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Abstract

The success of machine learning methods for inducing models from data
crucially depends on the proper incorporation of background knowledge about
the model to be learned. The idea of constraint-regularized learning is to em-
ploy fuzzy set-based modeling techniques in order to express such knowl-
edge in a flexible way, and to formalize it in terms of fuzzy constraints.
Thus, background knowledge can be used to appropriately bias the learn-
ing process within the regularization framework of inductive inference. After
a brief review of this idea, the paper offers an operationalization of constraint-
regularized learning. The corresponding framework is based on evolutionary
methods for model optimization and employs fuzzy rule bases of the Takagi-
Sugeno type as flexible function approximators.

1 Introduction

Learning models from data is the central theme in several research fields, including
machine learning and inferential statistics. Model induction may serve different
purposes, such as accurate prediction of future observations or intelligible descrip-
tion of dependencies between variables in the domain under investigation. The
data-driven approach to model construction can be contrasted with a knowledge-
driven one, where a model is built through the acquisition and formalization of
expert knowledge. The classical expert system paradigm was mainly based on this
latter approach, though in the course of time the knowledge acquisition process
turned out to be a real bottleneck.

In fact, knowledge acquisition will usually be more successful when exploiting
both, background knowledge as well as observed data. And indeed, both of these
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110 E. Hüllermeier, I. Renners & A. Grauel

sources are usually available in applications, at least to some extent. Combining
them in an adequate manner, however, is a challenging problem not supported by
many methods.1

One possibility of incorporating background knowledge in learning from data
is to restrict the class of potential candidate models – called the hypothesis space
in machine learning – to models satisfying particular structural assumptions, such
as a linear dependency between input and output variables of a system. The
incorporation of (at least approximately) valid structural assumptions of this type
will usually improve the learning process. On the other hand, incorrect assumptions
can be misleading and might badly deteriorate results.

Indeed, more often than not the available background knowledge does hardly
justify strong assumptions about the global structure of a model. Rather, the
knowledge is usually local in the sense that it refers to local properties of the
model under consideration, e.g. to subregions of the input space. Most of the
time, the knowledge is also imprecise and vague, possibly expressed in a qualita-
tive rather than a quantitative way, e.g. in terms of natural language rather than
mathematical formulas. In [4], one of the authors has introduced a method which
appears to be particularly suitable for utilizing this type of knowledge in learning
from data. The simple yet powerful idea of this method, subsequently referred to
as constraint-regularized learning (CRL), is to embed fuzzy modeling in so-called
regularized learning: Using fuzzy set-based (linguistic) modeling techniques, back-
ground knowledge is formalized in terms of flexible constraints. Thus, learning
actually comes down to solving an optimization problem, namely to finding an
optimal tradeoff between satisfying the constraints and reproducing the data.

The objective of this paper is to operationalize the conceptual framework of
CRL as outlined in [4]. Particularly, this means specifying an adequate model
class, which is flexible enough to comprise (local) structural constraints, and pro-
viding an efficient and easy way to implement optimization (search) method for
that model class. After some brief comments on supervised learning and regu-
larization in general (Section 2), we review the basic concepts underlying CRL
in Section 3. In Section 4, we present a framework in which CRL is realized by
means of evolutionary methods. To illustrate this framework, we finally present an
example in Section 5.

2 Supervised Learning and Regularization

2.1 Supervised Learning

In supervised learning, one usually seeks to induce a (functional) relationship be-
tween an input space DX and an output space DY , proceeding from a set of
observed data in the form of a (finite) sample

S = { (x1, y1), (x2, y2), . . . , (xn, yn) } ∈ (DX × DY )n. (1)

1Notable exceptions include Bayesian learning, inductive logic programming, and knowledge-
based neurocomputing.
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Depending on the nature of the data involved, different types of learning problems
can be distinguished. The problems considered most often are classification and
regression. In classification, the response is categorical, i.e. the output space DY

is a finite and unordered set. In regression, the response variable is taken from
a numeric scale, usually the real number line. Subsequently, we shall focus on
regression as a learning task, even though the method of constraint-regularized
learning can be developed for classification as well.

A set of candidate mappings DX → DY is commonly referred to as the hypoth-
esis space. For elements of this space we shall employ the terms hypothesis and
model interchangeably. Without loss of generality, we can assume the hypothesis
space H to be a parameterized class of functions, that is

H = {h(·, ω) |ω ∈ Ω}.

Here, ω is a parameter (perhaps of very high or even infinite dimension) that
uniquely identifies the function h = h(·, ω), and h(x, ω) is the value of this function
for the input x.

Passing from a sample (1) to a complete model is a problem of induction, and
the selection of an (apparently) optimal hypothesis h0 ∈ H is guided by some
inductive principle. An important and widely used inductive principle is empirical
risk minimization (ERM) [15]. The risk of a hypothesis h(·, ω) is defined as

R(ω) =def

∫

DX×DY

L(y, h(x, ω)) dP (x, y),

where L is a loss function and P is a probability measure over the input-output
space DX ×DY , specifying the probability of observing an input vector x together
with an output y. The empirical risk is an approximation of the true risk:

Remp(ω) =def
1

n

n
∑

i=1

L(yi, h(xi, ω)) . (2)

The ERM principle prescribes to choose the parameter ω0 resp. the associated
hypothesis h0 = h(·, ω0) that minimizes (2).

2.2 Regularization

The specification of a suitable hypothesis space is crucial for successful learning.
A point of critical importance in this connection concerns the complexity of H.
On the one hand, H must be “rich” enough to guarantee the existence of a good
approximation, i.e. a model with a low risk. On the other hand, H must not be too
flexible in order to avoid the problem of overfitting. Roughly speaking, overfitting
means adapting a model to the data in too exact a manner. Quite often, such
models reproduce the sample data rather well but perform poorly when it comes
to generalizing beyond that data. In the case of noisy data, for instance, very
flexible models tend to reproduce not only the deterministic part of the underlying
(true) model but also the noise itself.
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One approach to counteract the problem of overfitting is regularized learning.
The basic idea of this approach is to “punish” candidate models that have a high
complexity. More specifically, let φ(ω) = φ(h(·, ω)) be a measure of the complexity
of the hypothesis h(·, ω).2 The penalized risk to be minimized for the regularization
inductive principle is then given by a weighted sum of the empirical risk and a
penalty term:

Rpen(ω) =def Remp(ω) + λ · φ(ω). (3)

As can be seen, the penalized risk is intended to find a tradeoff between the accuracy
and the complexity of a model. This tradeoff is controlled by the parameter λ,
called the regularization parameter. The model h(·, ω0) minimizing (3) is supposed
to have a smaller predictive risk than the function minimizing the empirical risk. In
other words, it is assumed to be a better generalization in the sense that it predicts
future outputs more accurately.

3 Constraint-Regularized Learning

The regularization framework presented in the previous section provides a means
for avoiding the problem of overfitting. Even though overfitting is the much more
frequent problem, there is of course also a risk of underfitting a model. An exam-
ple, especially interesting as a motivation for the method of constraint-regularized
learning, is illustrated in Fig. 1. Here, the function to be learned has a “sharp
peak” around x = 0. Unfortunately, the data in the random sample does not give
any hint at this peak, since none of the xi-values is close enough to 0. Consequently,
the data is approximated by a rather flat curve (in this example, an approximation
with b-splines was used, see Section 5).

The approximation in the above example could clearly be improved by incorpo-
rating knowledge about the peak in the learning process. This type of knowledge
is obviously quite different from knowledge which is typically expressed in terms
of hypothesis spaces or complexity constraints. First, it is local in the sense that
it refers to local properties of the model to be learned. Second, it is vague in the
sense that a peak is a fuzzy rather than a crisp concept: For the shape of a curve
there is no clear boundary between having a (sharp) peak and not having a peak.

The method of constraint-regularized learning is motivated by the fact that
background knowledge does indeed often refer to local aspects of a model, char-
acterizing them in a vague rather than an exact manner, e.g. in terms of natural
language descriptions. The basic idea of CRL is to formalize this type of back-
ground knowledge as flexible (fuzzy) constraints and to use these constraints in
place of the complexity measure φ in the penalized risk functional. Thus, one
arrives at the following measure:

Rpen(ω) =def Remp(ω) − λ · C(ω), (4)

2It is worth mentioning that “intuitively” complex models are not necessarily flexible in the
sense of data adaptation, and vice versa. Moreover, theoretically well-founded complexity mea-
sures such as the VC-dimension [15] actually refer to the flexibility of complete hypothesis spaces
rather than single hypotheses.
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Figure 1: The approximation (solid line) of the true function is
rather flat, even though the latter (dashed line) has a “sharp peak”
around x = 0.

where C is a fuzzy constraint: C(ω) = 1 means that the model h(·, ω) satisfies
the constraint completely, whereas C(ω) = 0 indicates that the constraint is not
satisfied at all. Any intermediate value 0 < C(ω) < 1 means that the constraint is
violated to a certain extent, though not completely. As can be seen, an evaluation
Rpen(ω) is a tradeoff between the accuracy of the hypothesis h(·, ω), as expressed
by the empirical risk Remp(ω), and the extent to which h(·, ω) is in accordance
with the background knowledge, as expressed by C(ω).

The fuzzy constraint C will usually be a conjunction of several individual con-
straints Ci, 1 ≤ i ≤ m, pertaining to different pieces of (local) knowledge. Using a
t-norm ⊗ as a generalized logical conjunction, it can hence be modeled as follows:

C(ω) =def C1(ω) ⊗ C2(ω) ⊗ . . . ⊗ Cm(ω).

The simplest type of individual constraint is a restriction on the absolute values
of the function. Knowledge of this type can be expressed in terms of a fuzzy rule
such as

IF x is close to 0 THEN f(x) is approximately 1 (5)

or, more formally, as
∀x ∈ DX : C1(x) C2(f(x)),

where the fuzzy sets C1 and C2 model, respectively, the constraints “close to 0”
and “approximately 1”. The degree to which a hypothesis h(·, ω) satisfies this
constraint is given by

C(ω) =def inf
x∈DX

C1(x) C2(h(x, ω)), (6)

where  is a generalized implication operator; the infimum operator in (6) gener-
alizes the universal quantifier in classical logic.
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Constraints of the above type can be extended quite easily to the case of more
than one input variable, interactive input variables, first or higher order (partial)
derivatives, or restrictions on the relative (rather than the absolute) values of a
function. Apart from that, it is of course also possible to model “non-standard”
constraints such as the peak of the function in Fig. 1. See [4] for a more detailed
discussion.

Finally, let us note that (4) can thoroughly be combined with the standard
regularization approach (3). One possibility is to supplement Remp(ω) with both
a term λφ(ω) that penalizes the complexity and a term λ′C(ω) that takes the
background knowledge into consideration. A second possibility is to incorporate
the former in the latter, i.e., to consider “low complexity” simply as an additional
constraint.3

4 Operationalizing CRL

Learning in the context of CRL comes down to minimizing the penalized risk func-
tional Rpen(·) in (4), i.e., to finding an optimal parameter in the parameter space
Ω. Since the corresponding optimization problem is usually nonlinear, efficient
optimization methods constitute a main prerequisite for putting the conceptual
framework presented in the previous section into practice. Needless to say, spe-
cific setups of that framework will usually call for specific optimization tools. The
specification of a setup includes:

• the hypothesis space H defined by the chosen model class and the valid model
structures;

• the search method that identifies a (nearly) optimal model;

• the “language” for expressing constraints on the model;

• the fuzzy sets and generalized logical connectives used in formalizing the
constraints.

The problem of optimization usually becomes much more practicable if the
objective function is smooth, or at least continuous, and ideally even convex. In
this regard, notice that the constraint C in (4) is a function composed of fuzzy sets,
hypotheses h ∈ H, generalized logical connectives and the inf-operator. Thus, it is
possible to guarantee continuity of C, namely by restricting oneself to continuous
fuzzy sets, hypotheses and logical connectives. To guarantee the convexity of C

will usually not be possible, though.
There are basically two directions for approaching the optimization problem.

The first one is to develop specialized methods for restricted setups, i.e. methods
that exploit a certain structure of (4). It seems, however, that this idea can only be
realized at the cost of considerable restrictions on the expressiveness of constraints.

In this paper, we pursue a different approach, namely the use of evolutionary
algorithms as a general purpose optimization method. In such a case, the struc-
ture of (4) is less important. Still, in order to guarantee good performance of the

3This assumes a fuzzy set for the concept “low complexity” that scales the complexity measure
to the unit interval.
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evolutionary approach, the possibility of evaluating a particular solution ω by com-
puting Rpen(ω) in an efficient way remains a crucial point. Note, for instance, that
the formalization of most constraints involves an inf-operator, which means that
evaluating such constraints might in principle become quite costly. Moreover, the
dimension of the parameter ω is in direct correspondence with the dimension of the
search space. Thus, a reasonable balance must be found between the expressiveness
of H and the number of parameters to be optimized.

4.1 Takagi-Sugeno Fuzzy Models

As we deal with a combination of data-driven and knowledge-driven learning, a
convenient representation of hypotheses h ∈ H are so-called Takagi-Sugeno fuzzy
models (TS-FMs) [14]. These are rule-based fuzzy models with rules r of the
following form:

IF x1 is Ar
1 AND · · · AND xN is Ar

N THEN f(x) = yr = y(x, cr),

where Ar
n is an element of a class Fn of fuzzy sets defining a (fuzzy) partition

of the domain of the nth input variable, 1 ≤ n ≤ N , and yr denotes the model
output. The latter is a function of the input vector x, parameterized by a vector
of coefficients cr.

Given a rule base with R rules, the overall model output y (coefficient vector
c) of a TS-FM is a weighted sum of the rule outputs yr (vectors cr) coming from
the different rules:

c =

∑R

r=1 crµr(x)
∑R

r=1 µr(x)
, (7)

where cr is the parameter vector of the rth rule and µr(x) denotes the corresponding
rule firing level (degree to which x satisfies the premise of the rule).

Now, consider the special case of a complete set of rules, which means that each
combination of input fuzzy sets An ∈ Fn is represented by one rule premise (hence
R =

∏

n |Fn|) and zeroth order TS-FMs (each output yr is a constant). Moreover,
if we guarantee that the Fn, 1 ≤ n ≤ N , form a partition of unity, the denominator
in (7) becomes one and the output of a TS-FM simplifies to

y =
R
∑

r=1

crµr(x). (8)

This construction obviously yields axis-orthogonal membership functions 4 (MFs)
on a grid-like partition of the input space. Thus, using a complete rule base with
MFs forming a partition of unity on each input, a singleton TS-FM becomes equiv-
alent to a normalized lattice based (radial)-basis function network [7, 8]. An ex-
tension of this result, namely that TS-FMs are equivalent to local model networks,
has been established in [5].

4Membership functions in the high-dimensional input space are (pointwise) products of one-
dimensional membership functions defined on the corresponding axes.
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Regarding the choice of MFs for fuzzy sets, b(asis)-splines offer some interesting
characteristics (e.g. [6]). B-splines are recursively defined over a knot-vector λ, i.e.
b-splines of order k + 1 can be derived from those of order k:

Bk+1
j (x) =

x − λj

λj+k−1 − λj

Bk
j (x) +

λj+k − x

λj+k − λj+1
Bk

j+1(x)

B1
j (x) =

{

1 if x ∈ [λj , λj+1)
0 otherwise

,

with x = input value and Bk
j (x) = activation value of the jth b-spline defined over

the knots λj to λj+k (see Fig. 2).
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Figure 2: Univariate b-spline functions of order 1, 2, and 3 (from left to right).
The shaded areas highlight the domain where the partition of unity is valid.

The concept of a knot-vector and the characteristics of b-splines meet our de-
mands in several ways: (1) Each single knot vector defines a complete set of MFs
in the form of a partition of unity for one linguistic variable. (2) The granularity of
the grid-like partition of the input space can be adapted in a very flexible manner,
simply by inserting or removing knots in the knot-vectors. (3) Changing the order
of splines or the positions of knots allows for very flexible approximations. (4)
Derivatives of a spline function are easy to calculate. The vth-order derivative of a
spline function of order k is itself a spline of order k − v having the same knots.

The above discussion suggests the use of zeroth order TS-FMs with b-splines
as MFs as a convenient representation of hypotheses, and we shall subsequently
employ this type of representation. Of course, due to the curse of dimensionality,
the number of fuzzy sets in each dimension has to be limited. On the other hand,
the approach allows for a very efficient model adaptation on the basis of least
squares methods, and guarantees the interpretability of induced models. Finally, it
is easy to calculate the derivatives of the model, which is important in the context
of CRL. For example, local constraints such as e.g. “f(·) is rather flat around the
origin” are naturally formalized in terms of fuzzy restrictions on the derivative.

4.2 Model Adaptation via Evolutionary Computation

In the remainder of this section, we present a framework for adapting TS-FMs
using methods from evolutionary computation (EC). We assume some general fa-
miliarity with evolutionary methods and terminology; see [10] for an introduction
and current trends.
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A central aspect in EC concerns the distinction between the genotype and the
phenotype representation of an individual. Roughly speaking, a phenotype corre-
sponds to the solution of the (optimization) problem under consideration, which
is in our context an optimal hypothesis h ∈ H. The corresponding genotype is
an encoding of the phenotype. In evolutionary algorithms, search is performed in
the space of genotypes. In other words, the space of phenotypes (solutions) is not
searched directly, but only in an implicit way. The real challenge for evolutionary
search methods is hence to find an adequate genotype representation, such that
this implicit search becomes as efficient as possible.

Two types of information represented by a genotype can roughly be distin-
guished, namely structure information and variable information. In genetic algo-
rithms, for example, the genotypes are usually represented by a linear structure,
namely a string g = (g1 . . . gn) with binary variables gi ∈ {0, 1}. For our purpose,
trees appear to be a more convenient structure for genotypes. Especially, sub-trees
inherently offer the possibility to classify functional entities of the target pheno-
type. By labeling nodes of the tree, it is possible to define the space of possible
genotypes by using genotype-templates based on a grammar [11], where a grammar
is a high-level notation used to describe the structure of data.

4.2.1 Tree-Based Genotypes and Genotype-Templates

<genotype-template> ::= <node-list>,<conjunction-list>,<constraint-list>

<node-list> ::= empty | <node>,<node-list>

<node> ::= <node-label>,<min-succ-size>,<max-succ-size>,<var-list>

<conjunction-list> ::= empty | <conjunction>,<conjunction-list>

<conjunction> ::= <node>,<node>,<predetermined>

<var-list> ::= empty | <var>,<var-list>

<var> ::= <var-name>,<min-value>,<max-value>,<var-type>,<untouchable>

<constraint-list> ::= empty | <constraint>,<constraint-list>

<constraint> ::= <node>, <var-name>,<condition>,<scope>

<predetermined>,<untouchable> ::= boolean

<min-succ-size>,<max-succ-size> ::= integer

<min-value>,<max-value> ::= double

<node-label>,<var-name>,<var-type> ::= string

<condition> ::= ”==” | ”!=” | ”>” | ”<”

<scope> ::= ”sibling” | ”level” | ”all”

Grammar 4.1: Grammar defining a genotype space on the basis of trees.

We make use of a context-free grammar in Backus-Naur form as a framework to
formulate genotype-templates. For TS-FMs as hypotheses (phenotypes), the geno-
type search space G can be defined by instances (genotypes) of a genotype-template
based on grammar 4.1. Different classes of nodes of the tree-based genotypes are
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distinguished by different node labels. The non-terminal symbol <predetermined>

indicates whether the corresponding node must be present to assure a mapping from
genotypes to valid phenotypes. With the non-terminal symbol <untouchable> it
is possible to detach certain variables from evolutionary operations such as muta-
tion. Obviously, the structure information of a phenotype can be constrained by
the formulation of the genotype-template. The restriction of variable information,
regarding the variables embedded in the nodes of the tree-based genotype, is often
inevitable. Simple restrictions can be formulated with the non-terminal symbol
<constraint>, e.g. the mathematically claimed increasing alignment of b-spline
knot-positions in each knot-vector.

V R
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TS−FM

Reference−Part

LinVar−Selector

Value−Part

LinVar

Knot

V

R

(b) Labels.

KnotPos, Coefficient

Order, Col

LinVarIndex
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(c) Variables.

Figure 3: A tree-based genotype representation showing (a) the structure, (b) the
node-labels and (c) the embedded variables. The gray shaded areas in (a) and (c)
illustrate the extension to a model capable to perform feature selection.

To exemplify the above concepts, suppose that phenotypes are TS-FMs, with
b-splines of order two or three as MFs, for one-dimensional function approximation.
Fig. 3 shows the corresponding genotype. By using grammar 4.1, this genotype
can easily be described by genotype-template 4.1.

4.2.2 Evolutionary Operations on Tree-Based Genotypes

Regarding mutation operations, we have to distinguish between mutation of vari-
able information and structure information. The former is implemented by travers-
ing all nodes of the tree-based genotype representation. The variables at a node,
if any, are modified by applying a (randomized) mutation operator. Usually, real-
valued variables are changed by means of evolutionary strategy concepts, whereas
integers are modified by increasing, decreasing or replacing the original value at
random. In any case, the grammar-based genotype-template specifies the legal
range for each variable. The mutation of structure information is implemented by
adding, deleting or expanding a node chosen at random. Again, the grammar-based
genotype-template provides all information necessary for validating the correctness
of a structure information mutation.

Compared to string-based genotypes, the recombination operations simplify to
sub-tree swapping. Furthermore, in the case of grammar-based genotype-templates,
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node (”TS-FM”, 2, 2, empty)

node (”Reference-Part”, 1, 1, empty)

node (”LinVar-Selector”, 0, 0, ”LinVarIndex”)

node (”Value-Part”, 1, 1, empty)

node (”LinVar”, 6, 11, ”Order”)

node (”Knot”, 0, 0, (”KnotPos”,”Coefficient”))

var (”LinVarIndex”, 0, 0, ”integer”, FALSE)

var (”Order”, 2, 3, ”integer”, FALSE)

var (”KnotPos”, 0.0, 1.0, ”real”, FALSE)

var (”Coefficient”, -100.0, 100.0, ”real”, FALSE)

conjunction (”TS-FM”, ”Reference-Part”, TRUE)

conjunction (”ReferencePart”, ”LinVar-Selector”, TRUE)

conjunction (”TS-FM”, ”ValuePart”, TRUE)

conjunction (”ValuePart”, ”LinVar”, FALSE)

conjunction (”LinVar”, ”Knot”, FALSE)

constraint (”Knot”, ”KnotPos”, ”>”, ”sibling”)

Genotype-Template 4.1: Simple genotype-template for the above example.

verifying whether the sub-tree swapping results in valid genotypes can be done
efficiently by checking the grammar.

4.3 Implementation

The task of the evolutionary algorithm (EA) is to minimize the risk functional
(4). This is done by finding a (sub)optimal b-spline distribution (rule-antecedents)
covering the input5 and, simultaneously, optimal coefficients (rule-consequents). In
pure data-driven approaches the coefficients can be derived solely by least squares
(LS) methods. In our case, the coefficients are encoded in the genotype instead.
In each generation the corresponding genotype variable value (the variable “Coef-
ficient” in node “Knot”) is calculated by by LS (i.e. Householder algorithm). If the
calculated change of the coefficient is below a certain threshold the corresponding
value in the genotype is replaced by this calculated value. If the change is equal
or above the threshold, it is assumed that an important change in the individual
has happened, due to the individual’s attempt to satisfy (one of) the constraints.
Thus, the adaptation of such coefficients are better driven by mutation rather than
LS. The implementation concerning mutation and recombination follows the de-
scription of evolutionary operations on tree-based genotypes as outlined above. We

5Because we claim that the model input(s) are normalized to the interval [-1,1] the following was
done: In the genotype to phenotype mapping, the outermost (for order two) respectively the two
outermost (for order three) knots (see information variable definition in Genotype-Template 4.1)
are rescaled to [−2,−1.001] and [1.001, 2]. The internal knots are scaled to [−1, 1]. Thus, the
input dimension is covered with b-splines fulfilling the partition of unity.
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used an elite EA with tournament selection (tournament size 7) and a population
size of 100 individuals. The crossover probability was chosen at random while the
mutation probability of integer-valued variables was set to 0.001.

4.4 Related Methods

During recent years, a large number of methods for evolutionary learning or tuning
of fuzzy (rule-based) systems has been devised; see e.g. [9, 2, 12, 16] for particular
approaches and [3] for a comprehensive overview. The learning approach is purely
data-driven in the sense that both the structure and the parameters (membership
functions) of a fuzzy rule base are induced from a given set of data. In the tuning
approach, the data is merely used in order to optimize the parameters of the fuzzy
system while the structure is pre-specified. Needless to say, the transition between
pure parameter optimization (tuning) and learning of complete rule bases is gradual
with many methods falling in-between.

Specifying the structure of a rule-based system first and calibrating the system
by means of a tuning-step afterwards seems to be an obvious alternative to combin-
ing knowledge-based and data-based modeling. It deserves mentioning, however,
that the adaptation strategy as realized by CRL is quite different from such meth-
ods: In the tuning approach, the background knowledge is basically used for coming
up with a good initial solution, specified in terms of the original rule base. This
initial solution is then adapted to the data. This way, the original rule base actu-
ally influences the final model through implementing a kind of search bias, while
the method itself is after all a more data-driven one. In fact, the deviation from
the original model and, hence, the discrepancy between the final model and the
background knowledge cannot be controlled.

As opposed to this, CRL tries to adapt the model to the data and the constraints
more or less simultaneously, as the risk functional requires a real compromise be-
tween knowledge and data. That is, both pieces of information are guaranteed
to have an influence on the result and the tradeoff between fitting the data and
agreeing with the knowledge can be controlled in an explicit way. Apart from that,
it should be noted that CRL is more flexible in the sense that it does not require
the specification of a complete rule base. Moreover, it also allows for constraints
that are not expressed in the form of rules.

5 Example

At present, a thorough empirical validation of our approach is difficult for at least
two reasons: Firstly, we are currently not aware of alternative methods that are
directly comparable. Secondly, real benchmark problems that provide both empiri-
cal data and background knowledge are not publicly available so far. Therefore, we
restrict ourselves to illustrating CRL by means of a simple example that involves
only one constraint. Moreover, to ease a graphical representation the function to
be learned has only one input variable. Let us mention that even though CRL can
be applied to higher-dimensional problems in a straightforward way, its complexity
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does of course critically depend on the input dimension. In this respect, however,
CRL does not differ from any other evolutionary method for learning fuzzy systems.
In practice, all these methods do suffer from the curse of dimensionality.

An an example, consider again the function shown in Fig. 1, together with
the random sample shown as black points. As background knowledge we seek to
incorporate information about the peak around x = 0.

One possibility to model a “peak constraint” is to specify conditions on the
function’s derivative of first and maybe second order. For example, the derivative
of a hypothesis h should be rather large for negative inputs x with a small (though
not too small) distance from 0. Experimentally, however, we have found that in
our example almost the same effect can be obtained with a more simple type of
constraint, namely an absolute value constraint of the form (5).

More concretely, we have used the fuzzy rule “If x is near 0, then f(x) is close
to 1”, formalized as

C(ω) =def inf
x∈[−1,1]

C1(x) C2(h(x, ω)). (9)

The fuzzy sets C1 and C2 are specified through Gaussian membership functions, and
as an implication we employed the Lukasiewicz operator (α, β) 7→ min{1, 1−α+β}.
In this example, the parameter vector ω identifying a hypothesis comprises informa-
tion about the spline approximation (knot-vector, coefficients of spline functions).

Computing C(ω), i.e. the infimum on the right-hand side of (9), amounts to
finding

min
x∈[−1,1]

1 − C1(x) + C2(h(x, ω)) = min
x∈[−1,1]

1 − C1(x) + C2

(

∑

i

γiBi(x)

)

,

where the Bi are b-splines (the coefficients γi are part of the parameter vector ω).
Unfortunately, this minimization problem cannot be solved analytically. However,
since the function to be minimized is smooth enough, standard numerical tools
such as the Newton-Raphson method can be used. Taking the center of the fuzzy
set C1 as an initial value, this method converges extremely fast.

In our evolutionary algorithm, we generated 50 populations of size 100 (taking
around 10 seconds on an AMD XP2000+ CPU). The number of b-splines forming
a partition was lower and upper bounded by 3 and 7, respectively. The result of
the optimization is shown in Fig. 4 for the regularization parameter λ = 1 and in
Fig. 5 for λ = 2. The same figures also show the underlying b-spline partitions. As
can be seen, the original function, including the peak, can now be approximated
quite accurately. To compare, the approximation presented in Fig. 1 (Section 3)
corresponds to the result we obtained when leaving the constraint out of account
(i.e. when setting λ = 0). Moreover, the influence of the regularization parameter
can be seen nicely in our example: The larger λ is, the higher the peak becomes.
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Figure 4: Optimal approximation (solid line) found by the evolutionary algo-
rithm with λ = 1 (top), together with the underlying spline partition (bottom).
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Figure 5: Optimal approximation (solid line) found by the evolutionary algo-
rithm with λ = 2 (top), together with the underlying spline partition (bottom).
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6 Concluding Remarks

The idea of constraint-regularized learning (CRL) is to embed fuzzy modeling tech-
niques in regularized learning. This approach provides a simple yet elegant means
for considering background knowledge, expressed in terms of flexible constraints, in
learning from data. The paper has proposed an operationalization of CRL, using
Takagi-Sugeno fuzzy rule bases as a flexible model class and methods from evo-
lutionary computation for finding a model which is (nearly) optimal in the sense
of minimizing the modified risk functional. Our evolutionary approach makes use
of an efficient encoding of models in terms of tree-based genotypes. These are
specified by means of genotype-templates defined by grammars.

CRL naturally supports a kind of “interactive” learning and optimization pro-
cess. Namely, the optimal approximation obtained for a certain set of constraints
might give a human expert cause to modify these constraints or to adapt the reg-
ularization parameter. That is, the inspection of the supposedly optimal function
might suggest adding further constraints not made explicit so far or strengthening
some of the original constraints. For instance, in our example the expert might
vary the parameter λ until the peak satisfies his conception. Furthermore, it would
be useful to inform the expert about the consistency of the constraints that he
has specified,6 or to point at particular constraints that are critical in the sense of
being in conflict with parts of the observed data. An important aspect of future
work is to extend our current implementation in these directions. Eventually, a
tool should be obtained that supports the above type of interactive learning in a
convenient way.
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