: 

[1,0,0,1,0,1,1,0,0,l,1,O,1,0,0,1] 

becomes: 

[1,0,0,1,0,1,1,0] and [0,1,1,0,1,0,0,1] 

(These lists are much larger in practice). 

If the original list has a single entry, then force the current address bit to '0' or '1', 
according to the state of that entry, and then go on to examine the next most significant 
bit of the addresses. 
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This  only happens if all the entries in the original list for the bit were identical. 

If the two halves of the list are identical then reduce the list by returning to (1). 

This controls the use of Rule 1 by allowing the first half of the list to split, only if both 
halves are identical. For the first example given above, after the first split the two halves 
are identical, and so we can take the first half and split that: 

[0,0,0,0,1,1,1,1] 

becomes: 	[0,0,0,0] and 

If the two halves are not identical, nor the logical inverse of each other, then we 
cannot use any counter bits directly connected to this address bit, and we go on to use 
the logic generator (section 4 below). 

Rule 5 checks that the list has a length of 2m  (which should always happen) and 
stores the fact.that the (m+l)th counter bit, Cbltm,  can be used to generate this list: 

Rule 5 is invoked with the knowledge that the two halves of the list are not identical 
(otherwise it would have been split again) but that they are the logical inverse of each 
other. Several possibilities arise at this point, with the list having many different 
possible forms: 

[0,0,0,01 and  

[0,0,l,1,0;0,1,1] and [i,10,0,1,1,0,0], 

[1,0,0,1] and [0,1,1,0], 

[0,1,0,0,1,1,0,0] and [1,0,1,1,0,0,1,1]. 

If all bits in the first half, list[1 ..n], are equal, then the list has been reduced as far 
as possible, and Rule 7 is called. 

Thus lists which conform perfectly with a binary counter bit are identified. 

If not all bits are equal, then use the (m + 1)th counter bit (from Rule (5)) XORed 
with whatever bit is chosen by halving the list again and returning to (2). 

Rule 6b deals with the other possibilities from Rule 5. Any list which has the two halves 
non-identical, but logically inverse, and not all entries in one half the same, is the XOR 
function of the (m+1)th counter bit, with whatever is produced by returning to Rule 1. 
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cbit  3 ==> adbit 0 
cbit 0 ==> adbit 1 
cbit 1 ==> adbit 2 
cbit 2 ==> adbit 3 
cbit 8 ==> adbit 4 
cbit 9 ==> adbit 5 
cbit 10 => adbit 6 
cbit 11 => adbit 7 

'0' ==> adbit 8 
cbit 3 ==> adbit 9 
cbit 4 ==> adbit 10 
cbit 5 ==> adbit 11 
cbit 12 => adbit 12 
cbit 13 => adbit 13 
cbit 14 => adbit 14 
cbit 15 =>adbit 15 

(a) 	 (b) 

Figure 5: a) Output from synthesis tool, 
b) Bit mappings for scan-pattern. 

If the first bit in the list is a '1' , then negate whatever counter bit, or function of bits, 
has been chosen. 

Print out the connections from counter bit(s) to address bit, and start at (1) with the 
-next most -significant -address bit. - 	- - 	- -. 

Once this process has been completed for all address bits, we have a list of connections 
from counter bits to address bits - the mapping, or transform - which will produce the 
correct sequence of addresses with the minimum of logic. The resulting mapping for 
our first example is shown in Figure 5 (Note that this requires only a set of hard-wired 
connections with no additional logic). 

Logic synthesis for semi-random address sequences 

Often an address sequence may contain bit sequences which repeat after a power of two 
of addresses generated, but which do not map directly to a counter bit or an EXORed 
combination of bits. A logic generator has been written, based on sum-of-products 
logic, which synthesises the necessary logic for generation of these bit sequences from 
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a raw counter output. Once it has been decided by rule (4) in the previous section, that 
some logic is needed to generate the address bit currently under analysis, the logic 
generator is called. This consists of the following processes: 

Find the minterm value ('0' or '1') by counting l's in sequence. 

Find the next mnterm which has not already had logic generated for it. 

Generate the logic for this (and possibly other) minterm(s) by exhaustive mask 
generation and pattern matching. Mask generation produces all possible combinations 
of counter bits, and all counter values with the same pattern of bits are checked. If this 
pattern matches only those counter values which correspond to minterms, then the logic 
to generate these minterms is easily read from the bit pattern. 

Print out the logic generated and return to (2) if any minterms remain unmatched to 
logic. 

In this way a semi-random sequence of bits, which repeats every 2'' addresses, can be 
generated by n counter bits plus minimal logic. An example is given below. 
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rand[] =10, 0,  1,0,1, 1,0,0,0,0, 1,0, 1, 1,0,1 }, 
for Y = 0 to 65535 step 4096, 

for X=Oto 255 step 16, 
for y = 0 to 4095 step 256, 

for x = 0 to 15 step 1, 
address = rand[x]*x + y + X + 

next x, 
next y, 

next X, 
next Y. 

Figure 6: Loops for a semi-random scan-pattern. 
MSB 	 MSB 

(b) 

bit 1 

(cbit0.cbitl bar.cbit2 + 
cbito.cbit2.cbit3) ==> adbit 0 
(cbitobar.cbitl .cbit2bar + 
cbit0.cbitl .cbit2.cbit3) ==> adi 
(cbitl bar.cbit2 + 
cbit0.cbit2.cbit3) ==> adbit 2 
(cbitObar.cbitl .cbit2bar.cbit3 + 
cbitl bar.cbit2.cbit3 + 
cbito.cbit2.cbit3) ==> adbit 3 
cbit 8 ==> adbit 4 
cbit 9 ==> adbit 5 
cbit 10 => adbit 6 
cbit 11 => adbit 7 
cbit 4 ==> adbit 8 
cbit 5 ==> adbit 9 
cbit 6 ==> adbit 10 
cbit 7=> ádbit 11 
cbit 12 => adbit 12 
cbit 13 => adbit 13 
cbit 14=> adbit 14 
cbit 15 => adbit 15 

(a)  

C- 
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Figure 7: a) Output for semi-random example, 
b) Bit mappings & logic. 

Further work 

If the semi-random sequence of address bits is longer than some number of bits, then 
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we consider it to be fully random, and must look to other methods to generate the 
addresses. 

Possible solutions include the use of either local or controller ROM space to store the 
addresses, or some combination of the two. It may also be possible to re-allocate the 
memory space itself, so that the addresses can be more economically generated. The 
cost involved in each of the possible solutions is calculable from the relative areas of 
ROM and RAM bits, and of flip-flops (for the counter). The area of wires is not 
calculable until their lengths are known, but an n-bit bus can be taken to be n times the 
area of a single wire, of an arbitrary length. 

Work is proceeding on a goal-directed tool which will attempt to automatically 
synthesise address generation hardware for any sequence of addresses of any length. 
This tool is targeted at address generation for memory requirements incurred during the 
design of a system, rather than those inherent in the system's specification. 

Status and performance 

The synthesis procedures given here have been implemented in 'C' and used to 
generate the above examples. It was found that execution time varied linearly with the 
length of the address sequence, and depended very little on the complextiy of the 
solution, as shown in Table 1 below. 

Length of sequencel Execution time 
(No. of addresses) (seconds) 

4096 3.5 
8192 7 
16384 14 
32768 28 
65536 56 

Table 1: Performance statistics on a Sun 3/60. 

Conclusion 

Address generation is an important element of a whole synthesis system. Memory 
allocations which emphasise power-of-two patterns encourage efficient address 
generation and we have reported general synthesis techniques to realise address 
generators which exploit this potential. The tool has been written and used to 
synthesise examples drawn from a real VLSI vision system. The results match those 
produced manually and have led to the adoption of this tool in a second generation 
design for the system. 
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Memory, Control and Communications Synthesis for Scheduled Algorithms 
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This paper explores a method of grouping individual memory requirements from a hardware-con-
strained schedule of an algorithm, such that control and communications maybe optimised. A new 
representation of memory requirements is introduced to explain the method. The technique may 
also be used to allocate operations to hardware resources. This, and control and communication 
optimisation are illustrated with an example. 

- 	 1. INTRODUCTION. 

An important step in any ASIC synthesis system is that of memory allocation for intermediate variables, 
which may come before or after the operator (hardware resource) allocation step, working on a validly 
scheduled algorithm. This step will in turn introduce communications and control requirements, for 
which an optimum solution must be found. 
The intractability and interdependency of each of these steps can result in an iterative synthesis method 
in order to obtain a good result. In order to produce real-time feedback to an interactive scheduler how-
ever, a faster, one-shot synthesis method is more useful, and this paper describes such a scheme. Section. 
2 sets the limits of the problems we aim to solve. Section 3 gives an overview of related work. The ex*_ 
ample which the- method- is explained -,- is -introduced in Section4andSections5; 6- and 7-describe-
the memory, communications and control synthesis steps respectively. Results and comparisons with 
other work are presented in Section 8, and conclusions are drawn in Section 9. 

2. LIMITS OF THIS WORK 

The schedule on which data-path synthesis depends, is passed to the tool as a database of Edinburgh-Pro-
log facts, which defines a directed (a)cyclic graph, as well as information about the hardware constraints 
in force. Pipeline delays may be declared explicitly in the schedule. The synthesis tool then extracts all 
memory requirements and, inserting delays if necessary, groups these requirements into memory blocks, 
having one Read and one Write port. A bus-based communications network is then constructed between 
hardware resources and the memory blocks, and its multiplexers' control requirements extracted and 
minimised. No attempt is made to further reduce the size of the memory blocks by register sharing, since 
this will be carried out by a separate tool, currently under construction, with address generation costs in 
mind. 
The whole process may be carried Out before or after operator allocation, but if done before, will return 
such an allocation, derived directly from the memory allocations. 
The output from the system consists of a netlist of connections between operators, memory blocks and 
2-to-1 multiplexers (2tolmuxes), along with optimised control sequences for those muxes, and the vir-
tual address sequences for the memory blocks. 

• Supported by the Science and Engineering Research Council, and by 
British Aerospace. 
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Conditional branches are treated as separate, since the memory requirements of each branch may be dif-
ferent, and so all possibilities must be allowed for. 

3. RELATED RESEARCH 

Several different approaches to the problem of register allocation have previously been attempted. In 
CATHEDRAL II [1],  memory requirements suited to register files and FIFO's are extracted from the al-
gorithm description by a Background memory manager, which passes them to a Foreground memory 
manager. CMU-DA [2] uses a linear programming approach to group registers to multiport memories 
such that interconnect costs are reduced by judiciously assigning registers to the ports of the memories. 
This may be done before or after operator allocation, but does not take into account register sharing or 
the functionality of the operators. 
REAL [3] uses a greedy Left-edge algorithm to minimally colour a set of data lifetimes and thus find an 
optimal set of registers before operator allocation, and EASY [4] does the same, but after allocation, and 
includes interconnect costing, before attempting to group registers into register files, again with intercon-
nect costs in mind. However, results are not presented for this. FACET [5] uses formal clique-partition-
ing techniques to group variables onto registers, which are then grouped into files, if possible, before op-
erator allocation takes place. SPLICER [6] utilises a recursive synthesis method, on small sections of a 
schedule at a time, to construct a bus-based interconnection network, but predefines a possibly incorrect 
minimum number of registers on which to work, while SCHOLAR [7] synthesises a point-to point inter-
connection network, with single-level multiplexing. SPA]D [8] groups memory requirements into reg-
ister files before attempting to share registers between requirements. However, duplication of data is 
sometimes necessary, to reduce the interconnect costs, and a two phase clocking scheme allows simulta-
neous Reads and Writes to the same location. 

4. INTRODUCTION TO THE EXAMPLE 

The example with which the synthesis method is explained, is that of the wave-digital filter, for which 
Paulin's [9] force-directed schedule is shown below. The available hardware consists of two adders 
which operate in a single control step (cstep), and a single,pipelined multiplier,-operating in two csteps 
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One  input to the multiplier is always a constant, and has been omitted from further use of the example. 
Control 	 38 Rtfl 	 18 
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Paulin's force- directed schedule of wave filter. 

5. MEMORY SYNTHESIS 

Assuming no operator allocation has Yet been attempted, memory synthesis proceeds as follows. 

5.1 Latch Insertion 

Examining the schedule above, it is noted that data produced by operations 17 and 37 are not finally used 
until the same cstep as they are produced in the next cycle of the system. Since data may not be read 
from and written to the same location in a single cstep (assuming single phase clocking) to avoid over-
write errors, two memory elements (memels) are needed to store each datum. In order that subsequent 
address generation may be done on a single cycle of the system, a dedicated latch is introduced in cstepO 
for each datum, as shown by the dotted boxes - the latch "operations"- in the schedule. 

5.2 Grouping memory requirements into memory blocks 

We now attempt to group the individual memory requirements extracted from the schedule into memory 
blocks, so that there are no two simultaneous Reads or Writes to a block. Each memory requirement (op-
eration) is given a private memory element (memel), identified by the same number as the operation 
which will Write to it. To increase the tractability of this step, and with communications (bus and mul-
tiplexing) costs in mind, we do this separately for each resource type in turn. This also allows us to ignore 
data width information at this point. A clique-partitioning approach is possible here, but we have used a 
simpler heuristic search technique to produce a result more quickly. 
A weight is given to each memel by counting the number of simultaneous Reads or Writes with other 
memels of the same resource type. If there is only one resource of a type available (eg: one multiplier), 
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WEIGHTS (No. of access clashes) 
Easiest 	 > Hardest 

Figure 1: Square-graph of Read (r) and Write (w) 
access clashes between adder-type memels. 

then there will be no Write clashes. These access clashes, and their bearing on the problem, may be clear-
ly understood by examining the Square-graph below, which contains information on the add operations 
only, for which there are two adder resources available. 
The memels on the axes of the graph have been sorted according to the number of access clashes each 
has. We now wish to draw the minimum number of boxes on-the diagonal of this graph such that no box 	- - 
contains an access clash, and no boxes overlap, as shown by the example shaded boxes on the diagram. 
To get the minimum number of boxes, however, there will be some re-ordering of the memels on the 
axes. If we start by examining the memel with the least number of access clashes (the 'Easiest' memel 
- no. 28), then we will have the best chance of finding another memel to group with it. This tends to 
produce a solution with a few large groups and several small groups. If we start with the 'Hardest' memel 
first (no. 27), then the solution tends to have a few, similar sized groups. 

5.3 Results of Memel Grouping 

Shown below are the Square-graph, obtained using the "Hardest-first" heuristic on the adders' memels, 
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Input  Memory 	Latch 1 	Latch 2 

1(1) 	 Latch1 (1) 	ktch2 (1) 

Multiplier 	Adder 	 Adder 
Memory 	Memory 1 	Memory 2 

I 6,9,16,21, I 	27,42,8,37, I 	13,31,32,12, I 
I 24,30,36,  I 	141,20,11, I 	117,7,4,5. 

14,28. (9) 	 (8) 

Adder 	 Adder 
Memory 3 	Memory 4 

19,15,22, 	I 
I 23,35,10. I 	I 25,29,34. 

(6) 	 (3) 

Memel-grouping solution using Hardest-first method. 
The numbers in the memory blocks are those of the 
operations whose data will be stored there, and the 
numbers in brackets are the number of memels in each 
block. 

and the full solution for all resource types, using the same heuristic. 

6. COMMUNICATIONS NETWORK SYNTHESIS 

We must now construct an optimal, bus-based communications network between computational resourc-
es (eg: adders, multipliers) and these memory blocks, as well as allocating operations to any multiply-
available resources. 

6.1 Optimising the Write-bus network 

As stated previously, we wish to find some groups of memory blocks which are written to by a single 
resource, ie: There are no simultaneous write accesses within the group of blocks. 
For singly-available resources, this poses no problem, and all memory blocks dedicated to each single 
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Figure 2: a) Square-graph of Write clashes between 
adders' memory blocks; b) after regrouping; 
c) after reordering a solution is found. 
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Figure 3: Write-bus architecture with adder allocation. 

resource can be grouped onto a single -Write bus. -Where there is -more than -one resource of a type avail-
able (eg: two adders), we wish to find the same number of groups of memory blocks as there are resources 
(two). 
Constructing another Square-graph (Fig. 2a) for the adder memory blocks, with a count of the number of 
simultaneous Write accesses between each pair of blocks, we wish to draw two boxes (since two adders) 
on its diagonal, as before, containing no Write access clashes. However, this is not possible as the graph 
stands, and we must regroup the memels into blocks to make it possible. This does not involve back-
tracking all the way to the original grouping algorithm, but uses simple heuristics to choose and relocate 
any obstructive memels as necessary. For instance, as shown in Figure 2a, there is only one Write clash 
between blocks 1 and 3, and identifying the clashing memels as 8 and 23 respectively, memel 8 is chosen 
and moved from block 1 to block 4. Now we can redraw the Square-graph (Fig 2b), and draw two boxes 
to cover the diagonal, after 
reordering the blocks on the axes, as shown in Figure 2c. Also shown above (Fig. 3) is the corresponding 
Write-bus architecture for this solution, which includes the operation allocation information for the 
adders. The two latches have been omitted since they are written to by the memory blocks, via a Read-
bus network which does not exist yet. 

6.2 Read-bus network requirement extraction 

We now look to create a bus-based communications network between the Read ports of the memory 
blocks and the inputs to the computational resources (and latches also). 
Allowing for commutative properties of some resources (as specified in the input database, for each re- 
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source  type), the minimum number of paths between memory blocks and resources is compiled. Each 
path has a source (a memory block), a destination (a resource input) and a list of control steps during 
which that path is used. Path making is done for each cstep in turn, starting at a user-specified cstep, 
which should contain the use of all resources of a type. For example, both adders and the multiplier are 
first used together in cstep 11, so that should be chosen as the starting point for path-making. 
The list of paths, some of which are shown below, constitute the Read-bus requirements of the system, 
and must then be rationalised into an optimum multiplexer network. 

PATHS TO ADDERS (Start at cstep 11) 

From To Port Csteps when used 

Latch 2 Adder 1 1 [161 
*1 Adder 1 2 [11,13,15,16] 
+3 Adder 1 2 [19] 
ml Adder 1 1 [1,15] 
+2 Adder 1 1 [11,12,18] 
+4 Adder 1 2 [3,12,18] 
+1 Adder 1 1 [2,3,4,10,13,19] 
+2 Adder 1 2 [1,2,4,10] 
Latch 2 Adder 2 2 [13] 
+1 Adder  2 [11,14,15,16] 
Latch 1 Adder  1 [15,18] 
+2 Adder 2 2 [3,8,17] 
+2 Adder 2 1 [7,9,14,16,19] 
*1 Adder 2 2 [7,9,18,19] 
+3 Adder 2 1 [3,8,10,11,12,13,17] 
+4 Adder 2 2 [10,12] 

IX: *1 = Multiplier Memory 
In I = Input Memory 
+n = Adder Memory n 

- - 	- 	 - 	6.3Optimising the Read-bus network 	 - 	- - 	- - 

As a starting point for optimisation, each input to each resource has bound to it an n-to-1 multiplexer 
(muxntol), where n is the number of memory blocks which must feed data to that input. The value of n 
should have been minimised by the previous synthesis step. 2-to-1 multiplexers (2tolmuxes) are then 
extracted from these muxntol 's, reducing the value of n by 1 each time, and erasing csteps from the re-
spective path's list, until no muxntols remain. The most used path is examined at each pass of the syn-
thesis algorithm, increasing the amount of Don't Care values in the subsequent control requirements for 
the 2tolmuxes, which is valuable in optimising the control sequences (Section 7).The result of this step 
is a netlist of connections from memory blocks or 2tolmuxes, to resources or other 2tolmuxes. Figure 
4 presents the final architecture synthesised for the example. There are 14, 2tolmuxes, some of whose 
inputs have been swapped by the control optimiser described in the following section. 

7. CONTROL SEQUENCE SYNTHESIS 

In the controller, a PLA-FSM or Counter-ROM method may be utilised to generate the control sequences 
for the multiplexers, and the address sequences for the memories. Setting the address generation aside, 
as a subject too complex to explore here, we must find some way of reducing the area of the controller's 
PLA or ROM. 
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KEY: IM = Input Memory 
MM = Multiplier Memory 
AMn = Adder Memory n 

Figure 4: Resulting Architecture for Wave Filter 

- 	- 	 7.l Extraction of Control Bit Sequences 

Using the interconnection netlist generated by the previous step, and the Read-bus requirements for the 
system, we can trace a path back through the multiplexer network, from resources to memories, noting 
the necessary values of the multiplexer control bits as we pass through them. This is done for each con-
trol step in turn, until we have a complete control bit sequence for each 2tolmux in the network, some 
of which are shown below for our example. To avoid confusion between real and virtual bit values, the 
control bits may have (virtual) value '1' or '2' and any Don't Care values are denoted by a V. The real 
values corresponding to '1' and '2' will be decided on later. 

CONTROL BIT SEQUENCES 

(csigl,[muxl],[0,O,O,1,O,O,0,2,1,2,1,1,l,l,2,2,2,1,2,2]) 
(csig2,[mux2],[O,2,1,1,1,0,O,0,0,O,l,2,2,l,O,2,2,0,2,1]) 
(csig3,[mux3],[l,1,l,2,l,0,0,0,0,0,l,2,2,2,0,2,2,0,2,2]) 
(csig4,[mux4],[0,0,0,0,0,0,0,1 ,0,1,0,0,0,0,l ,2,1,0,2,1]) 
(csig5, etc. 

7.2 Optimising the Control Bit Seciuences 

Firstly, we calculate the "overlap" for every pair of control sequences. Three types of overlap are pos- 
sible: A "straight" overlap is where two sequences have the same virtual values during some csteps, and 
never have different values during any others. The number of overlapping values is used as a weight for 
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that  pair of sequences. An "inverted" overlap exists when two sequences have opposite, and never the 
same virtual values in some csteps, and again a weight is calculated from the amount of overlap. This 
inversion of the virtual values will merely cause the inputs to the corresponding 2tol mux to be swapped, 
at no cost. A "negative" overlap happens when two sequences have only Don't Care values in common, 
and the number of overlapping Don't Cares is the weight for that pair of sequences. A fourth type of 
overlap is the "null" overlap, which means that two sequences may never be generated along the same 
control line, because their virtual values clash at some point. 
For example, sequences (a) and (b) below have a straight overlap of weight 5: 

0012211012 

2012210202. 

The control bit sequences are ordered by the number of Don't Care values in each, and the "busiest" se- 
quence - that with the fewest '0's - is examined first for possible folding into the others. if several other 
sequences may share a control line with this one, then the sequence with the largest overlap is chosen, 
the two sequences are merged into a new control sequence, and the whole operation is repeated, until no 
more possible folds are found. 

7.3 Results of Control Bit Oqtimisation 

Shown below are the 7 maximally-folded control bit sequences for the example, which originally num-
bered 14. 
In another example, a set of 40 multiplexer control sequences of length 14 bits was reduced to just 8 se-
quences. 

FOLDED CONTROL SIGNALS 
(csig2,[mux2],[0,2,1,1,1,0,0,0,0,0,1,2,2,1,0,2,2,O,2,1]) 
(csig5,[mux5] ,[0,0,0,2,0,0,0,2,2,2,2, 1,2,2,1,1,1,2,2,2]) 
(csig6,[mux6],[0,0,0,2,0,0,0,0,0,0,0, 1,2,1,0,1,1,0,2,21) 
(csig 1 6, [muxi 2,muxl ,mux8], 

[0,0,0,2,0,0,0,1,2,1,2,2,2,2,1,1,1,2,1,1]) 
(csig 17, [mux3 ,mux 10], 

[1,1,1,2,1,0,0,0,0,1,1,2,2,2,2,2,2,1,2,2J) 
(csig 1 9,[mux7,mux9,mux 14], 

[2,2,0,1,0,1,0,1,0,2,1,1,1,2,2,2,2,2,1,2]) 
(csig2l,[mux4,muxl3,muxl 1], 

[0,2,0,1,0,0,0,1,1,1,2,0,2,2,1,2,1,1,2,1]) 

Any Don't Care values remaining in the control bit sequences are then given values '1' or '2', in such a 
way that the sequences are maximally symmetrical. If it is possible to generate a bit sequence using a 
shorter, repeating sequence, then this solution will be found. For instance, it can be found that the se-
quence for control signal 1 (csigl) may be generated from the shorter sequence, [1 2 111 2] ,as follows: 

csigl: 0,2,1,1,1,0,0,0,0,0,1,2,2,1,0,2,2,0,2,1 
1.2,1,1.1. 211,2,1,1,1,212,1,2,2,2,112,1 

(Inverted after two runs) 

Control signal 6 (for mux6) may be similarly generated using the sequence [1 2 2 2] as a base, inverting 
its values after every two runs, and so on for the rest of the sequences. 
The control for the latches will be left for now, since a choice of rising/falling edge-, or level-triggered 
latch is possible, and is technology dependant. 

8. RESULTS 
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The  following results have been found for some examples. The need for a validly scheduled algorithm, 
without operation chaining or allowing simultaneous Reads and Writes to the same physical location, has 
restricted the number of examples. Also, since this technique is targeted at algorithms with a larger 
number of operations (>20), scheduled with tight hardware constraints, there are very few applicable ex-
amples available. A fast discrete cosine transform (FDC'O algorithm was tried, containing 50 opera-
tions, scheduled in 13 control steps, with 2 adders, 2 multipliers and 2 subtractors available. Shown be-
low are the results for the wave filter example, and comparisons with other work, as well as the results 
for the FDCT schedule. The minimum number of registers in each memory block after possible sharing, 
was calculated by hand using well known graph-colouring techniques [101. 
The synthesis system has been coded in Edinburgh-Prolog, running on a Sun 3/60 workstation. 

Example # Mux 
Inputs 

Control! 
Address 

# 
Regs 

# 
Comms 

CPU  
Time 

Bits  buses (sees) 

Wave 18 
Filter (14, 2tol 14/8 17 29 35 

muxes)  

Ditto: 360 
HAL [9] 26 NA 12 47 (including 

scheduling) 

Ditto: 
Splicer [6] 43 NA NA NA 55 

FDCT 53 31/12 33 NA 180 

Results for Wave filter and FDCT examples 
CONCLUSIONS 

Due to the lack of applicable benchmarks, this synthesis method has not yet been fully proven to be better 
than any other method, in general. However, the result obtained for the wave filter example shows a 
marked reduction in communications and control complexity, although there is an increase in the number 
of registers. 
As stated previously, the original purpose of the system was to generate virtual address sequences with 
which to test an Address-Generator Synthesiser, which it does, so the use of the system to produce data 
paths is simply a useful sideline. 
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Abstract 

The necessary task of Address Generation for RAM and ROM accesses can often result 
in hardware taking up an appreciable fraction of the area of a data processing IC. 
Close examination of the address sequences can reveal symmetry which may be 
exploited to automatically devise small and simple address generators, based on 
counters. This paper will describe automated techniques used to recognise and 
develop symmetries in address sequences, and to synthesise the necessary address 
generation hardware. 

Introduction 

In contemporary High Level Synthesis systems, the task of designing address genera-
tors usually comes late in the design process, after data-path, memory and communi-
cations s'nthesis steps. -  But with address generation hardware taking up to half the 
final chip areat,  it is clear that this step is one of importance, and so deserves a closer 
investigation. 
Address generators can be partitioned into three main types. There are those for data-
dependent address generation, where an address is some function of internal variables, 
and specialised hardware should be constructed to perform this function. The second 
type of address generator cannot be constructed until memory synthesis has been 
completed, and must generate the addresses to access temporary storage areas, which 
are the result of grouping registers into register files or RAMs [1]. These generators 
can take the form of a ROM lookup table, although some clever assignment of values 
to actual memory locations may allow a significantly smaller solution to be found [2]. 
The third type of address generator, and the one dealt with in this paper, is that for 
array-type memory accesses. Here, very often a regular sequence of addresses is 
required, and since this sequence can often be determined directly from the behav -
ioural description of the chip, the synthesis and optimization of the generator can 
precede, or run in parallel with other design stages. 

* Supported by SERC and BAe. 
tAround half of the active area of an image processing chip, designed using Solo 1200, com-
prised Address Generation circuitry. 
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As the address sequence can be rather long, the definition of address generators by 
hand, and especially the simulation of their correctness, becomes very difficult. The 
description of an array-type address sequence may be a set of nested loops, whose 
variables are combined to give each address at successive passes of the loops, and it is 
possible to examine the loops' variables and increments and to build an address calcu-
lation unit (ACU) to realise the loops' function in hardware [3,4]. 

It may also help to map the memory addresses onto actual memory locations to allow 
simpler addressing schemes [5].  PLA FSMs based on counters may also be used to 
generate address sequences [6],  and simple binary counters can be very effective in 
some circumstances [7].  Combinatorial logic plays a large part in many address gener -
ator designs, although the large size and low speed of the circuits can be prohibitive. 

Many problems arise in address generator design when the regular addressing pattern 
is not based on a binary sequence, and this paper is targeted at those situations, and 
solutions based on non-binary counters. This is a generalisation of previous work [7], 
which could only deal with binary sequences. 

Firstly the situation is explained more clearly, along with the introduction of a working 
example, and then the primary stage of synthesis, that of developing the problem to 
suit the algorithms, is examined. The next part of the synthesis process is then 
described, in which an address sequence is matched to a suitable address generator. 
Finally, some examples are given to demonstrate the power of the tool, before conclu-
sions are drawn and future work laid out. 

Problem Definition 

The task of automatically synthesising an address generator is simply defined: Given 
- -- - predetermined sequences of memory addresses to be generated regularly in time ;  

synthesise the hardware which will do just that (Figurel), hopefully comprising 
various counter bits. 

The address sequence may be extracted from a software description, usually in the 
form of a set of nested loops, at the centre of which the address is specified by some 
function of the loop variables. However, to give a more general view of the tool, the 
working example shown in Figure 2 does not follow this premise, but contains several 
different bit sequences, each included to show some feature of the tool, which together 
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define a 

Address Sequence 	Bit Sequences 
7 	6 5 4 3 2 1 0 

48 00110000 

160 1 	0 1 0 0 0 0 0 
177 10110001 

166 1 	0 1 0 0 1 1 0 

39 0 0 1 0 0 1 1 1 

55 0 	0 1 	1 0 1 1 1 

44 00101100 

253 1 	1 	1 	1 1 1 0 1 

234 1 	1 	1 	0 1 0 1 0 

234 1 	1 	1 0 1 0 1 0 

123 22 	0 	1 	1 1 1 0 1 1 

104 0 	1 	1 0 1 0 0 0 
241 1 	1 	1 	1 0 0 0 1 
97 01100001 

102 01100110 
119 0 	1 	1 	1 0 1 1 1 
196 1 	1 	0 0 0 1 0 0 
212 1 	1 	0 	1 0 1 0 0 

205 11001101 

74 01001010 

91 0 	1 	0 1 1 0 1 1 

11 ' 	 00001011 

Figure 2. The working example: 
a) The address sequence, 

b) Its constituent bit sequences. 

mingIy ranuom aaclress sequence. 
I Clock i I 	Goi 	Clock21 Goli Go21 Go3 

COUNTER 	..cP!: COUNTER 

COUNTER 
LOGIC 

LOGIC ROM{ ROMI LOGIC ROM 

MEM I 	I MEM I 	I MEM I I MEM 

Figure 1. Target Address Generation Architecture Components 

One major problem a designer faces with this task is the long length of the address 
sequence, often comprising tens of thousands of addresses, and this makes full exami-
nation of the sequence rather arduous. However a computer is ideal for processing the 
address sequence, if only we can give it a designer's intuitive knowledge of what to 
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look  for in a sequence in order to match it to an address generator. 

Developing Possible Sequence Symmetry 

Symmetry, or regularity of an address sequence, easily recognised in a graphical 
description of the sequence on the memory space, can be exploited to allow simpler 
generation of the sequence, by output bits from a counter. To automate the recognition 
of symmetry however, we first split the address word sequence into a set of bit 
sequences, and apply the algorithms to each bit sequence in turn. 

The Hint 

Very often the designer will be in a position to give the algorithm some indication of 
the solution expected, without any knowledge of the detailed solution. This "hint" is 
simply an integer, which should be the number of memory accesses in the most basic, 
repeating access pattern involved, which is repeated to cover the memory space, thus 
building up the entire address sequence. 

If the designer is not in a position to specify this hint, as for our working example, then 
it may be found automatically for each bit sequence by exhaustively searching the bit 
sequence to find the length of the shortest repeating sequence of bits, and then defining 
the hint as the lowest odd factor of this length. For instance, if the shortest repeating 
bit sequence has length 40 bits, then the hint can be found thus: 

40/2=20, /2= 10, /2=5=Hint. 

Padding the Bit Sequences 

Once the hint-has been specified-for a bit sequence (it will often be common to all-bit 
sequences), it is used to develop any possible symmetry or regularity in the sequence. 
To allow the forthcoming algorithms to work, we "pad out" the bit sequence so that it 
has a length equal to some power-of-two times the hint. This is simply done by 
appending the correct number of bits from within that sequence, inverting their value 
if necessary. 

Padding to a Whole Number of Basic Patterns 

In some cases, as for the working example, the original bit sequence will not contain a 
whole number of basic patterns. We must first pad this sequence to a length (i x hint), 
where i is the next integer above (Orig_length / hint). 

Padding a Bit Sequence to Length 2 * Hint 

Once a whole number of basic patterns is available, the bit sequence can then be 
padded to its final length of 2 * Hint (j = integer), again appending previous bits in the 
sequence, inverting their logic values (0 or 1) if necessary. 

All this means that the resulting bit sequences will at least be symmetrical for the 
copied bits, allowing us to prepare for the next stage of the synthesis algorithm, by 
finding the Repetition Sequence for the bit sequence. 
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Shown in Figure 3 are the bit sequences for our working example, after padding. 

Bit 7, flint =3 
011 100011100100011100011 

Bit 6, Hint =7 

0000000111111111111110000000 

Bit 5, Hint =1 
11111111111111110000000000000000 

Bit 4, Hint =5 

1010010100101001010010100101001010010100 

Bit 3, Hint =3 

000000111111000000111111 

Bit 2, Hint= 11 
00011111000000111 11000 

Bit 1, Hint = 1 
00011100111000110001110011100011 

Bit 0, Hint= 1 
00101101001011010010110100101101 

Figure 3. Padded bit sequences 

The Repetition Sequence 

To reduce the complexity of the synthesis task, and allow the algorithms to function 
correctly, the padded bit sequence is converted into a sequence describing the repeti-
tion of similar bit values - The Repetition Sequence. 

This consists of a polarity value, which is simply the first bit in the bit sequence, 
followed by a sequence of integers specifying the number of successive bits of each 
value. To clarify, the working examples are given below (Figure 4), some of which 



:. 

exemplify the reduction in complexity this conversion allows. 

Bit number 	Repetition Sequence 

7 	0, (1,3,3,3,2,1,3,3,3,2) 

6 	0, (7,14,7) 

5 	1,(16,16) 

4 

3 	0, (6,6,6,6) 

2 	0, (3,5,6,5,3) 

0, (3,3,2,3,3,2,3,3,2,3,3,2) 

0 	0, (2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2, 
1,1,2,1, 1) 

Figure 4. The Repetition Sequences 

Collapsing the Repetition Sequence 

Once formed, the repetition sequence may be iteratively bisected, according to a 
number of rules, in such a way that a bit sequence generator may be found. 

Bit Sequence Generator Structure 

To allow an understanding of the principles involved here, a view of the internal struc-
ture- of abitsequence generator (B SG) -  is-  necassary. 

A BSG must obviously know which bit of the address word it is generating, and there 
is also a flag specifying whether the output of the BSG must be inverted (if the polarity 
bit of the repetition sequence = '1'). There are seven different types of BSG: 

SIMPLE: The output from bit b of a modulus m counter. 
EXORED: As above, but EXORed with the output from another BSG. 
LOGIC: Where no counter bit(s) can generate a bit sequence directly, the "random" 

bit sequence is saved, to be handed to a logic synthesis tool as a Truth Table output. 
HARDWIRED: Where a bit sequence consists of only '0's or '1's, the address bit 

should obviously be hardwired to logic '0' or '1'. 
ROM: When the type of bit sequence generator synthesised is more expensive than 

the cost of placing the bit sequence in the controller ROM, this type of BSG is used, 
which defines which of the ROM output bits produces this bit sequence. This will be 
used during the optimization stage. 

CLOCKED: When a bit sequence may be generated by using some other existing 
sequence to clock a JK flip-flop, then the information on this other address bit is held 
here. 
g) WHOLLY—RANDOM: A BSG of this type is used if the bit sequence involved is 



187- 

random and too long for the simple logic synthesis tool to handle. 

A Note on Modulus m counters 
A modulus 5 counter is defined as follows 
(a modulus m counter is the generalization): 

1— Lesser Bits 	10 *— Upper Bits 	01 

0 	0 
m= 	1 	0 

0 
0 

0 
0 

0 
0 

10 	1 
II- 	 1 

0 
0 

0 
0 

0 
0 

1 	 a 	0 	1 	0 0 

1 	0 
0 	1 

0 
0 

1 
1 

0 
0 

The Rules 

e repetition sequence, m = L_RS /2. 

There follows a list of the rules which are used when collapsing the Repetition 
Sequence: 

L_RS = length of th 

la) IF L_RS is even THEN Rule 2. 
lb) IF L_RS = 1 THEN flnd_BSG using remaining sequence. 
lc) IF rep_seq(2..(m-l)) = rep_seq((m+1)..(L_RS-1)) AND 
- jep_scq(1) 
id) flnd_BSG using remaining sequence. 

IF rep_seq(1..m) = rep_seq((m+1)..L_RS) THEN Rule 3. 
flnd_BSG using remaining sequence. 

IF L_RS/2 is odd THEN Rule 4. 
Bisect the sequence and recurse using the first half. 
EG: Bit 1: (3,3,2,3,3,2,3,3,2,3,3,2) => (3,3,2,3,3,2). 

IF L_RS/2 = 1 THE N bisect the sequence and recurse. 
EG: Bit 5: (16,16) => (16). 
IF we can generate the corresponding bit sequence, as the 
repetition sequence stands, with a single counter bit, then 
flnd_BSG using the current repetition sequence. 
The corresponding bit sequence is the result of EXORing 
a counter bit (found from L_RS), with whatever BSG is 
found by recursing using the first half of the sequence. 
EG: Bit 7: (1,3,3,3,2,1,3,3,3,2) => (1,3,3,3,2) EXOR 2(3). 

IF (L_RS+1)/2 is even THEN as for RULE 4c. 
Bisect the seq uence and recurse. 

Bit -3 Bit -2 Bit -1 Bit 0 Bit 1 
-3(5) -2(5) -1(5) 0(5) 1(5) 



EG: Bit 2: (3,5,6,5,3) => (3,5,3). 

la IF.. 
2a IF.. 

3a IF.. 
4a IF.. 
4b_ELS IF. 
4c—ELSE.. 

3b ELSE.. 
2b ELSE.. 

1 b_ELSIF.. 
ic_ELSIF.. 

5a _IF.. 
5b_ELSE.. 

Id ELSE.. 

The Repetition Sequence Characteristic 

Now the repetition sequence has been collapsed as far as possible, the remaining 
sequence is sent to be matched to a bit sequence generator (the find_BSG routine 
mentioned above). The sequence is first converted into another format, to ease this 
matching, which consists of four parameters, as shown in Figure 5. 

Repetition Sequence Characteristic: 

Polarity, P 	First repetition, R 1  

Some examples help to explain this: 	
0 1 

Bit 7's repetition sequence collapses to (

M

0 (1,2)) => 

116 
Bit 5=> 	 Bit 4=> ____ 

10 32 

1 3 	 0 0 This is a special 
Bit 1 => 	 Bit 0=> 	case, denoting 

2 2 	 0 0 semi-random 
sequence (2,1,1 

Figure 5. Repetition Sequence Characteristic Formulation 

Final repetition Repetition of R 1 , RR 	-(if -different) 

Matching the Characteristic to a Bit Sequence Generator 

Now we are ready to find the counter bit(s) which will produce the bit sequence, char- 
acterised as above. The counter bit is described by its bit number, b, and th e modulus 



of the counter, m. The polarity in the characteristic determines whether a counter bit's 
output should be inverted by a NOT gate. 

Finding the Counter Modulus 

If there is a single repetition left in the repetition sequence, then its characteristic will 
look something like this, where, R 1  is the remaining bit repetition length: 

0 R1 

10 

The modulus of the counter needed is found from R 1  by finding the lowest odd factor 
of R1, i.e.: By dividing it by 2 until an odd quotient is found. The number of times R1 
can be divided is the bit number of an upper (>= 0) bit of the counter. For example, a 

0 16 
characteristic: _______ will be generated by bit 4 of a 

10 

modulus 1 counter (a simple binary counter). 

However, if there is more than one repetition left, then the modulus is calculated as: 

modulus( 	P R 	
= (R1 * RR) + r = in 

RR .r 

i.e.: The sum of the remaining repetitions. This should represent the sequence gener-
ated by a lesser (<0) bit of a modulus in 

counter. For example a characteristic: 	0 2 	will be 
31 

generated by bit(-2) of modulus7 counter. 

If a random bit sequence is characterised, then for consistency its modulus is set to 0, 
as a flag. Also, if a repetition sequence remainder (r) is greater than the first repetition, 
then it is possible that this may characterise a bit sequence generated by EXORing 
lesser bits of a counter, and these lesser bits can be found by expanding the character-
ised repetition sequence to its bit sequence, and then repeating the whole synthesis 
process for that sequence (Padding first, using a hint of 1). For example the 

characteristic: 	
1 1 	

represents the bit sequence 
32 

10100, which is the result of EXORing sequences 10101 and 00001, which are 
produced by NOT.bit(-3) and bit(- 1) of a modulus 5 counter, respectively. 
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Finding the Lesser Bit Number 

If, once the modulus has been found, it is greater than the first repetition, then a lesser 
bit of the counter is desired, and the correct bit is derived simply from the modulus, 
which determines how many lesser bits there will be, and from the first repetition, 
which should be a power-of-two. 

Finding Clocked-type Bit Sequence Generators 

To find any address bit sequences which may be produced at the output of a JK flip-
flop which is clocked using some other bit sequence of that address, a list of all repeti-
tion sequences with original length> 1 is collected. This list is sorted so that the 
sequence with the shortest first repetition(s) comes first, and then the rest of the list is 
searched for a sequence which may be used as the clock. 

This may find the same solutions as the main synthesis process, but can also find some 
surprisingly elegant solutions, which were not otherwise discovered. For example, 
address bits 1 and 2 in our working example, can be generated by using bit 0 to clock a 
pair of JK flip-flops. 

Optimization of Address Generators 

Although no optimization stage has yet been implemented, it is imagined that it will 
take a global list of all bit sequence generators, perhaps supplying several memories, 
and formulate a cost for each one. For example, if there are three users of a particular 
counter bit, then the individual cost of each of the three, is one-third of the cost of 
implementing the counter bit in hardware. These costs may be compared with the costs 
of embedding the bit sequences within a ROM, or perhaps just as one output from a 
ómbihätöriã{lbgic network. 

Choosing the globally cheapest solution will most likely be done using some heuris-
tics, since it is an NP-complete problem. 

Solution to Working Example 

Shown below is the circuitry which was specified by the tool, when given the working 
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example: 

Mod 5 Counter 	 Mod 7 Counter 
321 	 1  -3 1  -2 	O 	1 	2 

Binary Counter (mod 1) 	Mod 3 Counter 

1 0(1)1 	1 	1 	23 	4 	L21 -1 
	

01 	2 

—all 

II 
Bit 01234567 

Figure 6. Synthesised Address Generator for Working 
Example 
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More  Examples 
Address. sequence 	 Synthesised Solution 
0,11 ,26,27,8,1 6,17,0,1,18,13 	Modulus 5 counter 

	

-2 	-1 1 0 1 1 

4 3 1  2 1  1 	0 

0 	 Address Bits (Adbits) 
256 
512 
1 
257 	 Modulus 3 counter 
513 	1 -2 1 -1 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 
258 	 I______________________________ 
514 

255 	 1 12131415161718191  
511 	 Adbits 
767. 

Obviously the examples given in this paper needed to be rather simple, so that the 
address sequences could be fully specified in the limited space available. Real address 
sequences can range in length from that of the examples given here, to sequences 
containing tens of thousands of addresses, each with perhaps a dozen or more constit-
uent address bits. Solutions synthesised for complex examples were found to match 
those constructed by hand. 

Conclusions and Further Work 

This paper has presented a novel technique for the synthesis of address generation 
hardware from a specification of the address sequence to be generated. The method is 
extensible to almost any sequence generation problem where the sequence may exhibit 
some symmetry or regularity, for example on-chip ATPG or controller synthesis. 

The results presented matched, or were better than, those designed by hand, and were 
completed in a fraction of the time. Typical run times range from a few seconds, for 
short sequences, to around one minute, for the longer sequences. 

Although the tool is not suitable for all address generator synthesis problems, as part 
of a set of address generator synthesis tools, it can perform a much-needed and fairly 
complex task with the ease of an experienced designer, and perhaps better. 
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Appendix B 

The following pages show annotated extracts of output from AG2, sampled from 
the working example's bit generator synthesis process. 

Start of program: 
DRIVE FILE or SINGLE FILE (d/s) => d 
DRIVE FILE NAME => Thesis_aII.drv 
Information density? (Lots—and—lots I a_Bit  I Result—only: Vb/r): b 

Memory and access sequence info: 
File name = Thesis_memi .wacseq 

ADDRLISTSIZE (Bits) = 176 
MODE=W 
START—AT= 0 
STOP—AT= 21 
CLOCK= clocki 

STROBE= strobe_a 

COMMS= inputi 

MAXADDRESS= 253 
HINT= 0 

Start of synthesis: 
Trying Incrementor solution 
No incrementor-based solution found 
Second Pass 

BIT 2(3) EXORED_WITH 
	

I.E.: Bit 2 of modulus 3 counter 
BIT 0(3) EXORED_WITH 
BIT -1(3) EXORED_WITH 
BIT -2(3) => AdBit 7 
Of address port 1, of memory Thesis_memi 
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BIT 1(7) EXORED_WITH 
BIT O( 7) => AdBit 6 
Of address port 1, of memory Thesis_memi 

NOT BIT 4( 1) => AdBit 5 
Of address port 1, of memory Thesis_memi 
BIT -1(5) EXORED_WITH 
NOT.BIT -3(5) => AdBit 4 
Of address port 1, of memory Thesis_memi 

BIT 1(3)=>AdBit3 
Of address port 1, of memory Thesis memi 

11(0,0,0,1,1,1,1,1,0,0,0)(1,1,1,1,1)A =>AdBit2 
Of address port 1, of memory Thesis_memi 
I.E.: A bit sequence 11 bits long will produce the entire sequence if repeated. 

The five extra bits are used as padding by the logic synthesis tool which 
requires a sequence length of a power of two. 

BIT 3( 1) EXORED_WITH 
8(0,0,0,1,1,1,0,0) A => AdBit 1 

Of address port 1, of memory Thesis memi 

BIT 2(1) EXORED_WITH 
"4(0,0,1,0)" => AdBit 0 
Of address port 1, of memory Thesis_memi 

Third Pass 	To look for clocked type bit sequence generators: 

'A_BIT_CLOCKED_BY UNNOTTED OUTPUT FROM... 
BIT 2(1) EXORED_WITH 
(0,0,1,0) 
=> AdBit 1 

Of address port 1, of memory Thesis_memi 

1-1 
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A—BIT—CLOCKED—BY  NOTTED OUTPUT FROM... 
A_BIT_CLOCKED_BY UNNOTTED OUTPUT FROM 
BIT 2(1) EXORED_WITH 
(0,0,1 ,0) 
=> AdBit 2 

Of address port 1, of memory Thesis_memi 

Move onto next access sequence: 
File name = Thesis_memi .wracseq 
ADDRLISTSIZE (Bits) = 180 
MODE= WR 
START—AT= 22 
STOP—AT= 57 
CLOCK= clocki 

STROBE= strobe_a 

COMMS= input2/adderl/multl 

MAXADDRESS= 18 
HINT=0 

Trying Incrementor solution 
Incrementor type solution found 

Last access sequence to be handled: 
File name = Thesis_csig2l .cseq 

ADDRLISTSIZE (Bits) = 20 
MODE= C 
START—AT= 22 
STOP—AT= 41 
CLOCK= clocki 

STROBE= dummy 

COMMS= muxl /mux5/muxl 0 



- 197- 

MAXADDRESS=  1 
HINT= 0 

No Incrementor-based solution possible for a single bit sequence 
Second Pass 

BIT 4(1) EXORED_WITH 
16(0,1,1,0,1,1 ,1 ,0,1 ,1 ,0,0,0,1 ,1 ,0)" => Thesis_csig2l 

Third Pass 	No clocked type bit generators found. 

Any bit sequence may be generated by using a ROM to store the sequence in or by 
a SINGLE other method. Any clocked-type bit sequence generators will aave a 
second non-ROM based solution, which must be either discarded or enforced, to 
allow the costing routines to function. 

Address bit 1 of Port 1 of memory Thesis_memi. 
From click 0 to click 21 

There is a clocked type bit generator, costing 28 units of area. 
This entails a skew of 1 OOns on this address line. 
The alternative bit generator could cost 117 units of area. 

Do you need to see the latter?: 
n 

Do you want the clocked type bit generator?: 

y 

Address bit 2 of Port 1 of memory Thesis_memi. 
From click 0 to click 21 

There is a clocked type bit generator, costing 28 units of area. 
This entails a skew of 200ns on this address line. 
The alternative bit generator could cost 117 units of area. 

Do you need to see the latter?: 

y 



•: 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = (0,0,0,1,1,1,1,1,0,0,0) 

=>Adbit2 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 117000 

Do you want the clocked type bit generator?: 

y 

Start of initial costings: 

Thesis_csig2l 
Acseq Start.. Finish = 22.. 41 Mode = C 
Access ID = 4 Port 1 

Bit Generator Element = (0,1,1,0,1,1,1,0,1,1,0,0,0,1,1,0) 
=> Thesis_csig2l 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 11720000 

Thesis_csig2l 
Acseq Start.. Finish = 22.. 41 Mode = C 
Access ID = 4 Port 1 
Bit Generator Element = BIT 4(1) EXORED WITH THE ABOVE => 
Thesis_csig2l 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 140-1 00 
I.E.: The total non-ROM based cost of producing csig2l is 257 units. 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Sizes are: Declared size, Rounded size, Dec. width, Rnd. width, X-dim, V-dim 
Acseq Start.. Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 4( 20), Preset to 5 
I.E.: Bit 4 o a modulus 20 incrementor (one which resets at 20) 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069 



- 199 -  

Memory = Thesis_memi 

Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 

Bit Generator Element = BIT 3( 20), Preset to 5 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 3 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 2( 20), Preset to 5 
An incrementor, INC = 3 

With clock gated by gating_sig3 => Adbit 2 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069 

Memory = Thesis_memi 

Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 22.. 57 Mode = WR 
Access lD=2 Port l (Type RW) 	- - 
Bit Generator Element = BIT 1 ( 20), Preset to 5 
An incrementor, INC = 3 

With clock gated by gating_sig3 => Adbit 1 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069 

Memory = Thesis_memi 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 22.. 57 Mode = WR 

Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 0( 20), Preset to 5 
An incrementor, INC = 3 

With clock gated by gating_sig3 => Adbit 0 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069 
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Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = A_BIT_CLOCKED_BY NOTTED OUTPUT FROM 
ADBIT l's BIT GENERATOR => Adbit 2 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 44 28 0 

Memory = Thesis_memi 
Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = A_BIT_CLOCKED_BY UNNOTTED OUTPUT 
FROM ADBIT 0's BIT GENERATOR => Adbit 1 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 44 28 0 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = (0,0,1,0) 
=> Adbit 0 	 - 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 61 4400 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 2(1) EXORED WITH THE ABOVE => Adbit 0 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 84-1 00 

Memory = Thesis_memi 
Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 1(3) => Adbit 3 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400 
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Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = NOT.BIT -3( 5) => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400 

Memory = Thesis_memi 
Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT -1(5) EXORED WITH THE ABOVE => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 56-1 00 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = NOT.BIT 4(1) => Adbit 5 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400 

Memory =Thesis_mernl 	- 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8,256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 0( 7) => Adbit 6 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 1124400 

Memory = Thesis_memi 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 1 ( 7) EXORED WITH THE ABOVE => Adbit 6 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00 
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Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT -2(3) => Adbit 7 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 284400 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT -1(3) EXORED WITH THE ABOVE => Adbit 7 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 0(3) EXO RED WITH THE ABOVE => Adbit 7 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00 

Mernory=Thesis_rneml 	- - - 	
- . Sizes (OS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 2(3) EXORED WITH THE ABOVE => Adbit 7 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 28-1 00 

Do you want to interact?: n 

Start of iterative cost optimisation: 
..............................................  
Old cost = 1110 	 The sum of cheapest costs. 
ROM—based—cost = 937 	 As ROM-based as possible. 
Other cost= 1195 	 As non-ROM-based as possible. 
ROM_based_cogi < Other_cost so: 
Forcing the following into ROM 
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Memory = Thesis_memi 
Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = (0,0,1,0) 
=> Adbit 0 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 61 4400 

New cost= 1126 	 Sum of cheapest costs. 

..............................................  
Old cost = 1042 
ROM—based—cost = 937 
Other cost = 1122 
Forcing the following into ROM 
Memory = Thesis _memi 

Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 0( 7) => Adbit 6 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 1124400 

New cost= 1154 

++++++++++++++++++++++++++++++++++++++++++++++ 
Old cost = 905 
ROM—based—cost = 937 
Other cost = 905 
ROM_based_cost > Other_cost so: 
Forcing the following away from ROM 
Memory = Thesis memi 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
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Bit Generator Element = A_BIT_CLOCKED_BY NOTTED OUTPUT FROM 
ADBIT l's BIT GENERATOR => Adbit 2 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 44 28 0 

New cost= 920 	 - 

Old cost = 920 
ROM—based—cost = 942 
Other cost = 920 
Forcing the following away from ROM 
Memory = Thesis_memi 

Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = A_BIT_CLOCKED_BY UNNOTTED OUTPUT 
FROM ADBIT 0's BIT GENERATOR => Adbit 1 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0 47 28 0 

New cost = 940 

Old cost = 940 
ROM_based_cost = 947 
Other cost = 940 
Forcing the following away from ROM 
Memory = Thesis_memi 

Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 4( 20), Preset to 5 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 077069 

New cost = 940 
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Old cost =940 
ROM_based_cost = 983 
Other cost = 940 
Forcing the following away from ROM 
Memory = Thesis _memi 

• Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start..Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 3( 20), Preset to 5 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 3 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 088069 

New cost = 940 

Old cost =907 - 
ROM—based—cost = 907 
Other cost = 907 
New cost = 907 

++++++++++++++++++++++++++++++++++++++++++++++ 
End of iterative optimisation. 

The following describes the binding to a specific form of generation: 

Thesis_csig2l 

Acseq Start.. Finish = 22.. 41 Mode = C 
Access ID = 4 Port 1 

Bit Generator Element = (0,1 ,1 ,0,1 ,1 ,1 ,0,1 ,1 ,0,0,0,1 ,1 ,0) 
=> Thesis_csig2l 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 200-1 -1 
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Memory = Thesis_memi 

Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 22.. 57 Mode = WA 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 4( 20), Preset to 5 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069 

Memory = Thesis memi 

Sizes (DS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 22.. 57 Mode = WA 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 3( 20), Preset to 5 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 3 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069 

Memory = Thesis_memi 

Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 22.. 57 Mode = WR 
Access lD=2 Port l (Type RW) 
Bit Generator Element = BIT 2( 20), Preset to 5 
An incrementor, INC = 3 

With clock gated by gating_sig3 => Adbit 2 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069 

Memory = Thesis_memi 
Sizes (OS, AS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 22.. 57 Mode = WR 

Access ID = 2 Port 1 (Type RW) 

Bit Generator Element = BIT 1(20), Preset to 5 
An incrementor, INC = 3 

With clock gated by gating_sig3 => Adbit 1 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069 
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Memory = Thesis_meml 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 0( 20), Preset to 5 
An incrementor, INC = 3 

With clock gated by gating_sig3 => Adbit 0 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069 

Memory = Thesis_memi 
Sizes (OS, AS, OW, AW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = A_BIT_CLOCKED_BY NOTTED OUTPUT FROM 
ADBIT l's BIT GENERATOR => Adbit 2 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 280 

Memory = Thesis_meml 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = ABIT_CLOCKED_By UNNOTTED OUTPUT --

- 	FROM ABIT 0's BIT GENERATOR => Adbit 1 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 280 

All remaining bit sequence generators are to be ROM-based: 
Memory = Thesis_memi 
Sizes (OS, AS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = (0,0,1,0) 
=> Adbit 0 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1 



Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 1(3) => Adbit 3 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1 

Memory = Thesis_memi 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = NOT BIT -3( 5) => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1 

Memory = Thesis_memi 
Sizes (DS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = NOT.BIT 4(1) => Adbit 5 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1 

Memory = Thesis_memi 	 - 	 - 	- -- 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT 0( 7) => Adbit 6 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1 

Memory = Thesis_memi 
Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = BIT -2(3) => Adbit 7 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): -1 51 -1 -1 

Any RUM-based bit sequence generators must now have the RUMs 
synthesised, along with their own address generators: 
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Commencing ROM extraction 

The ROMs have their contents constructed as a conglomeration of their 
constituent bit sequences. 
ROM access sequence info: 
ADDRLISTSIZE (Bits) = 110 
MODE= R 
START AT= 0 
STOP—AT= 21 
CLOCK= clocki 

STROBE= strobe_a 

COM MS= Thesisp 1 /Thesispl /Thesispl /Thesispl /Thesispl /Thesispl / 
I.E.: 6 bits of Thesis_mem's address port 1. 
MAXADDRESS= 21 
HINT= 0 

Trying Incrementor solution 
Incrementor type,solution found 
The incrementor based solution should always be found, as the ROM access 
sequence is constructed as an incremental sequence. - - - 	- - - 	 - - 

ADDRLISTSIZE (Bits) = 100 
MODE=R 
START—AT= 22 
STOP—AT= 41 
CLOCK= clocki 

STROBE= dummy 

COMMS= Thesis_csig2l/ 

MAXADDRESS= 19 
HINT= 0 

Trying Incrementor solution 
Incrementor type solution found 
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ROM address generator information: 
Memory = ADDRESS_ROM1000 
Contents: 
0 
1 
1 
0 
1 
1 
1 
0 
1 
1 
0 
0 
0 
1 
1 
0 
1 
0 
0 
1 

• Sizes (DS, RS, DW, RW, X, Y) = 20, 1, 1, 0, 1, 1 
Acseq Start.. Finish = 22.. 41 Mode = R 
Access ID = 1001 Port 1 
Bit Generator Element = BIT -1(32), Preset to 0 
With clock gated by gating_sig6 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 19-1 0 1 

Memory = ADDRESS_ROM1000 
Contents: As above. 

Sizes (DS, RS, DW, RW, X, Y) = 20, 1, 1, 0, 1, 1 - 
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Acseq Start.. Finish = 22.. 41 Mode = R 
Access ID = 1001 Port 1 
Bit Generator Element = BIT -5( 32), Preset to 0 
With clock gated by gating_sig6 => Adbit 0 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 19-1 0-1 

Memory = ADD RESS_ROM1002 
Contents: 
12 
40 
45 
40 
9 
13 
10 
63 
58 
58 
31 
26 
61 
25 
24 
29 
48 
52 
51 
18 
23 
3 
Sizes (OS, RS, DW, RW, X, Y) = 22, 8, 6, 0, 8, 1 

Acseq Start.. Finish = 0.. 21 Mode = R 
Access ID = 1003 Port 1 
Bit Generator Element = BIT -1(32), Preset to 0 
With clock gated by gating_sig5 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 21 -1 0-1 
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Memory = ADDRESS_R0M1002 
Contents: As above. 

• Sizes (DS, RS, DW, RW, X, Y) = 22, 8, 6, 0, 8, 1 
Acseq Start.. Finish = 0.. 21 Mode = A 
Access ID = 1003 Port 1 
Bit Generator Element = BIT -5( 32), Preset to 0 
With clock gated by gating_sig5 => Adbit 0 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 21 -1 0-1 

Final bindings of bit sequence generators to hardware: 
Thesis_csig2 1 
Acseq Start.. Finish = 22.. 41 Mode = C 
Access ID = 4 Port 1 
Bit Generator Element = Bit 0 of some ROM called ADDRESS_ROM1000 
=> Thesis _csig2l 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 00 

Memory = Thesis_memi 
Sizes (DS, RS, OW, RW, X, Y) = 254, 256, 8, 8, 256, 1 

Acseq Start.. Finish = 22.. 57 Mode = WR 
Access ID = 2 Port 1 (Type RW) 
Bit Generator Element = BIT 4( 20), Preset to 5 
An incrementor, INC =3 

With clock gated by gating_sig3 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 069 

Memory = Thesis_memi 
• Sizes (OS, RS, DW, RW, X, Y) = 254, 256, 8, 8, 256, 1 
Acseq Start.. Finish = 0.. 21 Mode = W 
Access ID = 1 Port 1 (Type RW) 
Bit Generator Element = Bit 5 of some ROM called ADDRESS_RQM1002 
=>Adbit7 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTOR): 0-1 00 
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Appendix D 

AG1 User Guide 

There are four specific ways in which to introduce the address sequence into the 
synthesis algorithm of AG 1. The first requires a software description of the address 

sequence, and the second method is by using a graphical entry method. The two 

remaining data-entry formats are specifically aimed at very random sequences, for 
immediate logic synthesis. 

For the first data-entry method, using the '-s' command-line option,' a function 

(doloop/O) is called, and this should fill up the global address sequence with values 

calculated by a set of loops, of perhaps with values explicitely declared within doloop/ 

0. This function should also return the value equal to half the address sequence length, 
which must be a power of two. [Put eg of this in agmain4/doloop]. The function should 
exist within the same file as the AG1 source code, necessitating full recompilation for 
each different sequence, but perhaps could be compiled in a separate file in the future. 

The second option (-g) is to use the built-in graphical entry tool, which allows an 
addressing pattern to be laid out, taking a macro-oriented, hierarchical approach if 
necessary, on a two-dimensional representation of memory space. 

Sequences created in this way may be saved to file in a format 

compatableto AG2,4escribedinSectionj.4. 1 .-_-____ -- - -- - 

The graphical entry method commences with a prompt for the unique name of the 
address pattern to be specified. There are three reserved names: 

'' is the name of the smallest pattern to be defined in a hierarchical description, 
within which the order of accesses does not matter; 

'.' is the name given to the entire memory space, as the last stage of the description; 

'memel' is the third reserved name, relating to a single memory element: A pattern 
of dimensions x = 1, y = 1. 

Next the dimensions of the pattern are required, which should be within the limits: 
1 !~ x :!~. 32, 1 < y :!g 16. The user is then prompted for the name of the pattern which is 

to be mapped to each coordinate in the present pattern. Usually the smallest pattern, "i", 

will be defined as an array of 'memel's. The system then reports the actual number of 
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memory elements in the present pattern, displays it as an array of points on the screen, 

and waits for commands to move around the pattern, selecting the points in the correct 
order. If the pattern name is 'i",  then any coordinates selected during its specification 
(including those in any hierarchically lower patterns, used to construct '*') are sorted 
into ascending order, since this should result in the simplest possible addressing 
scheme. Otherwise the selected coordinates are left in the order selected. 

The maximum dimensions of any pattern (x :! ~ 32, y :!~ 16) are necessarily limited by 

the ability of the user to select the desired coordinates from a large array, and by the 

present simplicity of the interface. Given a mouse-driven selection procedure, on a 

high-resolution display, far higher limits could be placed on the patterns' size, at the risk 
of wasted effort through loss of hierarchy. 

Neither the address sequence length, nor its constituent patterns' dimensions need 
to be powers of two, if the sequence is simply to be saved to a file for use elsewhere. If, 

however, the sequence is to be handed to the main algorithm in AG 1, described in 

Section 4.3.2, then the address sequence should definitely have length 2r,  and the value 
1 is then returned to AG 1. 

A third command-line option, -1, allows a single sequence of binary values to be 
loaded from file, along with the length of that part of it which should have logic 

generated for it, as illustrated in Figure D. la. The sequence may contain '()'s, ','s, and 

carriage returns; n iUthãVe 

required, the the length actually needed corresponds to the modulus of the binary 
counter which will be used to drive the logic, which in turn will produce the sequence. 

The final option for AG1 is -L. This allows a number of different binary sequences, 
of perhaps different lengths (but still some powers of two), and delimited by 'A'5,  to be 
accessed by the main algorithm. The first sequence encountered in a serial search of the 
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input file, will be produced by the LSB of the synthesised address generator, and so on 

the last sequence - the MSB. An example is given in Figure D.lb. 

25(1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,1)(1,1,0,0,0,1,1,0,0) 

 

A15(0,0,1,1,1,0,1,1,1,0,0,0,1,0,0)(1)A 
A9(O, 1, 1 ,  1, 1,0, 1,0, 1)(1,1,1, 1,0, 1,0, 1)" 
A9(l,1,0,1,0,0,1,1,0)(1,0,1,0,0110)A 
A23( etc. 

 

Figure Di a) Specification of a binary sequence for AG1. 
b) Specification of several binary sequences together. 

to 
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AG2 User Guide 

AG2 is a very simple tool to use. Two options are available on the specification of 
the file(s) containing the.access sequences: "s" loads the access sequence from a single 
file, and later enquires as to the width of the corresponding memory's data; "d" prompts 

for the name of a drive file which should contain the name of each access sequence file 

to be examined, followed by the corresponding memory's data width. If a control bit 

sequence is to be generated, then no memory exists and the width should be set to 1. 

The name of the access sequence file is important also, since any characters up to the 

first '.' will be taken as the name of the corresponding memory. A good hint is to use: 

mem_name.c/r/wacseq[n], 

where a 'c' denotes a control bit sequence and 'r' and/or 'w' denote the access mode of 
an access sequence. 'n' would be an integer if more than one access sequence of a single 
mode was present for a given memory. 

The next prompt allows the output information to be filtered, before the algorithms 

start to work in earnest, and you sit back and watch! Depending on the level of 
information requested the following may, or will (denoted by a '!'), appear. 

! Firstly, the name of the current access sequence file will appear, followed by 

information echoed or derived from that file, including the size of the address sequence, 

in bits, and if this is too large (> MAXADDRLISTSIZE) then the decision to 

commence a bitwise investigation of the sequence is reported. An example of the 
information to expect is shown below. 

DRIVE FILE or SINGLE FILE (d/s) => d 
DRIVE FILE NAME => a113.drv 
Information density? (Lots—and—lots I a_Bit I Result—Only: I/b/r): r 

File name = h0testl.acseq 

ADDRLISTSIZE (Bits) =90 
MODE= R 
START—AT= 12 
STOP_AT= 29 
CLOCK= clock 1 
STROBE= strobe _a 
COMMS= comms_name 
MAXADDRESS= 30 
HINT= 0 
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The first algorithm to run, in a non-bitwise approach, looks for incremental/ 

decremental sequences, which may have irregular timings for these increments/ 
decrements, and reports back if such a situation exists. 

If not, then a second pass is tried on the sequence, with a different algorithm, which 

looks for bit sequences generated by (a collection of) counter bits. Details on the 

generation of each bit sequence may then be shown, and then a third pass of the access 

sequence is made by an algorithm which inspects the bit sequences in the hope of 

finding some which may be generated by using another bit sequence to clock a flip-flop. 
This is how a ripple counter may be constucted, but the skew on the outputs may be too 

large to handle. Again, any new information may be printed out, before the final stage 

commences. Some annotated details of the information which will possibly appear are 
given below. 

Trying Incrementer solution 

Second Pass 

BiT -1(3) => AdBit 4 

Of address port 1, of memory hOtesti 

BIT 1(3) EXORED_WITH 

BIT 0(3) => AdBit 3 

Of address port 1, of memory hOtesti 

NOT.BIT -2(5) => AdBit 2 

Of address port 1, of memory hOtesti 

BIT -3(7) => AdBit 1 

Of address port 1, of memory hOtesti 

BIT -1(5) EXORED_WITH 

BIT -3(5)=>AdBitO 

Of address port 1, of memory hOtesti 

Third Pass 

None was found 

Means "Bit -1 of 

modulus 3 counter" 
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Firstly the details of every possible bit sequence generator for each bit sequence will 

be displayed, along with initialised costs for each one, determined using costing 
functions based on area, usage and control overheads. 

/* Clocked bit sequence generator *1 

Declared + Rounded Size and Width of Memory Memory = inc_test3b 
Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 30, 32, 32, 1 

Acseq Start. .Finish = 0.. 19 Mode = W 
Access ID = 12 Port 1 (Type W) 
Bit Generator Element = NOT.A_BIT_CLOCKED_BY NOTFED OUTPUT FROM 
ADBIT 0's BIT GENERATOR => Adbit 1 

COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 0-1280 

/ Exored combination of counter bit and 'random' sequence 	prohibits 
ROM-based 

Memory = inc_test3b 	
soln. for this
bit gen'r. 

Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 30, 32, 32, 1 
Acseq Start. .Fimsh = 0.. 19 Mode = w 'Random' bit sequence, to be 

~(Onlyfirst
generated using a counter + logic. 

Access ID = 12 Port  1 (Type W) 	section to be actually gen'd) 
Bit Generator Element = (1,0,0,1,1,0,0,0,1,1,1,1,0) (0,0,0) => Adbit 1 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 615600 

Memory = inc_test3b. 

Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 30, 32, 32, 1 
Acseq Start. .Finish = 0.. 19 Mode = W 	 Means Exor with \ 
Access ID = 12 Port 1 (Type W) 	 generator above -' 

Bit Generator Element = BIT 0(13) EXORED WITH " => Adbit 1 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 28 -10 0 

/ Incrementer type bit sequence generator with preset and reset at 27*! 

Memory = mc_test3 . Sizes (DS, RS, DW, RW, X, Y) = 25, 32, 29, 32, 32, 1 
Acseq Start. .Finish = 0.. 20 Mode = W 
Access ID = 10 Port 1 (Type W) 
Bit Generator Element = BIT 4( 27), Preset to 6 
An incrementer, INC = 3 
With clock gated by gating_sig 11 => Adbit 4 
COSTS (COUNTER, ROM, CLOCKED, INCREMENTER): 050062 
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Optimisation is then based on finding the best generation method for each bit 

sequence, in a global context. This involves choosing between adder/counter-based and 

ROM-based solutions, and perhaps a clocked flip-flop approach. By grouping 
otherwise expensive bit sequences into a ROM, the expense of the ROM's creation may 

be justified, and judging from the comparative costs of a wholly ROM-based and a 

wholly otherwise approach, along with the cheapest possible cost overall (without 

taking ROM sharing into account), bit sequences are selected in turn to be bound to a 
single generation method, until a globally good solution is found. 

Once every bit sequence has a definite generator, any ROM-type bit sequence 

generators then have the memory and access sequence information constructed for that 
ROM, before it is handed back to the mouth of the tool, where the whole process is 

repeated to synthesise the address ROW own address generators, which are reported 

in the same way. Finally the total cost is displayed, followed by the details of all bit 
sequence generators, including those for accessing address ROMs. The construction of 

the netlist of bit sequence generating components and memory address / control bit 

destinations, remains a manual task, but a simple schematic is not difficult to produce. 
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rgic2 User Guide 

This is probably the simplest tool to use, in that little or no interaction is required, 
and the output is to file, for easy browsing. 

The system comes in three main parts: msyn, acreqs and acgen. To run the first 
stage, enter Prolog and consult the files msyn, stdlib and the file containing the data-
base of schedule information. Msyn is then run with the goal go(Cstep, Sort,nethod, 
Outfilel), where Cstep is an integer within the range of the current schedule and 
Sortmethod is either 'e' or 'h' - Easiest or Hardest-first method of synthesis. 

Once msyn has been completed, the next stage is to enter Prolog again, this time 
consulting acreqs only. This extracts all address and control generation requirements 
from the data path defined in Oulfllel and using the goal go(Outfllel, Oulflle2), these 
requirements will be stored in Outfile2. The third part of the process necessitates 
entering Prolog once more, this time consulting the file acgen which should be run with 
go(Outflle2, Oulflle3), and this produces the final bindings of data to memory locations, 
perhaps using the interactive mode to specify more than the minimum required number 
of memory elements in any RAM. 

The data in Outfile3 explains the address and control requirements of each memory 
and control wire on a bitwise basis, and this may be translated to a format compatable 
with A02 by using the program date. This should be consulted and run with the goal 

- go(Outflle3) to produce-a set of access sequence -files in the correct format. - -- - 
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Appendix E 

This appendix presents the address generators synthesised by AG2 for all the 

examples described in Chapter 6. The first is for the digital wave filter, and then 

Figure E.2 shows the address generator for the FDCT example. Figure E.3 illustrates 

the generator for the FIR filter and finally Figure E.4 shows that for the differential 

equation example. 
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Figure Ed Address and control generator for wave filter example. 
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Figure E.2 Generator for the FDCT design. 
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Figure E.4 Differential equation example's synthesised generator. 


