977 research outputs found

    NARX-based nonlinear system identification using orthogonal least squares basis hunting

    No full text
    An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, whichplaces the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method isadopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance

    Local Regularization Assisted Orthogonal Least Squares Regression

    No full text
    A locally regularized orthogonal least squares (LROLS) algorithm is proposed for constructing parsimonious or sparse regression models that generalize well. By associating each orthogonal weight in the regression model with an individual regularization parameter, the ability for the orthogonal least squares (OLS) model selection to produce a very sparse model with good generalization performance is greatly enhanced. Furthermore, with the assistance of local regularization, when to terminate the model selection procedure becomes much clearer. This LROLS algorithm has computational advantages over the recently introduced relevance vector machine (RVM) method

    Symmetric RBF classifier for nonlinear detection in multiple-antenna aided systems

    No full text
    In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called “overloaded” multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient. The proposed solution is capable of providing a signal-to-noise ratio (SNR) gain in excess of 8 dB against the powerful linear minimum bit error rate (BER) benchmark, when supporting four users with the aid of two receive antennas or seven users with four receive antenna elements. Index Terms—Classification, multiple-antenna system, orthogonal forward selection, radial basis function (RBF), symmetry

    Gravitational wave surrogates through automated machine learning

    Get PDF
    We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Model structure selection using an integrated forward orthogonal search algorithm interfered with squared correlation and mutual information

    Get PDF
    Model structure selection plays a key role in nonlinear system identification. The first step in nonlinear system identification is to determine which model terms should be included in the model. Once significant model terms have been determined, a model selection criterion can then be applied to select a suitable model subset. The well known orthogonal least squares type algorithms are one of the most efficient and commonly used techniques for model structure selection. However, it has been observed that the orthogonal least squares type algorithms may occasionally select incorrect model terms or yield a redundant model subset in the presence of particular noise structures or input signals. A very efficient integrated forward orthogonal searching (IFOS) algorithm, which is interfered with squared correlation and mutual information, and which incorporates a general cross-validation (GCV) criterion and hypothesis tests, is introduced to overcome these limitations in model structure selection

    Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information

    No full text
    Model structure selection plays a key role in non-linear system identification. The first step in non-linear system identification is to determine which model terms should be included in the model. Once significant model terms have been determined, a model selection criterion can then be applied to select a suitable model subset. The well known Orthogonal Least Squares (OLS) type algorithms are one of the most efficient and commonly used techniques for model structure selection. However, it has been observed that the OLS type algorithms may occasionally select incorrect model terms or yield a redundant model subset in the presence of particular noise structures or input signals. A very efficient Integrated Forward Orthogonal Search (IFOS) algorithm, which is assisted by the squared correlation and mutual information, and which incorporates a Generalised Cross-Validation (GCV) criterion and hypothesis tests, is introduced to overcome these limitations in model structure selection

    An evolutionary approach to constraint-regularized learning

    Get PDF
    The success of machine learning methods for inducing models from data crucially depends on the proper incorporation of background knowledge about the model to be learned. The idea of constraint-regularized learning is to em- ploy fuzzy set-based modeling techniques in order to express such knowl- edge in a flexible way, and to formalize it in terms of fuzzy constraints. Thus, background knowledge can be used to appropriately bias the learn- ing process within the regularization framework of inductive inference. After a brief review of this idea, the paper offers an operationalization of constraint- regularized learning. The corresponding framework is based on evolutionary methods for model optimization and employs fuzzy rule bases of the Takagi- Sugeno type as flexible function approximators

    Training Radial Basis Neural Networks with the Extended Kalman Filter

    Get PDF
    Radial basis function (RBF) neural networks provide attractive possibilities for solving signal processing and pattern classification problems. Several algorithms have been proposed for choosing the RBF prototypes and training the network. The selection of the RBF prototypes and the network weights can be viewed as a system identification problem. As such, this paper proposes the use of the extended Kalman filter for the learning procedure. After the user chooses how many prototypes to include in the network, the Kalman filter simultaneously solves for the prototype vectors and the weight matrix. A decoupled extended Kalman filter is then proposed in order to decrease the computational effort of the training algorithm. Simulation results are presented on reformulated radial basis neural networks as applied to the Iris classification problem. It is shown that the use of the Kalman filter results in better learning than conventional RBF networks and faster learning than gradient descent
    corecore