3 research outputs found

    Ultrafast and Efficient Scalable Image Compression Algorithm

    Get PDF
    Wavelet-based image compression algorithms have good performance and produce a rate scalable bitstream that can be decoded efficiently at several bit rates. Unfortunately, the discrete wavelet transform (DWT) has relatively high computational complexity. On the other hand, the discrete cosine transform (DCT) has low complexity and excellent compaction properties. Unfortunately, it is non-local, which necessitates implementing it as a block-based transform leading to the well-known blocking artifacts at the edges of the DCT blocks. This paper proposes a very fast and rate scalable algorithm that exploits the low complexity of DCT and the low complexity of the set partitioning technique used by the wavelet-based algorithms. Like JPEG, the proposed algorithm first transforms the image using block-based DCT. Then, it rearranges the DCT coefficients into a wavelet-like structure. Finally, the rearranged image is coded using a modified version of the SPECK algorithm, which is one of the best well-known wavelet-based algorithms. The modified SPECK consumes slightly less computer memory, has slightly lower complexity and slightly better performance than the original SPECK. The experimental results demonstrated that the proposed algorithm has competitive performance and high processing speed. Consequently, it has the best performance to complexity ratio among all the current rate scalable algorithms

    Underwater Wireless Vision System Using Progressive Image Compression and Region of Interest

    Get PDF
    [ES] La creciente demanda en todo el mundo de sistemas de intervención submarina en diversos dominios de aplicación requiere sistemas más versátiles y económicos. Empleando un sistema de comunicación inalámbrica, los robots semiautónomos supervisados disponen de libertad de movimientos y, al mismo tiempo, permiten al operador obtener información visual y supervisar la intervención. Por otro lado, la velocidad de transmisión de datos típica de los canales inalámbricos submarinos es, en general, muy limitada, siendo necesaria la aplicación de técnicas de compresión avanzadas. En este artículo se presenta principalmente el algoritmo DEBT (Depth Embedded Block Tree) para la compresión progresiva de imágenes con región de interés (ROI). Los resultados demuestran ventajas con respecto a otros algoritmos de compresión, y la posibilidad de ejecución del algoritmo en tiempo real en ordenadores embebidos de bajo consumo basados en ARM.[EN] The increasing demand for underwater robotic intervention systems around the world in several application domains requires more versatile and inexpensive systems. By using a wireless communication system, supervised semi-autonomous robots have freedom of movement and, at the same time, allows the operator to get camera feedback and supervise the intervention. On the otherhand, the typical data rate of the wireless submarine channels is generally very limited, requiring the application of advanced compression techniques. In this paper we present the DEBT (Depth Embedded Block Tree) algorithm for the progressive compressionof images with region of interest (ROI). The results demonstrate advantages with other compression algorithms, and the possibilityof executing the algorithm in real time on ARM-based embedded low-power computers.Este trabajo ha sido parcialmente financiado por el Ministerio de Economía y competitividad, código de proyecto DPI2014-57746-C3 (proyecto MERBOTS), por la Generalitat Valenciana GVA, con el código de proyecto PROMETEO/2016/066 y por la Universidad Jaume I, proyecto MASUMIA (P1-1B2015-68), becas PREDOC/2012/47, PREDOC/2013/46, y por el CNPq del Brasil.Rubino, EM.; Centelles, D.; Sales, J.; Martí, JV.; Marín, R.; Alvares, AJ.; Sanz, PJ. (2017). Sistema de Visión Subacuático Inalámbrico Usando un Algoritmo de Compresión Progresivo con Región de Interés. Revista Iberoamericana de Automática e Informática industrial. 15(1):46-57. https://doi.org/10.4995/riai.2017.8953OJS4657151Adams, M., Kossentini, F., Sept 2000. Jasper: a software-based JPEG-2000 codec implementation. In: Image Processing, 2000. Proceedings. 2000 International Conference on. Vol. 2. pp. 53-56.Calderbank, A., Daubechies, I., Sweldens, W., Yeo, B.-L., 1998. Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis 5 (3), 332 - 369. URL: http://www.sciencedirect.com/science/article/pii/S1063520397902384 https://doi.org/10.1006/acha.1997.0238Carreras, M., Ridao, P., García, R., Ribas, D., Palomeras, N., 2012. Inspección visual subacuática mediante robótica submarina. Revista Iberoamericana de Automática e Informática Industrial RIAI 9 (1), 34-45. https://doi.org/10.1016/j.riai.2011.11.011Delaunay, X., Thiebaut, C., Chabert, M., Charvillat, V., Morin, G., Oct. 2010. Progressive coding of satellite images with regions of interest. In: On-Board Payload Data Compression Workshop. Toulouse, France.Farr, N., Bowen, A., Ware, J., Pontbriand, C., Tivey, M., May 2010. An integrated, underwater optical /acoustic communications system. In: OCEANS 2010 IEEE - Sydney. pp. 1-6. https://doi.org/10.1109/OCEANSSYD.2010.5603510Moinuddin, A., Khan, E., May 2006. Wavelet based embedded image coding using unified zero-block-zero-tree approach. In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. Vol. 2. pp. II-II. https://doi.org/10.1109/ICASSP.2006.1660377Pearlman, W., Islam, A., Nagaraj, N., Said, A., Nov 2004. Efficient, low-complexity image coding with a set-partitioning embedded block coder. Circuits and Systems for Video Technology, IEEE Transactions on 14 (11), 1219-1235. https://doi.org/10.1109/TCSVT.2004.835150Pelekanakis, C., Stojanovic, M., Freitag, L., Sept 2003. High rate acoustic link for underwater video transmission. In: OCEANS 2003. Proceedings. Vol. 2. pp. 1091-1097 Vol.2. https://doi.org/10.1109/OCEANS.2003.178494Prats, M., del Pobil, A. P., Sanz, P. J., 2013. Robot physical interaction through the combination of vision, tactile and force feedback. Applications to assistive robotics. Springer Tracts in Advanced Robotics, Volume 84. Springer Publishing Company, Incorporated. https://doi.org/10.1007/978-3-642-33241-8Rehna, V. J., Kumar, M. K. J., 2012. Wavelet based image coding schemes: A recent survey. CoRR abs/1209.2515. URL: http://arxiv.org/abs/1209.2515Ribas, J., Sura, D., Stojanovic, M., Sept 2010. Underwater wireless video transmission for supervisory control and inspection using acoustic OFDM. In: OCEANS 2010. pp. 1-9. https://doi.org/10.1109/OCEANS.2010.5663839Said, A., Pearlman, W., Jun 1996. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. Circuits and Systems for Video Technology, IEEE Transactions on 6 (3), 243-250. https://doi.org/10.1109/76.499834Sanz, P. J., Pe-alver, A., Sales, J., Fornas, D., Fernández, J. J., Perez, J., Bernabé 'e, J. A., Oct 2013a. GRASPER: A multisensory based manipulation system for underwater operations. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Manchester, UK. https://doi.org/10.1109/SMC.2013.689Sanz, P. J., Pe-alver, A., Sales, J., Fernández, J. J., Pérez, J., Fornas, D., García, J., Marin, R., Sep 2015. Multipurpose underwater manipulation for archaeological intervention. In: Sixth International Workshop on Marine Technology (MARTECH'15). Cartagena, Spain.Sanz, P. J., Prats, M., Ridao, P., Ribas, D., Oliver, G., Orti, A., September 2010. Recent progress in the RAUVI project. A reconfigurable autonomous underwater vehicle for intervention. In: 52-th International Symphosium ELMAR-2010. Zadar, Croatia, pp. 471-474.Sanz, P. J., Ridao, P., Oliver, G., Casalino, G., Petillot, Y., Silvestre, C., Melchiorri, C., Turetta, A., Sept 2013b. TRIDENT: An european project targeted to increase the autonomy levels for underwater intervention missions. In: OCEANS'13 MTS/IEEE conference. San Diego, CA, pp. 1-10.Shan Jiang, S. G., 2011. Electromagnetic wave propagation into fresh water. Journal of Electromagnetic Analysis and Applications 3 (7), 261-266. https://doi.org/10.4236/jemaa.2011.37042Shaw, A., Al-Shamma'a, A., Wylie, S., Toal, D., Sept 2006. Experimental investigations of electromagnetic wave propagation in seawater. In: Microwave Conference, 2006. 36th European. pp. 572-575.Siegel, M., King, R. W. P., Jul 1973. Electromagnetic propagation between antennas submerged in the ocean. Antennas and Propagation, IEEE Transactions on 21 (4), 507-513. https://doi.org/10.1109/TAP.1973.1140525Stojanovic, M., Preisig, J., January 2009. Underwater acoustic communication channels: Propagation models and statistical characterization. Communications Magazine, IEEE 47 (1), 84-89. https://doi.org/10.1109/MCOM.2009.4752682Subedar, M., Karam, L., Abousleman, G., May 2004. An embedded scalingbased arbitrary shape region-of-interest coding method for JPEG2000. In: Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on. Vol. 3. pp. iii-681-4. https://doi.org/10.1109/ICASSP.2004.1326636Taubman, D. S., Marcellin, M.W., 2001. JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell, MA, USA.Usevitch, B., Mar 1996. Optimal bit allocation for biorthogonal wavelet coding. In: Data Compression Conference, 1996. DCC '96. Proceedings. pp. 387-395. https://doi.org/10.1109/DCC.1996.488344W. B. Pennebaker and J. L. Mitchell, 1992. JPEG still image data compression standard. New York: Van Nostrand Reinhold, 1992.Wheeler, F. W., Pearlman, W., 2000. Combined spatial and subband block coding of images. In: Image Processing, 2000. Proceedings. 2000 International Conference on. Vol. 3. pp. 861-864 vol.3. https://doi.org/10.1109/ICIP.2000.899592Zhang, H., Meng, F., Aug 2012. Exploiting the skin effect using radio frequency communication in underwater communication. In: Industrial Control and Electronics Engineering (ICICEE), 2012 International Conference on. pp. 1150-1153. https://doi.org/10.1109/ICICEE.2012.30
    corecore