
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

10-1-2002

Training Radial Basis Neural Networks with the
Extended Kalman Filter
Daniel J. Simon
Cleveland State University, d.j.simon@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

Part of the Digital Communications and Networking Commons, and the Electrical and
Computer Engineering Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
Copyright © 2002 Elsevier Science B.V. All rights reserved.

Repository Citation
Simon, Daniel J., "Training Radial Basis Neural Networks with the Extended Kalman Filter" (2002). Electrical Engineering & Computer Science Faculty
Publications. 27.
https://engagedscholarship.csuohio.edu/enece_facpub/27

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Original Citation
Simon, D. (2002). Training radial basis neural networks with the extended Kalman filter. Neurocomputing, 48, 1-4.

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/27?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Training radial basis neural networks with the extended
Kalman $lter

Dan Simon
Department of Electrical and Computer Engineering, Cleveland State University, Stilwell Hall

Room 332, 1960 East 24th Street, Cleveland, OH 44115-2425, USA

Abstract

Radial basis function (RBF) neural networks provide attractive possibilities for solving
signal processing and pattern classi$cation problems. Several algorithms have been pro-
posed for choosing the RBF prototypes and training the network. The selection of the RBF
prototypes and the network weights can be viewed as a system identi$cation problem. As
such, this paper proposes the use of the extended Kalman $lter for the learning procedure.
After the user chooses how many prototypes to include in the network, the Kalman $lter si-
multaneously solves for the prototype vectors and the weight matrix. A decoupled extended
Kalman $lter is then proposed in order to decrease the computational e3ort of the training
algorithm. Simulation results are presented on reformulated radial basis neural networks
as applied to the Iris classi$cation problem. It is shown that the use of the Kalman $lter
results in better learning than conventional RBF networks and faster learning than gradient
descent.

Keywords: Radial basis function (RBF); Training; Optimization; Gradient descent; Kalman
$lter

1. Introduction

A radial basis function (RBF) neural network is trained to perform a mapping
from an m-dimensional input space to an n-dimensional output space. RBFs can be
used for discrete pattern classi$cation, function approximation, signal processing,
control, or any other application which requires a mapping from an input to an
output. RBFs were $rst used for neural networks in [4]. Many RBF papers and

E-mail address: d.j.simon@csuohio.edu (D. Simon).

Fig. 1. Radial basis function network architecture.

references can be found in the recent Neurocomputing special issues on RBF
networks [15,16].
An RBF consists of the m-dimensional input x being passed directly to a hidden

layer. Suppose there are c neurons in the hidden layer. Each of the c neurons
in the hidden layer applies an activation function which is a function of the Eu-
clidean distance between the input and an m-dimensional prototype vector. Each
hidden neuron contains its own prototype vector as a parameter. The output of
each hidden neuron is then weighted and passed to the output layer. The outputs
of the network consist of sums of the weighted hidden layer neurons. Fig. 1 shows
a schematic of an RBF network. It can be seen that the design of an RBF requires
several decisions, including the following:

1. How many hidden units will reside in the hidden layer (i.e., what is the value
of the integer c);

2. What are the values of the prototypes (i.e., what are the values of the v vectors);
3. What function will be used at the hidden units (i.e., what is the function g(·));
4. What weights will be applied between the hidden layer and the output layer

(i.e., what are the values of the w weights).

The performance of an RBF network depends on the number and location (in
the input space) of the centers, the shape of the RBF functions at the hidden units,
and the method used for determining the network weights. Some researchers have
trained RBF networks by selecting the centers randomly from the training data
[4]. Others have used unsupervised procedures (such as the k-means algorithm)
for selecting the RBF centers [11]. Still others have used supervised procedures
for selecting the RBF centers [9].

Several training methods separate the tasks of prototype determination and weight
optimization. This trend probably arose because of the quick training that could
result from the separation of the two tasks. In fact, one of the primary contributors
to the popularity of RBF networks was probably their fast training times as com-
pared to gradient descent training (include backpropagation). Reviewing Fig. 1, it
can be seen that once the prototypes are $xed and the hidden layer function g(·)
is known, the network is linear in the weight parameters w. At that point training
the network becomes a quick and easy task that can be solved via linear least
squares. (This is similar to the popularity of the optimal interpolative net that is
due in large part to the eFcient noniterative learning algorithms that are available
[18,19].)
Training methods that separate the tasks of prototype determination and weight

optimization often do not use the input–output data from the training set for
the selection of the prototypes. For instance, the random selection method and
the k-means algorithm result in prototypes that are completely independent
of the input–output data from the training set. Although this results in fast training,
it clearly does not take full advantage of the information contained in the training
set.
Gradient descent training of RBF networks has proven to be much more e3ective

than more conventional methods [9]. However, gradient descent training can be
computationally expensive. This paper extends the results of [9] and formulates a
training method for RBFs based on Kalman $ltering. This new method proves to
be quicker than gradient descent training while still providing performance at the
same level of e3ectiveness.
Training a neural network is, in general, a challenging nonlinear optimization

problem. Various derivative-based methods have been used to train neural networks,
including gradient descent [9], Kalman $ltering [20,21], and the well-known back-
propagation [7]. Derivative-free methods, including genetic algorithms [6], learning
automata [12], and simulated annealing [10], have also been used to train neural
networks.
Derivative-free methods have the advantage that they do not require the deriva-

tive of the objective function with respect to the neural network parameters. They
are more robust than derivative-based methods with respect to $nding a global
minimum and with respect to their applicability to a wide range of objective
functions and neural network architectures. However, they typically tend to
converge more slowly than derivative-based methods. Derivative-based methods
have the advantage of fast convergence, but they tend to converge to local
minima. In addition, due to their dependence on analytical derivatives, they are
limited to speci$c objective functions and speci$c types of neural network
architectures.
In this paper we formulate a training method for RBFs that is based on Kalman

$ltering. Kalman $lters have been used extensively with neural networks. They
have been used to train multilayer perceptrons [17,20,21] and recurrent networks
[13,14]. They have also been used to train RBF networks, but so far their appli-
cation has been restricted to single-output networks with exponential functions at

the hidden layer [3]. In the present paper we extend the use of Kalman $lters to
the training of general multi-input, multi-output RBF networks.
For linear dynamic systems with white process and measurement noise, the

Kalman $lter is known to be an optimal estimator. For nonlinear systems with
colored noise, the Kalman $lter can be extended by linearizing the system around
the current parameter estimates. This algorithm updates parameters in a way that
is consistent with all previously measured data and generally converges in a few
iterations. In the following sections we describe how the extended Kalman $l-
ter can be applied to RBF optimization. We demonstrate its performance on the
Iris classi$cation problem and compare it with RBF optimization using gradient
descent.
The next section provides an overview of reformulated RBFs, and Section 3 dis-

cusses how gradient-based methods can optimize the weights and prototype vectors
of an RBF. Section 4 shows how an extended Kalman $lter can optimize the pa-
rameters of an RBF, and Section 5 proposes a modi$cation of the Kalman $lter in
order to decrease the computational e3ort for large problems. Section 6 contains
simulation results and a comparison of the Kalman $lter method with the gradient
descent method, and Section 7 contains some concluding remarks and suggestions
for further research.

2. Reformulated radial basis functions

There have been a number of popular choices for the g(·) function at the hidden
layer of RBFs [5] (see Fig. 1). The most common choice is a Gaussian function
of the form

g(v)= exp(−v=
2); (1)

where
 is a real constant. Other hidden layer functions that have often been used
are the thin plate spline function

g(v)= v log
√
v (2)

the multiquadric function

g(v)= (v2 +
2)1=2 (3)

and the inverse multiquadric function

g(v)= (v2 +
2)−1=2; (4)

where
 is a real constant.
It has recently been proposed [9] that since RBF prototypes are generally in-

terpreted as the centers of receptive $elds, hidden layer functions should have the
following properties:

1. The response at a hidden neuron is always positive;
2. The response at a hidden neuron becomes stronger as the input approaches the

prototype;

3. The response at a hidden neuron becomes more sensitive to the input as the
input approaches the prototype.

With these desired properties in mind, an RBF’s hidden layer function should be
of the general form

g(v)= [g0(v)]
1=(1−p) (5)

and one of two sets of conditions on the so-called generator function g0(v) should
hold. If p is a real number greater than 1, then the generator function g0(v) should
satisfy the following set of conditions:

1. g0(v)¿ 0 ∀v∈ (0;∞);
2. g′0(v)¿ 0 ∀v∈ (0;∞);
3. p

p−1 [g
′
0(v)]

2 − g0(v)g′′0 (v)¿ 0 ∀v∈ (0;∞).

The last two conditions ensure that g′(v)¡ 0 and g′′(v)¿ 0 ∀v∈ (0;∞). If p
is a real number less than 1, then the generator function g0(v) should satisfy the
following set of conditions:

1. g0(v)¿ 0 ∀v∈ (0;∞);
2. g′0(v)¡ 0 ∀v∈ (0;∞);
3. p

p−1 [g
′
0(v)]

2 − g0(v)g′′0 (v)¡ 0 ∀ v∈ (0;∞).

The last two conditions again ensure that g′(v)¡ 0 and g′′(v)¿ 0 ∀v∈ (0;∞).
It can be shown that the functions of Eqs. (1) and (4) satisfy these conditions, but
the functions of Eqs. (2) and (3) do not.
One new generator function that satis$es the above conditions [9] is the linear

function

g0(v)= av+ b; (6)

where a¿ 0 and b¿ 0. If a=1 and p=3, then the hidden layer function reduces
to the inverse multiquadric function of Eq. (4). In this paper, we will concentrate
on hidden layer functions of the form of Eq. (5) with special emphasis on the
inverse multiquadric function of Eq. (4).

3. Derivative-based optimization of radial basis functions

The response of an RBF of the form of Fig. 1, where the hidden layer functions
g(·) have the form of Eq. (5), can be written as follows:

ŷ=



w10 w11 · · · w1c

w20 w21 · · · w2c
...

...
...

...
wn0 wn1 · · · wnc






1
g(||x − v1||2)

...
g(||x − vc||2)


 : (7)

We will use the following notation as shorthand for the weight matrix on the
right-hand side of Eq. (7)


w10 w11 · · · w1c

w20 w21 · · · w2c
...

...
...

...
wn0 wn1 · · · wnc


=



wT

1
wT

2
...

wT
n


=W: (8)

If we are given a training set of M desired input–output responses {xi; yi}
(i=1; : : : ; M), then we can augment M equations of the form of Eq. (7) as follows:

[ŷ 1 · · · ŷ M]=W




1 · · · 1
g(||x1 − v1||2) · · · g(||xM − v1||2)

...
...

...
g(||x1 − vc||2) · · · g(||xM − vc||2)


 : (9)

We will introduce the following notation for the matrix on the right-hand side of
Eq. (9).

h0k =1 (k=1; : : : ; M); (10)

hjk = g(||xk − vj||2) (k=1; : : : ; M); (j=1; : : : ; c) (11)

in which case we can write the matrix on the right-hand side of Eq. (9) as

h01 · · · h0M
h11 · · · h1M
...

...
...

hc1 · · · hcM


=[h1 · · · hM]=H: (12)

In this case we can rewrite Eq. (9) as

Ŷ =WH: (13)

Now, if we want to use gradient descent to minimize the training error, we can
de$ne the error function

E= 1
2 ||Y − Ŷ ||2F; (14)

where Y is the matrix of target (desired) values for the RBF output, and || · ||2F is
the square of the Froebinius norm of a matrix, which is equal to the sum of the
squares of the elements of the matrix. It has been shown [9] that in this case

@E
@wi

=
M∑
k=1

(ŷ ik − yik)hk (i=1; : : : ; n); (15)

@E
@vj

=
M∑
k=1

2g′(||xk − vj||2)(xk − vj)
n∑

i=1

(yik − ŷ ik)wij (j=1; : : : ; c); (16)

where ŷ ik is the element in the ith row and kth column of the Ŷ matrix of Eq. (13),
and yik is the corresponding element in the Y matrix. Now we can optimize the
RBF with respect to the rows of the weight matrix W and the prototype locations vj
by iteratively computing the above partials and performing the following updates:

wi =wi − �
@E
@wi

(i=1; : : : ; n);

vj = vj − �
@E
@vj

(j=1; : : : ; c);
(17)

where � is the step size of the gradient descent method. This optimization stops
when wi and vj reach local minima.

4. Radial basis function optimization using the Kalman lter

Alternatively, we can use Kalman $ltering to minimize the training error. Deriva-
tions of the extended Kalman $lter are widely available in the literature [1,8]. In
this section we brieKy outline the algorithm and show how it can be applied to
RBF network optimization. Consider a nonlinear $nite dimensional discrete time
system of the form

�k+1 =f(�k) +!k;

yk = h(�k) + k ;
(18)

where the vector �k is the state of the system at time k, !k is the process noise,
yk is the observation vector, k is the observation noise, and f(·) and h(·) are
nonlinear vector functions of the state. Assume that the initial state �0 and the
noise sequences { k} and {!k} are Gaussian and independent from each other
with

E(�0)= M�0; (19)

E[(�0 − M�0)(�0 − M�0)T]=P0; (20)

E(!k)=0; (21)

E(!kwT
l)=Q$kl; (22)

E(k)=0; (23)

E(kvTl)=R$kl; (24)

where E(·) is the expectation operator and $kl is the Kronecker delta. The problem
addressed by the extended Kalman $lter is to $nd an estimate �̂n+1 of �k+1 given
yj (j=0; : : : ; k).

If the nonlinearities in Eq. (18) are suFciently smooth, we can expand them
around the state estimate �̂k using Taylor series to obtain

f(�k)=f(�̂k) + Fk × (�k − �̂k) + higher order terms;

h(�k)= h(�̂k) +HT
k × (�k − �̂k) + higher order terms; (25)

where we have introduced the notation

Fk =
@f(�)
@�

∣∣∣∣
�=�̂k

;

HT
k =

@h(�)
@�

∣∣∣∣
�=�̂k

: (26)

Neglecting the higher-order terms in Eq. (25), the system in Eq. (18) can be
approximated as

�k+1 =Fk�k +!k + 'k;

yk =HT
k �k + k + ’k; (27)

where 'k and ’k are de$ned as

'k =f(�̂k)− Fk�̂k ;

’k = h(�̂k)−HT
k �̂k : (28)

It can be shown that the desired estimate �̂n can be obtained by the recursion

�̂k =f(�̂k−1) + Kk[yk − h(�̂k−1)];

Kk =PkHk(R+HT
k PkHk)−1;

Pk+1 =Fk(Pk − KkHT
k Pk)FT

k +Q: (29)

Kk is known as the Kalman gain. In the case of a linear system, it can be
shown that Pk is the covariance matrix of the state estimation error, and the
state estimate �̂k+1 is optimal in the sense that it approaches the conditional mean
E[�k+1|(y0; y1; : : : ; yk)] for large k. For nonlinear systems the $lter is not optimal
and the estimates are only approximately conditional means.
Inspired by the successful use of the Kalman $lter for training non-RBF neural

networks [14], we can apply a similar technique to the training of RBF networks. In
general, we can view the optimization of the weight matrix W and the prototypes
vj as a weighted least-squares minimization problem, where the error vector is
the di3erence between the RBF outputs and the target values for those outputs.
Consider the RBF network of Fig. 1 with m inputs, c prototypes, and n outputs.
We use y to denote the target vector for the RBF outputs, and h(�̂k) to denote

the actual outputs at the kth iteration of the optimization algorithm.

y=[y11 · · · y1M · · · yn1 · · · ynM]
T;

h(�̂k)= [ŷ 11 · · · ŷ 1M · · · ŷ n1 · · · ŷ nM]
T
k : (30)

Note that the y and ŷ vectors each consist of nM elements, where n is the di-
mension of the RBF output and M is the number of training samples. In order to
cast the optimization problem in a form suitable for Kalman $ltering, we let the
elements of the weight matrix W and the elements of the prototypes vj constitute
the state of a nonlinear system, and we let the output of the RBF network consti-
tute the output of the nonlinear system to which the Kalman $lter is applied. The
state of the nonlinear system can then be represented as

�=[wT
1 · · · wT

n vT1 · · · vTc]
T: (31)

The vector � thus consists of all (n(c+ 1)+mc) of the RBF parameters arranged
in a linear array. The nonlinear system model to which the Kalman $lter can be
applied is

�k+1 = �k ;

yk = h(�k); (32)

where h(�k) is the RBF network’s nonlinear mapping between its parameters and
its output. In order to execute a stable Kalman $lter algorithm, we need to add
some arti$cial process noise and measurement noise to the system model [14]. So
we rewrite Eq. (32) as

�k+1 = �k +!k;

yk = h(�k) + k ; (33)

where !k and k are arti$cally added noise processes. Now we can apply the
Kalman recursion of Eq. (29). f(·) is the identity mapping and yk is the target
output of the RBF network. (Note that although yk is written as a function of the
Kalman iteration number k, it is actually a constant.) h(�̂k) is the actual output
of the RBF network given the RBF parameters at the kth iteration of the Kalman
recursion. Hk is the partial derivative of the RBF output with respect to the RBF
network parameters at the kth iteration of the Kalman recursion. Fk is the identity
matrix (again, a constant even though it is written as a function of k). The Q
and R matrices are tuning parameters which can be considered as the covariance
matrices of the arti$cial noise processes !k and k , respectively. It is shown in
Appendix A that the partial derivative of the RBF output with respect to the RBF
network parameters is given by

Hk =
[
Hw

Hv

]
; (34)

where Hw and Hv are given by

Hw =



H 0 · · · 0
0 H · · · 0
...

...
...

...
0 · · · 0 H


 ; (35)

Hv =



−w11g′112(x1 − v1) · · · −w11g′m12(xm − v1) · · ·

...
...

...
...

−w1cg′1c2(x1 − vc) · · · −w1cg′mc2(xm − vc) · · ·
−wn1g′112(x1 − v1) · · · −wn1g′m12(xm − v1)

...
...

...
−wncg′1c2(x1 − vc) · · · −wncg′mc2(xm − vc)


 ; (36)

where H (with no subscript) is the (c + 1) × M matrix given in Eq. (12), wij

is the element in the ith row and jth column of the W weight matrix (see Eq.
(8)), g′ij = g′(||xi − vj||2) (where g(·) is the activation function at the hidden layer),
xi is the ith input vector, and vj is the jth prototype vector. Hw in Eq. (35) is
an n(c + 1) × nM matrix, Hv in Eq. (36) is an mc × nM matrix, and Hk in Eq.
(34) is an [n(c + 1) + mc] × nM matrix. Appendix B gives a derivation of g′ij(·)
for the case when g(·) is generated by the linear generator function. Now that
we have the Hk matrix, we can execute the recursion of Eq. (29), thus using
the extended Kalman $lter in order to determine the weight matrix W and the
prototypes vj.

5. Decoupling the Kalman lter

The Kalman $lter described in the previous section can be decoupled in order to
save computational e3ort. This is similar to the decoupling that has been performed
for Kalman $lter training of recurrent neural networks [14]. For a large RBF
network, the computational expense of the Kalman $lter could be burdensome. In
fact, the computational expense of the Kalman $lter is on the order of AB2, where
A is the dimension of the output of the dynamic system and B is the number of
parameters. In our case, there are nM outputs and n(c+1)+mc parameters, where
n is the dimension of the RBF output, M is the number of training samples, c is
the number of prototypes, and m is the dimension of the RBF input. Therefore, the
computational expense of the Kalman $lter is on the order of nM [n(c+1)+mc]2.
The Kalman $lter parameter vector can be decoupled by assuming that certain

parameter groups interact with each other only at a second-order level. For in-
stance, it can be seen from Appendix A that the Hk matrix contains a lot of zeros,
showing that the interaction between various parameter groups can be neglected.
In particular, the Hk matrix consists of n+1 decoupled blocks. These n+1 blocks
correspond to the n sets of w weights that a3ect the n output components, and

the set of prototypes. This is intuitive because, for example, the c+1 weights that
impinge on the $rst component of the output are completely independent of the
c+1 weights that impinge on the second component of the output (see Fig. 1). Let
us use the notation that �i

k refers to the ith group (out of n+1 total) of parameters
estimated at time step k. Then we have

�1k =w1

...

�n
k =wn

�n+1
k = [vT1 · · · vTc]

T: (37)

We will use the notation that Hi
k refers to the submatrix of Hk corresponding to

the ith group of parameters.

H 1
k =H

...

Hn
k =H

Hn+1
k =Hv; (38)

where H (with no subscript) is the (c + 1) × M matrix given in Eq. (12), and
Hv is given in Eq. (36). We will use the notation that yi

k refers to the elements
of the target output of the RBF network that are a3ected by the ith group of
parameters.

y1
k = [y11 · · · y1M]

T

...

yn
k = [yn1 · · · ynM]

T

yn+1
k = [y11 · · · y1M · · · yn1 · · · ynM]

T: (39)

Similarly, we use the notation that hi(�̂k−1) refers to the elements of the actual
output of the RBF network that are a3ected by the ith group of parameters.

h1(�̂k−1) = [ŷ 11 · · · ŷ 1M]
T
k

...

hn(�̂k−1) = [ŷ n1 · · · ŷ nM]
T
k

hn+1(�̂k−1) = [ŷ 11 · · · ŷ 1M · · · ŷ n1 · · · ŷ nM]
T
k : (40)

The decoupled Kalman recursion for the ith parameter group, modi$ed from Eq.
(29), is then given by

�̂
i
k =f(�̂

i
k−1) + Ki

k[y
i
k − hi(�̂

i
k−1)];

Ki
k =Pi

kH
i
k(R

i + (Hi
k)

TPi
kH

i
k)

−1;

Pi
k+1 =Fk(Pi

k − Ki
k(H

i
k)

TPi
k)F

T
k +Qi: (41)

As before, f(·) is the identity mapping and Fk is the identity matrix. The above
recursion executes n+1 times. The $rst n times, the recursion consists of M outputs
and (c+1) parameters. The last time, the recursion consists of nM outputs and mc
parameters. So the computational expense of the Kalman $lter has been reduced
to the order of nM [(c + 1)2 + (mc)2]. The ratio of the computational expense of
the standard Kalman $lter to the decoupled Kalman $lter can be computed as

Standard KF Expense
Decoupled KF Expense

=
n2(c+ 1)2 +m2c2 + n(c+ 1)mc

(c+ 1)2 +m2c2
: (42)

The computational savings will be most signi$cant for large problems, i.e., prob-
lems where n (the dimension of the output) is large, m (the dimension of the
input) is large, or c (the number of prototypes) is large. Note that this complexity
analysis applies only to the Kalman recursion and does not include the computa-
tional expense required for the calculation of the partial derivatives (see Appendix
A). Also note that for both the standard and decoupled Kalman $lters, the com-
putational expense increases linearly with M (the number of training samples).

6. Simulation results

In this section we describe and illustrate the use of Kalman $lter training for
the parameters of an RBF network. We tested the algorithms of the previous
sections on the classical Iris classi$cation problem [2]. Each Iris exemplar has four
features and is classi$ed into one of three categories. The Iris data contains 50 ex-
emplars from each category for a total of 150 patterns. We randomly divided
the patterns into training and test sets, each containing 25 exemplars from each
category. The input data were normalized by replacing each feature value x by
Mx=(x − ,x)=-x, where ,x and -x denote the sample mean and standard deviation
of this feature over the entire data set. The networks were trained to respond with
the target value yik =1, and yjk =0 ∀j �= i, when presented with an input vector
xk from the ith category. The reformulated RBF networks were trained using the
hidden layer function of Eq. (5) with the linear generator function of Eq. (6) with
a=1 and b=1. The exponential parameter p in Eq. (5) was varied between 2
and 4 in the simulation results presented in this section. The training algorithms
were initialized with prototype vectors randomly selected from the input data, and
with the weight matrix W set to 0.

Fig. 2. Average RBF performance on the Iris test data with linear generator functions g0(v)= v + 1
and g(v)= [g0(v)]1=(1−p): (a) p=2; (b) p=3; (c) p=4.

After some experimentation, it was concluded that gradient descent worked best
with �=0:01 (see Eq. (17)). The gradient descent optimization algorithm was
terminated when the error function of Eq. (14) decreased by less than 0:1%.
The Kalman $lter parameters of Eq. (29) were initialized with P0 = 40I , Q=40I ,

and R=40I , where I is the identity matrix of appropriate dimensions. The Kalman
$lter recursion was terminated when the error function of Eq. (14) decreased by
less than 0:1%.
The decoupled Kalman $lter parameters of Eq. (41) were initialized with Pi

0 = 40I;
Qi =40I , and Ri =40I , where i=1; : : : ; (n+1), and where I is the identity matrix
of appropriate dimensions.
The performance of each of the training methods was explored by averaging

its performance over $ve trials, where each trial consisted of a random selection
of training and test data. Fig. 2 depicts the performance of the RBF network on
the test data when the network was trained with gradient descent and when it was
trained with the Kalman $lter. The number of hidden units in the RBF network
was varied between 1 and 15. It can be seen from the $gure that, in general,
gradient descent training resulted in a better performing network than Kalman
$lter training. But as the number of hidden units increases, the performances of

Fig. 3. Average RBF performance on the Iris test data with linear generator functions g0(v)= v + 1
and g(v)= [g0(v)]1=(1−p): (a) p=2; (b) p=3; (c) p=4.

the two training algorithms are very similar. The RBF network reaches a peak
performance of about 95%. This is slightly worse than the results presented in [9].
The discrepancies could be due to di3erences in the training termination criteria,
or di3erences in other implementation details.
Fig. 3 shows the performance of the RBF network when it was trained with

the Kalman $lter and when it was trained with the decoupled Kalman $lter. The
number of hidden units in the RBF network was again varied between 1 and 15.
It can be seen from the $gure that Kalman $lter training resulted in marginally
better performance than decoupled Kalman $lter training. The decoupling strategy
discussed in Section 5 degraded the performance of the RBF network only slightly.
Fig. 4 shows the number of iterations required for convergence for gradient

descent training, Kalman $lter training, and decoupled Kalman $lter training. It can
be seen that gradient descent training requires more iterations for convergence than
Kalman $lter training (both standard and decoupled) by a full order of magnitude.
This indicates the computational superiority of Kalman $lters over gradient descent.
Note that the convergence criterion is identical for all training methods—that is,
training was terminated when the error function of Eq. (14) decreased by less than
0:1%.

Fig. 4. Average number of iterations required for learning convergence with linear generator functions
g0(v)= v+ 1 and g(v)= [g0(v)]1=(1−p): (a) p=2; (b) p=3; (c) p=4.

Fig. 5 compares the CPU time required for convergence for the three training
methods. (The CPU time is measured in seconds on a Pentium III 550 MHz CPU
running MATLAB.) With just one or two hidden units, the CPU time is comparable
for each of the three methods. But as the number of hidden units increases above
one or two, the CPU time required by gradient descent reaches a full order of
magnitude greater than that required by the Kalman $lters. (Recall from Figs.
2 and 3 that the number of hidden units needs to be more than one or two in
order to achieve good test performance.) It may be somewhat surprising from
Fig. 5 that the decoupled Kalman $lter requires about the same amount of CPU
time as the standard Kalman $lter. However, as the analysis in Section 5 shows,
the computational savings achieved by the decoupled Kalman $lter will be most
signi$cant for problems where the dimension of the output is large, the dimension
of the input is large, or the number of prototypes is large. In our Iris classi$cation
problem, the dimension of the input is 4, the dimension of the output is 3, and the
number of prototypes varies between 1 and 15. So we simply have too small of a
problem to see much computational savings. Also, recall that the analysis in Section
5 applies only to the Kalman recursion and does not include the computational

Fig. 5. Average CPU time required for learning convergence with linear generator functions
g0(v)= v+ 1 and g(v)= [g0(v)]1=(1−p): (a) p=2; (b) p=3; (c) p=4.

expense required for the calculation of the partial derivatives. This further dilutes
the computational savings of the decoupled Kalman $lter.

7. Conclusion

The success of a neural network architecture depends heavily on the availabil-
ity of e3ective learning algorithms. The theoretical strength of the Kalman $lter
has led to its use in hundreds of technologies, and this paper demonstrates that
RBF network training is yet another fruitful application of Kalman $ltering. The
experiments reported in this paper verify that Kalman $lter training provides about
the same performance as gradient descent training, but with only a fraction of the
computational e3ort. In addition, it has been shown that the decoupled Kalman
$lter provides performance on par with the standard Kalman $lter while further
decreasing the computational e3ort for large problems.
Further research could focus on the application of Kalman $lter training to RBF

networks with alternative forms of the generator function. In addition, the con-
vergence of the Kalman $lter could be further improved by more intelligently
initializing the training process. (Recall that in this paper the prototypes were all

initialized to random input vectors and the weight matrix was initialized to zero.)
Other work could focus on applying these techniques to large problems to ob-
tain experimental veri$cation of the computational savings of decoupled Kalman
$lter training. Additional e3orts could be directed towards e3ective determination
of the Kalman $lter tuning parameters (P0, Q, and R). There are several objec-
tives which could be addressed by further research along these lines. This paper
represents just the initial steps in a direction that appears to be
promising.
The MATLAB m-$les that were used to generate the results presented in this

paper can be downloaded from the world-wide web at http:==academic.csuohio.
edu=simond=rbfkalman=. The Iris data $les and the m-$les for gradient descent
training, Kalman $lter training, and decoupled Kalman $lter training are available
for download and experimentation.

Appendix A

Use the notation Ŷ j to denote the output of the RBF network given the jth
training input and the current network parameters. Use the notation Ŷ to denote
the concatenation of all M training outputs.

Ŷ =[Ŷ
T
1 · · · Ŷ

T
M]

T: (A.1)

From Section 3 we can see that

Ŷ =




c∑
i=0

w1ihi1

...
c∑

i=0

w1ihiM

...
c∑

i=0

wnihi1

...
c∑

i=0

wnihiM




: (A.2)

So if we de$ne w as the $rst n(c+ 1) elements of the � vector in Eq. (31)

w=[wT
1 · · · wT

n]
T (A.3)

then the partial derivative of Ŷ with respect to the weights wij in the Kalman $lter
parameter vector of Eq. (31) can be derived as

@Ŷ
@w

=




@w10

...
@w1c

...
@wn0

...
@wnc




[
c∑

i=0

w1ihi1 · · ·
c∑

i=0

w1ihiM · · ·

c∑
i=0

wnihi1 · · ·
c∑

i=0

wnihiM

]

(A.4)

=



H 0 · · · 0
0 H · · · 0
...

...
...

...
0 · · · 0 H


 ; (A.5)

where H is given in Eq. (12). From Section 3 we can also see that

Ŷ =


w10 +

c∑
j=1

w1jg(||x1 − vj||2) · · · w10 +
c∑

j=1

w1jg(||xM − vj||2) · · ·

wn0 +
c∑

j=1

wnjg(||x1 − vj||2) · · · wn0 +
c∑

j=1

wnjg(||xM − vj||2)

 :

(A.6)

So if we de$ne v as the last mc elements of the � vector in Eq. (31)

v=
[
vT1 · · · vTc

]T
(A.7)

then the partial derivative of Ŷ with respect to the prototypes vj in the Kalman
$lter parameter vector of Eq. (31) can be derived as

@Ŷ
@v

=



@v1
...

@vc





 c∑

j=1

w1jg1j · · ·
c∑

j=1

w1jgMj · · ·

c∑
j=1

wnjg1j · · ·
c∑

j=1

wnjgMj




(A.8)

=



−w11g′112(x1 − v1) · · · −w11g′M12(xM − v1) · · ·

...
...

...
...

−w1cg′1c2(x1 − vc) · · · −w1cg′Mc2(xM − vc) · · ·
−wn1g′112(x1 − v1) · · · −wn1g′M12(xM − v1)

...
...

...
−wncg′1c2(x1 − vc) · · · −wncg′Mc2(xM − vc)


 ; (A.9)

where gij = g(||xi − vj||2), g′ij = g′(||xi − vj||2) (where g(·) is the generator function
at the hidden layer), xi is the ith input vector, and vj is the jth prototype vector.
Now, combining Eqs. (A.5) and (A.9), we obtain Eqs. (34)–(36) for the partial
derivative of the RBF network output with respect to the Kalman $lter parameter
vector.

Appendix B

Consider the hidden layer function

g(v)= [g0(v)]
1=(1−p) (B.1)

with the linear generator function

g0(v)= v+ /2; (B.2)

where / is some constant. Note that g′0(v)=1. Therefore

g′(v)=
1

1− p
g0(v)p=(1−p)g′0(v) (B.3)

=
1

1− p
(v+ /2)p=(1−p) (B.4)

=
1

1− p
gp(v): (B.5)

Recall from Eq. (11) that hjk = g(||xk − vj||2), (k=1; : : : ; M), (j=1; : : : ; c). Com-
bining these equations, we can write

g′(||xk − vj||2)= 1
1− p

gp(||xk − vj||2) (B.6)

=
1

1− p
[g0(||xk − vj||2)]p=(1−p) (B.7)

=
1

1− p
hp
jk : (B.8)

This provides the required expression for the derivative of the hidden layer function
that is needed to calculate the Hv matrix of Eq. (36) and thus perform the Kalman
recursion of Eq. (29).

References

[1] B. Anderson, J. Moore, Optimal Filtering, Prentice-Hall, Englewood Cli3s, NJ, 1979.
[2] J. Bezdek, J. Keller, R. Krishnapuram, L. Kuncheva, H. Pal, Will the real Iris data please stand

up? IEEE Trans. Fuzzy Systems 7 (1999) 368–369.
[3] M. Birgmeier, A fully Kalman-trained radial basis function network for nonlinear speech

modeling, IEEE International Conference on Neural Networks, Perth, Western Australia, 1995,
pp. 259–264.

[4] D. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex
Systems 2 (1988) 321–355.

[5] S. Chen, C. Cowan, P. Grant, Orthogonal least squares learning algorithm for radial basis function
networks, IEEE Trans. Neural Networks 2 (1991) 302–309.

[6] S. Chen, Y. Wu, B. Luk, Combined genetic algorithm optimization and regularized orthogonal
least squares learning for radial basis function networks, IEEE Trans. Neural Networks 10 (1999)
1239–1243.

[7] R. Duro, J. Reyes, Discrete-time backpropagation for training synaptic delay-based arti$cial neural
networks, IEEE Trans. Neural Networks 10 (1999) 779–789.

[8] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.
[9] N. Karayiannis, Reformulated radial basis neural networks trained by gradient descent, IEEE

Trans. Neural Networks 3 (1999) 657–671.
[10] S. Kirkpatrick, Cl. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (1983)

671–680.
[11] J. Moody, C. Darken, Fast learning in networks of locally-tuned processing units, Neural Comput.

1 (1989) 289–303.
[12] K. Narendra, M. Thathachar, Learning Automata—An Introduction, Prentice-Hall, Englewood

Cli3s, NJ, 1989.
[13] D. Obradovic, On-line training of recurrent neural networks with continuous topology adaptation,

IEEE Trans. Neural Networks 7 (1996) 222–228.
[14] G. Puskorius, L. Feldkamp, Neurocontrol of nonlinear dynamical systems with Kalman $lter

trained recurrent networks, IEEE Trans. Neural Networks 5 (1994) 279–297.
[15] V.D. SUanchez, A. (Ed.), Special Issue on RBF Networks, Part I, Neurocomputing 19

(1998).
[16] V.D. SUanchez, A. (Ed.), Special Issue on RBF Networks, Part II, Neurocomputing 20

(1998).
[17] S. Shah, F. Palmieri, M. Datum, Optimal $ltering algorithms for fast learning in feedforward

neural networks, Neural Networks 5 (1992) 779–787.
[18] D. Simon, Distributed fault tolerance in optimal interpolative nets, IEEE Trans. on Neural

Networks, in print.
[19] S. Sin, R. DeFigueiredo, EFcient learning procedures for optimal interpolative nets, Neural

Networks 6 (1993) 99–113.
[20] J. Sum, C. Leung, G. Young, W. Kan, On the Kalman $ltering method in neural network training

and pruning, IEEE Trans. Neural Networks 10 (1999) 161–166.
[21] Y. Zhang, X. Li, A fast U-D factorization-based learning algorithm with applications to

nonlinear system modeling and identi$cation, IEEE Trans. Neural Networks 10 (1999)
930–938.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015

	Cleveland State University
	EngagedScholarship@CSU
	10-1-2002

	Training Radial Basis Neural Networks with the Extended Kalman Filter
	Daniel J. Simon
	Publisher's Statement
	Original Citation
	Repository Citation

