22 research outputs found

    Analysis and design of controllers for cooperative and automated driving

    Get PDF

    Cooperative intersection control for autonomous vehicles

    Get PDF
    Self-driving cars crossing road intersection

    Robust String Stability of Vehicle Platoons with Communication

    Get PDF
    This work investigates longitudinal spacing policies and vehicular communication strategies that can reduce inter-vehicular spacing between the vehicles of automated highway platoons, in the presence of parasitic actuation lags. Currently employed platooning technologies rely on the vehicle’s onboard sensors for information of the neighboring vehicles, due to this they may require large spacing between the vehicles to ensure string stability in the presence of uncertainties, such as parasitic actuation lags. More precisely, they require that the minimum employable time headway (hmin) must be lower bounded by 2τ₀ for string stability, where τ₀ is the maximum parasitic actuation lag. Recent studies have demonstrated that using vehicular communication one may be able to employ smaller spacing between vehicles while ensuring robustness to parasitic lags. However, precise results on the extent of such reduction are sparse in the literature. In this work, platoon string stability is used as a metric to study controllers that require vehicular communication, and find the amount of reduction in spacing such controllers can offer. First, the effects of multiple vehicle look ahead in vehicle platoons that employ a Constant Spacing Policy (CSP) based controller without lead vehicle information in the presence of parasitic lags is studied and string instability of such platoons is demonstrated. A robustly string stable CSP controller that employs information from the leader and the immediate predecessor is considered to determine an upper bound on the allowable parasitic lag; for this CSP controller, a design procedure for the selection of controller gains for a given parasitic lag is also provided. For a string of vehicles adopting a Constant Time Headway Policy (CTHP), it is demonstrated that the minimum employable time headway can be further decreased via vehicular communication in the following manner: (1) if the position, velocity and acceleration of the immediate predecessor vehicle is used, then the ii minimum employable time headway hmin can be reduced to τ₀; (2) if the position and velocity information of r immediately preceding vehicles is used, then hmin can be reduced to 4τ₀/(1 + r); (3) furthermore, if the acceleration of ‘r’ immediately preceding vehicles is used, then hmin can be reduced to 2τ₀/(1 + r); and (4) if the position, velocity and acceleration of the immediate and the r-th predecessors are used, then hmin = 2τ₀/(1 + r). Note that cases (3) and (4) provide the same lower bound on the minimum employable time headway; however, case (4) requires much less communicated information. Representative numerical simulations that are conducted to corroborate the above results are discussed. Vehicle formations employing ring structured communication strategies are also studied in this work and a combinatorial approach for developing ring graphs for vehicle formations is proposed. Stability properties of the platoons with ring graphs, limitations of using ring graphs in platoons, and methods to overcome such limitations are explored. In addition, with ring communication structure, it is possible to devise simple ways to recon- figure the graph when vehicles are added to or removed from the platoon or formation, which is also discussed in this work. Further, experimental results using mobile robots for platooning and two-dimensional formations using ring graphs are discussed

    Cooperative Trajectory Planning for Automated Vehicles

    Get PDF

    Robust String Stability of Vehicle Platoons with Communication

    Get PDF
    This work investigates longitudinal spacing policies and vehicular communication strategies that can reduce inter-vehicular spacing between the vehicles of automated highway platoons, in the presence of parasitic actuation lags. Currently employed platooning technologies rely on the vehicle’s onboard sensors for information of the neighboring vehicles, due to this they may require large spacing between the vehicles to ensure string stability in the presence of uncertainties, such as parasitic actuation lags. More precisely, they require that the minimum employable time headway (hmin) must be lower bounded by 2τ₀ for string stability, where τ₀ is the maximum parasitic actuation lag. Recent studies have demonstrated that using vehicular communication one may be able to employ smaller spacing between vehicles while ensuring robustness to parasitic lags. However, precise results on the extent of such reduction are sparse in the literature. In this work, platoon string stability is used as a metric to study controllers that require vehicular communication, and find the amount of reduction in spacing such controllers can offer. First, the effects of multiple vehicle look ahead in vehicle platoons that employ a Constant Spacing Policy (CSP) based controller without lead vehicle information in the presence of parasitic lags is studied and string instability of such platoons is demonstrated. A robustly string stable CSP controller that employs information from the leader and the immediate predecessor is considered to determine an upper bound on the allowable parasitic lag; for this CSP controller, a design procedure for the selection of controller gains for a given parasitic lag is also provided. For a string of vehicles adopting a Constant Time Headway Policy (CTHP), it is demonstrated that the minimum employable time headway can be further decreased via vehicular communication in the following manner: (1) if the position, velocity and acceleration of the immediate predecessor vehicle is used, then the ii minimum employable time headway hmin can be reduced to τ₀; (2) if the position and velocity information of r immediately preceding vehicles is used, then hmin can be reduced to 4τ₀/(1 + r); (3) furthermore, if the acceleration of ‘r’ immediately preceding vehicles is used, then hmin can be reduced to 2τ₀/(1 + r); and (4) if the position, velocity and acceleration of the immediate and the r-th predecessors are used, then hmin = 2τ₀/(1 + r). Note that cases (3) and (4) provide the same lower bound on the minimum employable time headway; however, case (4) requires much less communicated information. Representative numerical simulations that are conducted to corroborate the above results are discussed. Vehicle formations employing ring structured communication strategies are also studied in this work and a combinatorial approach for developing ring graphs for vehicle formations is proposed. Stability properties of the platoons with ring graphs, limitations of using ring graphs in platoons, and methods to overcome such limitations are explored. In addition, with ring communication structure, it is possible to devise simple ways to recon- figure the graph when vehicles are added to or removed from the platoon or formation, which is also discussed in this work. Further, experimental results using mobile robots for platooning and two-dimensional formations using ring graphs are discussed

    Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey

    Get PDF
    Autonomous/unmanned driving is the major state-of-the-art step that has a potential to fundamentally transform the mobility of individuals and goods. At present, most of the developments target standalone autonomous vehicles, which can sense the surroundings and control the vehicle based on this perception, with limited or no driver intervention. This paper focuses on the next step in autonomous vehicle research, which is the collaboration between autonomous vehicles, mainly vehicle formation control or vehicle platooning. To gain a deeper understanding in this area, a large number of the existing published papers have been reviewed systemically. In other words, many distributed and decentralized approaches of vehicle formation control are studied and their implementations are discussed. Finally, both technical and implementation challenges for formation control are summarized

    Formation control of autonomous vehicles with emotion assessment

    Get PDF
    Autonomous driving is a major state-of-the-art step that has the potential to transform the mobility of individuals and goods fundamentally. Most developed autonomous ground vehicles (AGVs) aim to sense the surroundings and control the vehicle autonomously with limited or no driver intervention. However, humans are a vital part of such vehicle operations. Therefore, an approach to understanding human emotions and creating trust between humans and machines is necessary. This thesis proposes a novel approach for multiple AGVs, consisting of a formation controller and human emotion assessment for autonomous driving and collaboration. As the interaction between multiple AGVs is essential, the performance of two multi-robot control algorithms is analysed, and a platoon formation controller is proposed. On the other hand, as the interaction between AGVs and humans is equally essential to create trust between humans and AGVs, the human emotion assessment method is proposed and used as feedback to make autonomous decisions for AGVs. A novel simulation platform is developed for navigating multiple AGVs and testing controllers to realise this concept. Further to this simulation tool, a method is proposed to assess human emotion using the affective dimension model and physiological signals such as an electrocardiogram (ECG) and photoplethysmography (PPG). The experiments are carried out to verify that humans' felt arousal and valence levels could be measured and translated to different emotions for autonomous driving operations. A per-subject-based classification accuracy is statistically significant and validates the proposed emotion assessment method. Also, a simulation is conducted to verify AGVs' velocity control effect of different emotions on driving tasks
    corecore