10 research outputs found

    Optimization via Benders' Decomposition

    Get PDF
    In a period when optimization has entered almost every facet of our lives, this thesis is designed to establish an understanding about the rather contemporary optimization technique: Benders' Decomposition. It can be roughly stated as a method that handles problems with complicating variables, which when temporarily fixed, yield a problem much easier to solve. We examine the classical Benders' Decomposition algorithm in greater depth followed by a mathematical defense to verify the correctness, state how the convergence of the algorithm depends on the formulation of the problem, identify its correlation to other well-known decomposition methods for Linear Programming problems, and discuss some real-world examples. We introduce present extensions of the method that allow its application to a wider range of problems. We also present a classification of acceleration strategies which is centered round the key sections of the algorithm. We conclude by illustrating the shortcomings, trends, and potential research directions

    On High-Performance Benders-Decomposition-Based Exact Methods with Application to Mixed-Integer and Stochastic Problems

    Get PDF
    RÉSUMÉ : La programmation stochastique en nombres entiers (SIP) combine la difficulté de l’incertitude et de la non-convexité et constitue une catégorie de problèmes extrêmement difficiles à résoudre. La résolution efficace des problèmes SIP est d’une grande importance en raison de leur vaste applicabilité. Par conséquent, l’intérêt principal de cette dissertation porte sur les méthodes de résolution pour les SIP. Nous considérons les SIP en deux étapes et présentons plusieurs algorithmes de décomposition améliorés pour les résoudre. Notre objectif principal est de développer de nouveaux schémas de décomposition et plusieurs techniques pour améliorer les méthodes de décomposition classiques, pouvant conduire à résoudre optimalement divers problèmes SIP. Dans le premier essai de cette thèse, nous présentons une revue de littérature actualisée sur l’algorithme de décomposition de Benders. Nous fournissons une taxonomie des améliorations algorithmiques et des stratégies d’accélération de cet algorithme pour synthétiser la littérature et pour identifier les lacunes, les tendances et les directions de recherche potentielles. En outre, nous discutons de l’utilisation de la décomposition de Benders pour développer une (méta- )heuristique efficace, décrire les limites de l’algorithme classique et présenter des extensions permettant son application à un plus large éventail de problèmes. Ensuite, nous développons diverses techniques pour surmonter plusieurs des principaux inconvénients de l’algorithme de décomposition de Benders. Nous proposons l’utilisation de plans de coupe, de décomposition partielle, d’heuristiques, de coupes plus fortes, de réductions et de stratégies de démarrage à chaud pour pallier les difficultés numériques dues aux instabilités, aux inefficacités primales, aux faibles coupes d’optimalité ou de réalisabilité, et à la faible relaxation linéaire. Nous testons les stratégies proposées sur des instances de référence de problèmes de conception de réseau stochastique. Des expériences numériques illustrent l’efficacité des techniques proposées. Dans le troisième essai de cette thèse, nous proposons une nouvelle approche de décomposition appelée méthode de décomposition primale-duale. Le développement de cette méthode est fondé sur une reformulation spécifique des sous-problèmes de Benders, où des copies locales des variables maîtresses sont introduites, puis relâchées dans la fonction objective. Nous montrons que la méthode proposée atténue significativement les inefficacités primales et duales de la méthode de décomposition de Benders et qu’elle est étroitement liée à la méthode de décomposition duale lagrangienne. Les résultats de calcul sur divers problèmes SIP montrent la supériorité de cette méthode par rapport aux méthodes classiques de décomposition. Enfin, nous étudions la parallélisation de la méthode de décomposition de Benders pour étendre ses performances numériques à des instances plus larges des problèmes SIP. Les variantes parallèles disponibles de cette méthode appliquent une synchronisation rigide entre les processeurs maître et esclave. De ce fait, elles souffrent d’un important déséquilibre de charge lorsqu’elles sont appliquées aux problèmes SIP. Cela est dû à un problème maître difficile qui provoque un important déséquilibre entre processeur et charge de travail. Nous proposons une méthode Benders parallèle asynchrone dans un cadre de type branche-et-coupe. L’assouplissement des exigences de synchronisation entraine des problèmes de convergence et d’efficacité divers auxquels nous répondons en introduisant plusieurs techniques d’accélération et de recherche. Les résultats indiquent que notre algorithme atteint des taux d’accélération plus élevés que les méthodes synchronisées conventionnelles et qu’il est plus rapide de plusieurs ordres de grandeur que CPLEX 12.7.----------ABSTRACT : Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity, and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP problems is of high importance due to their vast applicability. Therefore, the primary focus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and present several enhanced decomposition algorithms for solving them. Our main goal is to develop new decomposition schemes and several acceleration techniques to enhance the classical decomposition methods, which can lead to efficiently solving various SIP problems to optimality. In the first essay of this dissertation, we present a state-of-the-art survey of the Benders decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and the acceleration strategies of this algorithm to synthesize the literature, and to identify shortcomings, trends and potential research directions. In addition, we discuss the use of Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its application to a broader range of problems. Next, we develop various techniques to overcome some of the main shortfalls of the Benders decomposition algorithm. We propose the use of cutting planes, partial decomposition, heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges arising from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear relaxation. We test the proposed strategies with benchmark instances from stochastic network design problems. Numerical experiments illustrate the computational efficiency of the proposed techniques. In the third essay of this dissertation, we propose a new and high-performance decomposition approach, called Benders dual decomposition method. The development of this method is based on a specific reformulation of the Benders subproblems, where local copies of the master variables are introduced and then priced out into the objective function. We show that the proposed method significantly alleviates the primal and dual shortfalls of the Benders decomposition method and it is closely related to the Lagrangian dual decomposition method. Computational results on various SIP problems show the superiority of this method compared to the classical decomposition methods as well as CPLEX 12.7. Finally, we study parallelization of the Benders decomposition method. The available parallel variants of this method implement a rigid synchronization among the master and slave processors. Thus, it suffers from significant load imbalance when applied to the SIP problems. This is mainly due to having a hard mixed-integer master problem that can take hours to be optimized. We thus propose an asynchronous parallel Benders method in a branchand- cut framework. However, relaxing the synchronization requirements entails convergence and various efficiency problems which we address them by introducing several acceleration techniques and search strategies. In particular, we propose the use of artificial subproblems, cut generation, cut aggregation, cut management, and cut propagation. The results indicate that our algorithm reaches higher speedup rates compared to the conventional synchronized methods and it is several orders of magnitude faster than CPLEX 12.7

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Solving crew scheduling problem in offshore supply vessels, heuristics and decomposition methods

    Get PDF
    For the efficient utilisation of resources in various transportation settings, scheduling is a significant area of research. Having crew as the main resource for operation maintenance, scheduling crew have been a powerful decision making tool for optimisation studies. This research provides a detailed real case study analysis regarding the difficulties in planning crew in maritime industry. As a special case study, this thesis researches crew scheduling in offshore supply vessels which are used for specific operations of a global scaled company in oil and gas industry deeply with modified formulations, heuristics and decomposition methods.An extended version of computational study for a simple formulation approach (Task Based Model) is applied as deeper analysis to Leggate (2016). Afterwards, more realistic approach to the same problem is revised. Following the revision, a customized and thorough computational study on the heuristic method with various settings is designed and implemented in C++. After elaborated analysis completed on the suggested models firstly, a modification on Time Windows model is presented to increase the efficacy. This modification provides a sharp decrease in upper bounds within a short time compared to the previously suggested models. Through this suggestion, more economic schedules within a short period of time are generated.Achieving high performances from the modified model, an application of a decomposition algorithm is provided. We implemented a hybrid solution of Benders Decomposition with a customized heuristic for the modified model. Although this hybrid solution does not provide high quality solutions, it evaluates the performance of possible decomposed models with potential improvements for future research. An introduction to robust crew scheduling in maritime context is also given with a description of resources of uncertainty in this concept and initial robust formulations are suggested.For the efficient utilisation of resources in various transportation settings, scheduling is a significant area of research. Having crew as the main resource for operation maintenance, scheduling crew have been a powerful decision making tool for optimisation studies. This research provides a detailed real case study analysis regarding the difficulties in planning crew in maritime industry. As a special case study, this thesis researches crew scheduling in offshore supply vessels which are used for specific operations of a global scaled company in oil and gas industry deeply with modified formulations, heuristics and decomposition methods.An extended version of computational study for a simple formulation approach (Task Based Model) is applied as deeper analysis to Leggate (2016). Afterwards, more realistic approach to the same problem is revised. Following the revision, a customized and thorough computational study on the heuristic method with various settings is designed and implemented in C++. After elaborated analysis completed on the suggested models firstly, a modification on Time Windows model is presented to increase the efficacy. This modification provides a sharp decrease in upper bounds within a short time compared to the previously suggested models. Through this suggestion, more economic schedules within a short period of time are generated.Achieving high performances from the modified model, an application of a decomposition algorithm is provided. We implemented a hybrid solution of Benders Decomposition with a customized heuristic for the modified model. Although this hybrid solution does not provide high quality solutions, it evaluates the performance of possible decomposed models with potential improvements for future research. An introduction to robust crew scheduling in maritime context is also given with a description of resources of uncertainty in this concept and initial robust formulations are suggested

    Algorithms for vehicle routing problems with heterogeneous fleet, flexible time windows and stochastic travel times

    Get PDF
    Orientador: Vinícius Amaral ArmentanoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho aborda três variantes multiatributo do problema de roteamento de veículos. A primeira apresenta frota heterogênea, janelas de tempo invioláveis e tempos de viagem determinísticos. Para resolvê-la, são propostos algoritmos ótimos baseados na decomposição de Benders. Estes algoritmos exploram a estrutura do problema em uma formulação de programação inteira mista, e três diferentes técnicas são desenvolvidas para acelerá-los. A segunda variante contempla os atributos de frota heterogênea, janelas de tempo flexíveis e tempos de viagem determinísticos. As janelas de tempo flexíveis permitem o início do serviço nos clientes com antecipação ou atraso limitados em relação às janelas de tempo invioláveis, com custos de penalidade. Este problema é resolvido por extensões dos algoritmos de Benders, que incluem novos algoritmos de programação dinâmica para a resolução de subproblemas com a estrutura do problema do caixeiro viajante com janelas de tempo flexíveis. A terceira variante apresenta frota heterogênea, janelas de tempo flexíveis e tempos de viagem estocásticos, sendo representada por uma formulação de programação estocástica inteira mista de dois estágios com recurso. Os tempos de viagem estocásticos são aproximados por um conjunto finito de cenários, gerados por um algoritmo que os descreve por meio da distribuição de probabilidade Burr tipo XII, e uma matheurística de busca local granular é sugerida para a resolução do problema. Extensivos testes computacionais são realizados em instâncias da literatura, e as vantagens das janelas de tempo flexíveis e dos tempos de viagem estocásticos são enfatizadasAbstract: This work addresses three multi-attribute variants of the vehicle routing problem. The first one presents a heterogeneous fleet, hard time windows and deterministic travel times. To solve this problem, optimal algorithms based on the Benders decomposition are proposed. Such algorithms exploit the structure of the problem in a mixed-integer programming formulation, and three algorithmic enhancements are developed to accelerate them. The second variant comprises a heterogeneous fleet, flexible time windows and deterministic travel times. The flexible time windows allow limited early and late servicing at customers with respect to their hard time windows, at the expense of penalty costs. This problem is solved by extensions of the Benders algorithms, which include novel dynamic programming algorithms for the subproblems with the special structure of the traveling salesman problem with flexible time windows. The third variant presents a heterogeneous fleet, flexible time windows and stochastic travel times, and is represented by a two-stage stochastic mixed-integer programming formulation with recourse. The stochastic travel times are approximated by a finite set of scenarios generated by an algorithm which describes them using the Burr type XII distribution, and a granular local search matheuristic is suggested to solve the problem. Extensive computational tests are performed on instances from the literature, and the advantages of flexible windows and stochastic travel times are stressed.DoutoradoAutomaçãoDoutor em Engenharia Elétrica141064/2015-3CNP

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore