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Abstract

Tra�c jams are an increasing problem, which can be tackled via one solution: automa-
tion. Current automation solutions are often based on stepwise protocols and require
communication, therefore being only valid for very speci�c situations with the strict re-
quirement of functioning communication. The goal of this thesis is to create a control
strategy for autonomous (highway) driving based on interactions rules, where the desired
(collective) behavior emerges from these (local) interaction rules. The desired interaction
rules can be found in nature, where many examples of collective behavior exist, who
do not require communication. For example, pedestrians can walk through a bottleneck
scenarios without colliding and using communication. Therefore, the used framework is
the social force model, used for modeling these crowd dynamics. However, nature also
shows the importance of taking the dynamics into account. Therefore, the nonholonomic
constraint (the no lateral slip condition) which is often a property of vehicles, is included
in the model. The interactions of the social force model and inclusion of the constraint
will be tested on a road narrowing scenario.

In the social force model each agent has a circular comfort zone. If two comfort zones
overlap, the agent experience a force based on the overlap. Due to the overlap, both
agents will react accordingly to the de�ned interaction rules. An agent who's comfort
zone is violated at the back will have the tendency to drive faster while the tailgating agent
will slow down. In the chosen road narrowing scenario this results in agents �pushing�
other agents through the road narrowing. Therefore, the average �ow time of agents
traveling through the road narrowing is close to the nominal �ow time. Agents at the
front will drive faster than their desired speed, while agents at the back drive slower.
Hence, the agents share discomfort and collaborate to achieve a better �ow through the
road narrowing without using communication.

To improve the throughput even further the comfort zone radius is linearly depending
on the speed (constant time spacing policy). By applying the spacing policy, an agent
only uses the required amount of road without reducing safety. However, introducing
the spacing policy also requires taking care of the road's geometry since it is undesirable
to have a comfort zone much smaller or wider than the lane width. The inclusion of
geometry causes di�erent problems. Using the circular comfort zones, the measure of
violation is isotropic (direction independent). The inclusion of geometry requires a di-
rection dependent measure of comfort zone violation. Geometry is included by applying
a direction dependent �lter on the isotropic measure of violation. Using this �ltering
method, a turbulent �ow emerges due to fast increasing forces when the comfort zone
diagonally behind the agent is violated. This violation causes the agent to rotate, how-
ever the comfort zone also rotates, increasing the violation. Eventually the boundary
interaction force is su�ciently large to cancel this rotation. However, the turbulent �ow
has already been arisen. Hence, a di�erent interaction causing less rotation is required.

Although the appropriate interactions are not found, the social force model has shown
its potential for autonomous driving. With the social force model it is possible to let
agents merge based on local interactions without using communication, while even im-
proving the �ow through a road narrowing.
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Chapter 1

Introduction

This chapter provides the background information and problem statement of this the-
sis. Starting with the current (increasing) tra�c problems and their causes. All these
problems have one common solution: automation. While discussing di�erent automation
solutions, a common shortcoming is detected. This results in the problem statement of
this thesis: create a control strategy for autonomous (highway) driving based on interac-
tion rules, where the desired (collective) behavior emerges from these interaction rules.
Next to that, the report outline is presented.

1.1 Background

Since 2013, tra�c on the Dutch road has increased continuously [1], leading to longer
travel times. In January and February 2017, the tra�c-jam-weighting1 has increased
by 18% compared to 2016 [2]. The tra�c-jam-weighting has increased slightly over the
whole Dutch main road and not only at the top 10 tra�c jam locations [1].

The overall cause of tra�c jams is due to high intensity (67%) [1], however the
problem underneath is not speci�ed in this study. Research has classi�ed the tra�c jam
causes at the top 15 tra�c jam locations in 2011 which are: incident tra�c jams (7%);
shockwave tra�c jams (22%); and infrastructural tra�c jams (71%) [3].

Incident tra�c jams can arise everywhere at any time. The cause of an incident
tra�c jam can be everything, such as road works, car crashes, weather and so on.

Shockwave tra�c jams occur for no apparent reason. If speed �uctuations of a
vehicle are ampli�ed by the succeeding vehicles, a shockwave of continuously increased
braking is caused. Eventually a vehicle comes to a standstill, resulting in a tra�c jam.
This behavior is (often) caused by too much tra�c or erratic driving behavior.

Infrastructural tra�c jams arise when the amount of tra�c exceeds the road
capacity. This is often the case during rush hours at locations where the number of lanes
is reduced (i.e. road narrowings and entrance lanes).

1.2 Solutions to traffic problems

Since tra�c jams have a large economic and environmental costs, people are constantly
trying to �nd solutions to reduce (the e�ect of) tra�c jams. Car manufacturers are
trying to increase the reliability of their products and apply predictive maintenance to
decrease the number of cars with car trouble at the side of the road. They also increase
the safety (e.g. avoiding car crashes) by adding systems such as autonomous emergency
braking and lane keeping assist. Furthermore, the Dutch roads are maintained well to

1traffic-jam-weight = length of the traffic jam in kilometers times the jam duration in minutes.
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CHAPTER 1. INTRODUCTION

avoid unplanned road/lane closures. However, incident tra�c jams cannot be overcome
since incidents will always happen. Even though incidents cannot be avoided, they are
currently the smallest cause of tra�c jams.

A larger problem are shockwave tra�c jams, which are currently tackled by two
di�erent methods. The �rst method is to provide drivers with speed information based
on tra�c ahead. If drivers react appropriately to the provided speed information, speed
�uctuations are limited, a shockwave tra�c jam is avoided. The speed information can
be provided via the road side with dynamic route information panels (DRIPs) [4]. In
addition, with the current state of technology the �grid� can be reduced by providing
in-car information (e.g. via mobile phone apps) and also provide the global system with
more data [5].

The second method to avoid shockwave tra�c jams is by automation. By providing
speed information to the user, it is assumed that drivers notice the speed information
and react accordingly. However, this cannot be guaranteed. By applying automation,
the desired behavior can be guaranteed. This could be done by implementing it in driver
assistance systems such as adaptive cruise control. Most of today's luxury vehicles are
equipped with adaptive cruise control (ACC), which is a cruise control (CC) system
that automatically adjusts the speed to maintain a safe distance from vehicles ahead.
However, ACC systems are merely focused on driving comfort and are not designed to
damp shockwaves [6]. Although it is possible to damp shockwaves with ACC systems,
a relatively large following distance is required [6, 7]. The damping performance can be
increased by applying vehicle-to-vehicle communication. Here a vehicle communicates its
acceleration to its successor such that it can be taken into account before measuring it.
This ACC with feedforward by means of communication is called cooperative adaptive
cruise control (CACC). Applying CACC, a headway-time of 0.7 seconds has proven to
damp the shockwave [7], this is signi�cantly less than with ACC. Therefore, Europe's
truck manufacturers created a detailed timeline of steps leading up to the introduction
of CACC on Europe's highways before 2025 [8]. Hence it is assumable that in the near
future the e�ect of shockwaves will be reduced, resulting in less shockwave tra�c jams.

The most common tra�c jams are infrastructural tra�c jams, which are also the
hardest to prevent. These tra�c jams occur when the road's capacity is exceeded. Two
obvious solutions are adding road capacitance (e.g. add more lanes) or decrease tra�c
(e.g. avoiding rush hour or create alternative routes). However, the Braess Paradox [9]
states that adding capacitance to a network can result in a decrease of overall performance.
Hence, these solutions can have the opposite e�ect and are not future-proof since the
amount of tra�c keeps constantly increasing.

A third solution can be found when comparing tra�c driving through a road nar-
rowing with �uid (laminar) �owing through a bottleneck. These two scenarios are very
similar see Figure 1.1.

To maintain a constant �uid �ow, the law of conservation of mass must hold

ρ1A1v1∆t = ρ2A2v2∆t

with density ρi; area Ai; speed vi; and the elapsed time ∆t. A constant �ow without
bu�ering e�ect is obtained if this relationship holds for ∆t → 0. Hence, the speed
and density (inter-vehicular distance) before and after the road narrowing should change
accordingly.

To increase the speed and/or decrease the inter-vehicular distance after the road
narrowing, without reducing safety is (almost) not possible for human drivers. Since
humans have a relatively long reaction time compared to automated systems, the inter-
vehicular distance can be (safely) decreased by means of automation. It has been proven
that CACC can decrease the inter-vehicular distance while maintaining a safe distance to

2
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(a) Traffic driving through a road narrowing.

A1

v1

A2

v2
ρ1 ρ2

(b) Fluid flowing through a bottleneck.

Figure 1.1: Analogy between traffic driving through (a) a road narrowing and (b) fluid
flowing through a bottleneck.

its predecessor. Furthermore, CACC has the communication available to �hear� what is
�happening� downstream and react accordingly. To solve the infrastructural tra�c jams
at road narrowings and entrance lances, researchers explored the possibilities to automate
the merging procedure while driving with CACC as explained in the next paragraph.

A merging protocol has been tested during the Grand Cooperative Driving Challenge
2016 [10]. The goal of the Grand Cooperative Driving Challenge (GCDC) is to accelerate
the introduction of cooperative and automated vehicles in every day tra�c. To do so, the
GCDC 2016 had two challenges: cooperative platoon merge; and cooperative intersection
passing. In the cooperative platoon merging scenario, two platoons (A & B) are required
to merge. During the challenge, the merging protocol of Semsar-Kazerooni et al. [11]
has been tested. The protocol is elaborated below (see Figure 1.2): (i) the platoons are
aligned, the speeds are synchronized; (ii) platoon B is pairing up to platoon A, based on
the closest neighbor; (iii) platoon A is pairing up to platoon B; (iv) cars start to make
gaps such that the paired vehicle has enough space to merge in between; (v) when the
gaps are ready, the platoon merges and a new platoon has been formed.

Figure 1.2: The platoon merging protocol as proposed by Semsar-Kazerooni et al. [11].

3



CHAPTER 1. INTRODUCTION

The drawback of this CACC merging protocol is that it lacks the ability to adapt to
scenarios where a limit amount of space and/or time is available (i.e. robustness), since
most steps occur simultaneously for all vehicles. Hence, the proposed protocol is not
suitable to use in dense road tra�c with many platoon members and/or limit space and
time due to its stepwise nature.

A new merging procedure is currently developed [12] solving some of the �aws. How-
ever, this new merging solution is still only applicable in certain scenarios and also
requires communication.

The (extensive) use of communication is not desired since the current bandwidth is
(mostly) required for the working of CACC. Nevertheless, a scenario where the commu-
nication malfunctions causes a problem since the vehicles will be not able to merge. The
requirement that all vehicles should be equipped with (working) communication modules
is very restricting.

To reduce (or even solve) the infrastructural tra�c jam problem, a method that
changes the speed and inter-vehicular distance without using stepwise protocols and com-
munication is required. Since most infrastructural tra�c jams occur at road narrowings,
merging is also required. Hence, an autonomous (highway) driving system is required.
Therefore, the goal of this thesis is to �nd a new solution approach for autonomous
(highway) driving without the need of communication and stepwise protocols.

This new solution approach can have a wide range of applications (besides tra�c),
e.g. autonomous transportation tasks in warehouses, harbors, factories etc.. A current
solution for autonomous transportation is using a supervisory system which assigns a ref-
erence path with a desired velocity pro�le to each agent. However, this will not guarantee
collision-free movements (e.g. due to disturbances), therefore a tracking controller with
collision avoidance as in [13] can be used. This solution requires a non-equal priority
assignment for each agent such that the system does not end in a deadlock. Conse-
quently requiring communication or general knowledge of each agent's priority, which is
impractical for an increasing number of agents in a dynamic environment. Hence, the
restriction on communication and stepwise protocols is also applicable for a wider range
applications, emphasizing its importance.

1.3 Social interaction forces

To �nd a suitable merging strategy, nature is consulted. In nature there are many
examples of collective behavior: swarms of bees; �ocks of birds; herds of sheep; and
crowds of pedestrians. The collective behavior of swarms is often self-organized. This
means that collective behavior emerges from the underlaying (local) interaction rules and
are not externally planned or prescribed [14�16].

The desired merging behavior can be found in human crowds. We (humans) can
walk through a bottleneck scenario and merge without colliding (under normal condi-
tions). The passing time distributions are equally spread [17], hence nobody has to wait
extremely long before merging and passing through the bottleneck.

Such collective movements are often analyzed and predicted by modeling individuals
with virtual physics [18, 19]. A well-known (and proven) model to study crowd dynamics
is the social force model of Helbing et al. [17, 20, 21]. The social force model describes
the behavior of an individual pedestrian by a superposition of generalized forces re�ecting
motivation and environmental in�uences.

The interaction rules obtained from the social force model are also successfully applied
to create an autonomous navigation controller for di�erential wheeled mobile robots [22].
Each agent (mobile robot) has a comfort zone which creates a repulsive force when it is
violated by an environmental obstacle or another agent's comfort zone, therefore avoiding
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collisions. An attractive force drives the agent to its target location. Simulations and
experiments show that this navigation controller can drive six mobile robots to di�erent
target locations without colliding in various scenery (including a bottleneck scenario)
[22].

From other research it is known that the dynamics of an individual are very important
to the (collective) behavior. A �ock of birds can be modeled using three interaction rules:
attraction, alignment and avoidance [23]. However, a school of �sh can be modeled
using the same three interaction rules but show a di�erent collective behavior [16]. The
di�erence in collective behavior is subject to the dynamics of the individuals. A �sh
is more likely to slow down to avoid collisions while a bird changes its orientation [16],
resulting in a di�erent collective motion.

Thus, to �nd or create a suitable merging strategy, the interaction rules from the
social force model can be a good source of inspiration. Although the dynamics of the
individual play an important role and should be taken into account.

1.4 Artificial potential fields

Another common method to drive robots through a dynamic environment is by employing
arti�cial potential �elds. Many applications of arti�cial potential �eld can be found in
the �eld of swarm robotics [18, 19, 24�28]. Swarm robotics is �the study of how large
numbers of relatively simple physically embodied agents can be designed such that a
desired collective behavior emerges from the local interactions among agents and between
the agents and the environment.� [29]. Typically the used potential function U(q) :=
Uatt(q) + Urep(q) includes attraction Uatt(q) towards its goal and repulsion Urep(q) from
all obstacles in the workspace [30]. The desired motion from any given pose q can be
determined by the gradient descent q̇ := −α∇U(q).

An example of an arti�cial potential �eld for highway driving with collision avoidance
in a full two-dimensional �eld is created by Wolf and Burdick [31]. Additionally, it
includes implicit decision making, whether to pass slow obstacles or stay behind them.
A geometric shape (rectangle) is created around all other agents such that the lateral
dimensions can di�er from the longitudinal dimension. A wedge is added to the back of
the other agents to provoke lane changing (see Figure 1.3). The agent should only change
lane if the speed di�erence is su�ciently large, therefore the dimensions of the wedge is
based on the speed di�erence between the two agents. A larger speed di�erence implies
a longer wedge.

The work of Wolf and Burdick di�ers from other research since they created a po-
tential �eld in a two-dimensional �eld with implicit decision making. In other research
the potential functions for longitudinal and/or lateral control are derived separately, sub-
sequently combined to create a two-dimensional �eld [32�36]. Even merging protocols
for the longitudinal direction are created using arti�cial potential functions [12], however
they still contain the stepwise protocol. Nonetheless, the arti�cial potential functions are
very intuitive and a priori based, therefore they are only valid for very speci�c situations.

The generalized forces of di�erent social interaction models [16, 17, 20, 21, 23] de�ne
the desired motion, which can be seen as the gradient of an arti�cial potential function.
Hence, the social force model also creates a two-dimensional arti�cial potential �eld by
de�ning the gradient instead of the potential function. The social force model of Helbing
et al. [21] distinguishes itself from the other potential �elds since it takes the other
agent's comfort zone into account, therefore both agents experience an interaction force.
Due to the mutual interaction, the agents exhibited a more �social� behavior since the
other agent's preferences are considered.

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Visualization of the car potential function designed by Wolf and Burdick [31].
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1.5 Problem statement

The main short coming in the current design of autonomous driving controllers and
merging strategies is the use of stepwise protocols and their application in very speci�c
situations. Furthermore, the development of these control strategies merely focuses on
microscopic behavior and not on the macroscopic e�ect. Therefore, the goal of this
thesis is to create a control strategy for autonomous (highway) driving based

on interaction rules, where the desired (collective) behavior emerges from

these interaction rules. Here (highway) driving includes: lane keeping; driving at a
desired speed or (safe) distance to its predecessor; and merging.

The control strategy should be able to work without communication with other agents
or its environment since communication is a very restrictive requirement. This means
that the available signals are based on data obtained from (local) measurements. Thereby
assuming that the following information is available without time delays:

� (relative) position;

� (relative) orientation;

� (relative) velocity.

Setting highway driving including merging as a goal brings several challenges. The
�rst challenge is to create the desired collective behavior based on local interaction rules.
Since it is known that the dynamics of an individual have a great in�uence on the
collective behavior, the constraints of a vehicle should be taken into account. Hence, a
representative vehicle model should be used.

The second challenge is to include geometry in the control strategy. Geometry is
desired since vehicles drive on di�erent lanes, consequently the lateral distance may be
smaller than the longitudinal distance. E.g. driving one meter to the side of another
car is more acceptable than following one meter behind. However, in most research the
Euclidean distance to another agent (assumed to be a point) is used to determine the mag-
nitude of the reaction force. The Euclidean distance is isotropic (direction independent),
which is not desired in this scenario. Therefore, an alternative method to determine the
magnitude of the interaction force is required.

The last challenge is including a spacing policy. The inter-vehicle distance should be
subject to the speed such that the minimum amount of road is used while guaranteeing
safety. Thus, in analogy to the �uid model, the density should be speed depended.

To test and measure the macroscopic performance of the new control strategy, a road
narrowing as shown in Figure 1.4 is used as design and test case. Initially the road starts
with two lanes (section 1) and will be reduced (section 1 → 2) to a road with one lane
(section 2). Thus, this scenario includes: lane keeping; driving at a desired speed or (safe)
distance to its predecessor; and merging.

1 21 ! 2

Figure 1.4: The selected scenario, a road narrowing from (initially) two lanes to one lane.
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1.6 Solution approach
To �nd a suitable solution approach, the features of the earlier mentioned automation
solutions are summarized in Table 1.1.

Since the goal is to let the desired (collective) behavior emerge from the interaction
rules, the social force model is chosen as the framework to design the interaction rules in.
The choice for the social force model may be counter intuitive since most features have
already been implemented in arti�cial potential �elds. However, the greatest advantage
of the social force model is that the collective behavior is already known since it is used
to study crowd dynamics. From [17] it is known that no agent has to wait extremely long
before merging and passing through the bottleneck. Thus, the agents exhibit a �social�
behavior by sharing discomfort, which is a desired feature for the new control strategy.d
Furthermore, the social force model should have the same possibilities to embed the
features as arti�cial potential �elds since the generalized social force is the gradient of
such a �eld. Hence, the required features of the other methods (representative vehicle
model; spacing policy; and agent geometry) can be added to the social force model.

Since CACC is only de�ned in the one-dimensional plane it is nontrivial to apply
it in the full two-dimensional �eld. Furthermore, CACC is merely focused on damping
shockwaves by improving the performance of ACC. Therefore, CACC is not a good
starting point for autonomous driving but might be implemented in a later stage to
improve performance.

Table 1.1: Feature overview of the social force model (SFM), artificial potential fields
(APF), cooperative adaptive cruise control (CACC) and adaptive cruise control (ACC).

Feature SFM APF CACC ACC
Works in the (full) 2D-field 3 3 7 7

Social / cooperative behavior 3 7 3 7

Contains representative vehicle model 7/3 3 7 7

Efficient road usage (spacing policy) 7 3 3 3

Damping shockwaves 7 7/3 3 7/3

Implicit decision making 3 3 7 7

Does not require communication 3 3 7 3

Including agent geometry 7 3 7 7

1.7 Report outline
The rest of this thesis is organized as follows. In Chapter 2 the general methodology is
introduced, covering the social force model and macroscopic performance measurements.
It is followed by Chapter 3, where the interactions are derived based on the social force
model of Helbing et al. and some of the required features are added. These newly
designed interactions are tested by means of simulations. The simulation method and
corresponding outcomes are discussed in Chapter 4. Based on these results, Chapter 5
discuses alternative interaction designs. Finally, Chapter 6 provides the conclusions and
recommendations of this thesis.
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Chapter 2

General methodology

This chapter will �rst cover the multi-agent model, starting with the details of the used
scenario: the road narrowing. Thereafter, the multi-agent model is discussed. The multi-
agent model consists of two parts, namely the agent kinematics and the interactions.
The di�erential wheeled mobile robots, considered as agents, are represented by the well-
known unicycle kinematics. In addition the interaction frame work is de�ned, followed
by a general form of the inter-agent interactions and environmental interactions. The
�rst part is concluded with a model overview.

The second part de�nes the measurements to indicate the macroscopic performance
of the control strategy. The four measurements which are de�ned are: �ow time; cycle
time factor; throughput; and stress. Furthermore, the de�nition of the L2-norm is given.

2.1 The multi-agent model

The goal is to create a control strategy for autonomous (highway) driving based on inter-
action rules. The desired collective behavior should emerge from the interactions between
agents; and agents and their environment. Hence, the used scenario is of great impor-
tance. Therefore, the geometric problem description will be covered �rst. It is followed
by the agent kinematics; the interaction framework; a general form of the interactions;
and a model overview.

2.1.1 Geometric problem description

The lane reduction scenario is modeled as shown in Figure 2.1. Initially the road starts
with two lanes, where each lane has a width w`. Eventually the upper lane is removed
and only the lower lane remains.

Initially, there are n agents equally distributed over the two lanes with a longitudinal
inter-agent distance d0. Each agent i ∈ V := {1, . . . , n} has an orientation θi, position

pi :=
(
xi yi

)
and velocity vi :=

(
ẋi ẏi

)
with respect to the �xed world frame e0.

The environment (i.e. road-layout) is constructed out of di�erent obstacles. The
geometry and location of obstacle W is described by the set WW ( R2. To create the
road lay-out, three di�erent obstacles are de�ned: the lower road boundary; the upper
road boundary reducing the number of lanes; and the lane separation.

The set representing the lower road boundary

W1 :=
{
z ∈ R2 | y = c

}
describes a straight line. Here z := xe0

1 + ye0
2 =

(
x y

)
e0 and c is an arbitrary constant

indicating the location of the lower road boundary with respect to the �xed world frame.
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Figure 2.1: Model of the scenario.

The constant c is only used for visualization purposes and has no e�ect on the overall
dynamics.

The obstacle, describing a sigmoid, represents the upper road boundary which reduces
the number of lanes

W2 :=

z ∈ R2 | y = c+ 2w` −
w`(

1 + e−α(x−xb)) 1
β

 ,
with lane width w`; the x-value of the sigmoid's midpoint xb (see Figure 2.1); and tuning
parameters α and β.

The last obstacle set describes the lane separation, which is only present in a certain
region

W3 =
{
z ∈ R2 | x ≤ xrs, y = c+ w`

}
.

The numerical parameters for the boundaries are presented in Table 2.1. The pa-
rameters are chosen such that the center of road narrowing is set at the origin of the
�xed world frame. This only has a visual bene�t and does not a�ect the system dynam-
ics. Furthermore, the parameters are based on the dimensions of the e-puck [37] and
corresponding comfort zone as used in the work of Rodriguez-Angeles et al. [22].

Table 2.1: The used numerical values for the boundary parameters.

Parameter c w` α β xb xrs
Value −0.1 0.1 1 0.2 0 −0.5

2.1.2 Agent kinematics

Since the agent dynamics can have a great in�uence on the collective behavior it is
important to take them into account. The agent dynamics can be included by modeling
the agent as a point mass with a certain damping mq̈ + dq̇ = F , where q represents the
agent's pose. However, this damping term d is vehicle depended and has a great in�uence
on the overall performance. Another possibility to take the agent dynamics into account
is by including the no lateral slip condition (nonholonomic constraint), which vehicles
often possess, into the agent kinematics.

Each agent is considered as a di�erential wheeled mobile robot, represented by the
kinematic model of a unicycle (2.1). On one hand the kinematic bicycle model would
have been a more intuitive choice for modeling a vehicle since the focus of the application
is on tra�c. On the other hand, the social force model has been successfully applied on
a di�erential wheeled mobile robot [22], which is represented by the unicycle kinematics.
Nevertheless, the unicycle and bicycle model possess the same nonholonomic constraint.
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To follow up on the work in [22] the unicycle kinematics are chosen, with the advantage
that it could be tested on the e-puck mobile robots.

The unicycle model

ẋi = vi cos(θi)
ẏi = vi sin(θi)
θ̇i = ωi

(2.1)

has longitudinal speed vi and rotation speed ωi as control inputs.

2.1.3 Interaction framework

The interaction framework is based on the social force model of Helbing et al. [17, 20, 21],
used to study crowd dynamics. The social force model describes the behavior of an
individual pedestrian by a superposition of generalized forces re�ecting motivation and
environmental in�uences. In the work of Rodriguez-Angeles et al. [22] the generalized
forces of the social force model as in [21] de�nes the desired motion.

For greater possibilities, a more general interaction framework is derived based on
the work in [21, 22]. The desired acceleration (i.e. motion) of agent i is described by

mia
d
i := mi

(
1 + γi

||vcied − vi||
τi

)
vcie

d − vi
τi

+
∑
i(6=j)

fij +
∑
W

fiW . (2.2)

Here vi :=
(
ẋi ẏi

)
is the velocity vector and adi :=

(
adi,x adi,y

)
the desired acceleration

vector. The �rst right hand term in (2.2) regulates the agent to its desired cruise speed

vci in the desired direction edi :=
(
1 0

)
, with the characteristic time constant τi. Here

|| · || denotes the Euclidean-norm. The constant gain γi makes
||vci e

d−vi||
τi

dimensions less
and is called the �quadratic speed regulation term�. With γi = 0 the model is equal to
the model as presented in [21, 22]. This quadratic speed regulation term is introduced
to compensate for the e�ect of the spacing policy, which is covered in Section 3.2.3.

The reaction force between agent i and other agent j ∈ V is represented by the vector
fij ∈ R2. The reaction force between agent i and the environmental obstacle W (e.g.
road boundaries) is given by the vector fiW ∈ R2. All these vectors are expressed with
respect to the �xed world frame e0 as shown in Figure 2.1. The general form of these
interaction forces is elaborated below and will be speci�ed in Chapter 3.

Inter-agent interactions

The inter-agent interaction force fij is de�ned as

fij :=
(
Υij(qij)gij(qij)

)(
kinij + κi∆vtjitij

)
, (2.3)

where qij :=
(
pi pj vi vj

)
∈ Qij :=

{
R2 × R2 × R2 × R2}.

The interaction function Υ : R2×R2×R2×R2 → [0, 1] indicates if there is interaction
between agent i and j. In general, if the comfort zone of agent i is violated by agent j
the function Υij = 1, otherwise Υij = 0. To reduce the sti�ness of the multi-agent prob-
lem, the interaction function can be smooth such that the interaction force is gradually
increasing. The velocity of both agents is an argument of Υij since the comfort zone of
the agents can be speed depending (due to the application of the spacing policy).

The violation function gij : R2 × R2 × R2 × R2 → R determines the weighting of
the applied interaction force based on the comfort zone violation. Since the comfort
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zones can depend on the speed, the velocities are also an argument of this function. To
only allow repulsive forces due to comfort zone violation, the violation function must be
semi-positive if the interaction function is non-zero

gij(qij) ≥ 0 ∀ qij ∈
{
Qij | Υij(qij) 6= 0

}
.

The amplitude and direction of the interaction force are determined by the constants
ki, κi. The normal vector pointing from agent j to i is nij :=

(
nij,x nij,y

)
and the

tangential vector tij :=
(
−nij,y nij,x

)
. The tangential velocity di�erence is given by

∆vtji := (vj − vi)tij .

Remark. This is a more general definition of the inter-agent force than in the work of
Helbing [21] and Rodriguez-Angeles [22], with the additional restriction that in only allows
repulsive forces. However, the working principle is similar to the work of Rodriguez-
Angeles [22] and the same results can be achieved.

Environmental interactions

The environmental interaction forces are very similar to the inter-agent interaction forces.
If the comfort zone of agent i is violated by an environmental obstacle W , the term fiW
generates a repulsive interaction force

fiW := k̂W
(
ΥiW (qiW ,WW )giW (qiW ,WW )

)(
kiniW + κi(vi · tiW )tiW

)
, (2.4)

where (qi) :=
(
pi vi,

)
∈ Qi :=

{
R2 × R2}. All functions are like the functions de�ned

at the inter-agent interactions, however agent j is replaced by obstacle W . The term
∆vtjitij from (2.3) is similar to (vi · tiW )tiW since an environmental obstacle cannot
move. The tangential speed di�erence is thus the agents' own speed tangential to the
obstacle. Furthermore, there is an additional parameter k̂W who's value depends on the
obstacle type.

There are two types of obstacles, road edges (boundaries) and lane divisions. The goal
of the road edge is to keep the agents on the road. Therefore, the interaction force needs
to be su�ciently large with respect to the inter-agents interaction forces. Assuming that
a maximum of 3 agents can try to push another agent of the road (one from each side),
the road edge should deliver a su�ciently large force. Choosing k̂W = 4 if obstacle W
is a road edge, the boundary interaction force is signi�cantly larger than the inter-agent
interaction forces.

The goal of the lane division is to keep agents in their lane under �normal� circum-
stances. However, under certain conditions, e.g. if the lane is jammed and the adjunct
lane is not, the agent should be able to change lane. To achieve this, the environmen-
tal force should be signi�cantly lower than the inter-agent interaction force. Therefore,
k̂W = 1

4 if obstacle W is a lane division.

Linking the social force model to the kinematic model

The social force model (2.2) generates a generalized force for agent i. Via Newton's
second law, this can be transformed to the desired acceleration adi . However, the desired
acceleration cannot be directly used as input for the unicycle kinematics due to the
nonholonomic constraint. The inputs of the unicycle model are the forward speed vi
and rotation speed ωi. Therefore, the challenge is to turn the desired acceleration into
appropriate control inputs for the kinematic model.

Dynamic feedback linearization as in [38] cannot be used since it does not allow agents
to stand still (vi 6= 0), while coming to a standstill is very common in tra�c jams. In
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Figure 2.2: The projection method visualized.

the work of Rodriguez-Angeles et al. [22], the nonholonomic constraint is rewritten to
obtain these desired inputs. However, this strategy may result in unstable behavior, as
shown in Section 4.2 and Appendix B. Therefore, a di�erent strategy similar to the work
of Tanner et al. [25] is created. A projection of the desired acceleration is taken on the
current orientation of the unicycle (see Figure 2.2), resulting in a forward acceleration ai
and a rotation speed ωi (

ai
ωi

)
:=
(

cos (θi) sin (θi)
− sin (θi) cos (θi)

)(
adi,x
adi,y

)
. (2.5)

The rotation speed is one of the inputs of the kinematic model and can be used
directly. The other input, the forward velocity vi, is obtained by integrating the forward
acceleration

ai =: v̇i.

Furthermore, the input vi has a saturation limit such that the agent cannot move back-
ward vmin

i = 0 and has a maximum speed vmax
i .

2.1.4 Model overview

By applying the projection method, a proper connection is made between the social force
model and the unicycle kinematics. The output of the social force model, the desired
acceleration, is translated by the projection method to a forward and rotation speed.
Which are the inputs of the unicycle model, describing the agent's kinematics. Using the
unicycle kinematics, an agent is considered to be a point mass with an orientation.

A complete overview is given in Figure 2.3, where all interactions between the di�erent
submodels are shown. The interactions take place within the dash-dotted line, which
de�nes the gradient of the arti�cial potential function for each agent.
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Figure 2.3: Composition of the complete mathematic model.
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2.2 Measurements
The earlier discussed social force model describes the agents on a microscopic level. The
goal is to design the microscopic interactions to provoke a certain macroscopic behavior,
namely increasing the throughput of the road narrowing and �uent merging. The macro-
scopic performance of the collective behavior is hard to see when using a microscopic
model. To state something about the collective behavior, measurements are required.
Therefore, the following measures are introduced:

� �ow time;

� cycle time factor;

� throughput;

� stress.

Furthermore, a de�nition of the used L2-norm is given.

2.2.1 Flow time

In literature the travel time, cycle time or �ow time ϕi is often analyzed [39�42]. This
are di�erent names for the same measurement.

Definition 1. The flow time is the time it takes for an agent to travel from line x = A
to line x = B over a distance ∆x = |B −A|.

The lines x = A, x = B and distance ∆x are visualized in Figure 2.1. This measure-
ment gives an indication about the average speed of an agent over the used interval.

2.2.2 Cycle time factor (CTF)

Analyzing the e�ect of di�erent cruise speeds using the �ow time distribution would be
hard. Especially in the �eld of manufacturing systems, the cycle time factor (CTF) is
used to analyze the e�ect of a parameter on the speed [43, 44]. The cycle time factor is
determined by dividing the �ow time by the nominal �ow time1. The nominal �ow time
of an agent is determined by dividing the interval distance ∆x by the desired (cruise)
speed vci .

Definition 2. The cycle time factor is

CTFi := ϕi · vci
∆x .

Remark. With this definition of the nominal flow time the effect of the road narrowing
on the top lane agents is neglected (it is assumed that if the agent is alone in the system
it would drive on the lane which is not removed).

2.2.3 Throughput

Another common measure in literature to indicate performance is �ow or throughput δ
[39�45]. The throughput is measured by counting the number of agents ∆N passing a
line x = C during a certain time interval ∆T . The throughput at line x = C is then
determined by

δ(x) = ∆N
∆T

1The nominal flow time is the time it takes for an agent to pass through the road narrowing if it is
the only agent present in the system.
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with arbitrary constant C, where the unit of the throughput is agents per time unit.
However, this is not the appropriate measure to use when performing simulations

with only a few agents. Therefore, the throughput measurement is rede�ned by taking
the time it takes to let all agents pass a line, starting with the �rst agent.

Definition 3. The throughput δ(x) in agents per second is

δ(x) := n

t2 − t1
,

where the time that the first agents passes the measurement line on position x is denoted
as t1, the time that the last agents passes this line is t2 and the total number of agents
passing the line is n.

2.2.4 Stress

The last measurement is the agent's stress. An agent can experience a di�erent forces
due to the inter-agent interactions. It is possible that these forces cancel each other
out, however a slight disturbance could lead to a sudden change in the amplitude of the
generalized force. To measure the possibility of the sudden change, denoted as �stress�,
the magnitude of the inter-agent forces is taken. The magnitude of the force is divided
by the distance between the interacting agents since an agent close by has in general a
larger e�ect on the dynamics than an agent far away.

Definition 4. The total stress an agent experiences is

σi :=
∑
j

||fij ||
dij

.

Remark. The unit of this agent stress is Newton per meter, while engineering stress
is expressed as a pressure in Newton per square meter [46]. Hence, there is no (direct)
relation between the agent stress and engineering stress.

2.2.5 L2-norm

Besides the earlier de�ned measures for the macroscopic behavior, it can be interesting
to determine the total energy of an agent speci�c signal e.g. the stress σi(t) or rotation
speed ωi(t). The energy of a signal is determined by the L2-norm as de�ned in [47, 48].

Definition 5. The L2-norm of a signal z(t) =
(
z1(t) z2(t) . . . zn(t)

)
is

||z(t)||L2 :=
(∫ ∞

0
zT (t)z(t)dt

) 1
2

=
(∫ ∞

0
||z(t)||2dt

) 1
2
.
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Chapter 3

Interaction design

The general methodology covered in the previous chapter does not de�ne the interactions.
The interactions are depending on the de�nition of the interaction and violation function.
In this chapter di�erent interaction rules will be derived. First the interactions from the
social force model as de�ned by Rodriguez-Angeles et al. [22] are discussed. Thereafter
social-ACC is derived, which is based on the social force model as de�ned by Rodriguez-
Angeles et al. but with a speed depending comfort zone size (i.e. spacing policy). The
novelty in social-ACC is that the other agent's comfort zone is taken into account. The
hypothesis is that this induces a more social behavior where agents make place for each
other, resulting in a better �ow through the road narrowing. To see the e�ect of social-
ACC, an implementation of 2D-ACC has been made. This should re�ect the working
principle of ACC or more human-like driving. The expected working principles of social-
ACC and 2D-ACC is shown in Figure 3.1.

t0 t1 t2 t3 t4

ACC

Social
ACC

2D

Figure 3.1: The hypothetical difference in working principle of 2D-ACC and social-ACC.
With (top) 2D-ACC an agent only reacts when another agent is in its comfort zone, while
(bottom) with social-ACC both agents interact if their comfort zones intersect.

3.1 Social force model by Helbing

The social force model by Helbing is characterized by the circular comfort zones, where
the sizes are speed independent. An agent will experience a force if the comfort zone is
violated by an obstacle or another agent's comfort zone. The interaction created by the
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overlap of the two comfort zones is what makes the social force model �social� since it
takes another agent's preference into account.

In the original model by Helbing, the tuning parameter γi does not exist, therefore it
is set to 0. Hence, the desired motion of an agent is given by

mia
d
i := mi

vcie
d − vi
τi

+
∑
i( 6=j)

fij +
∑
W

fiW .

In the following subsections the inter-agent interaction force fij and the environmental
interaction force fiW will be speci�ed.

3.1.1 Inter-agent interactions

Agent i ∈ V has a circular comfort zone with radius ri. If for agent j ∈ {V|i 6= j} the
comfort zone intersects the comfort zone of agent i, the interaction function becomes
1. The inter-agent interaction function Υij is then de�ned by the inter-agent indicator
function Iij

Υij := Iij .

The inter-agent indicator function Iij ∈ {0, 1} is de�ned as

Iij :=
{

1 for rij − dij ≥ 0
0 otherwise

(3.1)

with rij := ri + rj and dij := ||pi − pj ||.
The violation caused by another agent is the overlap of the two comfort zones

gij := max (0, rij − dij) , (3.2)

visualized in Figure 3.2. A visualization of both functions in R2 is given in Figure 3.3.

gij

dij

rirj
ij

Figure 3.2: In the original social force model the amount of violation gij is measured as
the overlap of two comfort zones.

3.1.2 Environmental interactions

The environmental interactions are very similar to the inter-agent interactions. However,
an environmental obstacle does not have a comfort zone, therefore only the agent's com-
fort zone is used. If an obstacle W is inside the comfort zone of agent i, the comfort
zone is violated and the interaction function becomes 1. The environmental interaction
function ΥiW is de�ned by the environmental indicator function IiW

ΥiW := IiW .
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3.2. SOCIAL-ACC

(a) Υij := Iij (b) gij

Figure 3.3: Individual inter-agent function visualization from the social force model by
Helbing in the 2D-plane. (a) Interaction function and (b) violation function.

The environmental indicator function Ii,W ∈ {0, 1} is de�ned as

Iiw :=
{

1 for ri − diW ≥ 0
0 otherwise

(3.3)

where the distance from agent i to obstacle W is

diW := inf
x∈WW

||pi − x||. (3.4)

The violation caused by an obstacle is determined by

giW := max (0, ri − diW ) . (3.5)

3.2 Social-ACC
The social force model of Helbing only considers circular comfort zones. This means
that the desired distance between agents is equal in every direction. Since an agent
cannot change its direction directly (due to the nonholonomic constraint), the lateral
distance between agents may be smaller than the longitudinal distance. This di�erence
in distance can only be achieved by taking care of the road's geometry. After the inclusion
of geometry, the size of the comfort zone is made speed dependent such that the minimum
amount of road is used by each agent without decreasing safety.

3.2.1 Inter-agent interactions

To include geometry without changing the current measure of violation (3.2) and (3.5),
di�erent possibilities to change the interaction function are discussed.

The �rst possibility is to change the indicator function Iij such that it contains
geometry (see Figure 3.4a). While changing the indicator function, the violation (still
based on the radius, Figure 3.3b) is determined by the largest dimension of the geometric
comfort zone. Thus, the possibility exists that

∃qij ∈
{
Qij |

(
Iij(qij) = 0 ∧ gij(qij) > 0

)}
.

Therefore the possibility exists that there is a jump in the applied force (see Figure 3.4b).
This jump will cause discomfort for passengers and will increase the sti�ness of the multi-
agent system signi�cantly. Both e�ects are undesirable.
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(a) Υij := Iij (b) Υijgij

Figure 3.4: Visualization of (a) indicator function defined by the geometric indicator
function and (b) the product of the interaction and violation function.

A di�erent possibility to add geometry without increasing the sti�ness is to smooth
the indicator function by taking the convolution with a Gaussian function Υij := Iij ∗G
However, the Gaussian function G has an asymptote at 0 and therefore the convolution
also has an asymptote at 0. The interaction function with an asymptote at 0 can be
interpreted as an always exciting interaction between agents. Since it is in appropriate
to assume that all agents always interact, a di�erent method is required.

Replacing the Gaussian function for a bump function Υij := Iij ∗Ψ̃i, the asymptote is
avoided. According to [49], the support of the convolution of f : RN → R and g : RN → R

supp (f ∗ g) ⊂ supp (f) + supp (g),

where denotes the continuous extension and support is de�ned as:

Definition 6. The support of the real-valued function f is the subset of the domain X
containing those elements which are not mapped to zero

supp(f) := {x ∈ X |f(x) 6= 0} .

Hence, by taking the convolution of the indicator and a bump function Ψ̃i, the in-
teraction function can have support outside the support of the indicator function. This
means that there can be interaction before the comfort zones overlap, which is also
inappropriate. Therefore, it is desirable to have

supp (Υij) ⊂ supp (Iij)

such that there is no interaction before the (circular) comfort zones overlap.
A possibility to guarantee this is by setting the interaction function as product of the

indicator and bump function Υij := IijΨ̃i, resulting in

supp (Υij) := supp (Iij) ∩ supp
(
Ψ̃i

)
.

The only disadvantage of this method is that the interaction function is not guaranteed
to be smooth.

A complete overview of the discussed possibilities and their implications is given in
Table 3.1. Eventually the product method is chosen, since it can guarantee no interaction
before the circular comfort zones are violated. Furthermore, this method guarantees a
gradually increasing force since supp (Iij) = supp (gij) and gij is a gradually increasing
function.
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Table 3.1: The implications of the different methods to add geometry.

Method
reduces
stiffness

no
asymptote

smooths
only inwards

smoothing
guaranteed

Geometric
indicator function 7 3 7 7

Convolution of
Gaussian function and
indicator function 3 7 7 3

Convolution of
bump function and
indicator function 3 3 7 3

Product of
bump function and
indicator function 3 3 3 7

Choosing the product methods also allows smoothing of the indicator functions (3.1)
and (3.3) only in the lateral direction (of the agent). Here the advantage is that the
comfort zone is still very similar to the circular one, while taking care of the road geometry.
To do so, the bump function of agent i is created by the product of two 1D-bump functions

Ψ̃i(z̃i) := ψi,x̃(x̃i)ψi,ỹ(ỹi)

in the longitudinal and lateral direction of the agent respectively. Here z̃i := x̃ie
i
1+ỹiei2 =(

x̃i ỹi
)
ei, is a vector expressed in the agent's local frame. The 1D-bump function

ψ : R → [0, 1] is de�ned in Appendix A. To create the desired geometry, the lateral 1D
bump function ψi,ỹ(ỹi) has to ful�ll the following constraints{

0 for ỹi ≤ −wc,i
2 and ỹi ≥ wc,i

2
1 for − ξw,i wc,i2 ≤ ỹi ≤ ξw,i

wc,i
2
.

Here the (geometric) comfort zone width is chosen equal to the lane width wc,i = w`
and the lateral smoothing factor 0 ≤ ξw,i < 1 determines the amount of smoothing. For
ξw,i = 0 the function is completely smooth.

To only smooth the indicator function in the lateral direction, the longitudinal bump
function has to ful�ll the following constraints

1 for − ri ≤ x̃i ≤ ri.

The result is shown in Figure 3.5, where it can be seen that the indicator function is
only smoothed in the lateral direction and does not contain jumps.

By using the 2D-bump function Ψ̃i : R2 → R, the next challenge is to �nd an
appropriate input for this function. The input is a point in R2 which should represent
the violation of the geometric comfort zone based on the overlap of the original circular
comfort zones. If this point falls outside supp (Ψi), the geometric comfort zone should
not be violated. If the geometric comfort zone is violated, the point should fall inside
supp (Ψi).

To provide such an input, the local violation vector is de�ned

g̃ij :=
(
ri −

ri
ri + rj

gij

)
ñij .
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(a) Ψi (b) Υgij

Figure 3.5: Visualization of (a) the bump function Ψi and (b) the product of the
interaction function Υ := IijΨi and violation function gij .

Here ñij is the normal vector pointing from agent j to i expressed in the agent frame
since Ψ̃i is also de�ned in the agent frame. For equally sized comfort zones, the local
violation vector represents the midpoint of the comfort zone overlap. If the comfort zones
are not equally sized, the midpoint is changed proportional to the comfort zone ratio of
the two agents. A visualization is given in Figure 3.6.

gij

j

i
rj

ri

dij

~gij

(a)

gij

i

j dij

rj

ri

~gij

(b)

Figure 3.6: Visualization of the local violation vector g̃ij and its working in combination
with the 2D-bump function. The local violation vector (a) is outside the support of the
2D-bump function if the two geometric comfort zones do not overlap and (b) inside if
they do overlap.

Altogether, the smoothing function Ψij becomes

Ψij := Ψ̃ij(g̃ij) = ψi,x̃(g̃ij,x)ψi,ỹ(g̃ij,y) (3.6)

and thus the interaction function of social-ACC is de�ned as

Υij := IijΨij ,

where Iij as de�ned in (3.1) and Ψij as de�ned in (3.6).

Remark. Without any difference in the agent orientation, the interaction function works
as desired. However, if there is a large difference between the agents’ orientations, an
agent can experience violation while the geometric comfort zone is not violated (see
Figure 3.7). Since all agents drive in the same direction and the lane change only
requires a relatively small change in orientation, the effect of this flaw should be limited.
Furthermore, the ratio between the geometric comfort zone dimensions and the radius is
kept relatively large to limit the effect of this flaw.
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j
rj

dij

i

ri
gij

~gij

Figure 3.7: Agent i is experiencing violation while the geometric comfort zones do not
overlap.

With the currently de�ned interaction rules, the e�ect of violation at the front and
at the back of the comfort zone is equal. However, it is more likely to react heavier on a
braking agent a head than a tailgater. The smoothing function can be used to smooth
the indicator function such that the e�ect of tailgaters is reduced (see Figure 3.8). To
smooth the back of the comfort zone, the longitudinal bump function ψi,x̃(x̃i) should
ful�ll the following constraints

{
0 for x̃i ≤ −`b,i and x̃i > ri

1 for − ξb,iri ≤ x̃i ≤ ri

where 0 ≤ ξb,i ≤ 1 is the back smoothing factor and `b,i describes the length of the
comfort zone in the back. If ξb,i = 1 then `b,i > ri due to the de�nition of the bump
function.

Figure 3.8: The indicator function combined with the smoothing function to reduce the
effect of tailgaters.

The currently created geometry of the comfort zone does not have a shape that in
particular induces merging behavior. To do so, additional geometry rules are added to
the current comfort zones. Three di�erent possibilities are proposed.

The �rst possibility to induce merging behavior is by adding a point to the front of
the comfort zone (see Figure 3.9a). With this point the agent should be able to squeeze
itself between the other agents. The second possibility is adding a point to the back of
the comfort zone instead of the front (see Figure 3.9b). With this shape the agent should
react less on tailgaters, being more egoistic, pushing itself between the other agents. The
last possibility is a combination of both options, where a point is added to the front and
the back (see Figure 3.9c). The additional geometry rules are applied by making the
lateral smoothing factor ξw,i(x̃i) depend on the local longitudinal coordinates.
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(a) (b) (c)

Figure 3.9: Three possible geometric comfort zones which induce merging behavior. (a)
with a point at the front, (b) with a point at the back and (c) a combination with a
point at the front and back.

3.2.2 Environmental interactions

Similarly to the inter-agent interactions, geometry is applied to the environmental inter-
actions.

Υiw := IiWΨiW = IiwΨ̃i(giW )

However, using the violation based on the distance from agent i to obstacle diW is not
appropriate anymore. The point used to determine the distance as in (3.4) may be
outside the geometric comfort zone, while another point of the obstacle may be inside
the geometric comfort zone (see Figure 3.10). Therefore, the violation is based on the
point x̂ in the obstacle set WW , causing the most e�ective violation

x̂ := arg max
x∈WW

(ΥiW (pi,vi,x) max (0, ri − ||x− pi||)) .

The distance used to determine the violation is then

d̂iW := ||x̂− pi||,

where the violation is de�ned as

giW := max
(
0, ri − d̂iW

)
. (3.7)

The environmental interaction force is determined by the interaction rule described in
(2.4). Here the normal vector niW is pointing from x̂ to agent i and tangential vector
tiW is determined accordingly based on a righthanded system.

diW

d̂iW

x̂

x

i

WW

Figure 3.10: The point x used to determine the distance from agenti to the obstacle
W falls inside the circular comfort zone (cyan) but outside the geometric comfort zone
(orange). Therefore, the new distance d̂iW based on x̂ is defined.
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A disadvantage of geometric comfort zones is that the rotation of the agent can
increase the violation. Initially the agent's geometric comfort zone is not violated since
the most e�ective distance d̂iW is outside the geometric comfort zone, see Figure 3.11a.
When turning away from the boundary suddenly there is a huge violation since the most
e�ective distance d̂iW is now inside the geometric comfort zone, see Figure 3.11b. This
violation causes the agent to thrust forward, which is undesired. Therefore, the geometric
comfort zone of an agent for obstacles only exists in the forward direction, indicated by
the dark orange area in Figure 3.11. This reduction of the obstacle comfort zone will not
cause problems since the agents cannot drive backwards (vi ≥ 0).

d̂iW

(a)

d̂iW

(b)

Figure 3.11: (a) Initially the geometric comfort zone (orange) is not violated. (b) After
rotation the geometric comfort zone is violated. By only applying a geometric comfort
zone to the front (dark orange) the effect is removed.

3.2.3 Spacing policy

The next step is to make the comfort zone speed dependent such that only the minimum
amount of road is used without reducing safety. Over the years, di�erent spacing policies
are developed [50�52]. The three spacing policies often found in literature are the constant
spacing policy, the constant time spacing policy and the nonlinear spacing policy. The
constant time spacing policy is often used since the constant spacing policy is known
to cause string unstable behavior. Furthermore, the nonlinear spacing policies are not
crystallized yet since they are currently ongoing research. It is known that the constant
time spacing policies can increase the string stability [7]. However, in [53] it is shown
that two-sided interaction (Bi-ACC) may negatively in�uence the string stability. Despite
that, the constant time spacing policy is adopted, since the implementations of [7, 53]
use attractive and repulsive forces, while the social force model only uses repulsive forces
thus similar e�ect is not guaranteed.

By adopting the constant time spacing policy, the comfort zone radius of agent i is

ri := ri,0 + hi||vi||

with standstill distance ri,0 and headway-time hi.
The addition of this linear spacing policy results in a growth problem if γi = 0, as in

the original social force model (2.2). Assume that two agents are driving with the same
(initial) speed and their comfort zone is violated (Figure 3.12a), both agents experience
the same force. Agent i will accelerate and agent j will decelerate. Therefore, the comfort
zone of agent i will grow and the comfort zone of agent j will decrease. However, the
violation grows or remains the same if hi is su�ciently large (Figure 3.12b). Neither
the speed nor the comfort zone size is bounded, causing the velocity state to increase
instantly.
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gij

rj ri

vj vi

(a) t0

ij
gij

rj
ri

vj vi

(b) t1

Figure 3.12: Initially two agents are driving with the same speed and (a) there is comfort
zone violation gij . Due to the violation the agents will react accordingly. Agent j will
decelerate while agent i accelerate. Due the spacing policy (b) the amount of violation is
not (necessarily) reduced.

The quadratic speed regulation term γi is introduced such that the comfort zone
is bounded in a �natural� way, instead of adding a limitation. The quadratic speed
regulation term will eventually be the �winning term� and stop the vehicle to accelerate
and the comfort zone to grow. This is shown in Appendix C where the 2D scenario is
simpli�ed to a 1D case.

Adding the spacing policy also results in two agents experiencing the same violation,
while their comfort zones do not have the same size. In general, a fast driving agent will
have a large comfort zone with respect to a slower agent. With the current interaction
rule, both agent experience the same violation. However, it is intuitive to let the fast
driving agent undertake a larger control action, thus should experiencing more violation.
To do so, the violation is scaled by using the comfort zone ratio between the two agents

gij := ri
ri + rj

max (0, rij − dij) .

By rede�ning the violation function, the local violation vector should also be rede�ned
accordingly

g̃ij := (ri − gij) ñij .

3.3 2D-ACC

The special thing of the earlier derived social-ACC is that both agents will experience
a force if their comfort zone is violated. The mutual experience of violation is due to
the overlapping comfort zones as measure of violation. The working principle of ACC is
based on a single sided measure of violation such that only the agent whose comfort zone
is violated experiences a force. In general, ACC uses the di�erence between the desired
inter-agent distance and the agent's position as measure of violation. Furthermore, ACC
is merely focused on interactions at the front and does not take tailgaters into account.
To create a comparison between the earlier derived social-ACC and a 2D variant of ACC,
2D-ACC is derived in the social force framework.

To create the single-sided measure of violation, the other agent's position inside the
comfort zone is used. Thus, the comfort zone of agent i is violated if agent j is in it

Iij :=
{

1 for 2 · ri − dij ≥ 0
0 otherwise

,
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where dij is the distance between two agents. To maintain the same spacing as with
social-ACC, the agent's comfort zone is doubled. The violation

gij := 1
2 max(0, 2 · ri − dij), (3.8)

is based on the other agent's position in the comfort zone. The factor 1
2 is added to

create the same weighting as with social-ACC, which represents the comfort zone ratio
scaling.

This 2D-ACC can be seen as a special case of social-ACC where the other agent's
comfort zone is neglected by setting rj = 0. The total interaction function is described
by

Υij := IijΨij = IijΨ̃i

(
gij

)
where gij is based on (3.8).

For a real ACC working principle, the back of the comfort zone should be removed,
since ACC does not take tailgaters into account. To approach a more novel ACC method,
e.g. bidirectional-ACC as in the work of Nieuwenhuijze [53], the back of the comfort zone
could be maintained. If the e�ect of tailgaters is not reduced, the spacing policy still
requires the quadratic speed regulation term γi > 0. Furthermore, the environmental
interactions are as de�ned in social-ACC.

Remark. This implementation of ACC differs from ACC used in the platooning context
as in [6, 7, 36, 53] where a vehicle is attracted to the proceeding vehicle such that the gap
is closed. This implementation only uses repulsive forces for collision avoidance, which is
comparable with the currently implemented ACC in today’s vehicles [54–56].

3.4 Summary of the interaction designs
The original interactions of the social force model by Helbing are based on circular comfort
zones. The agents interact if their comfort zones overlap. The experienced interaction
force is proportional to the comfort zone overlap (violation).

In social-ACC the comfort zone radius is made speed dependent by applying the
constant time spacing policy. Adding the spacing policy requires compensation by γi to
limit the growth e�ect. Since it is desired to have a larger longitudinal inter-agent distance
than lateral inter-agent distance, the road geometry is taken into account. This is done
by setting the interaction term Υij ∈ [0, 1] as the product of the smoothing function
Ψij ∈ [0, 1] and the indicator function Iij ∈ {0, 1}. Here the indicator and violation
functions are the same as in the work of Rodriguez-Angeles et al. [22]. However, the
environmental violation function giW is based on the most e�ective point of violation
and the comfort zone at the back of the agent is neglected.

In 2D-ACC, the working principle of ACC is embedded into the social force framework
as a special case of social-ACC. The comfort zone of the other agent is neglected and the
agent its comfort zone is enlarged by a factor two to keep an equal weighting.

An overview of the di�erent features per developed method is given in Table 3.2.

Table 3.2: Overview of the developed methods and their features.

Method Social Geometry Spacing Policy
Helbing 3 7 7

Social-ACC 3 3 3

2D-ACC 7 3 3
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Chapter 4

Simulation results

The complete model is derived in the previous chapters. This chapter will �rst cover
the simulation environment, the executed simulations and the default settings for the
highlighted simulations.

Thereafter, the e�ect of the design choices is shown, starting with the addition of
the nonholonomic constraint by replacing the mass point with the unicycle kinematics.
This is followed by the e�ect of the spacing policy and a comparison of social-ACC with
2D-ACC. Furthermore, the e�ect of the comfort zone at the back is investigated since
this is one of the two main di�erences between social-ACC and 2D-ACC. Since it is
inappropriate to assume that agents can increase their speed without limit (e.g. due to
speed limits on the highway), the e�ect of a speed saturation is also investigated. Next
to that, the e�ect of geometry on the collective behavior is analyzed. Finally, all results
are summarized and a complete overview is given.

4.1 Simulation environment

The complete model as described in Chapters 2 and 3 is implemented in the MATLAB
Simulink environment using (level 2) S-functions. Three di�erent S-functions are devel-
oped: one describing the social force model; the second, the projection method to link the
social force model to the unicycle kinematics; and the last, one the unicycle kinematics.

In Simulink the di�erential equations are solved by the built-in ode45 solver, using
the Dormand-Prince method, a member of the Runge-Kutta family of ordinary di�eren-
tial equation (ODE) solvers. This solver is typically used to solve non-sti� di�erential
equations, which is applicable in this case since the sti�ness of the problem is reduced
using the product of the indicator and smoothing function. The settings of the ODE
solver are in Table 4.1.

Many simulations have been executed to characterize the working of the di�erent
interaction rules. In Table 4.2 the used set of values for each parameter is shown per
interaction method. Simulations for all possible parameter combinations are executed and
analyzed for each interaction method. This chapters only highlights speci�c simulations,
characterizing the outcome of other similar simulations.

Table 4.1: MATLAB Simulink ODE solver settings.

Variable Setting
Solver ode45
Relative error tolerance 1 · 10−4

Absolute error tolerance 1 · 10−6

Upper bound on the step size 1
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Table 4.2: The varied parameters and corresponding value set. Simulations for all possible
parameter combinations are executed and analyzed for each interaction method.

Original Helbing
(mass point)

Helbing
(unicycle)

Social-ACC 2D-ACC

n {2, 4, 8, 20} {2, 4, 8} {2, 4, 8, 20} {2, 4, 8, 20}
hi 0 0 {0, 0.5, 1} {0, 1}
vmax
i ∞ ∞ {vci , 1.1vci , 1.2vci , 1.5vci ,∞} {vci ,∞}
ξw,i − − {0.25, 0.50, 0.75, 0.90} {0.50, 0.75}
ξb,i − − {0, 0.25, 0.50, 0.75, 1} 0

The parameter settings of the social force model which are used for all simulations
(in this report), unless indicated otherwise, are shown in Table 4.3. These values are
equal to the used values for the bottleneck scenery in the work of Rodriguez-Angeles et
al. [22], except for the newly introduced parameters. All values are based on the e-puck
mobile robot, which give the advantage that it can be tested at a later stage.

Table 4.3: Standard used parameter values unless indicated otherwise.

Parameter hi ri,0 wc,i ξw,i `b,i ξb,i vci vmax
i γi ki κi τi mi

Value 1 0.1 0.2 0.5 2ri 1 0.05 ∞ 5 4 2 0.5 0.2

All initial conditions are chosen such that each agent starts and stays interaction-free
until the �rst agent experiences an interaction force due to the road narrowing. The used
initial conditions are in Table 4.4.

Table 4.4: The initial conditions of each agent i, with agent set V and natural number
set N. Thus, the lower lane agents are denoted with an odd number, while the upper
lane agents are denoted with an even number.

State xi(0) yi(0) θi(0) vi(0)
Lower lane agent i ∈ {V ∩ 2N + 1} −5− (i− 1)ri −1

2w` 0 vci
Upper lane agent i ∈ {V ∩ 2N} −5− (i− 2)ri 1

2w` 0 vci

A simulation is terminated if all agents have passed the line x = 5 and the stress of
all agents is σi ≤ 0.05. The stress requirement is added so that the simulation stops if
there is almost no interaction, thus the agents are again driving in a steady state. After
terminating the simulation, the output is saved to a .mat �le, which is used for post-
processing. The saved data signals in the output �le are in Table 4.5, furthermore the
.mat �le contains all parameter settings.

All measurements and �gures in this chapter are made by post-processing the signals
from Table 4.5. Frequently used measures are the �ow time and cycle time factor (CTF),
see De�nitions 1 and 2 respectively. In this chapter, the measurements are based on the
interval x = −5 to x = 5, thus ∆x = 10. According to De�nition 2, the derived nominal
�ow time is ϕ̄ = 200. Hence, the di�erence between the CTF and the �ow time is a
factor 200, unless a di�erent interval or cruise speed is used.

Furthermore, the animations and snapshots from the simulations are also made by
post-processing. In the animations and snapshots (e.g. Figure 4.1) the agent (considered
as an e-puck mobile robot) is represented by a black circle with a triangle in it. The
triangle inside the black circle indicates the orientation of the agent. The comfort zone
of an agent is represented by the colored shape (circle or rectangle) around the black circle.
To distinguish upper and lower lane agents after merging, the comfort zones are marked
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Table 4.5: Simulation output signals

Symbol Description
t time steps

x(t) x-positions
y(t) y-positions
θ(t) orientation
v(t) forward speed
ω(t) rotation speed
adx(t) desired acceleration in x direction
ady(t) desired acceleration in y direction
σ(t) stress

with di�erent colors. Comfort zones of upper lane agents are marked light blue, while the
comfort zones of lower lane agents are marked light purple. For circular comfort zones
the visualization of the comfort zone is a circle (e.g. in Figure 4.1), while for geometric
comfort zones the visualization is simpli�ed to a rectangle (e.g. in Figure 4.5).

The outer dimensions of the simpli�ed comfort zone represent the closure of supp (Ψij).
The additional geometry is thus not (fully) visible in the animations and snapshots. The
red arrows in the animations and snapshot represent the agent's velocity, which is scaled
with a factor 3 for a better visibility.

4.2 The addition of the nonholonomic constraint

The original social force model of Helbing et al. [21] uses point masses, as most models
with arti�cial potential �elds do. However, from [16] it is known that agents with similar
interaction rules, but di�erent dynamics can show di�erent collective behavior. Therefore,
the point mass is replaced by the unicycle kinematics as elaborated in Sections 2.1.2
and 2.1.3. Rewriting the nonholonomic constraint to determine inputs of the unicycle
model as in the work of Rodriguez-Angeles et al. [22], can results in unstable behavior.

Rewriting the nonholonomic constraint results in the following control strategy (see
Appendix B for derivation). The rotation speed of agent i is set to

ωi :=
adi,yv

d
i,x − adi,xvdi,y
ε+ ||vdi ||2

, (4.1)

where vdi :=
(
vdi,x vdi,y

)
is the desired velocity obtained by integrating the output of

the social force model (the desired acceleration adi ). Here 0 < ε � 1 is added to avoid
singularities when vi = 0. The forward speed is set to

vi := ||vdi ||.

The unstable behavior is caused by setting the agent's forward velocity equal to the
magnitude of the desired velocity without taking the agent's orientation into account.
Assume that the agent's comfort zone is violated, creating a force perpendicular to the
agent's orientation. The desired velocity changes accordingly, thus points in the same
direction. The speed of the agent is set to the amplitude of this desired velocity, while
his orientation still has to change according to (4.1). Therefore, the agent starts driving
in the wrong direction, causing more violation increasing the interaction force, causing
the agent to drive even further in the wrong direction. Hence, this e�ect reinforces itself,
resulting in the unstable behavior.
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This e�ect is shown using a simulation with n = 2, hi = 0, vci = 0.01 and εi = 0.01.
The animation of this simulation can be found at https://youtu.be/RYpGI7wcK001 and
the corresponding snapshots are shown in Figure 4.1. It can be seen that velocity (red
arrow) has the same amplitude as the desired velocity (blue arrow), although it is pointing
in the wrong direction. This results in the agent driving faster into the boundary instead
of driving away.
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Figure 4.1: Four snapshots from a simulation with unicycle kinematics and the rewritten
nonholonomic constraint to obtain the velocity inputs from the social force model. The
red arrow presents the agent velocity, while the blue arrow represents the desired velocity.
Setting the forward velocity to the magnitude of the desired velocity, without taking the
orientation into account, results in the agent driving in the wrong direction increasing
the desired control action created by the social force model. The used settings are hi = 0,
vci = 0.01 and εi = 0.01.

This unstable behavior emphasize the importance of taking the constraints into ac-
count when modeling. In the newly developed model, the constraints are taken into
account by embedding them into the dynamics. The projection from the desired ac-
celeration on the unicycle orientation is taken to determine the forward and rotation
speed. This does not cause unwanted behavior, which is shown using a simulation for
a system with n = 8 and hi = 0. The animation of this simulation can be found
at https://youtu.be/XuxFNpQUxG02 and the corresponding snapshots are shown in Fig-
ure 4.2. Here it can be seen that the agents are merging �uently without showing unstable
behavior.

1on the provided USB-stick listed as:
01_Unicycle_kinematics_linked_by_rewriting_the_nonholonomic_constraint.avi.

2on the provided USB-stick listed as: 02_Unicycle_kinematics_with_projection_method.avi.

32

https://youtu.be/RYpGI7wcK00
https://youtu.be/XuxFNpQUxG0


4.2. THE ADDITION OF THE NONHOLONOMIC CONSTRAINT
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Figure 4.2: Snapshots from a simulation with the projection method, unicycle kinematics
and hi = 0. The upper lane agents are forced to the lower lane by the boundary. Due
to the overlapping comfort zones, the lower lane agents are forced to create gaps to let
the upper lane agents merge. Therefore the agents at the front increase their speed (red
arrow) and drive faster than their (desired) cruise speed / initial speed.

33



CHAPTER 4. SIMULATION RESULTS

The animation and the corresponding snapshots also show the working principle of
the social force model. Initially the agents are driving to the road narrowing, without
any gaps between their comfort zones. At the road narrowing the upper lane agents are
forced to move downwards by the road boundary. Causing the upper and lower lane
agents' comfort zones to overlap, resulting in interaction. Due to this interaction, the
upper lane agents are pushing the lower lane agents away such that gaps arise and they
can merge.

To show the e�ect of the pushing-behavior, the �ow time and CTF are measured
for a system with n = 20 and hi = 0. The results are shown in Table 4.6. Due to the
pushing, the average CTF is close to 1. Meaning that the average �ow time is close to
the nominal �ow time.

Table 4.6: The average flow time and CTF of 20 agents with unicycle kinematics, without
geometry and hi = 0.

Model: Unicycle
Average flow time 203.020

Average CTF 1.0151

Due to the pushing, the �rst agents are required to drive faster than their desired
speed, while the last agents are required to drive slower (see Figure 4.3). Hence, the
agents share discomfort by not driving on their desired speed, but improving the collective
performance.
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Figure 4.3: The CTF distribution for 20 agents with unicycle kinematics, without
geometry and hi = 0. A CTF value lower than 1 implies that the flow time is lower than
the nominal flow time.

4.3 The effect of the spacing policy
Applying the spacing policy as elaborated in Section 3.2.3 should result in agents only
using the required amount of road, thereby improving the �ow through the road narrow-
ing. By means of simulations, the e�ect of the spacing policy and the applied geometry
is characterized as following:

i) using larger headway times results in a decrease of the CTF;

ii) using larger headway times results in a decrease of road usage during queuing;
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To show these two e�ects, three di�erent cases are used. Three cases are derived as
following: The minimally used comfort zone radius ri should larger or equal to the lane
width since it is undesirable that agents can drive parallel in the same lane. To show
the e�ect of hi, the stand still distance of each case is chosen such that the comfort zone
radius is equal in all simulations when driving at the desired cruise speed

ri,0 + hiv
c
i = 0.15.

To not in�uence agents on the adjunct lane until the road narrows, the lateral geometry
is applied as shown in Figure 3.5 and elaborated in Section 3.2.1. The application of
the lateral geometry holds for all further simulations in this chapter unless indicated
otherwise. One may also recall that for the environmental interactions the comfort zone
at the back is removed as explained in Section 3.2.2.

The e�ect of the di�erent cases on the �ow time and CTF is shown in Table 4.7. It
can be seen that a larger headway time decreases the average �ow time. Using the CTF
distributions in Figure 4.4 it can be veri�ed that the working principle has not changed
since the �rst agents still have a CTF < 1. Hence, statement (i) is shown. However, an
additional statement has to be made accordingly:

iii) using larger comfort zones with geometry decreases the CTF (with re-
spect to the circular comfort zones used in the previous section).

In Figure 4.4 it is shown that even without the application of the spacing policy (hi = 0),
the CTF is signi�cantly higher than in the previous section, where no geometry is applied.

Table 4.7: The average flow time and CTF of 20 agents with different spacing policy
settings.

Setting: hi 0.0 0.5 1.0
ri,0 0.15 0.125 0.1

Average flow time 220.147 217.233 215.107
Average CTF 1.1007 1.0862 1.0755
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Figure 4.4: The CTF distributions for 20 with different spacing policy settings

Remark. For hi = 1.0 and ri,0 = 0.1, the CTF of agent 20 is lower than the CTF of
agent 19. This indicates that agent 20 did merge in front of agent 19, while the trend
is to merge behind agent 19. This deviation in merging order can as a side effect of the
applied geometry and will be addressed in Section 4.7.
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To show that statement (ii) holds, animations and snapshots are made from the
simulation with hi = 0 and hi = 1. For hi = 0, the animation can be found at
https://youtu.be/aPw9-NoApQE3, with the corresponding snapshot in Figure 4.5a. The
animation for hi = 1 is at https://youtu.be/TwTAshc_TMo4 with a snapshot from this
animation in Figure 4.5b. The total length of the agents is signi�cantly smaller if hi = 1
than with hi = 0. Furthermore, the working of social-ACC is clearly visible in Fig-
ure 4.5b. The agents before the road narrowing have a small comfort zone due to their
low (queuing) velocity, whereas the downstream agents have a larger comfort zone than
the agents in Figure 4.5a since their speed is above the desired speed due to the pushing
e�ect of tailgaters.
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(a) Snapshot at t = 129.1 for hi = 0.0 and ri,0 = 0.15
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(b) Snapshot at t = 119.3 for hi = 1.0 and ri,0 = 0.10

Figure 4.5: Snapshot from a simulation (a) without spacing policy and (b) with spacing
policy. The velocity of each agent is indicated by the red vector.

4.4 Social-ACC versus 2D-ACC
The e�ect of social-ACC is investigated by comparing it with 2D-ACC. In 2D-ACC, an
agent only reacts if another agent is in its comfort zone instead of the overlapping of
two comfort zones. Furthermore the e�ect of tailgaters is neglected, while with social-
ACC they are pushing each other through the road narrowing. The 2D-ACC strategy is
elaborated in Section 3.3.

Comparing social-ACC with 2D-ACC, the following di�erences are observed:

i) social-ACC causes a major reduction of the CTF with respect to 2D-ACC;

ii) using larger headway times only causes a minor reduction with respect to the
reduction caused by social-ACC;

3on the provided USB-stick listed as: 03_Lateral_geometry_without_spacing_policy.avi.
4on the provided USB-stick listed as: 04_Lateral_geometry_with_spacing_policy.avi.
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4.4. SOCIAL-ACC VERSUS 2D-ACC

iii) social-ACC increases the throughput (locally) at the road narrowing;

iv) using larger headway times increases the throughput before the road narrow-
ing.

To substantiate these observations, the simulation results for 2D-ACC as well as
social-ACC are shown. To distinguish the e�ect of 2D-ACC with the e�ect of the spacing
policy, two di�erent spacing policy settings from the previous section are used. Namely,
hi = 1.0 and hi = 0.5 and their corresponding stand distances ri,0 = 0.1 and ri,0 = 0.125
respectively.

The average �ow time and CTF of these simulations are shown in Table 4.8. There is a
major di�erence between social-ACC and 2D-ACC, while there is only a minor di�erence
visible between the used spacing policy settings. The average �ow time and CTF of
social-ACC are much lower than for 2D-ACC, indicating the advantage of social-ACC.

The CTF distribution, Figure 4.6, clearly shows that in 2D-ACC the agents are
not pressurized by the upcoming agents since the CTF of the �rst agent is 1. The
main di�erence between the CTF distributions is the average value, furthermore all
distributions are very similar. Observation (i) and (ii) are substantiated since the average
is mainly in�uenced by the choice of social-ACC, 2D-ACC or the headway time.

Table 4.8: The average flow time and CTF for 20 agents with social-ACC,2D-ACC and
different headway times.

Setting: hi 0.5 1.0
ri,0 0.125 0.1

Average flow time S-ACC 217.233 215.107
2D-ACC 237.816 234.404

Average CTF S-ACC 1.0862 1.0755
2D-ACC 1.1891 1.1720
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Figure 4.6: The CTF distributions for 20 agents equipped with social-ACC, 2D-ACC
and different headway times.

Remark. The effect of the headway time on social-ACC seems to be constant, while for
2D-ACC the CTF difference keeps increasing for agents further upstream. This effect is
addressed in the next section.
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The throughput is shown in Figure 4.7. Before the road narrowing, the throughput
is equal for all cases. Just before the road narrowing (at x = −2) where the throughput
starts to reduce, a large di�erence is visible between the di�erent headway times. Larger
headway times result in a larger throughput since the agents need to slow down, conse-
quently their comfort zone reduces. Since agents with a larger comfort zone can reduce
their comfort zone further, a higher throughput is achieved, clarifying observation (iv).
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Figure 4.7: The throughput measured for a system of 20 agents equipped with social-ACC
and 2D-ACC.

At the center of the road narrowing (x = 0), the main di�erence is caused by the in-
teraction methods. With 2D-ACC the throughput is already at its �nal value, while with
social-ACC the throughput reduces gradually to its new value. The gradual reduction of
the throughput is the e�ect of social-ACC, agents are pushed through the road narrowing,
causing them to minimize the inter-agent distance and drive above their desired speed,
which clari�es observation (iii).

To give more insight in this e�ect, animations and snapshots are made from the
simulation with hi = 1. The animation of social-ACC can be found in the previous section
(Figure 4.5b and at https://youtu.be/TwTAshc_TMo4). The animation of 2D-ACC is
at https://youtu.be/G6hgYCmu78Q5 with the corresponding snapshots in Figure 4.8.

Looking at the animations/snapshots it is clearly visible that agents with 2D-ACC
are not pressurized since there are gaps between the comfort zones and the predecessor.
This results in a lower throughput than with social-ACC, where the agents are forced to
close the gaps due to the pushing. This clari�es the di�erence in throughput between
2D-ACC and social-ACC.

Furthermore, it can be seen that in both cases the agent are slowing down and their
comfort zone decreases accordingly. Showing the cause of the increased throughput before
the road narrowing for social-ACC as well as 2D-ACC.

However, to ratify the hypothesis from Chapter 3 �by taking the other agent's comfort
zone into account, a more social behavior where agents make place for each other is
induced, resulting in a better �ow through the road narrowing�, additional simulations
are required. The observed di�erence in this section is mainly caused by the pushing
e�ect of tailgaters. Therefore, the next chapter will focus on the e�ect of tailgaters and
the main di�erence in working principle of 2D-ACC and social-ACC.

4on the provided USB-stick listed as: 04_Lateral_geometry_with_spacing_policy.avi.
5on the provided USB-stick listed as: 05_2D-ACC_with_spacing_policy.avi.
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4.5. REDUCING THE PUSHING EFFECT FROM TAILGATERS
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(a) t0 = 125.3
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(b) t1 = 133.0

Figure 4.8: Two snapshots from a simulation with 2D-ACC, hi = 1 and ri,0 = 0.1. Note
that the agents are now inside each others comfort zone, which is not the case with
social-ACC. Furthermore, it can be seen that agents merge but after merging there is a
gap between their comfort zones.

4.5 Reducing the pushing effect from tailgaters
The previous section essentially shows the advantage of social-ACC taking tailgaters into
account, rather than the fundamental di�erence between social-ACC and 2D-ACC. There-
fore, the focus of this section is on showing e�ect of reducing the pushing by tailgaters.
The following observations are made by means of simulations:

i) reducing the pushing e�ect of tailgaters increases the average �ow time sig-
ni�cantly;

ii) without taking tailgaters into account, social-ACC has a fundamental advan-
tage over 2D-ACC.

The e�ect of tailgaters is reduced by varying the back smoothing parameter ξb,i ∈ [0, 1]
and the length of the comfort zone at the back `b,i. Recall that for ξb,i = 0 the back is
completely smoothed and that ξb,i = 1 requires `b,i > ri (see Section 3.2.1). The following
social-ACC cases are compared to 2D-ACC: no reduction at all, thus ξb,i = 1 and `b,i = 2ri
which is identical to the interactions used in the previous section; completely smoothed
by setting ξb,i = 0 and `b,i = ri; and a completely removed comfort zone at the back
equal to 2D-ACC, ξb,i = 0 and `b,i = 0.01ri.

The e�ect of these cases on the average �ow time and CTF is shown in Table 4.9.
Reducing or removing the e�ect of tailgaters has almost the same e�ect as switching
to the 2D-ACC strategy. However, the pushing e�ect of tailgaters is still visible since
removing the complete comfort zone leads to a slightly lower �ow time than with a
reduced weighting.
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Table 4.9: The average flow time and CTF of 20 agents with, without or a reduced
pushing effect by tailgaters.

Setting: ξb,i 1.0 0 0
`b,i 2ri ri 0.01ri

Average flow time S-ACC 215.107 234.587 233.179
2D-ACC - - 234.404

Average CTF S-ACC 1.0755 1.1729 1.1659
2D-ACC - - 1.1720

The CTF distributions are shown in Figure 4.9. Only a very subtle di�erence is
visible between the removed and reduced e�ect, but there is a large di�erence with the
case where the pushing e�ect of tailgaters is fully taken into account. This shows that
observation (i) holds.
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Figure 4.9: The CTF distributions for 20 agents with, without or a reduced pushing
effect by tailgaters.

However, if the back of the comfort zone is smoothed (ξb,i = 0 & `b,i = ri) the agents
do not merge alternately (other agents further upstream have a lower CTF indicating an
overtake). This overtaking behavior is caused by excessive rotation of agents waiting at
the road narrowing. This rotation creates enough space for other agents also to merge
in front of the waiting agent. Therefore, the agents are merging groupwise instead of
alternately. This behavior is shown in animation at https://youtu.be/3ucD4Wu1YOg6

and in the snapshot in Figure 4.10. The rotating behavior is seen as a side e�ect of the
changed geometry by reducing the back of the comfort zone. These e�ects are covered
in Section 4.7.

Although, it is shown that observation (i) holds, observation (ii) cannot be con�rmed
with these simulations due to the small di�erence between the cases.

6on the provided USB-stick listed as: 06_Reduced_effect_from_tailgaters.avi.
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4.5. REDUCING THE PUSHING EFFECT FROM TAILGATERS
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Figure 4.10: Snapshot from a simulation at t = 142.9 where the weighting of violation
from behind is reduced, ξb,i = 0 & `b,i = ri. The agents do not close the gap between
their comfort zones, since they do not experience an interaction force by tailgaters.
Furthermore the agents do not merge alternately but groupwise due to excessive rotation.

The CTF distributions of simulations with 100-agents are shown in Figure 4.11. The
displayed cases are social-ACC where the pushing e�ect by tailgaters is removed and
2D-ACC. For both cases the CTF settles to a constant value, thus the system eventually
reaches a �steady-state�. In this steady-state, the �nal CTF for agents with social-ACC
is signi�cantly lower than with 2D-ACC, indicating the advantage of social-ACC. Now,
observation (ii) is also shown to be true.
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Figure 4.11: The CTF distribution for 100 agents equipped with 2D-ACC and social-ACC,
neglecting the effect of tailgaters.
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4.6 Speed saturation
In the previous sections it is shown that tailgaters force upstream agents to drive faster
than the desired cruise speed. However, it may not be desirable that agents drive faster
than their desired speed due to speed limitations. Therefore, the e�ect of a speed satu-
ration is analyzed by means of simulations, resulting in the following observations:

i) the speed saturation limits the average �ow time;

ii) social-ACC performs better with a speed saturation at the desired speed than
2D-ACC in general;

iii) a speed saturation will cause a (more) turbulent �ow.

The agents increase their speed due to pushing upstream agents. Limiting the speed
will cause a reduction of the �ow time, which is shown in Table 4.10. The lower the speed
limit, the larger the average �ow time and CTF becomes.

Table 4.10: The average flow time and CTF of 20 agents with different speed limitations.

Setting: vmax
i ∞ 1.2 · vci 1.1 · vci vci

Average flow time S-ACC 215.107 218.395 222.242 229.888
2D-ACC 234.404 - - -

Average CTF S-ACC 1.0755 1.0920 1.1112 1.1494
2D-ACC 1.1720 - - -

The CTF distributions are shown in Figure 4.12. Here it can be seen that the speed
limit only shifts the average value of the CTF distribution and does not have any further
e�ect. Furthermore, it is clear that social-ACC performs signi�cantly better than 2D-
ACC, even with a speed limit. This di�erence is caused by the pushing upstream agents,
forcing other agents to minimize (and close) the gaps between comfort zones which arise
during merging.
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Figure 4.12: The CTF distributions for 20 agents with different speed limitations.

Since it is known (from the previous section) that the CTF for agents equipped with
2D-ACC will converge to a constant value, simulations with 100 agents are also performed
for social-ACC. The average �ow time and CTF obtained from these simulations are
shown in Table 4.11 and the CTF distributions in Figure 4.13.
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Table 4.11: The average flow time and CTF of 100 agents with different speed limitations.

Setting: vmax
i ∞ 1.2 · vci 1.1 · vci vci

Average flow time S-ACC 273.297 279.414 290.149 -
2D-ACC 339.597 - - -

Average CTF S-ACC 1.3665 1.3971 1.4507 -
2D-ACC 1.6980 - - -
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Figure 4.13: The CTF measured for agent 100 with different speed limitations.

In Figure 4.13 it can be seen that for 100 agents the CTF does not converge to
a constant value. Instead of converging, the CTF distributions shows some outliers,
indicating that multiple agents have made an overtake.

The overtaking is caused by the increasing pressure of the upstream agents pushing
the predecessors. This is shown in the animation at https://youtu.be/QxOLvxCf0ZU7

and the corresponding snapshot in Figure 4.14. This animation/snapshot shows that the
pressure created by the pushing upstream and blocking downstream agents causes agents
to shift in their lane and rotate excessively. Hence, a �turbulent� �ow emerges.

Figure 4.14: Snapshot at t = 271.0 from a simulation with 100 agents and no speed
saturation. A turbulent flow emerges due to the pushing agents upstream and blocking
agents downstream.

7on the provided USB-stick listed as:
07_100_agents_with_lateral_geometry_and_no_speed_saturation.avi.
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The �ow becomes more turbulent if the speed limit is lowered. To show this, the
mean of ||σi||L2 and mean||ωi||L2 is used. The L2-norm is de�ned by taking the integral
from t = 0 to t = ∞, which is possible since all signals (eventually) converge towards
zero and the simulation is terminated if all signals are close to zero. Hence, taking the
integral over the obtained simulation span equals the integral to t =∞.

Steering results in orientations changes, which create a �turbulent� �ow, while a
�laminar� �ow is desired for the sake of comfort. By taking the average steering energy
||ωi||L2 over all agents, it is determined how turbulent the �ow of agents is. The same
holds for ||σi||L2 , which indicates the experienced stress energy of an agent. The stress
indicates the chance that an agents suddenly experiences a large force and �shoots� away
from the current structure. Since this is undesired behavior, the amount of stress energy
should be low.

From Table 4.12 it can be concluded that the saturation increases the turbulent �ow
slightly since both measurement increase slightly. The turbulent �ow is mainly caused
by the larger number of agents present in the system, since for a system of 20 agents
without saturation mean||σi||L2 = 40.12 and mean||ωi||L2 = 7.809.

Table 4.12: The average stress for 100 agents with different speed limitations.

Setting: vmax
i ∞ 1.2 · vci 1.1 · vci vci

mean ||ωi(t)||L2
S-ACC 12.134 12.358 12.697 -

2D-ACC 2.041 - - -

mean ||σi(t)||L2
S-ACC 178.031 183.093 198.531 -

2D-ACC 13.591 - - -

4.7 Additional comfort zone geometry
In the previous sections it is shown that changing some parameters or increasing the
number of agents can cause some side e�ects. Examples for these side e�ects are excessive
rotation or (extremely) larger interaction forces. These e�ects are mainly caused by the
application of geometry to the circular comfort zone, where ξw,i and ξb,i have the largest
in�uence. This section will illustrate the following observations regarding the the di�erent
parameters and geometry:

i) increasing the lateral smoothing decreases the CTF and chance on a turbulent
�ow;

ii) the e�ect of additional geometry heavily dependent on the lateral sti�ness.

iii) reducing the e�ect of tailgaters lowers the stress and rotation energy, thus
less chance on a turbulent �ow, but increases the �ow time;

The four types of geometry which will be discussed are covered in Section 3.2. There
will be referred to these comfort zone geometries as shown in Table 4.13.

Table 4.13: Geometry naming and reference to their visualization.

Name Visualization
No geometry Figure 3.8
Point front Figure 3.9a
Point back Figure 3.9b
Two points Figure 3.9c
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4.7.1 Lateral comfort zone stiffness

First, the e�ect of the lateral comfort zone sti�ness is investigated for the di�erent geome-
tries. The lateral comfort zone sti�ness is mainly determined by the smoothing function
Ψ. Changing the parameter ξw,i ∈ [0, 1) determines the amount of lateral smoothing.

In general, the more the comfort zone is smoothed, the lower the CTF becomes (shown
in Figure 4.15). Since the interaction from the sides is limited, the agents experience lower
force perpendicular to their orientation, resulting in less rotation. This e�ect is clearly
visible in Figure 4.15. The agents experience less stress overall, due to the smoothing,
see Figure 4.16b. However, certain combinations of geometry and smoothing can result
in a turbulent �ow.
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Figure 4.15: The mean CTF for 20 agents with different lateral smoothing and comfort
zone geometries.
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Figure 4.16: The mean (a) rotation and (b) stress for 20 agents with different lateral
smoothing and comfort zone geometries.

At �rst sight, there is no direct link between the used geometry, lateral sti�ness and
the emergence of a turbulent �ow. However, the excessive rotation for a geometry can be
clari�ed. The excessive rotation is mainly caused by comfort zone violation diagonally
behind the agent. This violation will cause the agent to rotate away from the point
of violation, creating an undesired movement towards the boundary which has to be
corrected. If the geometry has a small or smooth comfort zone at the back (e.g. point),
while having an equally or larger comfort zone at the front, the rotation is limited since
the generated interaction forces cancels the rotation. However, if the agent's comfort
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zone is larger or sti�er at the back than at the front, more rotation is created since the
forces do not cancel each other. The boundary delivers a lower force than the violating
agent, causing the agent to rotate towards the boundary. This increases the interaction
force, causing even more rotation until the boundary delivers a su�ciently large force to
cancel it.

This e�ect is shown in the animation and snapshot of the simulation resulting in
the most turbulent �ow (geometry: point front; ξw,i = 0.75). The animation is at
https://youtu.be/Pv2rqdKDP2U8 and the corresponding snapshot in Figure 4.17. Only
a bit of violation of the comfort zone at the back causes the agents to rotate towards the
boundary, resulting in large interaction forces.
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Figure 4.17: Snapshot at t = 101.5 from the simulation where the geometric comfort has
a point at the front and ξw,i = 0.75. It can be seen that the agents are rotating too much
and the velocity difference between agents is large.

4.7.2 Reducing the effect of tailgaters

The second parameter which will be studied for the di�erent geometries, is the back
smoothing factor ξb,i ∈ [0, 1]. The e�ect of the back smoothing factor ξb,i is partially
discussed in Section 4.5. This section continues on this by extending it to di�erent
geometries and a larger set of values for ξb,i.

Smoothing the indicator function at the back results in increasing CTF and reduces
the stress and rotation (shown in Figures 4.18 and 4.19) The rotation reduction is ge-
ometry independent due to the previously explained e�ect. In these �gures the trade o�
between performance and comfort is also clearly visible.
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Figure 4.18: The mean CTF for 20 agents with different comfort zone geometries and
back smoothing factors.

8on the provided USB-stick listed as: 08_Point_at_front_geometry.avi.
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4.8. SUMMARY OF SIMULATION RESULTS
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Figure 4.19: The mean (a) rotation and (b) stress for 20 agents with different comfort
zone geometries and back smoothing factors.

4.8 Summary of simulation results
If the agent's constraints are not considered in an appropriate way, it can have a tremen-
dous e�ect. It is shown that a non appropriate linking between the social force model
and the agent kinematics can result in unstable behavior. Emphasizing the importance
of taking constraints into account.

The further focus of this chapter was on characterizing the e�ect of the interaction
design on the performance (�ow time and throughput) and collective behavior (�uent
merging / laminar �ow). In general, social-ACC with its current interaction rules in-
creases the performance, but also increases the rotation of agents eventually resulting in
a turbulent �ow. This turbulent �ow is mainly caused by violation of the comfort zone
diagonally behind the agent causing the agent to rotate away and thereby increasing the
violation.

An overview of social-ACC, 2D-ACC and the di�erent implemented features with
their corresponding e�ect on the performance and collective behavior is given in Ta-
ble 4.14. The excessive rotation is mainly caused by the addition of geometry to the
interaction rules.

Table 4.14: An overview of the different methods and implemented features and their
corresponding effect on the performance (flow time and throughput) emergence of a
turbulent flow (rotation). A major positive effect is indicated by + +, a minor positive
effect by +, a neutral effect by +/− effect, a major and a minor negative effect with − −
and − respectively.

Performance Rotation
2D-ACC +/− +/−
S-ACC + + − −

Geometry − − − −
Comfort zone overlap + + + −
Larger headway times + −

Effect of tailgaters + + − −
Speed limitations − −
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Chapter 5

Alternative interaction design

In the previous chapters a circular comfort zone was considered �rst, resulting in an
average CTF close to 1. To maintain the same measure of violation but also taking care
of the road geometry, the smoothing function was added. This resulted directly in a
larger average CTF and more rotation, resulting in the possibility for a turbulent �ow
to emerge. The turbulent �ow can emerge due to a rapidly increasing interaction force
if the side of the comfort zone is violated, despite the applied smoothing.

Another cause of the turbulent �ow is the pressure of a large number of agents. Due
to the circular comfort zones agents will push each other such that they shift in their lane,
which will cause violation at the side of the comfort zone, again resulting in a turbulent
�ow. Therefore it may be bene�cial not to use the circular comfort zones to determine
the violation but another geometry.

Consider that each agent i ∈ V has a rectangular comfort zone with width ωc,i. The
length of the comfort zone, measured from the agent to the front is `f,i, while the length
to the back of the comfort zone is `b,i, creating a total length of `i := `b,i + `f,i. This
rectangular comfort zone is visualized in Figure 5.1. The spacing policy can also be
added by `f,i = `f0,i + hi||vi||, which is applied to the back.

Due to the square comfort zone, it is not possible to take the same measure of violation
as with circular comfort zones (3.2) since the new comfort zone is not axisymmetric.
Hence, a di�erent geometry requires a di�erent measure of violation. This chapter will
discuss two di�erent measures of violation for rectangular comfort zones.

i

`b;i `f;i

wc;i

`i

Figure 5.1: The rectangular comfort zone with the corresponding dimensions.

5.1 The distance to the other agent’s comfort zone

Using circular comfort zones, the inter-agent violation is measured by taking the overlap
of the two comfort zones. This measure indicates how far the comfort zone of agent
j is inside the comfort zone of agent i and vice versa. To apply a similar measure for
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rectangular comfort zones, the measure is split up in a longitudinal and lateral measure
of violation.

A vector from agent i to the closest point of the comfort zone of agent j is denoted
as d̃ij =

(
d̃ij,x d̃ij,y

)
ei, which is expressed in the local agent frame. The violation in

the longitudinal direction is then

gij,x :=


`b,i+d̃ij,x

`b
if d̃ij,x < 0

`f,i−d̃ij,x
`f

if d̃ij,x ≥ 0

and in the lateral direction

gij,y :=


1
2wc,i+d̃ij,y

1
2wc,i

if d̃ij,y < 0
1
2wc,i−d̃ij,y

1
2wc,i

if d̃ij,y ≥ 0
.

Those two measures of violation should be reduced to one measure since the social
force framework requires a scalar indicating the violation. Creating a scalar measure
of violation from the two earlier derived measures, can be achieved in many ways. A
possibility is to apply a weighting to the longitudinal and later violation, kx,i and ky,i
respectively, and sum both measures

gij := `f,i
kx,i + ky,i

·
(
kx,i ky,i

)(gij,x
gij,y

)
,

while another possibility is to take the product

gij := `f,i · gij,x · gij,y. (5.1)

The product measure requires an additional multiplication of the comfort zone length,
to create a similar weighting as in (3.2). The original and new weighting methods are
visualized in Figure 5.2.

(a) (b) (c)

Figure 5.2: Different violation functions (a) the original violation for circular comfort
zones, (b) the geometric violation with summation weighting and (c) the geometric
violation with product weighting.

For the completeness of this interaction design, the interaction function needs to be
de�ned. The interaction function is de�ned as the indicator function

Υij := Iij .

The indicator is 1 if the closest point of agent j's comfort zone to agent i is inside the
comfort zone of agent i. The closest point of agent j's comfort zone to agent i is the
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point Mij . Thus, it can be derived that

Iij :=


1 if (0 ≤ C1,iMij ·C1,iC2,i ≤ C1,iC2,i ·C1,iC2,i) ∧ . . .

(0 ≤ C1,iMij ·C1,iC4,i ≤ C1,iC4,i ·C1,iC4,i)
0 otherwise

with corner points C1−4,i. The term C1,iMij denotes the vector pointing from C1,i to
M1,i. The corner points are de�ned as shown in Figure 5.3.

The environmental interactions are similar to the inter-agent interactions, but agent
j is replaced by obstacle W and the closest point of the other agent's comfort zone is
replaced by the most e�ective point of violation x̂

x̂ := arg max
x∈WW

(ΥiW (pi,vi,x)giW (pi,vi,x)) .

Independent from the weighting method, this unstable behavior is observed. This
indicates that the de�ned measure of violation is not appropriate. Therefore, the measure
of violation is visualized in Figure 5.3.

Here it can be seen that agent j only experiences a bit violation while agent i ex-
periences a lot of violation. Hence, agent i will experience a relatively large force while
agent j will experience a smaller force. This is in contrast with intuition, where agent j
should experience the largest force and decelerate while agent i should only accelerate a
bit. The measure of violation is thus inappropriate, and a di�erent measure is required.

i

gji;x
gji;y

gij;y

gij;x

~dij

~dji

j

Mij
C2;i

C3;iC4;i

C1;i

Figure 5.3: The closest point of the agent to the other agent’s comfort zone is denoted as
Mij pointed at by black vector d̃ij , while the weighting based on this point is visualized
by the blue vectors gij,x and gij,y.

5.2 The comfort zone intersection area
Another method to determine the inter-agent violation is by using the overlapping com-
fort zone area as interaction and violation function. Assume that the location, geometry
and orientation of the comfort zone of agent i is described by the set Ci. There is inter-
action between the two agents if the comfort zone of agent i and j overlap. Therefore,
the interaction function is de�ned by the indicator function

Υij := Iij , (5.2)

and the indicator function is 1 if the intersection set of the two comfort zones is not
empty

Iij :=
{

0 if Ci ∩ Cj = ∅
1 otherwise

. (5.3)
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i
Aij

j
Cj

Ci

Figure 5.4: Visualization of the comfort zone intersection area.

The violation is set equal to the overlapping area

gij := Aij = Aji,

which is visualized in Figure 5.4.
The environmental interactions are equal to the interactions de�ned in social-ACC

(see Section 3.2.2), with comfort zone lengths `f,i = `b,i = ri = ri,0 + hi||vi||. All further
settings are equal to the earlier used settings in Table 4.3.

Multiple simulations are performed with an increasing number of agents n ∈ {2, 4, 8, 20}.
The simulations with this method are rather successful, since the agent's are merging
faster and more �uently than with the earlier de�ned interactions.

The faster merging is clearly visible when looking to the average �ow time and CTF
of a simulation with 20 agents in Table 5.1. The average CTF value is much closer
to 1 than the average CTF of agents where geometry is added to the circular comfort
zones. The CTF distribution is shown in Figure 5.5, which is very similar to the CTF
distribution of the circular comfort zone without geometry.

Table 5.1: The average flow time and CTF for 20 agents with the area violation measure.

Setting Area weighting
Average flow time 206.464

Average CTF 1.03232
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1.1
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Figure 5.5: The CTF distribution for 20 agents with the area violation measure.
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Figure 5.6: Snapshot at t = 126.9 from the simulation with the area violation measure.
The agents merge fluently but have more comfort zone overlap than with other methods.

In the animation and snapshot of this simulation it is also clearly visible that the
agents merge very �uently. The animation of this simulation can be found at https:
//youtu.be/yMkVUpVQX2I1 and the corresponding snapshot in Figure 5.5.

Although, the agents merge very �uently, the comfort zones overlap more than with
the other methods. This indicates that it less sti� than the earlier used methods. Since
it is known from the previous chapter that increasing sti�ness can cause more rotation,
an additional gain parameter for the area weighting should be introduced and analyzed.

Although the simulation results look promising, this method also has a disadvantage.
With the area method multiple scenarios can result in the same weighting while a di�erent
weighting is desired. E.g. it could be desired to take comfort zone violation from behind
less into account than violation at the front or at the side of the agent. With the area
method these di�erent scenarios can have the same intersection area, resulting in a similar
weighting while a di�erent weighting is desired (see Figure 5.7). Hence, the policy lacks
tunability to let the violation dependent on the location of violation.

i
Aij

j

k

A
ik

Ci

Cj

Ck

Figure 5.7: Two violation scenarios with the same weighting.

Another disadvantage could be the symmetry within the experienced inter-agent in-
teraction forces. Since the intersection area is the same for both agents Aij = Aji, thus
both agents experience the same violation. Therefore, both agents also experience the
same force but in the opposite direction. This could result in a scenario where the agent
are locked since all force are similar. Hence, an appropriate measure of violation still
needs to be found.

1on the provided USB-stick listed as: 09_Area_violation.avi.
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Chapter 6

Conclusions and
recommendations

The goal of the thesis is to create a control strategy for autonomous (highway) driving
based on interaction rules, where the desired (collective) behavior emerges from the (local)
interaction rules. Here, highway driving includes lane keeping; driving at a desired speed
or (safe) distance to its predecessor; and merging. The road narrowing scenario is selected
as a test case to measure the performance of the new strategy.

This chapters summarizes the conclusions of this thesis and provides recommenda-
tions for future research.

6.1 Conclusions

To study the e�ect of the interaction rules on the (collective) behavior it is important to
take the agents' dynamics into account. Linking the already existing social force model to
the unicycle kinematics by rewriting the nonholonomic constraint can result in unstable
behavior. The forward velocity is directly set to the desired velocity magnitude without
taking the orientation into account. Therefore, it is possible that the agent drives in the
wrong direction, increasing the desired control action, resulting in unstable behavior. An
appropriate linking between the social force model and the agent kinematics is made by
taking the projection of the desired acceleration on the agent's orientation and translating
it to the desired inputs, resulting in stable behavior. This shows the importance of taking
the agents' dynamics into account, in particular their constraints.

The interaction rules of the social force model distinguish themselves from other mod-
els by taking the other agents' comfort zone into account. If two comfort zones overlap,
both agents experience an interaction force. Doing so, anticipation is implicitly added to
the model, resulting in collaboration between agents without requiring communication.
An agent whose comfort zone is violated at the back will have the tendency to drive faster
while the succeeding agents will slow down. In the road narrowing scenario this results
in agents pushing each other through the road narrowing. The e�ect is measured by the
�ow time of each agent and the throughput. Due to the pushing e�ect, the average �ow
time of the agents is close to the nominal �ow time. The �rst agents their �ow time is
lower than the nominal �ow time since these agents are subject to the pushing, therefore
driving faster than their desired speed. The �rst agents slow down the succeeding agents,
consequently these agents have a higher �ow time than the nominal �ow time. However,
the average �ow time is close to the nominal �ow time since all agents undertake an
action: increasing or decreasing their speed. Hence, the agents share discomfort and
collaborate to achieve a better �ow through the road narrowing. Therefore, this method
is called social-ACC.
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However, for highway driving, the road geometry should be taken into account. By
employing a 2D-bump function to �lter the inter-action forces, geometry is added to the
initial circular comfort zones. This addition of geometry resulted in a major performance
reduction, while causing a turbulent �ow through the road narrowing. Although, the
bump functions smooths the interaction forces, the force created by violation diagonally
behind the agent causes the agent to rotate. This rotation increases the violation until
the boundary delivers a su�ciently large force to cancel the rotation. Resulting in a
turbulent �ow, which is the main problem of the current implementation of social-ACC.

However, a minor performance improvement can be made by implementing the con-
stant time spacing policy such that agents only use the required amount of road. The
spacing policy makes the size of the agents' comfort zone speed depending, such that the
radius scales linear with the speed. A headway time results in slight reduction of the
average �ow time.

To compare the performance of social-ACC, ACC has been implemented in the social
force model, which is called 2D-ACC. With this 2D-ACC, an agent experiences an inter-
action force if another agent is inside the comfort zone instead of the comfort zone overlap
used in social-ACC. Comparing social-ACC and 2D-ACC, social-ACC has a signi�cantly
lower average �ow time. The comfort zone overlap used in social-ACC causes agents to
interact earlier, creating a kind of anticipation. With 2D-ACC the agent only reacts if
the other agent is already inside its comfort zone, resulting in a more �egoistic� driving
behavior. An agent cuts-o� other tra�c and force itself to merge between other agents, re-
sulting in larger control actions for the succeeding agent. While testing di�erent settings
(e.g. headway time and reducing the e�ect of tailgaters), social-ACC always performed
better than 2D-ACC. Hence, the social force model increases the performance, without
the requirement of communication and/or a supervisory controller. However, social-ACC
also created a more turbulent �ow and sometimes a less �uent merging behavior due to
the implementation of geometry.

One of the advantages of circular comfort zones is the isotropic measure of violation.
As soon as geometry is introduced, it is hard to �nd an appropriate measure of violation.
The measure of violation should be a scalar based on both agents' comfort zone since
this is the working principle of the social force model. In addition, the appropriate agent
should experience the largest force (i.e. violation), since it is more likely that the agent
at the front or on the not removed lane undertakes equal or less action than a merging
or succeeding agent. Consequently, not doing so, results in a more turbulent �ow. An
example of measuring the violation is by determining the area of the overlap, however this
could result in di�erent scenarios where the overlap is equal, but the desired interaction
force should not.

Although the appropriate interactions are not found for geometric geometric comfort
zones, the social force model (or social-ACC) has shown its potential for autonomous
driving based on local interaction rules. With the social force model, it is possible to
let agents drive in the desired direction; avoid collisions; merge; and locally improve the
throughput. This is all achieved without the use of communication or supervisor.

Despite the fact these interaction rules may not be suitable for highway driving due
to the emergence of a turbulent �ow, it can be used in wide ranges of applications
where there is more space available. If the agents have more room to deviate from their
desired path, the interaction force are quickly reduced resulting in a more laminar �ow
of agents. Due to the use of simple local interaction rules, the agents can solve a wide
variety of scenario's, without the requirement of prior knowledge, supervisory controller
or communication. Hence, this solution can be used in a wide range of application such
as autonomous transportation tasks in warehouses, harbors, factories etc..
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6.2 Recommendations

The main problem with the current social-ACC is the emergence of a turbulent �ow due
to the inclusion of geometric constraints. The turbulent �ow is caused by the excessive
rotation, originating from violation of the comfort zone diagonally behind the agent. Re-
sulting in rotation, increasing the interaction force and rotation. To tackle this problem,
it may be bene�cial to add an additional comfort zone to determine the agent movement.
The largest comfort zone should be used to change the agent speed, while a smaller com-
fort zone is used to create rotation for collision avoidance. Doing so will result in the
agent �rst trying to create a gap for the merging agent. If the other agents come to close,
the additional comfort zone will cause the agent to change its orientation and avoid a
collision.

Furthermore, a new measure of violation should be created which can deal better
with the geometry. The area of the overlapping comfort zones, obtained by integrating
over the intersection domain ∫∫

Ci∩Cj
1 dA,

has shown to be a useful measure since the e�ect is similar to circular comfort zones.
Here Ci and Cj describes the geometry and location of agents i and j's comfort zone
respectively. However, this method lacks weighting of the violation location (e.g. for
equal areas, violation at the back should have a lower impact than violation at the front).
Therefore, a location depending weighting should be added to the area integral∫∫

Ci∩Cj
ρ(x̃i, ỹi) dA.

Here x̃iei1 + ỹie
i
2 =

(
x̃i ỹi

)
ei, which are the agent's local (x, y)-coordinates. E.g. the

weighting is split into a lateral and longitudinal term ρ(x̃i, ỹi) = ρx(x̃i)ρy(ỹi). Consider
the longitudinal density function

ρx(x̃i) :=


δf
(
− x̃i
`f

+ 1
)

if 0 ≤ x̃i ≤ `f
δb
(
x̃i
`b

+ 1
)

if − `b ≤ x̃1 < 0
0 otherwise

.

Where the agent is centered at
(
x̃i ỹi

)
=
(
0 0

)
and `f , `b are the comfort zone

lengths at the front and back respectively. Furthermore, the parameters δf , δb determine
the weighting at the front and back respectively. Setting δf > δb will result in more
violation when the front of the comfort zone is violated than when the back is violated,
assuming an equal violation area.

Another problem which is directly solved by using the location depending violation
is symmetry. Symmetric weighting result in symmetric forces, where through the agents
can end up in an equilibrium where there is no movement. Therefore, asymmetry in
comfort zones or weighting is desired.

Further research regarding this social force model is implementing di�erent and more
accurate agent dynamics. Currently, the unicycle model is adopted to investigate the
e�ect of the constraint. However, this model is not a good representation of a vehicle,
a more appropriate model such as the bicycle model should be used. Furthermore, all
agents possess the same dynamics and kinematics, i.e. the system is homogeneous, in
contrast to real tra�c which is typically heterogeneous. Real tra�c consists of vehicles
with di�erent dynamics and requirements due to their load, engine and dimensions. This
could have a great impact on the performance if the agents do not take an appropriate
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action, e.g. if there is a slow lorry in front of a passenger car and the speed di�erence is
su�ciently large, it should over take the lorry, if there is space on the adjunct lane.

The ultimate goal is fully autonomous driving with implicit decision making for all
scenarios. This is possible with the social force model, where the desired direction term
can be replaced with a navigation controller, indicating the required direction of an agent.

Furthermore, the tra�c jam problem should also be solved by the autonomous driving
systems. In analogy to �uid modeling the speed and density (inter-vehicle distance)
before and after a road narrowing should be matched to avoid jams. However, the
social force model is only capable of locally implicit decision making and improving the
throughput locally. To solve the larger problem, it is interesting to study talking or smart
infrastructures, which impose agents their cruise speed and inter-agent distance such that
the capacity before and after the road narrowing is matched. The social force model is
then used to solve the local merging problems and increases the throughput locally if
it is required. The performance of the social force model can be further increased by
adding feedforward terms by means of communication, similar to cooperative adaptive
cruise control (CACC).

Another important research topic is the emergence of oscillatory �ows since the social
force model is based on pedestrians, who also create oscillatory �ows when queuing [17].
Using a full two-dimensional model and requiring agents to merge, it is hard to de�ne a
measure such as string stability. Every merging upper lane agent causes a step response
on the string of lower lane agents. This makes it di�cult to �nd a measure of string
stability for the complete system.
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Appendix A

Definition of a smooth bump
function

The goal of this appendix is to derive a C∞ bump function. Within this report, the
de�nition of a bump function by Tu [57] is adopted.

Let q be a point in manifold M , and U a neighborhood of q. By a bump function
at q supported in U we mean any continuous nonnegative function ψ on M that is 1 in
a neighborhood of q with supp(ψ) ⊂ U . The support of a real-valued function f on a
manifold M is de�ned to be the closure in M of the subset on which f 6= 0:

supp(f) = closure of {q ∈M |f(q) 6= 0} in M.

In Figure A.1 a bump function at q is shown. Let a, b, c, d be arbitrary constants where
a < b ≤ c < d. The bump function ψ is nonzero on the open interval (a, d), its support
is the closed interval [a, d]. Furthermore the function is 1 in the closed interval [b, c].
Summarizing

ψ(z) =


0 for z ≤ a
1 for b ≤ z ≤ c
0 for z ≥ d

for z ∈ R.

1

a b c d
q

Figure A.1: A bump function at q on R.

Based on the work of Tu [57], a bump function can be constructed from a smooth
version of the step function. Consider the C∞ function

f(t) :=
{
e−

1/t for t > 0
0 for t ≤ 0

. (A.1)

A smooth step function g(t) is then obtained via

g(t) := f(t)
f(t) + f(1− t) . (A.2)
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APPENDIX A. DEFINITION OF A SMOOTH BUMP FUNCTION

The denominator of g(t) is never zero since for t > 0, f(t) > 0 and therefore f(t) + f(1−
t) ≥ f(t) > 0. For t ≤ 0 holds that 1− t ≥ 1 and therefore f(t) + f(1− t) ≥ f(1− t) > 0.
Thus in both cases f(t) + f(1− t) 6= 0, hence g(t) is de�ned for all t.

For t ≥ 1, f(1 − t) = 0, therefore the function g(t) = f(t)/f(t) is identically 1. For
t ≤ 0, the numerator f(t) is 0 and so is g(t), since the denominator is never zero. Hence
the function g(t) is a smooth step function with the desired properties (see Figure A.2).

1

t

1

Figure A.2: Smooth step function g(t).

Within the work of Tu [57] the bump function at q is symmetric over the axis q. To
create a non-symmetric bump function, we deviate from Tu its work.

The bump function can be constructed from two smooth step functions. One step
function describing the left of the bump, the ramp up, ψ+(z). The other function de-
scribing the right part of te bump, the ramp down, ψ−(z).

To create the smooth step function ψ+(z) such that

ψ+(z) =
{

0 for z ≤ a
1 for z ≥ b

a linear change of variables is made to map [a, b] to [0, 1]

z 7→ z − a
b− a

where a < b. By setting this mapping as argument of g(t), the desired smooth step
function is obtained

ψ+(z) := g

(
z − a
b− a

)
. (A.3)

The same method is applied for the function describing the ramp down ψ−(z), where
[c, d] is mapped to [−1, 0]

z 7→ z − d
c− d

with c < d. Setting the mapping as argument of the smooth step function g(t)

ψ−(z) := g

(
z − d
c− d

)
. (A.4)

The total smooth bump function is created by multiplying both smooth step functions

ψ(z) := ψ+(z)ψ−(z) = g

(
z − a
b− a

)
g

(
z − d
c− d

)
. (A.5)

Here ψ(z) is a C∞ bump function in R that is identically 1 on [b, c] and 0 on (−∞, a]
and [d,∞). To get a C∞ bump function Ψ : Rn → R the product of the bump functions
are taken

Ψ(z) :=
n∏
i=1

ψ(zi), (A.6)

with z :=
(
z1 . . . zn

)
.
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Appendix B

Rewriting the constraint to
obtain kinematic inputs

The social force model (2.2) generates a generalized force for agent i. Via Newton's
second law, this can be transformed to the desired acceleration adi . However the desired
acceleration cannot be directly used as an input for the unicycle kinematics due to the
nonholonomic constraint. The inputs of the unicycle model are the forward velocity vi
and rotation speed ωi.

Within the work of Rodriguez-Angeles et al. [22] the nonholonomic constraint is
rewritten to obtain the desired inputs. First, the desired velocity is de�ned as adi =: v̇di .
The speed of an unicycle is than set to the magnitude of the desired velocity

vi := ||vdi || =
√(

vdi,x

)2
+
(
vdi,y

)2
. (B.1)

The nonholonomic constraint of the unicycle

ÿiẋi − ẍiẏi = v2
i ωi (B.2)

can be rewritten to the required rotational velocity

ωi = ÿiẋi − ẍiẏi
v2
i

. (B.3)

With the assumption that the desired velocity is equal to the real unicycle velocity:
ẍi = adi,x; ÿi = adi,y; ẋi = vdi,x; and ẏi = vdi,y, the following control strategy is obtained

ωi :=
adi,yv

d
i,x − adi,xvdi,y
ε+ ||vdi ||2

, (B.4)

where 0 < ε� 1 to avoid singularities when vi = 0.
The problem with this method is that the orientation is not taken into account when

setting the forward speed. The forward speed of the unicycle is directly set to the
magnitude of the desired velocity, while it does not have the desired orientation. The
orientation is of the unicycle is changed by adjusting the rotation speed via the expression
in (B.4). Therefore the agent will initially move into the wrong direction increasing the
error.

Applying this method in combination with the social force model, will result in insta-
bility. The agent will drive into the wrong direction, therefore the social force model will
increase the desired control action (i.e. increasing the desired velocity), causing a larger
error.

The problem is visualized in Figure B.1 by using snapshots from the simulation.
Within the shown scenario there are only two agents present, which already causes the
unstable behavior.
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Figure B.1: Four snapshots from a simulation with the rewritten constraint strategy of
Rodriguez-Angels et al.. The red arrow represents the agent velocity while the blue arrow
represents the desired velocity. By setting the forward velocity equal to the magnitude of
the desired velocity without taking the orientation into account, the agent drives in the
wrong direction increasing the desired control action created by the social force model.
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Appendix C

Spacing policy 1D case analysis

To gain insight in the e�ect of the spacing policy on the agent behavior the 2D scenario
is simpli�ed to a 1D case. The unicycle kinematics (and control) are neglected, thus a
point mass is considered within this case. This results in the following simpli�ed model

ẋi := vi

v̇i := 1
mi

(
mi
vci − vi
τi

+ ki sign (xi − xj) max (rij − dij , 0)
) (C.1)

with rij := ri + rj and dij := ||xi − xj ||. For further simpli�cation, it is assumed that
agent j stands still on the origin and cannot move, i.e. xj = 0 and vj = 0. The desired
speed is chosen to be zero vci = 0, while all other parameters are chosen to be 1, except
hi, ri, rj . This results in

ẋi = vi

v̇i = −vi + sign (xi) max (rij − |xi|, 0) .
(C.2)

With the linear spacing policy ri := ri,0 + hi|vi| the system can rewritten as

ẋi = vi

v̇i = −vi + sign (xi) max (r + hi|vi| − |xi|, 0) ,
(C.3)

where r := ri,0 + rj,0. This system can be seen as a piecewise linear system. The phase
portraits of this system for di�erent headway-times hi are drawn in Figures C.1a to C.1c,
where the switching lines are indicate by the red dashed lines. It can be seen that for
relatively low headway-times the speed will converge to the desired cruise speed. However
for large headway-times the system will not converge, since the speed keeps increasing
more than the amount of violation is reduced. Therefore the system will not reach the
switching line, where the comfort zone stops growing and converge to the desired speed.

This problem could be solved by applying a limit on the comfort zone size, however a
more �natural� way is desired. Therefore the problem is solved by changing the gradient
of the potential �eld with a quadratic speed regulation term(

1 + γi
||vcied − vi||

τi

)
vcie

d − vi
τi

(C.4)

which will be
(1 + |vi|) vi (C.5)

in the 1D scenario. Hence the complete model is

ẋi := vi

v̇i := −(1 + |vi|)vi + sign (xi) max (ri,0 + rj,0 + hi|vi| − |xi|, 0) .
(C.6)
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The phase portraits of this system for di�erent hi are drawn in Figures C.1d to C.1f. It
can be seen that the quadratic term is the winning term for higher speeds, since the zero
isocline is not linear anymore but encloses the repulsive �eld. Therefore the trajectory
will always converge to the desired speed.
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Figure C.1: Phase portrait of the linear spacing policy with the original linear speed
regulation (a, b, c) and the quadratic speed regulation (d, e, f) for different headway-times
hi. The red dashed lines are the switching lines of the piecewise linear system. The blue
lines represent the trajectories from the initial condition (circle) to an equilibrium point
(cross). The magenta lines indicate the zero isoclines.
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