
Optimization via Benders’ Decomposition

by

Hiruni Kamali Pallage

B.Sc., University of Sri Jayewardenepura, 2014

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/231921833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This thesis was presented

by

Hiruni Kamali Pallage

It was defended on

July 12, 2019

and approved by

Jeffrey Paul Wheeler, Ph.D., Lecturer II, Mathematics, University of Pittsburgh

Michael A. Trick, Harry B. and James H. Higgins Professor of Operations Research; Dean,

Carnegie Mellon University Qatar

G. Bard Ermentrout, Distinguished University Professor, Mathematics, University of

Pittsburgh

Jason DeBlois, Associate Professor, Mathematics, University of Pittsburgh

Michael Schneier, Post-Doctoral Associate, Mathematics, University of Pittsburgh

Thesis Advisor: Jeffrey Paul Wheeler, Ph.D., Lecturer II, Mathematics, University of

Pittsburgh

ii

Optimization via Benders’ Decomposition

Hiruni Kamali Pallage, M.S.

University of Pittsburgh, 2019

In a period when optimization has entered almost every facet of our lives, this thesis is

designed to establish an understanding about the rather contemporary optimization tech-

nique: Benders’ Decomposition. It can be roughly stated as a method that handles problems

with complicating variables, which when temporarily fixed, yield a problem much easier to

solve. We examine the classical Benders’ Decomposition algorithm in greater depth followed

by a mathematical defense to verify the correctness, state how the convergence of the algo-

rithm depends on the formulation of the problem, identify its correlation to other well-known

decomposition methods for Linear Programming problems, and discuss some real-world ex-

amples. We introduce present extensions of the method that allow its application to a wider

range of problems. We also present a classification of acceleration strategies which is cen-

tered round the key sections of the algorithm. We conclude by illustrating the shortcomings,

trends, and potential research directions.

iii

Table of Contents

Preface . ix

1.0 Introduction . 1

2.0 History . 3

3.0 Definitions and Examples . 4

3.1 Primal and Dual Linear Programs . 5

3.2 Basic Model of Benders’ Decomposition . 9

3.3 Solution Steps for the Algorithm . 10

3.4 Alternative Form of Benders Cuts . 15

3.5 The Algorithm with a Relaxed Master Problem 18

4.0 The Algorithm and its Justification . 24

5.0 Extensions and Generalizations of Benders’ Decomposition Algorithm 34

5.1 Generalized Benders’ Decomposition . 35

5.2 Logic-based Benders’ Decomposition . 36

5.3 Combinatorial Benders’ Decomposition . 37

5.4 L-shaped Decomposition . 37

5.5 Nested Benders’ Decomposition . 38

6.0 Applications . 39

6.1 The Facility Location Problem . 39

6.1.1 General Problem [6] . 40

6.1.2 An Actual Example [6] . 42

6.2 The Intensity Modulated Radiation Therapy Problem 48

6.2.1 General Problem [33] . 48

6.2.2 An Actual Example [33] . 52

6.3 Advanced Applications . 56

6.3.1 Simultaneous Aircraft Routing and Crew Scheduling 57

6.3.2 Hydrothermal Scheduling . 57

iv

6.3.3 The Concrete Delivery Problem . 58

6.3.4 The Lock Scheduling Problem . 58

7.0 Conclusion . 59

7.1 Model Selection for Benders’ Decomposition 59

7.2 Relationship to Other Decomposition Methods 59

7.3 Shortcomings of Benders’ Decomposition 60

7.4 Enhancement Strategies of Benders’ Decomposition 60

7.5 Promising Research Directions . 62

7.6 Commercial Software that Implements Benders’ Decomposition 63

Appendix A. Linear Programming . 65

A.1 Preliminaries . 65

A.2 Graphical Method . 67

A.3 Simplex Method . 71

A.3.1 Artificial Variables Technique . 74

Appendix B. Integer Programming . 78

B.1 Preliminaries . 78

B.2 Cutting Plane Algorithm . 78

B.3 Branch and Bound Algorithm . 84

Bibliography . 88

Index . 92

v

List of Tables

1 Some applications of Benders’ Decomposition algorithm from [27] 2

2 Some optimization problems solved via Benders’ Decomposition from [27] . . 3

3 The relationship between solutions of primal and dual problems 7

4 The relationship between primal and dual problems from [30] 8

5 Some versions of Benders’ Decomposition algorithm 35

6 Basic data corresponding to Example 6.1.2 from [6] 42

7 Classification of enhancement strategies from [27] 60

A.1 Initial Simplex table . 72

A.2 Basic data corresponding to Example A.3 . 75

A.3 Initial Simplex table corresponding to Example A.3 76

A.4 Calculations leading to the second Simplex table corresponding to Example A.3 76

A.5 Second Simplex table corresponding to Example A.3 77

A.6 Final optimal Simplex table corresponding to Example A.3 77

B.1 Initial Simplex table corresponding to Example B.1 81

B.2 Final optimal Simplex table corresponding to Example B.1 81

B.3 New initial Simplex table corresponding to Example B.1 83

B.4 New final optimal Simplex table corresponding to Example B.1 83

B.5 Branches of Branch and Bound method corresponding to Example B.2 86

vi

List of Figures

1 Schematic representation of Benders’ Decomposition algorithm from [27] . . . 5

2 Flowchart of classical Benders’ Decomposition algorithm from [30] 12

A.1 Feasible region corresponding to Example A.1 69

A.2 Feasible region corresponding to Example A.2 70

B.1 Gomory cuts . 79

B.2 Initial feasible region corresponding to Example B.1 80

B.3 New feasible region corresponding to Example B.1 82

B.4 Branch and Bound algorithm . 84

B.5 Process tree corresponding to Example B.2 87

vii

List of Algorithms

1 Classical Benders’ Decomposition Algorithm from [30] 10

2 The Classical Algorithm with a Relaxed Master Problem from [33] 20

3 Multi Step Procedure for Solving Problems of the Form (4.1) from [1] 30

A.1 Linear Programming Problem Formulation 66

A.2 Graphical Method . 67

A.3 Simplex Method . 73

A.4 The Big M-method . 74

B.1 Cutting Plane Algorithm . 79

B.2 Branch and Bound Algorithm . 85

viii

Preface

It is a pleasure to pay tribute to one and all who provided me unflinching encouragement

and support in various ways to complete my research work.

First and foremost, I wholeheartedly appreciate my wonderful advisor, Dr. Jeffrey

Wheeler, for his patience, motivation, enthusiasm, and immense knowledge. I have spent

many hours in productive and fruitful conversation on research and life with my outstanding

advisor. Thank you for going above and beyond the role of an advisor and being that person

who understood the challenges that graduate school brought into everyday life.

Besides my advisor, I would like to thank Professor Michael A. Trick (Carnegie Mel-

lon University, Qatar) for his intellectual contributions to the work. It was a wonderful

experience to work with such an intelligent expert in Operational Research field.

I would also like to thank the rest of my thesis committee: Professor G. Bard Ermentrout

(University of Pittsburgh), Professor Jason DeBlois (University of Pittsburgh), and Dr.

Michael Schneier (University of Pittsburgh) for their encouragement, valuable time and

insightful comments.

Moreover, I owe a great deal to the Department of Mathematics and the University

of Pittsburgh for providing me such a great place to broaden my mathematical sphere of

knowledge, and to meet so many great and nice friends of my life. I also want to thank all

my friends for their help and encouragement in my graduate study and in my life.

Thank you, Mom and Dad for the emotional support, intellectual stimulation and many

hours of identity-forming conversation, inspiring me to pursue unconventional dreams in

which I truly believe. You are the most supportive parents one could hope for.

Last but not the least, I record my unstinted thanks to my loving and tolerant husband

Achna for his faithful support rendered throughout, comforting me in the hardest times.

ix

1.0 Introduction

The objective of any company is to maximize its profits and efficiently use its resources.

In attempting to complete a project without a schedule, for example, one may accomplish

the goals but not without wasted time and money. As a result, optimization and scheduling

has become a tremendous problem for the management of companies and recent years have

seen an increased demand for the application of mathematics to develop the perfect schedule

to meet the goals.

“Optimization via Benders’ Decomposition” (BD) addresses the perennial problem of

optimal utilization of finite resources in the accomplishment of an assortment of tasks or

objectives. The thesis refers to applications which provide ways to uncover the core of the

above real-world challenges, present them in mathematical terms, and devise mathematical

solutions for them with the use of BD algorithm.

The main focus of the BD algorithm is to deal with problems where certain variables

are temporally fixed yielding a problem considerably easier to solve. The BD method has

now developed to be one of the most extensively used exact algorithms since it utilizes

the structure of the problem to decentralize the total computational weight. Successful

applications are found in many diverse fields, including planning and scheduling.

The remainder of the thesis is organized as follows. After discussing the history related

to the BD algorithm, Chapter 3 presents the theory behind the classical BD algorithm

followed by simple examples where Chapter 4 offers a mathematical justification to prove the

correctness of the algorithm. Then, Chapter 5 focuses on the extensions and generalizations

of BD algorithm leading to Chapter 6; which will be about some of the applications of the

algorithm where applications are selected from several fields to show the reach of the BD

algorithm. Finally, Chapter 7 provides concluding remarks and describes other promising

research directions of the algorithm. Further, a primer on Linear Programming and Integer

Programming is offered in the Appendix.

We conclude the introduction by illustrating the evolution of the BD algorithm in various

fields, giving an informative table provided in The Benders’ Decomposition Algorithm: A

1

Literature Review, [27].

Reference Application Reference Application

1 Behnamian (2014) Production planning 17 Jiang et al. (2009) Distribution planning

2 Adulyasak et al. (2015) Production routing 18 Kim et al. (2015) Inventory control

3 Boland at al. (2015) Facility location 19 Laporte et al. (1994) Traveling salesman

4 Boschetti & Maniezzo (2009) Project scheduling 20 Luong (2015) Healthcare planning

5 Botton al. (2013) Survivable network design 21 Maravelias & Grossmann (2004) Chemical process design

6 Cai et al. (2001) Water resource management 22 Moreno-Centeno and Karp (2013) Implicit hitting sets

7 Canto (2008) Maintenance scheduling 23 Oliveira et al. (2014) Investment planning

8 Codato & Fischetti (2006) Map labeling 24 Osman and Baki (2014) Transfer line balancing

9 Cordeau et al. (2006) Logistics network design 25 Pérez- Galarce et al. (2014) Spanning tree

10 Cordeau al. (2001a) Loocomotive assignment 26 Pishvaee et al. (2014) Supply chain network design

11 Cordeau et al. (2001b) Airline scheduling 27 Rubiales et al. (2013) Hydrothermal coordination

12 Corréa et al. (2007) Vehicle routing 28 Saharidis et al. (2011) Refinery system network planning

13 Côté et al. (2014) Strip packing 29 Sen et al. (2015) Segment allocation

14 Fortz and Poss (2009) Network design 30 Bloom (1983) 13 Capacity expansion

15 Gelareh et al. (2015) Transportation 31 Wang et al. (2016) Optimal power flow

16 Jenabi et. Al. (2015) Power management

Table 1: Some applications of Benders’ Decomposition algorithm from [27]

2

2.0 History

Jacobus Franciscus (Jacques) Benders (1924 - 2017) was the first professor in the Nether-

lands in the field of Operations Research and is known for his role in mathematical program-

ming [37]. He obtained his PhD in 1960 with the thesis titled “Partitioning in Mathematical

Programming” from Utrecht University. Starting his career as a statistician for the Rubber

Foundation in late 1940s, he then moved to Shell Laboratory in Amsterdam in 1955. He

researched mathematical programming problems regarding the logistics of the oil refinery

and developed the method name after him. Benders was designated Professor of Operations

Research at the Eindhoven University of Technology in 1963 and retired in 1989. Further-

more, in 2009, he was bestowed the EURO Gold Medal, the highest distinction in the area

of Operations Research in Europe. Although the algorithm was first introduced to solve

the Mixed-Integer Linear Programming (MILP) problems, later developments were made to

apply the algorithm to a broader range of problems and to increase its efficiency on certain

optimization classes.

Reference Model Reference Model

1 Adulyasak et al. (2015) Multi-period stochastic problem 11 Jenabi et al. (2015) Piecewise linear mixed-integer problem

2 Behnamian (2014) Multi-objective MILP 12 Kim et al. (2015) Multi-stage stochastic program

3 Cai et al. (2001) Multi-objective nonconvex nonlinear problem 13 Laporte et al. (1994) Probabilistic integer formulation

4 Cordeau et al. (2001b) Pure 0− 1 formulation 14 Li (2013) Large-scale nonconvex MINLP

5 Corréa et al. (2007) Binary problem with logical expressions 15 Moreno- Centeno & Karp (2013) Problem with constraints unknown in advance

6 Gabrel et al. (1999) Step increasing cost 16 Bloom (1983) Nonlinear multi-period problem with reliability constraint

7 Côté et al (2014) MILP with logical constraints 17 Osman and Baki (2014) Nonlinear integer formulation

8 de Camargo et al (2011) Mixed-integer nonlinear program (MINLP) 18 Pérez-Galarce et al. (2014) Minmax regret problem

9 Emami et al. (2016) Robust optimization problem 19 Pishvaee et al. (2014) Multi-objective possibilistic programming model

10 Fontaine & Minner (2014) Bilevel problem with bilinear constraints 20 Raidl et al. (2014) Integer, bilevel, capacitated problem

Table 2: Some optimization problems solved via Benders’ Decomposition from [27]

3

3.0 Definitions and Examples

We begin by highlighting the significance of Benders’ Decomposition (BD) algorithm as

an approach for solving certain large-scale optimization problems. When it comes to con-

structing and solving optimization problems a major concern is that the amount of memory

and the computational effort required to solve such problems will grow substantially with

the number of variables and constraints. The conventional method of making all decisions

simultaneously by solving a massive optimization problem quickly turns out to be intractable

with the increase in the number of variables and constraints. To alleviate this difficulty, mul-

tistage optimization algorithms such as BD have been developed as an alternative solution

methodology. Unlike the traditional methods, these algorithms split the decision-making

process into several phases.

In reality, the first step of the BD algorithm is to fix certain variables in the original

problem, thus making the resulting subproblem easy to solve. Throughout the thesis we

refer to those variables, which make the problem significantly easier to solve when fixed, as

complicating variables. So it is clear that the core of BD algorithm is to identify the

right decomposition for the given model (that is, the right partitioning of the variables).

This decision usually demands specific knowledge of the problem at hand including known

methods to solve similar problems quickly. It is hence not possible for us within the scope of

this thesis to give a complete outline of BD algorithm that works for all problems. However,

in Section 3 and 6 we provide some concrete examples where we choose certain variables to

be fixed and employ BD algorithm successfully to solve the problem.

In BD, the problem is divided into a master problem (MP) and a subproblem (SP),

which are then solved iteratively. The MP which considers a subset of the variables, is

solved first. Next, we temporarily fix the variables’ values of the MP and solve the SP for

the remaining variables. Finally, depending on the solution of the SP, one or more cuts are

derived and added to the MP, thus effectively averting the MP from returning to similar

areas of the search space. Note that in the classical Benders’ Decomposition the SP is a

Linear Programming problem, where cuts are generated based on the outcome of its dual

4

problem (DSP).

Benders’ Decomposition (BD)

Master Problem (MP)

Dual Subproblem (DSP)

Feedback

(cuts)

Information

(solutions)

0

i

Figure 1: Schematic representation of Benders’ Decomposition algorithm from [27]

Regarding cuts, we note that current Integer Programming techniques walk us around

corner points of the feasible region in search of corner points that lead to feasible solutions.

If it does not arrive at a feasible solution at a specific corner point, the main approach is to

cut away that part of the feasible region by introducing a new constraint which throws out

that corner point. At the same time, it ensures not to throw off the corner point/s where

the optimal value occurs. So, in general cuts are additional constraints that cut the feasible

region to reduce the solution search space to simply contain feasible solutions.

3.1 Primal and Dual Linear Programs

As mentioned in the previous section, we need to understand concepts of duality in

linear programs before we dive into the basic model and solution steps of BD algorithm. We

consider a Linear Programming (LP) problem that can be expressed in matrix notation as

follows:

Maximize P = cTx

such that Ax ≤ b

x ≥ 0

5

where c, x ∈ Rn, b ∈ Rm and A ∈ Rm×n. The linear function cTx is the objective

function and the linear inequalities are the constraints which generate a feasible region

to minimize the objective function. The solutions of the primal problem in the feasible region

can be written as {x ∈ Rn|Ax ≤ b,x ≥ 0}.
We refer to the above original LP as the primal problem and any primal problem can

be expressed in another LP form which is called the dual problem. The corresponding

dual problem to the above primal problem can be expressed as follows:

Minimize C = bTy

such that ATy ≥ c

y ≥ 0.

These two forms are linked by the following theorem:

Theorem 1 (The Fundamental Principle of Duality from [36]).

A minimization problem has a solution if and only if the corresponding dual maximization

problem has a solution.

In more specific terms:

Theorem 2 (from [36]).

If x satisfies the constraints of a Linear Programming problem in primal form and if y

satisfies the constraints of the corresponding dual, then cTx ≤ bTy.

Proof. From the primal form, we have that x ≥ 0 and Ax ≤ b. Similarly, by the dual

y ≥ 0 and ATy ≥ c are satisfied. Hence

cTx ≤ (ATy)Tx = yTAx ≤ yTb = bTy

where the last equality holds since both expressions are dot products.

6

We know that every LP is either feasible or not feasible and that feasible problems either

are unbounded or have a solution. We say that an LP has a feasible solution if there

exists a set of values for the decision variables that satisfies all the constraints. When it is

impossible to find a feasible solution, that is, when we cannot obtain a solution that meets

each constraint, LP is said to be infeasible. An unbounded solution to an LP with the

objective of maximizing (minimizing) is when it is possible to construct the solution to be

infinitely large (small) while none of the constraints are violated. From the above theorem

we can conclude that if primal is unbounded, then dual is infeasible. Likewise, if dual is

unbounded, then primal is infeasible. The Duality Theorem allows us to understand more

possible relationships among solutions of primal and dual.

Theorem 3 (Duality Theorem for Linear Programs).

For a primal-dual pair of Linear Programming problems, one of these four cases occurs:

1. Both are infeasible.

2. Primal is unbounded and dual is infeasible.

3. Dual is unbounded and primal is infeasible.

4. Both are feasible and there exist optimal solutions x, y to primal and dual such that

bTy = cTx.

Another way to think about this relationship is to create a table of possibilities. We take

each of the three rows to denote one of three possibilities of the primal solution. The columns

denote the same characteristics of the dual solution. An alternative method to justify the

table below is to examine the Simplex Method which solves primal and dual simultaneously.

Primal \ Dual Unbounded Has a solution Not feasible

Unbounded impossible impossible possible

Has a solution impossible same value impossible

Not feasible possible impossible possible

Table 3: The relationship between solutions of primal and dual problems

7

Any discussion on the duality of LP problems will be incomplete without understanding

how to convert a given primal LP to its corresponding dual. Assuming that the primal has

M constraints and N variables, now we summarize the relationship between primal and dual:

Primal (or dual) Dual (or Primal)

Objective Maximize P Minimize C Objective

Variable (N)

≥ 0 ≥
Constraints (N)≤ 0 ≤

unbounded =

Constraints (M)

≤ ≥ 0

Variable (M)≥ ≤ 0

= unbounded

Right side of constraints Coefficients of variables in objective functions

Coefficients of variables in objective functions Right side of constraints

Table 4: The relationship between primal and dual problems from [30]

Now we consider an easy example to find the dual of the given primal problem.

Primal Problem

Maximize P = 15x1 + 14x2 + 16x3

such that x1 + 2x2 ≥ 21

x1 + x3 ≤ 31

− 5x1 + 8x2 + x3 ≤ −51

x1 − x2 + x3 = 11

x1 ≥ 0, x2 ≤ 0, x3 unbounded

Dual Problem

Minimize C = 21y1 + 31y2 − 51y3 + 11y4

such that y1 + y2 − 5y3 + y4 ≥ 15

2y1 + 8y3 − y4 ≤ 14

y2 + y3 + y4 = 16

y1 ≤ 0, y2, y3 ≥ 0, y4 unbounded

The number of inequalities (variables) in the primal becomes the number of variables

(inequalities) in the dual. Thus, the dual may differ in the dimension from the primal and

it may be desirable to solve an LP with fewer constraints.

8

3.2 Basic Model of Benders’ Decomposition

We now carry on to describe the basic model of BD algorithm which is critical for

understanding all the proceeding discussions in the thesis. Here we consider a Mixed Integer

Linear Program (MILP), that is, the original problem (P1) of the following general form:

Minimize z = cTx+ fTy

such that Ay ≥ b

Bx+ Cy ≥ d

x ≥ 0, y ∈ Y ⊆ Zn

with complicating variables y ∈ Zn which must fit the constraint Ay ≥ b, where A ∈ Rm×n

is a known matrix and b ∈ Rm is a given vector. The variables x ∈ Rs, as well as y variables,

should satisfy the connecting constraint Bx + Cy ≥ d, where B ∈ Rr×s, C ∈ Rr×n, and

d ∈ Rr. The objective function is to minimize the total cost together with the cost vectors

f ∈ Zn and c ∈ Rs. Note that, x having real components and y having integer components,

make the above a MILP.

We suppose that the y variables are complicating variables, so if y variables are fixed,

the problem is linear in x and becomes significantly easier to solve. Hence, P1 can be stated

as: min
y∈R

{
fTy |Ay ≥ b+ min{Bx ≥ d− Cy,x ≥ 0}

}
with R = {y | there exist x ≥ 0

such that Bx ≥ d − Cy,x ≥ 0, Ay ≥ b, y ∈ Y}. So P1 can be divided into an MP that

contains the y variables and an SP that contains the x variables.

Master Problem (MP)

Minimize zlower

such that zlower ≥ fTy

Ay ≥ b
y ∈ Y

Primal Subproblem (SP)

Minimize cTx

such that Bx ≥ d− Cŷ
x ≥ 0

where ŷ is the solution of the MP.

9

Also note that taking u to be the dual variable associated with Bx ≥ d− Cŷ, the dual

subproblem (DSP) of SP can be written as:

Maximize (d− Cŷ)Tu

such that BTu ≤ c
u ≥ 0.

3.3 Solution Steps for the Algorithm

Here we present a basic idea behind the algorithm before formally stating it. After

developing the initial MP and SP, the algorithm starts with the MP and alternates between

MP and SP till an optimal solution is derived. The objective function of the MP generates

a fitting lower bound on the optimal cost; while combining the ŷ solution with the objective

value of the SP (which is equivalent to fixing ŷ in the original problem) provides a valid

upper bound on the optimal cost. Then, the optimality gap is computed in each iteration to

confirm the convergence of the algorithm. The classical BD approach uses the Branch and

Bound algorithm to solve the MP and the Simplex Method is employed to tackle the SP. We

will now move our attention to describing BD algorithm in greater depth using mathematical

terms.

Algorithm 1 Classical Benders’ Decomposition Algorithm from [30]

1. Initialize ŷ and set ε as necessary.

2. Solve MP1 and find an initial lower bound solution ẑlower at ŷ.

• If MP1 is infeasible so is the original problem P1.

• If MP1 is unbounded, set ẑlower = ∞ in MP1 for an arbitrary value of ŷ in Y, and

proceed to step 3.

3. Solve SP or DSP to get an upper bound solution to the original problem P1.

Solving DSP: ẑupper = fT ŷ + (d − Cŷ)T û is the upper bound solution for optimal

dual solution û. Solving SP: ẑupper = cT x̂ + fT ŷ is the upper bound solution for the

original problem P1 for x̂.

10

• If |ẑlower − ẑupper| ≤ ε for P1, the process is terminated. Otherwise, add a new

constraint (feasibility cut) zlower ≥ fTy + (d − Cy)T û to MP1 to form MP2 and

proceed to step 4.

• If DSP is unbounded (that is, SP is infeasible), then introduce a new cut (infeasibility

cut) (d−Cy)T û ≤ 0 to MP1 to form MP2. Now we use a new SP, feasibility check

subproblem below to calculate u in DSP to form the infeasibility cut and then

proceed to step 4.

Minimize 1Ts

such that Bx+ 1s ≥ d− Cŷ → û

x ≥ 0, s ≥ 0

• If DSP is infeasible (that is SP is unbounded or infeasible), the original problem

P1 will have either no feasible solution or an unbounded solution. So the process

terminates.

4. Solve the updated master problem MP2 to find a new lower bound solution ẑlower for

the original problem P1, with respect to ŷ. In the following MP2 formulation, either the

feasibility cut (second constraint) or the infeasibility cut (third constraint) can be used

as discussed in Step 3.

Minimize zlower

such that Ay ≥ b

zlower ≥ fTy + (d− Cy)T û

(d− Cy)T û ≤ 0

y ∈ Y

Then return to step 3 to solve the subproblem SP or the dual of the subproblem DSP

again. If MP2 is unbounded, specify ẑlower =∞ and return to step 3. If MP2 is infeasible,

so is the original problem P1. So, the process terminates.

Note that it is common in literature to refer the feasibility cut as the optimality cut and

the infeasibility cut as the feasibility cut.

11

Having used the previous pages to explain how classical BD works, we will now provide

a flowchart that summarizes the above discussion.

Start

Initialize ŷ
set ε

Solve the Initial Master
problem (MP1) for ẑlower at ŷ
(if MP1 has an unbounded
solution, set ẑlower = ∞)

Infeasible
solution
to MP

Infeasible
solution
to P1

Stop

Solve the new master prob-
lem (MP2) with more

constraints for ẑlower at ŷ.

Solve the subproblem (SP)
for x̂ or solve the dual of the
subproblem (DSP) for û, at ŷ.

DSP has a solution
(SP has a solution)

Update
ẑupper = fT ŷ + (d − Cŷ)T û

(ẑupper = fT ŷ + cT x̂)

Check |ẑlower − ẑupper| ≤ ε

Converged
Optimal
Solution

Add a new Benders’
cut (feasiblity cut) to
MP1 to generate MP2

ẑlower ≥ fTy + (d − Cy)T û

DSP infeasible
(SP infeasible
or unbounded)

Infeasible or
Unbounded

Solution to P1

Stop

DSP unbounded
(SP infeasible)

Add a new Benders’
cut (infeasiblity cut) to
MP1 to generate MP2

(d − Cy)T û ≤ 0

Y

N

1

Figure 2: Flowchart of classical Benders’ Decomposition algorithm from [30]

We revisit the general idea behind the algorithm to explain some key facts that the

careful reader may have already observed.

12

Given the original problem (P1) our goal is to find values of variables x, y, and the

objective function z. We solve the MP to get a lower bound solution to z (that is zlower) and

solve the primal/dual SP to get an upper bound solution to z (that is zupper). We continue

the process until the values of z are within the tolerance. In other words, MP and the SP

work together to generate a solution to P1.

zlower in the MP is in fact a relaxation of z in P1. Since we do not have value of x variable

at the beginning of the process we relax the x variable in z and employ BD algorithm which

finds appropriate x values and represent them as ideally a small number of constraints which

we then introduce to the MP. That is, even though the variable x does not appear explicitly

in the MP, it is represented by the various constraints (feasibility and infeasibility cuts) that

are generated by the SP. These cuts are implicitly representing effect of x in P1. So once

we generate all the constraints related to each feasible x in the primal SP then the zlower in

the MP will equal to the z in P1. Thus, MP is implicitly the same problem as P1.

Here we explain what motivates the choice of feasibility and infeasibility cuts to be

defined as we stated in step 3 of Algorithm 1. Suppose we figure out a feasible û for the

DSP for which the DSP is unbounded. It means that this û is a direction of unboundedness

for which the objective function value of the DSP (d−Cŷ)Tu > 0. So as long as we choose

any ŷ for which (d− Cŷ)T û > 0 then the DSP will be made unbounded. Thus in order to

avoid this unbounded ray we got to choose a ŷ that does not allow (d − Cŷ)T û > 0 . In

other words, we must introduce (d − Cy)T û ≤ 0 (infeasibility cut) to the MP to restrict

the movement in this direction. Feasibility cut works really the same way because at this

point we have a feasible û which created a finite objective function value for the DSP (as

well as a feasible x̂ which generated a finite objective function value for the SP). We update

the upper bound solution to z using ẑupper = fT ŷ + (d − Cŷ)T û or ẑupper = cT x̂ + fT ŷ.

Now if we are not within the tolerance, we introduce zlower ≥ fTy+ (d−Cy)T û (feasibility

cut) which can be similarly expressed as zlower ≥ fTy + cT x̂ to the MP which says that if

we need a better DSP/SP value we better avoid this solution.

In this chapter we give little attention to developing a complete discussion on LP even

though we use concepts related to LP extensively. However, we provide more details in the

Appendix which includes Linear Programming as well as Integer Programming.

13

To enhance the understanding of how the BD algorithm works, we now illustrate a simple

numerical example.

Example 1.

Solve the following MILP, P1 [30] using the BD algorithm.

Minimize x+ y

such that 2x+ y ≥ 3

x ≥ 0, y ∈ {−5,−4,−3, ..., 3, 4}

Comparing with the basic model for BD: cT = [1], fT = [1], B = [2], C = [1], d = [3].

Iteration 1:

Master Problem (MP1)

Minimize zlower

such that

zlower ≥ y

y ∈ {−5,−4, ..., 3, 4}

Primal Subproblem (SP)

Minimize x

such that

2x ≥ 3− ŷ
x ≥ 0

Dual Subproblem (DSP)

Maximize (3− ŷ)u

such that

2u ≤ 1

u ≥ 0

The lower bound optimal solution to the original problem is: ẑlower = −5 when ŷ = −5.

Now we solve the DSP when ŷ = −5.

Maximize 8u

such that 2u ≤ 1

u ≥ 0

The optimal solution to DSP is 4 when u = 1/2. Thus, ẑupper = fT ŷ + (d − Cŷ)T û =

ŷ + 4 = −5 + 4 = −1. Since ẑupper = −1 > ẑlower = −5 we continue to the next iteration.

So, we need to introduce a new cut (feasibility cut), zlower ≥ fTy + (d− Cy)T û to MP1 to

form MP2. The new Benders’ cut can be written as:

zlower ≥ fTy + (d− Cy)T û

zlower ≥ y + (3− y)
1

2

zlower ≥
3

2
+

1

2
y.

14

Iteration 2:

The new master problem MP2:

Minimize zlower

such that zlower ≥ y

zlower ≥ 3
2

+ 1
2
y

y ∈ {−5,−4, ..., 3, 4}.
The new lower bound optimal solution to the original problem is: ẑlower = −1 when

ŷ = −5. Then we solve the DSP when ŷ = −5.

Maximize 8u

such that 2u ≤ 1

u ≥ 0

The optimal solution to DSP is again 4 when u = 1/2. Thus, ẑupper = fT ŷ+(d−Cŷ)T û

= ŷ + 4 = −5 + 4 = −1. Now since ẑupper = −1 = ẑlower the process has converged. The

solution for the SP (using the optimal solution to DSP) is x = 4. Thus, x = 4 and y = −5

minimizes the the original problem P1 and P1min = {x+ y}min = −1.

3.4 Alternative Form of Benders Cuts

Here we switch focus to a slightly different form of representing the Benders’ cuts [30].

Recall that the Benders’ cuts that were introduced had the form:

zlower ≥ fTy + (d− Cy)T û feasibility cut

(d− Cy)T û ≤ 0 infeasibility cut

which can also be represented as:

zlower ≥ fTy + w(ŷ)− (y − ŷ)TCT û feasibility cut

v(ŷ)− (y − ŷ)TCT û ≤ 0 infeasibility cut

where w(ŷ) is the optimal solution of SP and v(ŷ) is the optimal solution of the feasibility

check subproblem. Here zlower ≥ fTy+w(ŷ)− (y− ŷ)TCT û shows that the objective value

15

of the original problem is decreased by updating y from ŷ to a new value. û ∈ Rs indicates

the incremental change in the optimal objective. v(ŷ) − (y − ŷ)TCT û ≤ 0 shows that ŷ

is updated to a new value to eliminate constraint violations in SP based on ŷ given in the

master problem. û ∈ Rt indicates the incremental change in the total violation.

Example 2.

Solve the following MILP, P1 [30] using the alternative form of BD algorithm stated above.

Minimize x1 + 3x2 + y1 + 4y2

such that − 2x1 − x2 + y1 − 2y2 ≥ 1

2x1 + 2x2 − y1 + 3y2 ≥ 1

x1, x2 ≥ 0, y1, y2 ≥ 0

Comparing with the basic model for BD:

cT =
[
1 3

]
, fT =

[
1 4

]
, B =

−2 −1

2 2

 , C =

 1 −2

−1 3

 , d =

1

1

 .
Iteration 1:

Master Problem (MP1)

Minimize zlower

such that

zlower ≥ y1 + 4y2

y1 ≥ 0, y2 ≥ 0

Primal Subproblem (SP)

Minimize x1 + 3x2

such that

−2x1 − x2 ≥ 1− ŷ1 + 2ŷ2

2x1 + 2x2 ≥ 1 + ŷ1 − 3ŷ2

x1, x2 ≥ 0

The lower bound optimal solution to the original problem is: ẑlower = 0 when ŷ1 = ŷ2 = 0.

Now we solve the SP when ŷ1 = ŷ2 = 0.

Minimize x1 + 3x2

such that − 2x1 − x2 ≥ 1

2x1 + 2x2 ≥ 1

x1, x2 ≥ 0

16

Applying Simplex Method we can see that the solution to the SP is not feasible. Thus we

need to introduce a new cut (infeasibility cut), v(ŷ) − (y − ŷ)TCT û ≤ 0 to MP1 to form

MP2. The feasibility check subproblem below is used to calculate û in DSP to form the above

infeasibility cut. The feasibility check subproblem can be written as:

Minimize 1Ts

such that Bx+ 1s ≥ d− Cŷ ⇒

x ≥ 0, s ≥ 0

Minimize s1 + s2

such that − 2x1− x2 + s1 ≥ 1− ŷ1 + 2ŷ2

2x1 + 2x2 + s2 ≥ 1 + ŷ1 − 3ŷ2

x1, x2 ≥ 0, s1, s2 ≥ 0.

Applying the Simplex Method to the above feasibility check subproblem we can see that

the optimal solution is 1.5 and values of the associated dual variables are û1 = 1.0, û2 = 0.5.

Now for ŷ1 = ŷ2 = 0 the Benders’ cut can be written as:

v(ŷ)− (y − ŷ)TCT û ≤ 0

1.5− 0.5(y1 − ŷ1) + 0.5(y2 − ŷ2) ≤ 0

y1 − y2 ≥ 3.

Iteration 2:

The new Master Problem MP2:

Minimize zlower

such that zlower ≥ y1 + 4y2

y1 − y2 ≥ 3

y1 ≥ 0, y2 ≥ 0.

The lower bound optimal solution of the original problem is: ẑlower = 3 for ŷ1 = 3, ŷ2 = 0.

We now solve the SP when ŷ1 = 3, ŷ2 = 0.

Minimize x1 + 3x2

such that − 2x1 − x2 ≥ −2

2x1 + 2x2 ≥ 4

x1, x2 ≥ 0

Now the primal subproblem SP is feasible with an optimal solution of 6 with primal

variables being equal to x̂1 = 0, x̂2 = 2 and dual variables being equal to û1 = 2.0, û2 = 2.5

17

(values were read from optimal Simplex table for SP). Thus the upper bound solution of the

original problem is: ẑupper = cT x̂+fT ŷ = 6+ŷ1+4ŷ2 = 6+3 = 9. Since ẑupper = 9 > zlower =

3 we continue to the next iteration. As well we need to introduce a new cut (feasibility cut),

zlower ≥ fTy + w(ŷ) − (y − ŷ)TCTu to MP2 to form MP3. For ŷ1 = 3, ŷ2 = 0, the new

Benders’ cut can be written as:

zlower ≥ fTy + w(ŷ)− (y − ŷ)TCT û

zlower ≥ y1 + 4y2 + 6 + 0.5(y1 − ŷ1)− 3.5(y2 − ŷ2)

zlower ≥ 4.5 + 1.5y1 + 0.5y2.

Iteration 3:

The new Master Problem MP3:

Minimize zlower

such that zlower ≥ y1 + 4y2

zlower ≥ 4.5 + 1.5y1 + 0.5y2

y1 − y2 ≥ 3

y1 ≥ 0, y2 ≥ 0.

Solving the above, the new lower bound optimal solution of the original problem is:

ẑlower = 9 for ŷ1 = 3, ŷ2 = 0. Note that the SP will remain the same as in itera-

tion 2 since ŷi, i = 1, 2 values are the same and thus giving the same optimal solution

of 6 and same ẑupper = 9. Note the process terminates since ẑupper = ẑlower = 9. Thus,

x1 = 0, x2 = 2, y1 = 3, and y2 = 0 minimizes the the original problem P1 and P1min =

{x1 + 3x2 + y1 + 4y2}min = 9.

3.5 The Algorithm with a Relaxed Master Problem

Armed with the standard decomposition strategy of BD algorithm (Section 3.2) we may

now study another way of decomposing the original problem where the formulation of the

master problem is slightly different.

18

Here we consider the original problem (P1) of the following general form:

Minimize cTx+ fTy

such that Ax+By ≥ b

x ≥ 0, y ∈ Y

where non-complicating variables x, complicating variables y, matrices A,B, and vectors

b, c,f with appropriate dimensions. The relaxed master problem RMP is what we obtain

when P1 is written in terms of y variables as follows:

Minimize fTy + q

such that y ∈ Y

where q is the optimal objective function value of the primal subproblem SP:

Minimize cTx

such that Ax ≥ b−Bŷ

x ≥ 0

which is an LP for a given value ŷ ∈ Y. As before if the SP is unbounded for some ŷ ∈ Y

that implies that the RMP as well as P1 in unbounded. So assuming the boundedness of

the SP, q can be found by solving the DSP:

Maximize (b−Bŷ)Tu

such that ATu ≤ c

u ≥ 0

where u is the dual variable associated with Ax ≥ b−Bŷ. A basic remark is that the feasible

region of the DSP is independent of ŷ, which only influences the objective function. Hence,

if the DSP is infeasible then the SP is either unbounded (thus making P1 unbounded), or the

SP is infeasible (thus making P1 infeasible). Now we will modify the classical BD algorithm

to comply with the relaxation of the MP.

19

Algorithm 2 The Classical Algorithm with a Relaxed Master Problem from [33]

1. Solve RMP1 and find an initial lower bound solution q̂lower and the corresponding ŷ.

2. Solve DSP to get an upper bound solution q̂upper.

• If q̂lower = q̂upper the process is terminated. Otherwise, add a new constraint (feasi-

bility cut) q ≥ (b−By)T û to RMP1 to form RMP2 and proceed to step 3.

• If DSP is unbounded (that is, SP is infeasible), then introduce a new cut (infeasibility

cut) (b−By)T û ≤ 0 to RMP1 to form RMP2 and proceed to step 3.

• If DSP is infeasible (that is SP is unbounded or infeasible), the original problem

P1 will have either no feasible solution or an unbounded solution. So the process

terminates.

3. Solve the updated relaxed master problem RMP2 to find a new lower bound solution

q̂lower and corresponding ŷ. In the following RMP2 formulation, either the feasibility cut

(first constraint) or the infeasibility cut (second constraint) can be used as discussed in

Step 2.

Minimize fTy + q

such that q ≥ (b−By)T û

(b−By)T û ≤ 0

y ∈ Y, q unbounded

Then return to step 2 to solve the the dual of the subproblem DSP again.

There are further recent studies [11] which have highlighted the fact that the BD algo-

rithm makes the master problem lose all the data related to the non-complicating variables

resulting in instability, irregular succession of the bounds, and too many iterations. [12] is

one of many examples of a non-standard decomposition strategy where all the variables are

kept in the master problem while relaxing the integrality condition to enhance the rate of

convergence of the algorithm; even if the difficulty of the master problem is clearly increased.

To illustrate the concepts in this section, we consider the following simple example.

20

Example 3.

Solve the following MILP, P1 [19] using the BD algorithm discussed above.

Minimize 2x1 + 3x2 + 2y1

such that x1 + 2x2 + y1 ≥ 3

2x1 − x2 + 3y1 ≥ 4

x1, x2 ≥ 0, y1 ≥ 0

Comparing with the basic model for BD:

cT =
[
2 3

]
, A =

1 2

2 −1

 , B =

1

3

 , b =

3

4

 .
Iteration 1:

Relaxed Master Problem (RMP1)

Minimize 2y1 + q

such that

y1 ≥ 0, q ≥ 0

Dual Subproblem (DSP)

Maximize (3− ŷ1)u1 + (4− 3ŷ1)u2

such that

u1 + 2u2 ≤ 2

2u1 − u2 ≤ 3

u1, u2 ≥ 0

The initial lower bound solution to q is: q̂lower = 0 with ŷ1 = 0. Now we solve the DSP

when ŷ1 = 0.

Maximize 3u1 + 4u2

such that u1 + 2u2 ≤ 2

2u1 − u2 ≤ 3

u1, u2 ≥ 0

Analyzing graphically we can see that there exists four extreme points (0, 0), (0, 1), (1.6, 0.2),

and (1.5, 0) in the feasible region of the DSP. The dual optimal solution is 5.6 dual variables

being equal to u1 = 1.6, u2 = 0.2 which implies q̂upper = 5.6. Since q̂upper = 5.6 > q̂lower = 0

we continue to the next iteration. Thus we need to introduce a new cut (feasibility cut),

21

q ≥ (b−By)T û to RMP1 to form RMP2. For u1 = 1.6, u2 = 0.2, the new Benders’ cut can

be written as:

q ≥ (b−By)T û

q ≥

3

4

−
1

3

[y1]
T 1.6

0.2

q ≥ 5.6− 2.2y1

Iteration 2:

The new Relaxed Master Problem RMP2:

Minimize 2y1 + q

such that q ≥ 5.6− 2.2y1

y1 ≥ 0, q ≥ 0

Solving the above, we get the objective function value to be 5.091 at y1 = 2.545, q = 0

and thus the new lower bound optimal solution to q is: q̂lower = 0 with ŷ1 = 2.545. Now we

solve the DSP when ŷ1 = 2.545.

Maximize 0.455u1 − 3.635u2

such that u1 + 2u2 ≤ 2

2u1 − u2 ≤ 3

u1, u2 ≥ 0

The dual optimal solution is 0.6825 dual variables being equal to u1 = 1.5, u2 = 0 which

implies q̂upper = 0.6825. Since q̂upper = 0.68253 > q̂lower = 0 we continue to the next iteration.

Thus we need to introduce a new cut (feasibility cut), q ≥ (b − By)T û to RMP2 to form

RMP3. For u1 = 1.5, u2 = 0, the new Benders’ cut can be written as:

q ≥ (b−By)T û

q ≥

3

4

−
1

3

[y1]
T 1.5

0

q ≥ 4.5− 1.5y1

22

Iteration 3:

The new Relaxed Master Problem RMP3:

Minimize 2y1 + q

such that q ≥ 5.6− 2.2y1

q ≥ 4.5− 1.5y1

y1 ≥ 0, q ≥ 0

Solving the above, we get the objective function value to be 5.286 at y1 = 1.571, q = 2.143

and thus the new lower bound optimal solution to q is: q̂lower = 2.143 with ŷ1 = 1.571. Now

we solve the DSP when ŷ1 = 1.571.

Maximize 1.429u1 − 0.713u2

such that u1 + 2u2 ≤ 2

2u1 − u2 ≤ 3

u1, u2 ≥ 0

The dual optimal solution is 2.1438 dual variables being equal to u1 = 1.6, u2 = 0.2

which implies q̂upper = 2.1438. Note that the process terminates since q̂upper ≈ q̂lower. Thus,

x1 = 0, x2 = 0.714, and y1 = 1.571 minimizes the the original problem P1 and P1min =

{2x1 + 3x2 + 2y1}min = 5.284.

In this chapter, we directly stated the BD algorithm and exercised it on several examples

to promote the importance of BD algorithm in tackling certain large-scale optimization

problems. Equipped with the relevant background machinery, we are now ready to formally

state the BD algorithm and provide a mathematical reasoning why this method works.

23

4.0 The Algorithm and its Justification

Equipped with the machinery from the previous chapter, we are now ready to see what

BD algorithm looks like mathematically. This chapter will also provide the mathematical

justification to the algorithm, and we may begin by stating some definitions and proving an

important theorem and two lemmas that play a major role in the above reasoning. While

earlier versions of the algorithm constitute part of J.F. Benders’ doctoral dissertation, we

refer to [1] which contains a more detailed description of the computational aspects of the

method. Consider a mixed variables programming problem of the following form:

max {cTx+ f(y) |Ax+ F (y) ≤ b, x ∈ Rp, y ∈ S} (4.1)

where x ∈ Rp, y ∈ Rq, S is an arbitrary subset of Rq, A ∈ Rm×p, f(y) is a scalar function

on S, F (y) an m-component vector function on S, and b ∈ Rm and c ∈ Rp are fixed

vectors. Note that any LP problem can be considered as being of type (4.1) after an arbitrary

partitioning of the variables into two mutually exclusive subsets which may be easily achieved

if the structure of the problem specifies a natural partitioning of the variables. Throughout

this chapter u, v and z represent vectors in Rm whereas u0, x0 and z0 denote scalars. We

now provide relevant definitions and a basic theorem that are critical for our discussion.

If A ∈ Rm×p and c ∈ Rp are the matrix and the vector appearing in the formulation of

the problem (4.1) we define:

C = {(u0,u) |ATu− cu0 ≥ 0, u ≥ 0, u0 ≥ 0} ⊂ Rm+1.

C0 = {u |ATu ≥ 0, u ≥ 0} ⊂ Rm.

P = {u |ATu ≥ c, u ≥ 0} ⊂ Rm.

We state an equivalent form to problem (4.1) by introducing a scalar variable x0.

24

max {x0 |x0 − cTx− f(y) ≤ 0, Ax+ F (y) ≤ b, x ≥ 0, y ∈ S} (4.2)

That is (x̄0, x̄, ȳ) is an optimal solution of (4.2) if and only if x̄0 = cT x̄− f(ȳ) and (x̄, ȳ) is

an optimal solution of (4.1). For any point (u0,u) ∈ C we link the following region in Rq+1:

{(x0,y) |u0x0 + uTF (y)− u0f(y) ≤ uTb, y ∈ S}. We take G to represent the intersection

of all these regions: G =
⋂

(u0,u)∈C
{(x0,y) |u0x0 + uTF (y)− u0f(y) ≤ uTb, y ∈ S} which is

in fact the solution space of (4.1). C being a pointed convex polyhedral cone, it is the convex

hull of finitely many extreme half lines which then says that there are H points (uh0 , u
h), h =

1, ..., H in C so that G =
⋃

h≤H
{(x0,y) |uh0x0 + (uh)TF (y) − uh0f(y) ≤ (uh)Tb, y ∈ S}. We

then recall Farkas’ Theorem: is a solvability theorem for a finite system of linear inequalities.

Theorem 4 (Farkas’ Theorem).

Let B ∈ Rm×n and d ∈ Rm. Then exactly one of the following two statements is true:

1. There exists an x ∈ Rn such that Bx = d and x ≥ 0.

2. There exists a y ∈ Rm such that BTy ≥ 0 and dTy < 0.

The Partitioning Theorem for Mixed Variables Programming Problems which we state next

refers to problems (4.3) and (4.4) below:

max {x0 | (x0,y) ∈ G} (4.3)

max {cTx |Ax ≤ b− F (ȳ), x ≥ 0}. (4.4)

Theorem 5 (Partitioning Theorem for Mixed Variables Programming Problems from [1]).

1. Problem (4.1) is infeasible if and only if the programming problem (4.3) is infeasible, that

is if and only if the set G is empty.

2. Problem (4.1) is feasible without having an optimal solution (unbounded), if and only if

problem (4.3) is feasible without having an optimal solution.

3. If (x̄, ȳ) is an optimal solution of problem (4.1) and x̄0 = cT x̄− f(ȳ), then (x̄0, ȳ) is an

optimal solution of problem (4.3) and x̄ is an optimal solution of the linear programming

problem (4.4).

25

4. If (x̄0, ȳ) is an optimal solution of problem (4.3), then problem (4.4) is feasible and the

optimal value of the objective function in this problem is equal to x̄0 − f(ȳ). If x̄ is an

optimal solution of problem (4.4), then (x̄, ȳ) is an optimal solution of problem (4.1),

with optimal value x̄0 for the objective function.

Proof. Take x∗0 to be an arbitrary number and y∗ be an arbitrary point in S. By Farkas’

Theorem it follows that the linear system

Ax ≤ b− F (y∗)

− cTx ≤ −x∗0 + f(y∗), x ≥ 0

is feasible if and only if u0x
∗
0 + uTF (y∗)− u0f(y∗) ≤ uTb for any point (u0,u) ∈ C.

Hence if (x∗0,x
∗,y∗) is a feasible solution of problem (4.2), (x∗0,y

∗) is a feasible solution

of problem (4.3). Conversely if (x∗0,y
∗) is a feasible solution of problem (4.3), there exists a

vector x∗ ∈ Rp such that (x∗0,x
∗,y∗) is a feasible solution of problem (4.2). As the problems

(4.1) and (4.2) are equivalent, we have proved items (1) and (2) of Theorem 5. Further,

it follows that if (x̄, ȳ) is an optimal solution of problem (4.1) and x̄0 = cT x̄ + f(ȳ), then

(x̄0, ȳ) is an optimal solution of problem (4.3). Finally if (x̄0, ȳ) is an optimal solution of

problem (4.3), there is a vector x̄ ∈ Rp, such that (x̄0, x̄, ȳ) is an optimal solution of problem

(4.2). Then x̄0 = cT x̄ + f(ȳ) and since cTx + f(ȳ) ≤ x̄0 for any feasible solution (x, ȳ) of

problem (4.1) (ȳ fixed) it follows that x̄ is an optimal solution of problem (4.4) which then

completes the proof of Theorem 5.

We see that item 1 and 2 of Theorem 5 address boundary cases and the interesting

aspect is item 3 where we have optimality. It is where we actually have solutions (that is

the solutions exist and are bounded) and thus item 3 is the heart of BD algorithm.

Theorem 5 does not demand any further requirements of the subset S and of the functions

f(y) and F (y) defined on S. Yet in practice those must have such properties that problem

(4.3) can be solved by existing methods; that is, it must be possible to derive whether this

problem is infeasible or unbounded, or it should be possible to find an optimal solution if one

exists. If these assumptions are met, Theorem 5 declares that problem (4.1) can be solved

by a two-step procedure. The first step includes the solution of problem (4.3), heading to

26

the conclusion that problem (4.1) is infeasible or unbounded, or to the optimal value of the

objective function in problem (4.1) and to an optimal vector ȳ ∈ S. In the latter case a

second step is essential for calculating an optimal vector x̄ ∈ Rp, which is found by solving

(4.4).

A direct solution of problem (4.3) would need the calculation of a complete set of con-

straints, establishing the set G. By looking at the definition of G we see that this could

be done by calculating all extreme half-lines of the convex polyhedral cone C which is im-

practical due to the massive calculating effort associated. Nevertheless, as we are concerned

about an optimal solution of problem (4.3) instead of the set G itself, it would be enough to

compute only those constraints of G which establish an optimal solution. Next we develop

an efficient procedure for computing such constraints.

From now on wards we assume that the set S is closed and bounded, and that f(y) and

the components of F (y) are continuous functions on a subset S̄ of Rq containing S. These

assumptions are met in most applications and they exclude difficulties produced by feasible

programming problems with no solutions. It can occur that S is not bounded explicitly in

the formulation of problem (4.1). In that case we can introduce bounds for the components

of y which are large enough that either it is known in advance that there exists an optimal

solution agreeing with these bounds or that components of y higher than these bounds have

no realistic explanation.

Lemma 1 (from [1]).

If problem (4.3) is feasible and S is bounded, then x0 has no upper bound on G if and only

if P is empty.

Proof. By the assumptions it follows that there exists at least one point (x∗0,y
∗) ∈ G.

If P is empty, then u0 = 0 for any point (u0,u) ∈ C. Thus G takes the form G =⋂
u∈C0

{(x0,y) |uTF (y) ≤ uTb, y ∈ S}, and (x0,y
∗) ∈ G for any value of x0. Hence x0

has no upper bound on G.

If P is not empty, there exists at least one point (1, ū) ∈ C. Thus for any feasible

solution (x0,y) of problem (4.3), by the assumptions imposed on S, f(y), and F (y) we get

that x0 ≤ max
y∈S
{ūTb− ūTF (y) + f(y)} <∞. Hence x0 has an upper bound on G.

27

Take Q to be a non-empty subset of C and define G(Q) ⊂ Rq+1 by:

G(Q) =
⋂

(u0,u)∈Q

{(x0,y) |u0x0 + uTF (y)− u0f(y) ≤ uTb, y ∈ S}.

We introduce the following programming problem

max {x0 | (x0,y) ∈ G(Q)}. (4.5)

If problem (4.5) is infeasible, then so is problem (4.3) since G ⊂ G(Q). Instead if (x̄0, ȳ)

is an optimal solution of problem (4.5) the question arises whether (x̄0, ȳ) is also an optimal

solution of problem (4.3) and, if not, how to obtain a better subset Q of C.

Lemma 2 (from [1]).

If (x̄0, ȳ) is an optimal solution of problem (4.5), it is also an optimal solution of problem

(4.3) if and only if min{(b− F (ȳ))Tu |u ∈ P} = x̄0 − f(ȳ).

Proof. Since we assume that the maximum value of x0 on the set G(Q) is finite, Lemma 1

tells us that Q has at least one point (u0,u) where u0 > 0. Thus P is not empty which in

turn implies that the following LP problem is feasible.

min{(b− F (ȳ))Tu |u ∈ P} (4.6)

First we note that an optimal solution (x̄0, ȳ) of problem (4.5) is also an optimal solution

of problem (4.3) if and only if (x̄0, ȳ) ∈ G. The necessity of this condition follows easily.

Further since Q ⊂ C, we have max {x0 | (x0,y) ∈ G(Q)} ≥ max {x0 | (x0,y) ∈ G} implying

that the condition is also sufficient.

The definition of G says that, (x̄0, ȳ) ∈ G if and only if (b−F (ȳ))Tu+(−x̄0+f(ȳ))u0 ≥ 0

for any point (u0,u) ∈ C. This occurs if and only if (b− F (ȳ))Tu ≥ 0 for any u ∈ C0 and

(b− F (ȳ))Tu ≥ x̄0 − f(ȳ) for any u ∈ P, that is if and only if

min{(b− F (ȳ))Tu |u ∈ P} ≥ x̄0 − f(ȳ).

Now the duality theorem for LP problems states that the LP

max{cTx |Ax ≤ b− F (ȳ), x ≥ 0} (4.7)

28

has a finite optimal solution x̄ so that cT x̄ = min{(b− F (ȳ))Tu |u ∈ P}. Since (x̄, ȳ) is a

feasible solution of problem (4.1), Theorem 5 and the fact G ⊂ G(Q) provide us that

cT x̄+ f(ȳ) ≤ max {x0 | (x0,y) ∈ G} ≤ max {x0 | (x0,y) ∈ G(Q)} = x̄0

min{(b− F (ȳ))Tu |u ∈ P} ≤ x̄0 − f(ȳ)

which completes the proof of Lemma 2.

If the LP problem (4.6) has a finite optimal solution, at least one of the vertices of the

polyhedron P is included in the set of optimal solutions. We are familiar that, in this case,

the Simplex Method heads to an optimal vertex ū of P .

By Lemma 2 we know that if (b−F (ȳ))T ū = x̄0−f(ȳ), we have determined an optimal

solution (x̄0, ȳ) of problem (4.3). Moreover, the Simplex Method offers us, simultaneously,

an optimal solution x̄ of the dual LP problem (4.7) and Theorem 5 states that (x̄, ȳ) is an

optimal solution of problem (4.1). If

(b− F (ȳ))T ū ≤ x̄0 − f(ȳ) (4.8)

the point (1, ū) of C is not in Q. In this case we construct a new subset Q∗ of C by including

the point (1, ū) in Q.

If the LP problem (4.6) has an unbounded solution, the Simplex Method heads to a vertex

ū of P and to a direction vector v̄ of one of the extreme half-lines of C0 so that the value of the

objective function (b−F (ȳ))Tu goes to infinity along the half-line {u |u = ū+λv̄, λ ≥ 0}.
Besides, we have the inequality

(b− F (ȳ))T v̄ < 0 (4.9)

which indicates that the point (0, v̄) of C is not in Q. Here we construct a new subset Q∗ of

C by including the point (0, v̄) in Q.

In either case take (x∗0,y
∗) be an optimal solution of the LP max {x0 | (x0,y) ∈ G(Q∗)}.

Then in the first case we have (b− F (y∗))T ū ≥ x∗0 − f(y∗), whereas in the second case we

have (b − F (y∗))T v̄ ≥ 0. Comparing with (4.8) and (4.9) we see that (x∗0,y
∗) 6= (x̄0, ȳ).

Moreover since Q∗ ⊃ Q, we get that G(Q∗) ⊂ G(Q), thus x∗0 ≤ x̄0. In case the LP problem

29

(4.6) is unbounded, it is possible that the above-mentioned vertex ū agrees with (4.8). Then,

both the point (1, ū), and (0, v̄) are not in Q and the new subset Q∗ of C can be constructed

by including both points in Q. We further note that the constrained set G(Q∗) is gained

from G(Q) by introducing the constraint x0 + ūTF (y)− f(y) ≤ ūTb and/or the constraint

v̄TF (y) ≤ v̄Tb to the set of constraints defining this set G(Q).

We are now ready to discuss a finite multi step procedure for solving mixed variables

programming problems of the form (4.1). Within a finite number of steps, this algorithm

terminates either with the conclusion that problem (4.1) is infeasible, or that this problem

is unbounded, or because an optimal solution of problem (4.1) has been found.

Algorithm 3 Multi Step Procedure for Solving Problems of the Form (4.1) from [1]

The procedure starts from a given finite subset Q0 ⊂ C.

Initial Step.

• If u0 > 0 for at least one point (u0,u) ∈ Q0, go to the first part of the iterative step.

• If u0 = 0 for any point (u0,u) ∈ Q0, put x00 = +∞, take for y0 an arbitrary point of

G(Q0) and go to the second part of the iterative step.

• If G(Q0) is empty, the procedure terminates: problem (4.1) is infeasible.

Iterative step, first part.

If the n-th step has to be performed, solve the programming problem

max {x0 | (x0,y) ∈ G(Qn)}. (4.10)

• If problem (4.10) is infeasible, the procedure terminates: problem (4.1) is infeasible.

• If (xn0 ,y
n) is found to be an optimal solution of problem (4.10), go to the second part of

the iterative step.

Iterative step, second part.

Solve the LP problem

min{(b− F (yn))Tu |ATu ≥ c, u ≥ 0}. (4.11)

• If problem (4.11) is infeasible, problem (4.1) is either infeasible, or unbounded. (This

situation can only be encountered in the first iterative step!)

30

• If problem (4.11) has a finite optimal solution un and

(b− F (yn))Tun = xn0 − f(yn), (4.12)

the procedure terminates. In this case, if xn is the optimal solution for the dual problem

of problem (4.11), then (xn,yn) is an optimal solution of problem (4.1) and xn
0 is the

optimal value of the objective function in this problem.

• Then if

(b− F (yn))Tun < xn0 − f(yn), (4.13)

form the set

Qn+1 = Qn ∪ {(1,un)}, (4.14)

replace the step counter n by n+ 1 and repeat the first part of the iterative step.

• If the value of the objective function in problem (4.11) tends to infinity along the half line

{u |u = un + λvn, λ ≥ 0}, un being a vertex of P and vn the direction of an extreme

half line of C0, while

(b− F (yn))Tun ≥ xn0 − f(yn), (4.15)

form the set

Qn+1 = Qn ∪ {(0,vn)}. (4.16)

However, if (4.15) is not satisfied, that is if

(b− F (yn))Tun < xn0 − f(yn), (4.17)

form the set

Qn+1 = Qn ∪ {(1,un), (0,vn)}. (4.18)

In either case replace the step counter n by n+1 and repeat the first part of the iterative

step.

31

This algorithm is finite, since at each step where it does not terminate the preceding

subset Qn is expanded by the direction vector of at least one extreme half-line of the poly-

hedral cone C, which is not already in Qn. Hence, within a finite number of steps, either

the algorithm would terminate or a complete set of constraints establishing the set G would

have been gained and Theorem 5 guarantees that the algorithm would stop after the next

step. We can justify the termination guidelines as follows:

1. G(Qn) ⊃ G together with Theorem 5, item (1): problem (4.1) is infeasible.

2. Lemma 1 and Theorem 5, item (2): problem (4.1) is unbounded.

3. Lemma 2 and Theorem 5, item (4): optimal solution for problem (4.1) is obtained.

The relationship G(Qn) ⊃ G(Qn+1) ⊃ G states that the sequence {xn0} is non decreasing

and max {x0 | (x0,y) ∈ G} ≤ xn0 for any n ≥ 0.

If problem (4.11) has an optimal solution un, then its dual problem max{cTx |Ax ≤
b−F (yn), x ≥ 0} has an optimal solution xn, with (b−F (yn))Tun = cTxn. Since (xn,yn)

is a feasible solution of problem (4.1), by Theorem 5, item (3) we have that (b−F (yn))Tun+

f(yn) ≤ max {x0 | (x0,y) ∈ G}. In other words we obtain upper and lower bounds for the

maximum value of x0 on the set G, or what is the same, for the maximum value of the

objective function in problem (4.1) at the end of each step:

max
k≤n
{(b− F (yk))Tuk + f(yk)} ≤ max {x0 | (x0,y) ∈ G} ≤ xn0 .

If problem (4.11) in the k-th iterative step is unbounded we have (b − F (yk))Tuk = −∞;

otherwise, it is the optimal value of the objective function in this problem.

The establishment of an initial set Q0 will highly depend on the actual problem that we

are trying to solve. Yet in any case we can start from the set Q0 comprising only the origin

of Rm+1, which is always in C. The algorithm then moves to the second part of the iterative

step from an arbitrary point y0 ∈ S, whereas x00 is set to +∞.

The algorithm can essentially generate the entire set Q; that is, all the extreme points

of the underlying LP problem and as mentioned before, the algorithm does converge within

finite number of steps. In practice we may encounter situations where the first few iterations

find some decent extreme points giving us exceptional upper and lower bounds (to the

32

objective function of the original problem), that get really close fast enough but do not

actually converge faster unless we adopt some acceleration strategies. In other words, we

really cannot say anything about the rate of convergence of the algorithm even though we

know that it does definitely converge.

In practice it may be more convenient to solve the dual problem

max{cTx |Ax ≤ b− F (yn), x ≥ 0} (4.19)

of problem (4.11), rather than this problem itself. Even though it is not included in this

discussion, in [1] J.F. Benders does justify how the algorithm works with (4.19) instead of

problem (4.11) consequently solving the original problem (4.1).

Having the relevant definitions, theorems, formal statement, and mathematical justifica-

tion of the original algorithm related to the BD algorithm, we now move on to its extensions

and applications. Immediately in the next chapter we have described five other versions of

the algorithm and next we have collected several different real-world applications to showcase

how to apply the BD algorithm and to show some of the many different areas of optimization

and scheduling that can use the help of the algorithm.

33

5.0 Extensions and Generalizations of Benders’ Decomposition Algorithm

In the previous sections we saw that the classical BD algorithm addresses certain classes

of Mixed Integer Linear Programs for which the integer variables are complicating, and

standard duality theory can be applied to the subproblem to generate cuts.

We now carry on describing how the extensions of the method have allowed it to address

a broader range of optimization problems including integer subproblems, nonlinear functions,

logical expressions, multi-stage programming, and stochastic optimization; where our main

source of reference is [27].

The extension of BD that permits the use of Linear Programming duality in place of

inference duality in the subproblem is known as logic-based Benders’ Decomposition.

Likewise, generalized Benders Decomposition generalizes the use of nonlinear con-

vex programs as subproblems.

Further in some applications it is efficient to use specialized algorithms to solve the sub-

problem rather than solving the subproblem explicitly as a Linear Programming problem.

For instance, if the subproblem is a linear feasibility problem (that is a Linear Program-

ming problem with no objective function), cuts based on irreducible infeasible subsets of

constraints can be derived using a technique referred to as combinatorial Benders’ De-

composition [33].

In many applications, the situation is that decisions for several groups of second-stage

variables are made independently given the first-stage decisions. Thus multiple subproblems

are defined and solved separately. For example, in stochastic programming models some

decisions need to be taken in a first stage which is followed by the occurrence of a random

event that affects the result of the first-stage decision. A resource decision can then be made

in a second stage later, once the uncertainty is resolved. In such applications, second-stage

recourse problems can be solved disjointedly given the first-stage decisions and hence are

agreeable to parallel implementations. Also note that when applied to stochastic problems

the BD algorithm is usually referred to as L-shaped Decomposition.

Before explaining the different versions of BD in detail, now we summarize the introduc-

34

tion of the chapter as follows.

Version Description

1 classical BD SP is linear, and cuts are generated from standard dual

2 generalized BD SP is nonlinear and convex

3 logic-based BD cuts are generated through inference dual

4 combinatorial BD SP is a linear feasibility problem

5 L-shaped Decomposition stochastic programs where multiple SPs solved separately

6 nested BD applying BD method to a problem more than once

Table 5: Some versions of Benders’ Decomposition algorithm

5.1 Generalized Benders’ Decomposition

Many of todays real-world optimization problems involve nonlinear functions and con-

straints. However, if the problem can be easily linearized or the nonlinearity arises only in the

domain of the complicating variables, we can still apply classical BD to solve it. Otherwise,

we must employ an extended BD method to tackle the problem.

It was A.M. Geoffrion (1972) who proposed the Generalized Benders’ Decomposition [13]

which solves nonlinear problems where the SP is convex. Later in 2005, A.M. Costa [9]

showed that it is also specifically appealing for nonconvex nonlinear problems which can be

convexified after fixing a subset of variables.

Then in 1991 N. Sahinidis and I.E. Grossmann [29] observed that for MINLP problems

the generalized BD method may not achieve a global or even a local optimum. Particularly,

if the objective function and some of the constraints are nonconvex or if there exist nonlinear

equations, the subproblem may not lead to a unique local optimum and the master problem

may remove the global optimum. However, rigorous global optimization approaches can be

adopted if the continuous terms are in a special structure like bilinear, linear fractional,

concave separable. Thus, the main idea is to use convex envelopes to create lower-bounding

35

convex MINLPs and combine them with global optimization techniques for continuous vari-

ables. This typically has the form of spatial Branch and Bound methods.

Likewise, it is possible that a naive application of the generalized BD method to a

convex nonlinear problem converges to a nonstationary point, A. Grothey et al. (1999) [15].

After identifying that the convergence failure occurs due to the way in which the infeasible

subproblems are tackled, they developed a procedure for feasibility restoration.

5.2 Logic-based Benders’ Decomposition

Even though we can usually transform the optimization problems that comprise logic

relations into regular optimization problems, the extra variables and big-M constraints of-

ten result a weak formulation. Further, it may have some integer variables and nonlinear

functions not yielding a continuous linear subproblem. In these situations, we cannot apply

traditional linear duality to generate classical Benders’ cuts.

J.N. Hooker and G. Ottosson (2003) [18] and Hooker (2011) [16] proposed the concept of

Logic-based Benders Decomposition which is similar to classical BD method. Logic-based BD

divides a given problem into a master problem and subproblems and then uses constraint-

generation techniques to progressively condense the solution space of the relaxed master

problem. However, now each subproblem is an inference dual problem that develops the

tightest bound for the objective function of the master problem. Then we use this bound

to find cuts that are passed back to the master problem. Finally, if the master problem

solution agrees with all the bounds produced by the subproblems, process terminates since

the convergence has been reached; otherwise, the process continues.

This method can be applied to any form of subproblem including MILP, constraint

programming, nonlinear programming or a feasibility-checking problem. Logic-based BD

method does not have a standard model for the generation of valid cuts, instead they must

be customized to the problem at hand, usually based on knowledge of its structure. Several

successful applications of logic-based BD include, planning and scheduling (Hooker, 2007

[17]), transportation network design (Peterson and Trick, 2009 [26]), facility location/fleet

36

management (Zarandi, 2010 [39]) and radiation therapy (Luong, 2015 [22]).

5.3 Combinatorial Benders’ Decomposition

Combinatorial BD, is in fact a particular case of logic-based BD. G. Codato and M.

Fischetti (2006) [7], are known for successfully employing this method to MILP problems

with a extensive amount of logical and big-M constraints. When the assignment of variable

values in the master problem makes the subproblem infeasible, a combinatorial Benders’ cut

is introduced to the master problem. This cut, which says that at least one of the variables

in the master problem must change its value, refines a logical implication from the original

model and adds it to the master problem.

However, this method is ineffective for the case of continuous variables. To obtain

stronger combinatorial cuts, one must identify small subsets of variables accountable for

the infeasibility of the subproblem and express cuts in terms of these variables. The small-

est of these subsets are known as minimum infeasible subsets. A successful application of

combinatorial BD is related to the Strip Packing Problem by Côté et al. (2014) [10].

5.4 L-shaped Decomposition

Stochastic Linear Programming problems are multi-stage linear programs that contain

uncertainty in at least some of the quantities involved in the problem. Note that multi-

stage problems are problems in which an optimal initial decision is made, more information

becomes available and then further decisions are made.

Stochastic models are generally large and difficult to solve due to the data uncertainty and

their combinatorial nature. Yet, they exhibit special structures agreeable to decomposition

methods. As a result, efforts were made to build various decomposition-based algorithms for

these problems, and L-shaped method is when BD is adopted (Van Slyke and Wets, 1969

[34]).

37

5.5 Nested Benders’ Decomposition

As mentioned above in the table, nested BD method is centered around the notion of

employing the BD method to a problem more than once. It is mainly suitable for multi-

stage (stochastic) problems (Birge, 1985 [4]) where each pair of adjacent stages can be studied

individually.

Here, the scenario tree is considered as a collection of nested two-stage problems and

the BD method is utilized repeatedly. Every problem related to an inner node in the tree is

both master problem to its children and a subproblem of its parent. However, after solving

the problems at a given stage, we must select the sequencing procedure; whether to forward

the info related to the primal down to the leaf nodes or send the info related to the dual up

to the root node. C. Wolf (2014) [38] addressed this issue and some acceleration strategies.

Further, there are applications (J. Naoum-Sawaya and S. Elhedhli, 2010 [24]) which shows

that the nested BD method can be employed to solve well established single-stage problems,

specially when we want to simplify the master problem by cutting down the number of

integer variables.

38

6.0 Applications

After discussing theory behind BD algorithm and its extensions, we continue the discus-

sion to show how it can be used on actual everyday problems. We start with an application

on classical BD (Algorithm 1), precisely “The Facility Location Problem”. We will then

move our attention to another important application, “The Intensity Modulated Radiation

Therapy Problem” which again employs classical BD but with a relaxed master problem (Al-

gorithm 2). Then, we switch focus to introducing some complicating real-world challenges:

“Simultaneous Aircraft Routing and Crew Scheduling”, “Hydrothermal Scheduling”, “The

Concrete Delivery Problem”, and “The Lock Scheduling Problem” benefiting from classical

BD, generalized BD, logic-based BD, and combinatorial BD respectively.

6.1 The Facility Location Problem

First we will describe the general problem we are trying to solve; next we will present a

specific example which appears in Section 10.3 of “Large scale linear and integer optimization:

A unified approach” [23]. We also run some iterations of the algorithm to permit the reader

to get a feel of how BD works.

The idea behind the facility location problem is to select the best among possible fac-

tories, subject to constraints involving the demands of several customers, which must be

satisfied by the established factories. This defines the objective of the problem as: selecting

factories in order to minimize costs. In fact costs typically include a part which is propor-

tional to the sum of the distances from the customers to the factories, in addition to costs

of opening them.

Practically the factories may have limited capacities for servicing, which classifies the

problems as a capacited facility location problem. Yet in this thesis we will analyze an

uncapacited facility location problem where there is no limit on how much each factory can

produce.

39

6.1.1 General Problem [6]

The facility location problem demonstrates a setting with n factories and m customers

where each customer has a demand that has to be fulfilled from one or more of the factories.

In our model xij denotes the fraction of customer j’s demand fulfilled from factory i. The

cost of fulfilling demand for customer j from factory i is represented by cij. fi denotes the

cost related to establishing the factory i and the decision variable yi indicates whether factory

i is closed or opened. With these variables the LP problem can be expressed as below:

Minimize z =
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

fiyi

such that
n∑

i=1

xij ≥ 1, j = 1, ...,m

xij ≤ yi, i = 1, ..., n, j = 1, ...,m

xij ≥ 0, i = 1, ..., n, j = 1, ...,m

yi ∈ {0, 1}, i = 1, ..., n.

The objective function minimizes the sum of factory opening costs and transportation

costs. The first constraint states that each customers demand must be satisfied. The second

constraint forces factory i to be opened if some customer j is assigned to it which indicates

that we can only satisfy the demand from a factory which is opened.

Given we already know which factories are opened the subproblem is intended to derive

the transportation scheme. So by fixing the values of y to ŷ in the above LP problem we

can state the primal subproblem as follows:

Minimize
n∑

i=1

m∑
j=1

cijxij

such that

n∑
i=1

xij ≥ 1, j = 1, ...,m

− xij + ŷi ≥ 0, i = 1, ..., n, j = 1, ...,m

xij ≥ 0, i = 1, ..., n, j = 1, ...,m.

40

We now want to form the dual problem where i ∈ O(ŷ) represents the factories which

are open whereas i ∈ C(ŷ) represents the factories which are closed. We denote the dual

variables related to the demand constraints by vj and the dual variables related to the setup

constraints (that is open/closed duals) by wij. Then for j = 1, ...,m:

vj = min
i∈O(ŷ)

{cij}

wij =

0 for i ∈ O(ŷ)

max
i∈C(ŷ)

{(vj − cij), 0} for i ∈ C(ŷ).

We will here briefly explain the meaning of the above formulation. vj = min
i∈O(ŷ)

{cij},
j = 1, ...,m implies that for each customer, we will choose the open factory that has the

least cost. wij = 0 , i ∈ O(ŷ) says that we will ignore the setup constraint if factory i is

open because adding more capacity to an already open factory will not change the cost of

the solution. Note that it can never cost besides the fixed costs, fi to open a facility; hence,

wij is always greater or equal to zero. The most we can gain by opening a factory is the

difference between the current cost, vj and the cost if this ith factory was available, cij. So

wij = max
i∈C(ŷ)

{(vj − cij), 0}, i ∈ C(ŷ), tells that if a factory is closed then we could improve

our solution by vj − cij for customer j by opening factory i, if the value is positive. Now,

we refer to the dual variable as u which is in fact u = [v,w], where v denotes the demand

duals and w denotes the open/closed factory duals. Then depending on the structure of the

problem Benders’ feasibility cut can be written as follows:

ẑlower ≥ fTy + (d− Cy)T û

ẑlower ≥
m∑
i=1

v̂j +
n∑

i=1

(
fi −

m∑
j=1

ŵij

)
yi.

We will see that it is much convenient to proceed with the specific version of the feasibility

cut derived based on the problem structure rather than the general matrix version that we

discussed in Chapter 3. Yet, comparing the LP formulation for the facility location problem

(Subsection 6.1.1) with the basic model for BD (Section 3.2) and identifying the vectors and

matrices associated the problem is the easiest way to justify the above reformation of the

feasibility cut.

41

Its important to note that the facility location problem is not a standard optimization

problem that can easily be solved using Excel because of the binary variable y which turns

it into an integer program. Although it can be solved using an MIP solver it is much faster

to solve it using the BD method. We explain the way that BD works in simple terms as

follows.

Once we choose to open certain factories: we either can transport everything with which

ever factories we decided to open, or we won’t. In the first case there is a particular cost

incurred, and BD gives us a feasibility cut implying that if we want it to be cheaper, we

cannot just achieve it through the choice we made. In the second case that is, if we cannot

transport everything, BD provides an infeasibility cut suggesting that we must open a new

factory. Since we consider an uncapacited facility location problem it will always be feasible

although it might introduce a huge cost. So here we will only obtain feasibility cuts which

we introduce to the MP and then solve the updated MP to identify which factories should

be opened to lower the total cost. Now since the dual subproblem has an analytic solution,

we just generate numbers instead of solving an LP which in turn makes the BD method a

much faster way to tackle this problem.

6.1.2 An Actual Example [6]

We will now demonstrate a simple example problem and run the algorithm on this

problem. Our example comprises of 3 possible factories and 5 possible customers. The

following table records the cij’s as well as the fi’s.

Customers

Factory 1 2 3 4 5 Fixed costs

1 2 3 4 5 7 2

2 4 3 1 2 6 3

3 5 4 2 1 3 3

Table 6: Basic data corresponding to Example 6.1.2 from [6]

42

As we described in the general formulation; xij denotes the fraction of customer j’s

demand satisfied from factory i, cij is the cost of satisfying demand for customer j from

factory i, fi is the cost of opening factory i, and yi is the decision variable that indicates

whether factory i is opened or closed. Comparing with the basic model for BD:

cT =
[
2, 3, 4, 5, 7, 4, 3, 1, 2, 6, 5, 4, 2, 1, 3

]
1×15

,

fT =
[
2, 3, 3

]
1×3

,

dT =
[
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
1×20

,

yT =
[
y1, y2, y3

]
1×3

,

xT =
[
x1j, x2j, x3j

]
1×15

, j= 1,...,5,

uT =
[
v1, v2, v3, v4, v5, w1j, w2j, w3j

]
1×20

, j= 1,...,5,

B =

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

20×15

,C =

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

20×3

.

Iteration 1:

Master Problem (MP1)

Minimize zlower

such that

zlower ≥ 2y1 + 3y2 + 3y3

yi ∈ {0, 1}, i = 1, ..., 3

Dual Subproblem (DSP)

for j = 1, ..., 5:

vj = min
i∈O(ŷ)

{cij}

wij =

0 for i ∈ O(ŷ)

max
i∈C(ŷ)

{(vj − cij), 0} for i ∈ C(ŷ)

43

To start the iterations, we simply choose only to open factory 1. So, ŷ1 = 1, ŷ2 = 0, ŷ3 =

0 and the lower bound optimal solution to the original problem is: ẑlower = 2. Now we solve

the DSP when ŷT = [1, 0, 0].

Since O(ŷ) only contains factory 1, vj = min
i∈O(ŷ)

{cij} = c1j for j = 1, ..., 5. This very

simply gives us: v̂1 = 2, v̂2 = 3, v̂3 = 4, v̂4 = 5, v̂5 = 7. Next we find wij using the formulas,

wij = 0, i ∈ O(ŷ) and wij = max
i∈C(ŷ)

{(vj − cij), 0}, i ∈ C(ŷ). Since factory 1 is open, ŵ1j = 0

for j = 1, ..., 5. As factory 2 is a closed facility, w2j = max{(vj − c2j), 0} for j = 1, ..., 5

which results: ŵ21 = 0, ŵ22 = 0, ŵ23 = 3, ŵ24 = 3, ŵ25 = 1; implying that there is

nothing to be gained for customer 1 and 2 if we open factory 2, but there is a gain for

customers 3 through 5. Similarly, since factory 3 is a closed facility, w3j = max{(vj− c3j), 0}
for j = 1, ..., 5 which leads to: ŵ31 = 0, ŵ32 = 0, ŵ33 = 2, ŵ34 = 4, ŵ35 = 4; stating that

there is no gain for customers 1 and 2 but there is a gain for 3 through 5 if we open factory

3. Thus, the DSP has a solution, and we can update ẑupper as:

ẑupper = fT ŷ + (d− Cŷ)T û

=
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
ŷi

= (2 + 3 + 4 + 5 + 7) + (2− 0)ŷ1 + (3− (3 + 3 + 1))ŷ2 + (3− (2 + 4 + 4))ŷ3

= 21 + 2ŷ1 − 4ŷ2 − 7ŷ3

= 23 with ŷ1 = 1, ŷ2 = 0, ŷ3 = 0.

Since ẑupper = 23 > ẑlower = 2 we continue to the next iteration. Now we need to add a

new Benders’ cut (feasibility cut) to MP1 to generate MP2, which is:

zlower ≥ fTy + (d− Cy)T û

zlower ≥
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
yi

zlower ≥ 21 + 2y1 − 4y2 − 7y3.

Recall that these iterations must be repeated until the upper and lower bound are the

same which will then yield the optimal solution (that is the minimum total cost for satisfying

all the demands) and prescribe which factories are to be opened.

44

Iteration 2:

The new master problem MP2:

Minimize zlower

such that zlower ≥ 2y1 + 3y2 + 3y3

zlower ≥ 21 + 2y1 − 4y2 − 7y3

yi ∈ {0, 1}, i = 1, ..., 3.

As can easily be seen the optimal solution to this problem is to choose ŷ1 = 0, ŷ2 = 1,

and ŷ3 = 1, that is keep factory 1 closed and open factories 2 and 3, yielding a solution of

10 (our new lower bound). So we update ẑlower = 10 and use this new ŷ to do the second

iteration. So, we solve the DSP when ŷT = [0, 1, 1].

Since O(ŷ) contains factories 2 and 3, vj = min
i∈O(ŷ)

{cij} = min{c2j, c3j} for j = 1, ..., 5.

This results in: v̂1 = 4, v̂2 = 3, v̂3 = 1, v̂4 = 1, v̂5 = 3. Next we find wij using the formulas,

wij = 0, i ∈ O(ŷ) and wij = max
i∈C(ŷ)

{(vj − cij), 0}, i ∈ C(ŷ). Since factory 2 and 3 are open,

ŵ2j = ŵ3j = 0 for j = 1, ..., 5. As factory 1 is closed , w1j = max{(vj−c1j), 0} for j = 1, ..., 5

which gives us: ŵ11 = 2, ŵ12 = 0, ŵ13 = 0, ŵ14 = 0, ŵ15 = 0. We obtained a feasible

solution to the DSP and thus we update ẑupper as:

ẑupper = fT ŷ + (d− Cŷ)T û

=
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
ŷi

= (4 + 3 + 1 + 1 + 3) + (2− 2)ŷ1 + (3− 0)ŷ2 + (3− 0)ŷ3

= 12 + 3ŷ2 + 3ŷ3

= 18 with ŷ1 = 0, ŷ2 = 1, ŷ3 = 1.

Since ẑupper = 18 > ẑlower = 10 we continue to the next iteration. Again we need to add

a new Benders’ cut (feasibility cut) to MP2 to generate MP3, which is:

zlower ≥ fTy + (d− Cy)T û

zlower ≥
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
yi

zlower ≥ 12 + 3y2 + 3y3.

45

Iteration 3:

The new master problem MP3:

Minimize zlower

such that zlower ≥ 2y1 + 3y2 + 3y3

zlower ≥ 21 + 2y1 − 4y2 − 7y3

zlower ≥ 12 + 3y2 + 3y3

yi ∈ {0, 1}, i = 1, ..., 3.

We can find the optimal solution to this problem as ŷ1 = 0, ŷ2 = 0, and ŷ3 = 1, that is

keep factories 1 and 2 closed and open factory 3, yielding a solution of 15 (our new lower

bound). So we update ẑlower = 15 and use this new ŷ to do the third iteration. Now we

solve the DSP when ŷT = [0, 0, 1].

Since O(ŷ) only contains factory 3, vj = min
i∈O(ŷ)

{cij} = c3j for j = 1, ..., 5. This gives

us: v̂1 = 5, v̂2 = 4, v̂3 = 2, v̂4 = 1, v̂5 = 3. Since we have factory 3 to be open, ŵ3j = 0

for j = 1, ..., 5. As factory 1 is closed, w1j = max{(vj − c1j), 0} for j = 1, ..., 5 which leads

to: ŵ11 = 3, ŵ12 = 1, ŵ13 = 0, ŵ14 = 0, ŵ15 = 0. Further, factory 2 being closed yields to

w2j = max{(vj−c2j), 0} for j = 1, ..., 5 which gives us: ŵ21 = 1, ŵ22 = 1, ŵ23 = 1, ŵ24 = 0,

ŵ25 = 0. With this feasible solution to the DSP we can update ẑupper as:

ẑupper =
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
ŷi

= (5 + 4 + 2 + 1 + 3) + (2− 4)ŷ1 + (3− 3)ŷ2 + (3− 0)ŷ3

= 15− 2ŷ1 + 3ŷ3

= 18 with ŷ1 = 0, ŷ2 = 0, ŷ3 = 1.

Since ẑupper = 18 > ẑlower = 15 we continue to the next iteration by adding a new

Benders’ cut (feasibility cut) to MP3 to generate MP4, which is:

zlower ≥ fTy + (d− Cy)T û

zlower ≥
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
yi

zlower ≥ 15− 2y1 + 3y3.

46

Iteration 4:

The new master problem MP4:

Minimize zlower

such that zlower ≥ 2y1 + 3y2 + 3y3

zlower ≥ 21 + 2y1 − 4y2 − 7y3

zlower ≥ 12 + 3y2 + 3y3

zlower ≥ 15− 2y1 + 3y3

yi ∈ {0, 1}, i = 1, ..., 3.

The optimal solution to this problem is ŷ1 = 1, ŷ2 = 0, and ŷ3 = 1, that is keep factory

2 closed and open factories 1 and 3, yielding a solution of 16. So we update ẑlower = 16 and

use this new ŷ to do the fourth iteration. Now we solve the DSP when ŷT = [1, 0, 1].

Since O(ŷ) contains factories 1 and 3, vj = min
i∈O(ŷ)

{cij} = min{c1j, c3j} for j = 1, ..., 5.

This gives us: v̂1 = 2, v̂2 = 3, v̂3 = 2, v̂4 = 1, v̂5 = 3. Since we have factory 1 and 3 to

be open, ŵ1j = ŵ3j = 0 for j = 1, ..., 5. As factory 2 is closed, w2j = max{(vj − c2j), 0}
for j = 1, ..., 5 which leads to: ŵ21 = 0, ŵ22 = 0, ŵ23 = 1, ŵ24 = 0, ŵ25 = 0. With this

feasible solution to the DSP we can update ẑupper as:

ẑupper = fT ŷ + (d− Cŷ)T û

=
5∑

i=1

v̂j +
3∑

i=1

(
fi −

5∑
j=1

ŵij

)
ŷi

= (2 + 3 + 2 + 1 + 3) + (2− 0)ŷ1 + (3− 1)ŷ2 + (3− 0)ŷ3

= 11 + 2ŷ1 + 2ŷ2 + 3ŷ3

= 16 with ŷ1 = 1, ŷ2 = 0, ŷ3 = 1.

Since ẑupper = 16 = ẑlower the process has converged. We have arrived at the optimal

solution of opening factories 1 and 3 which incurs a minimum total cost of 16 for satisfying all

the demands. That brings us to the end of the discussion where we applied the BD algorithm

to a concrete example of the facility location problem realizing how it makes use of the simple

sub structure when fixing the open factories. Now we move on to the next section where

we illustrate how the BD algorithm works on a problem encountered in Intensity Modulated

Radiation Therapy (IMRT) treatment planning.

47

6.2 The Intensity Modulated Radiation Therapy Problem

Here we consider a matrix segmentation problem appearing in Intensity Modulated Ra-

diation Therapy (IMRT) treatment planning, which is explained in detail in “Mixed-integer

programming techniques for decomposing IMRT fluence maps using rectangular apertures”

[32].

We are given a matrix of intensity values that are to be delivered to a patient from a

specified angle and we are working under the condition that the IMRT device can only deliver

radiation through rectangular apertures. An aperture is denoted by a binary matrix where

ones occur successively in each row and column, and thus forming a rectangular shape.

A feasible segmentation is one in which the original given intensity matrix equals the

weighted sum of a number of feasible binary matrices, where the weight of each binary matrix

is in fact the amount of intensity to be transported through the corresponding aperture. In

IMRT context, what we want is to minimize this setup time in treating patients. So, that

defines our mathematical goal as: finding a matrix segmentation that utilizes the minimum

number of aperture matrices to segment the desired intensity matrix. We first consider

a simple example that shows an intensity matrix and a feasible segmentation using three

rectangular apertures:
4 11 0

4 13 2

0 9 2

 = 4×

1 1 0

1 1 0

0 0 0

+ 2×

0 0 0

0 1 1

0 1 1

+ 7×

0 1 0

0 1 0

0 1 0

 .

6.2.1 General Problem [33]

Let Pm×n be the given intensity matrix where the element (i, j) requires pij ∈ Z units of

intensity. Let R be the set of all possible rectangular apertures (that is binary matrices of

size m× n having contiguous rows and columns) that can be utilized in the segmentation of

P . For each rectangle r ∈ R, let xr denote the intensity assigned to rectangle r, and let yr

represent a binary variable that equals 1 if rectangle r is utilized in decomposing P (that is

if xr > 0), and equals 0 otherwise. The element (i, j) is said to be covered by rectangle r

if the (i, j) element of r is 1. We take C(r) to be the set of matrix elements that is covered

48

by rectangle r. Also, we define Mr = min
(i,j)∈C(r)

{pij} as the minimum intensity requirement

among the elements of P that are covered by rectangle r. Finally, let R(i, j) denote the set

of rectangles that cover element (i, j). With the understanding of above definitions, we now

formulate the problem as follows:

Minimize
∑
r∈R

yr

such that
∑

r∈R(i,j)

xr = pij, i = 1, ...,m, j = 1, ..., n

xr ≤Mryr ∀r ∈ R

xr ≥ 0, yr ∈ {0, 1} ∀r ∈ R.

The objective function minimizes the number of rectangular apertures used in the seg-

mentation. The first constraint ensures that each matrix element receives exactly the re-

quired dose, whereas the second constraint introduces the condition that xr cannot be posi-

tive unless yr = 1. Finally, last two constraints represent bounds and logical restrictions on

the variables.

Before we discuss about the decomposition approach, we identify the complications that

arise in solving the above model, which can be alleviated by utilizing BD. In practical clinical

instances the above model which contains two variables and a constraint for each rectangle

develops into a large-scaled MIP. Moreover, the Mr terms in second constraint lead to a

weak Linear Programming relaxation due to the big-M structure.

The BD approach first selects a subset of the rectangles via the MP, and then employs the

SP to check whether the input matrix can be decomposed using only the selected rectangles.

We formulate the MP in terms of the y variables as:

Minimize
∑
r∈R

yr

such that y corresponds to a feasible segmentation

yr ∈ {0, 1} ∀r ∈ R.

49

Then for a given vector ŷ which denotes a chosen subset of rectangles, we can examine

whether the constraints in the MP are met by solving the following SP:

Minimize 0

such that
∑

r∈R(i,j)

xr = pij, i = 1, ...,m, j = 1, ..., n

xr ≤Mrŷr ∀r ∈ R

xr ≥ 0 ∀r ∈ R.

If ŷ is related to a feasible segmentation, then SP is feasible and otherwise it is infeasi-

ble. Note that the MP is an Integer Programming problem whereas SP is an LP problem.

Moreover the second constraint in the SP reduces to a simple upper bound on x variable for

a given ŷ, avoiding the big-M issue linked to the second constraint in the original problem.

Given ŷ, if SP has a feasible solution x̂, then (x̂, ŷ) establishes a feasible solution to the

original problem. Then again, if SP does not produce a feasible solution, then we need to

make sure that ŷ is removed from the feasible region of the MP. BD employs the theory

of LP duality to reach this goal. If we associate variables αij, and βr with first and second

constraint of the SP respectively, the dual formulation DSP becomes:

Maximize
m∑
i=1

n∑
j=1

pijαij +
∑
r∈R

Mrŷrβr

such that
∑

(i,j)∈C(r)

αij + βr ≤ 0, ∀r ∈ R

αij unbounded, i = 1, ...,m, j = 1, ..., n

βr ≤ 0 ∀r ∈ R.

The BD algorithm first solves the MP to optimality, which yields ŷ. If SP has a feasible

solution x̂, then (x̂, ŷ) relates to an optimal matrix segmentation. Yet, if DSP is unbounded

(that is SP is infeasible) we add an infeasibility cut (b−By)T û ≤ 0 to the MP and re-solve it

in the next iteration to gain a new candidate to optimal solution. Depending on the problem

structure, the infeasibility cut can we stated as follows:

m∑
i=1

n∑
j=1

pijα̂ij +
∑
r∈R

(Mrβ̂r)yr ≤ 0

50

where (α̂, β̂) is an extreme ray of DSP.

Now we consider a minor variation of the matrix segmentation problem, with the new goal

of minimizing a weighted combination of the number of matrices used in the segmentation

(corresponding to setup time) and the sum of the matrix coefficients (corresponding to beam-

on-time). In IMRT treatment planning setting, this objective resembles minimizing total

treatment time. To include this change in our formulation, we simply change the objective

function of the original problem to:

Minimize w
∑
r∈R

yr +
∑
r∈R

xr

where the parameter w represents the average setup time per aperture relative to the time

needed to deliver a unit of intensity. So the BD algorithm discussed above must be modified

accordingly. We first add a variable t ∈ R to the new MP, which represents the minimum

beam-on-time that can be gained by the set of rectangles selected. Thus, the formulation of

the relaxed master problem RMP is:

Minimize w
∑
r∈R

yr + t

such that y corresponds to a feasible segmentation

t ≥ minimum beam− on− time corresponding to y

t ≥ 0, yr ∈ {0, 1} ∀r ∈ R.

Given ŷ, the minimum beam-on-time for the corresponding segmentation (if one exists)

can be found by solving the SP corresponding to the RMP which we denote by (R)SP:

Minimize
∑
r∈R

xr

such that
∑

r∈R(i,j)

xr = pij, ∀i = 1, ...,m, j = 1, ..., n

xr ≤Mrŷr ∀r ∈ R

xr ≥ 0, ∀r ∈ R.

51

Taking αij and βr be dual variables related with constraints in (R)SP respectively, the

corresponding dual DSP which we represent by (R)DSP can be written as:

Maximize
m∑
i=1

n∑
j=1

pijαij +
∑
r∈R

Mrŷrβr

such that
∑

(i,j)∈C(r)

αij + βr ≤ 1, ∀r ∈ R

αij unbounded, i = 1, ...,m, j = 1, ..., n

βr ≤ 0 ∀r ∈ R.

Note that (R)SP is derived by merely altering the objective function of SP, and (R)DSP

is derived by altering the right-hand side of first constraint in DSP. If (R)DSP is unbounded,

then we introduce an infeasibility cut of as before and solve the new RMP. Otherwise, take

the value of t in RMP be t̂lower, and the optimal objective function value of (R)DSP be

t̂upper. If t̂lower = t̂upper = t̂, then (ŷ, t̂) is an optimal solution of RMP, that minimizes the

total treatment time. However, if t̂lower < t̂upper, then we need to introduce a new constraint.

BD, once again adopts LP duality theory to develop such a constraint. Letting αij and βr

be corresponding dual variables, the following constraint (feasibility cut: t ≥ (b − By)T û)

meets our requirement.

t ≥
m∑
i=1

n∑
j=1

pijα̂ij +
∑
r∈R

(Mrβ̂r)yr.

6.2.2 An Actual Example [33]

Now we focus on a simple numerical example illustrating the steps of BD algorithm on

our matrix segmentation problem. Consider the input matrix P =

8 3

5 0

. The set of

rectangular apertures that can be used to segment P is:

R =

1 0

0 0

 ,
0 1

0 0

 ,
0 0

1 0

 ,
1 0

1 0

 ,
1 1

0 0

 .

Let the average setup time per aperture relative to the time needed to deliver a unit of

intensity be w = 7. Specifying an xr and a yr variable for each rectangle r = 1, . . . , 5, the

52

goal of minimizing total treatment time can be stated as an MIP as follows (that is the

original problem (P1) according to the terminology in previous section):

Minimize 7× (y1 + y2 + y3 + y4 + y5) + x1 + x2 + x3 + x4 + x5

such that x1 + x4 + x5 = 8

x2 + x5 = 3

x3 + x4 = 5

x1 ≤ 8y1, x2 ≤ 3y2, x3 ≤ 5y3, x4 ≤ 5y4, x5 ≤ 3y5

xr ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5.

Iteration 1:

The Relaxed Master Problem (RMP1) can be stated as:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t

such that t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5.

For a given ŷ, the Primal Subproblem (R)SP can be given as:

Minimize x1 + x2 + x3 + x4 + x5

such that x1 + x4 + x5 = 8

x2 + x5 = 3

x3 + x4 = 5

x1 ≤ 8ŷ1, x2 ≤ 3ŷ2, x3 ≤ 5ŷ3, x4 ≤ 5ŷ4, x5 ≤ 3ŷ5

xr ≥ 0, ∀r = 1, . . . , 5.

53

Associating dual variables α11, α12, α21 with first three constraints of (R)SP and β1, . . . , β5

with last constraint of (R)SP, we get the Dual Subproblem (R)DSP.

Maximize 8α11 + 3α12 + 5α21 + 8ŷ1β1 + 3ŷ2β2 + 5ŷ3β3 + 5ŷ4β4 + 3ŷ5β5

such that α11 + β1 ≤ 1

α12 + β2 ≤ 1

α21 + β3 ≤ 1

α11 + α21 + β4 ≤ 1

α11 + α12 + β5 ≤ 1

α11, α12, α21 unbounded

βr ≤ 0, ∀r = 1, . . . , 5.

To start the iterations, we solve the RMP1 which has the optimal solution ŷ1 = ŷ2 =

ŷ3 = ŷ4 = ŷ5 = 0, and t̂ = 0. So we update t̂lower = 0 and solve the (R)DSP when

ŷT = [0, 0, 0, 0, 0].

We set the objective function to: max 8α11 + 3α12 + 5α21, and solve (R)DSP. It is

unbounded having an extreme ray: α11 = 2, α12 = −1, α21 = −1, β1 = −2, β2 = 0, β3 = 0,

β4 = −1, β5 = −1. So we introduce the following Benders’ infeasibility cut to RMP1 to

generate RMP2.

m∑
i=1

n∑
j=1

pijα̂ij +
∑
r∈R

Mrβ̂ryr ≤ 0

8− 16y1 − 5y4 − 3y5 ≤ 0

Iteration 2:

The new relaxed master problem RMP2:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t

such that 8− 16y1 − 5y4 − 3y5 ≤ 0

t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5.

54

An optimal solution to this problem is to choose ŷ1 = 1, ŷ2 = ŷ3 = ŷ4 = ŷ5 = 0, and t̂ =

0. So still t̂lower = 0 and we use this new ŷ to do the second iteration. We solve the (R)DSP

when ŷT = [1, 0, 0, 0, 0].

We set the objective function of (R)DSP to: max 8α11 + 3α12 + 5α21 + 8β1, and solve

(R)DSP. It is again unbounded having an extreme ray: α11 = 0, α12 = 0, α21 = 1, β1 = 0,

β2 = 0, β3 = −1, β4 = −1, β5 = 0. We introduce a Benders’ infeasibility cut which can be

written as follows to RMP2 to build RMP3.

m∑
i=1

n∑
j=1

pijα̂ij +
∑
r∈R

Mrβ̂ryr ≤ 0

5− 5y3 − 5y4 ≤ 0

Iteration 3:

The new relaxed master problem RMP3:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t

such that 8− 16y1 − 5y4 − 3y5 ≤ 0

5− 5y3 − 5y4 ≤ 0

t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5.

An optimal solution to this problem is to choose ŷ1 = ŷ2 = ŷ3 = 0, ŷ4 = ŷ5 = 1, and

t̂ = 0. So still t̂lower = 0 and we use this new ŷ to do the third iteration. We solve the

(R)DSP when ŷT = [0, 0, 0, 1, 1].

We set the objective function of (R)DSP to: max 8α11 + 3α12 + 5α21 + 5β4 + 3β5, and

solve (R)DSP. It has an optimal solution: α11 = 1, α12 = 1, α21 = 1, β1 = 0, β2 = 0, β3 = 0,

β4 = −1, β5 = −1, and the corresponding objective function value is: 8(1) + 3(1) + 5(1) +

5(−1) + 3(−1) = 8. Then we update t̂upper = 8 and continue to the next iteration since

t̂upper = 8 > t̂lower = 0. We add the following Benders feasibility cut to RMP3 to form

RMP4.

t ≥
m∑
i=1

n∑
j=1

pijα̂ij +
∑
r∈R

(Mrβ̂r)yr

t ≥ 16− 5y4 − 3y5

55

Iteration 4:

The new relaxed master problem RMP4:

Minimize 7× (y1 + y2 + y3 + y4 + y5) + t

such that 8− 16y1 − 5y4 − 3y5 ≤ 0

5− 5y3 − 5y4 ≤ 0

t ≥ 16− 5y4 − 3y5

t ≥ 0, yr ∈ {0, 1} ∀r = 1, . . . , 5.

An optimal solution is ŷT = [0, 0, 0, 1, 1]; t̂ = 8. So we update t̂lower = 8. Note that ŷ

is equal to the solution generated in the previous iteration, and therefore t̂upper = 8. Since

t̂upper = 8 = t̂lower, optimality has been reached and we stop. We have arrived at the optimal

solution of ŷ1 = 0, ŷ2 = 0, ŷ3 = 0, ŷ4 = 1, ŷ5 = 1 x̂1 = 0, x̂2 = 0, x̂3 = 0, x̂4 = 5, x̂5 = 3, with

an optimal solution value of 7 × (y1 + y2 + y3 + y4 + y5) + x1 + x2 + x3 + x4 + x5 = 22. It

declares that we should use aperture 4 with an intensity of 5 units and aperture 5 with an

intensity of 3 units and the total treatment time will be 22 units.

This marks the conclusion of the discussion where we applied the BD algorithm to an

actual example arising in IMRT treatment planning realizing how BD makes use of the

relaxation of the MP. The chapter then continues to briefly analyze some complicated real-

life applications benefited by BD algorithm.

6.3 Advanced Applications

Here we take into account the four applications: Simultaneous Aircraft Routing and

Crew Scheduling, Hydrothermal Scheduling, The Concrete Delivery Problem, and The Lock

Scheduling Problem, where they utilize classical BD, generalized BD, logic-based BD, and

combinatorial BD respectively.

56

6.3.1 Simultaneous Aircraft Routing and Crew Scheduling

Suppose we are given a set of flight legs to be flown by a specific type of aircraft. Then

simultaneous aircraft routing and crew scheduling problem involves identifying a minimum-

cost set of aircraft routes and crew pairings so that we allocate one aircraft and one crew for

each flight leg, ensuring side constraints are met. Even though some side constraints such as

maximum flight time and maintenance requirements depend only on crews or aircraft, linking

constraints enforce minimum connection times for crews that involve aircraft connections.

To manage these linking constraints, a solution approach based on BD is proposed in [8].

The proposed method reiterates between a master problem which solves the aircraft routing

problem, and a subproblem which solves the crew pairing problem.

6.3.2 Hydrothermal Scheduling

In short-term hydrothermal scheduling, the transmission network is usually formulated

with dc power flow techniques. However, such modeling, can be directed to impractical so-

lutions when it is verified with ac power flow.There are other approaches in thermal systems

that focus on the ac network modeling but not the optimization of losses. The method

presented in [31] focuses on issues such as congestion management and control of service

quality that frequently occur in large and weakly meshed networks (the typical pattern of

power systems in Latin America). Thus, it represents a new decomposition method that

concentrates on the network through ac modeling within the hydrothermal scheduling opti-

mization process including the losses. They adopt generalized Benders’ Decomposition and

conventional, well-known optimization techniques to solve this problem. The master prob-

lem of the suggested model describes the generation levels by considering the inter-temporal

constraints. The subproblem is to define both the active and the reactive economical dis-

patches for every single time gap of the load curve. It satisfies the electrical constraints via

a modified ac optimal power flow. They also include accelerating techniques to reduce the

number of iterations and CPU time.

57

6.3.3 The Concrete Delivery Problem

The concrete delivery problem is a complicating optimization problem that we encounter

in real life which includes the allocation and distribution of concrete to construction sites.

The main scheduling concern in this problem is that consecutive deliveries to a site need to be

satisfactorily close in time. In [21] they present an exact logic-based Benders Decomposition

for this problem. The master problem which is centered around several characteristics such

as the availability of vehicles, geographical orientation of the customers and production

centers, and the customers demand for concrete; allocates concrete to customers. Then,

the subproblem ensures that the schedule is feasible while satisfying all the routing and

scheduling constraints. Infeasibilities in the schedule are transferred back to the master

problem through several combinatorial inequalities (Benders’ cuts). They adopt a Mixed

Integer Programming approach to solve the master problem, and a Constraint Programming

model and a dedicated scheduling heuristic to solve the subproblem.

6.3.4 The Lock Scheduling Problem

The lock scheduling problem which is in fact a combinatorial optimization question de-

notes an actual task faced by countless number of harbors and waterway operators. It

involves three deeply interconnected subproblems: scheduling lockages, assigning ships to

chambers, and positioning the ships inside the chambers which can be understood respec-

tively as a scheduling, an assignment, and a packing problem. [35] shows that if we merge

the first two problems into a master problem and employ the packing problem in the role of

the subproblem, we can achieve a decomposition that can be solved efficiently by a combi-

natorial Benders’ method . The MP is solved first, thus ordering the ships into a number of

lockages. They subsequently use a packing problem as a subproblem for every lockage which

then introduces several combinatorial Benders cuts to the master problem while ensuring

the feasibility. This is in fact an exact method to tackle the lock scheduling problem.

58

7.0 Conclusion

We discussed the classical BD algorithm in greater depth followed by a mathematical

verification and examples. Then we introduced the extensions to BD algorithm together with

some more complicating real-world applications. Now in the concluding remarks we first

discuss about the impact of the problem formulation on its convergence and the relationship

to other decomposition methods. We will then move our attention to acceleration strategies,

drawbacks, trends, and potential research directions.

7.1 Model Selection for Benders’ Decomposition

Note that the different but equivalent formulations of a given problem may not be equiv-

alent from a computational point of view. Geoffrion and Graves [14] identified that the

functioning of the BD algorithm is also affected by the way we formulate the problem. How-

ever, tighter formulations can often be gained by introducing extra (problem dependent)

constraints. Yet, we may end up with a more time-consuming subproblem, which may also

have a higher degree of degeneracy. So, there must be a comparison between the reduction

in the iterations and the added complexity of the subproblem before arriving at a conclusion.

7.2 Relationship to Other Decomposition Methods

The BD technique is strongly linked with other decomposition methods for LP, such

as Dantzig-Wolfe and Lagrangian optimization. The subproblems in BD and Dantzig-Wolfe

methods are equivalent and explaining an LP problem by Dantzig-Wolfe optimization method

corresponds to applying the BD approach to its dual. Likewise applying BD is the same as

employing Cutting Plane algorithm to the Lagrangian dual. However, we cannot identify

such simple relationships among the decomposition methods in Integer Programming.

59

7.3 Shortcomings of Benders’ Decomposition

We can identify the key downsides of BD as follows [27]: iterations being time consuming,

getting poor feasibility and infeasibility cuts, initial iterations being ineffective, obtaining a

zigzagging behavior of the primal solutions and slow convergence at the end of the algorithm,

and gaining upper bounds that stay unchanged in succeeding iterations due to the existence

of equivalent solutions. As a result, a direct application of the classical BD algorithm may

involve enormous amount of computing time and memory.

7.4 Enhancement Strategies of Benders’ Decomposition

Now we present a brief overview of ways to increase the convergence of the algorithm.

This can be achieved by either advancing the quality of both the generated solutions and

the cuts (therefore reducing the number of iterations) or by refining the technique used to

optimize the master problem and subproblem in each iteration (therefore reducing the time

consumed in each iteration). The decomposition strategy that defines the initial MP and SP

determines both the difficulty of the problems and the quality of the solutions and hence is

another key element of the algorithm that affects its efficiency. [27] defines a four-dimension

classification, that captures all the above aspects.

Decomposition Strategy Solution Procedure Solution Generation Cut Generation

classical standard/standard regular MP classical/classical

modified standard/advanced improved MP classical/improved

advanced/standard alternative MP improved/classical

advanced/advanced heuristics improved/improved

hybrid

Table 7: Classification of enhancement strategies from [27]

The decomposition strategy states how the problem is subdivided to get the initial

master problem and subproblem.

60

The solution procedure concentrates on the algorithms used for the MP and subprob-

lem. The standard techniques are the Simplex Method and Branch and Bound whereas

advanced strategies exploit the structure of the master problem and subproblem or are de-

signed to improve the convergence speed. Here standard/advanced denotes that standard

methods are adopted to solve the master problem whereas advanced methods are utilized to

solve the subproblem. Similarly, they define advanced/advanced, advanced/standard, and

standard/standard.

The solution generation focuses on the method used to guess initial values for the com-

plicating variables. The classical strategy is to solve the master problem without reformation

(denoted as regular master problem). Otherwise, we can use heuristics, an alternative mas-

ter problem, or an improved master problem to obtain solutions quicker or to derive better

solutions. Hybrid approaches can also be specified, for instance; we can obtain an initial

value for the master variables via the regular master problem and then upgrade it using

heuristics.

The cut generation aims at the approach used to derive feasibility and infeasibility

cuts. In the classical method this is achieved via the regular subproblem which we gain from

the decomposition. Other improved strategies either reformulate the subproblem or answer

auxiliary subproblems. Here classical/improved denotes that the classical strategy is used to

generate feasibility cuts and the improved strategies are used to generate infeasibility cuts.

We discussed how the BD algorithm which was first intended for Mixed Integer Linear

Programming problems with continuous subproblems, was expanded to tackle a broader span

of problems including nonlinear, integer, multistage, and constraint programming problems.

Then we extended our analysis by presenting four main classes of acceleration strategies

that have been developed to enhance the classical algorithm: modifying the decomposition,

solving the master problem and subproblem more effectively, generating stronger cuts, and

extracting better solutions.

However, the effectiveness of these strategies is problem-dependent, and a combination

of them generally leads to the best results. Yet, this does not mean that research into the

Benders’ Decomposition algorithm is over since there are still many challenges and open

questions.

61

7.5 Promising Research Directions

In this dissertation, we discussed how the BD method was suitable for problems in which

temporarily fixing the complicating variables makes the remaining problem significantly eas-

ier to handle. Moreover, the BD method can handle problems that experience arithmetical

instability due to big-M constraints and the binary variables that switch them on and off.

It is also useful to tackle bilevel optimization problems that cannot be transformed into

single-level problems via the Karush-Kuhn-Tucker optimality conditions [27]. Besides, it

can be applied to optimization problems for which some of the constraints are not known in

advance, yet are derived iteratively.

However, it appears that even though the range of problem settings addressed by BD

method is expanding, only a few survey articles that focuses on the applications of the

BD method is available. So, there is a need for a comprehensive analysis concentrating on

different applications of the BD algorithm.

We mentioned above that the acceleration strategies are all problem-dependent, and

thus a better understanding their interconnections can lead to improve the convergence rate.

Therefore, it would be of great importance to conduct a broad survey on the acceleration

methodologies to better understand their limitations and consequences.

An alternative acceleration strategy is to tighten the subproblem thus generating stronger

cuts. In [5] they generate Gomory mixed-integer cuts iteratively to tighten the subproblem.

Further research in this area will be worthwhile as well.

In fact, the approaches that tighten the master problem generally add valid cuts only

once before the initial iterations. Thus, there is also a need for a comprehensive research

into the use of more sophisticated Cutting Plane techniques to tighten the master problem

further at each iteration.

When it comes to deriving solutions for the complicating variables, it would be interesting

to know how to generate better cuts through a careful choice from the multiple optimal

solutions of the master problem or how to modify the master problem to obtain solutions

with specific characteristics. Even though these notions have been effectively used in the

framework of Dantzig-Wolfe decomposition, it appears that an extensive study related to

62

applying these ideas in BD context is yet to be performed.

In some problems the subproblem may further divide into several independent subprob-

lems that can be optimized simultaneously. The parallel variants of the BD algorithm, is

another research area that needs to be addressed thoroughly.

7.6 Commercial Software that Implements Benders’ Decomposition

With all this discussion about the algorithm, it is interesting to know whether there is

commercial software which has an implementation of BD algorithm built in.

CPLEX V12.7.0 and later provide an automated BD algorithm which saves programming

time of those who are familiar with the algorithm while making the algorithm handy to those

who know how they want to decompose the problem but are not comfortable enough with

the algorithmic details to apply it [20]. In fact, it can utilize annotations that we provide

for our model to divide the given formulation into a single master and (perhaps multiple)

subproblems. The approach can be used to MILPs and for some forms of problems, this

strategy offers substantial performance improvements. CPLEX V12.7.0 has a new annota-

tion characteristic that allows us to specify a decomposition to our model. If we provide

annotations to the formulation, it tries to refine the decomposition that we specified and

then employs BD algorithm. Yet if we do not annotate our formulation to denote how we

want to decompose the problem CPLEX just carries out traditional Branch and Bound.

Suppose that the annotations we provide suggest that two (or more) variables belong

to different subproblems whereas problem formulation denotes that these variables share

the same constraint implying that these variables are related. Therefore, the subproblems

where these variables occur according to our annotations are not disjoint with respect to the

partition. In such a situation CPLEX yields an error message. Thus, it is better to verify

that we adopt a complete partitioning for our decomposition, that is, the subproblems and

the master problem in fact define a decomposition of the original problem into subproblems

which are disjoint.

In case that we use CPLEX to apply BD to our problem without providing annotations

63

that specify the partitioning, all integer variables will be placed in the master problem

whereas continuous variables will be placed in subproblems. If we do not have either integer

variables or continuous variables in our model, CPLEX will again give an error message

saying that it cannot decompose the problem automatically to employ BD algorithm.

Nevertheless, if we need to implement a feature of BD algorithm which is not supported by

the automated Benders’ feature in a more recent version of CPLEX, we may still implement

our own by means of API (application programming interface) calls.

We have seen that BD method is a technique with applications in numerous disciplines of

mathematics. What began as a technique in mathematical programming problems concern-

ing the logistics of an oil refinery has become an immensely useful method in optimization

and scheduling. This thesis is only an introduction to the scope of the BD algorithm dis-

cussing: the basic information to understand and justify the algorithm, a few of the numerous

applications, and an overview of its extensions.

64

Appendix A

Linear Programming

For those who may not be as familiar with Linear Programming (LP), this appendix is

provided as a short crash course in basic material needed for our discussion. The first part of

the Appendix will go through the formulation of an LP problem, then we will have a short

discussion on solution methods of LP problems.

The LP method was first developed by Leonid Kantorovich in 1939, to employ through

World War II to manage expenses and earnings to lessen the costs to the army while adding

losses to the enemy. This method was not disclosed until 1947 when George B. Dantzig

announced the Simplex Method and John von Neumann established the theory of duality

as a linear optimization solution and utilized it in the discipline of game theory. In todays

global environment, researchers are showing significant attention to LP methods in order to

optimize resource schedules which can provide enormous benefits to a service oriented and

cost-conscious business.

A.1 Preliminaries

Linear Programming deals with the optimization of a function of variables is known as the

objective function, subject to a set of equalities and / or inequalities known as constraints.

The adjective linear implies that all the constraints and the objective must afford expression

as a linear function. First we will identify the basic requirements for a LP problem:

1. There must be a well-defined objective function which is to be optimized (either maxi-

mized or minimized) and which can be expressed as a function of decision variables.

2. The amount of limited resources such as money, production, time, personal, technology

must be expressed as constraints for the LP problem. The constraints impose restrictions

65

on the activities (decision variables) in optimizing the objective function.

3. The decision variables should be interrelated and non-negative. The non-negativity shows

that LP deals with real-life situations.

The objective function, the set of constraints and the non-negativity constraint together

form a Linear Programming problem and we now learn the basic steps in formulating an LP.

Algorithm A.1 Linear Programming Problem Formulation

1. Write down the decision variables of the problem.

2. Formulate the objective function to be optimized as a linear function of the decision

variables.

3. Formulate the system constraints, which are also linear relationships of the decision

variables reflecting the limited resources of the problem.

4. Add the non-negativity constraint from the consideration so that the negative values of

the decision variables do not have any physical interpretation.

If there are n decision variables and m constraints in the problem the mathematical

formulation of the LP problem is:

Maximize (or minimize) Z = c1x1 + c2x2 + ...+ cnxn

subject to the constraints,

a11x1 + a12x2 + ...+ a1nxn (≤,=,≥) b1

a21x1 + a22x2 + ...+ a2nxn (≤,=,≥) b2
...

am1x1 + am2x2 + ...+ amnxn (≤,=,≥) bm

x1, x2, ..., xn ≥ 0

where, xj is the quantity of the jth decision variable, cj is a constant representing per

unit contribution to the objective function of the jth decision variable, aij is a constant

representing exchange coefficients of the jth decision variable ith constraint, bj is a constant

representing ith constraint requirement, and x1, x2, ..., xn are decision variables.

66

Now that we have a basic understanding of constructing the mathematical program for

a given LP model, we continue with a brief discussion of solution methods of LPs, which

comprises of two basic methods: graphical solution method and Simplex Method.

A.2 Graphical Method

An LP problem with only two variables presents a simple case for which the solution

can be derived using a graphical method. Before focusing on the steps involved in graphical

method, we first take a look at a related theorem which roughly states that the optimal

solution to an LP problem occurs at a corner point.

Theorem A.1 (The Fundamental Theorem of Linear Programming from [36]).

If the optimal value of the objective function in a Linear Programming problem exists, then

that value (known as the optimal solution) must occur at one or more of the corner points

of the feasible region.

Due to the scope of this thesis, no attention will be given to actually proving the above

theorem and instead we then concentrate on the steps related to graphical method where we

utilize the theorem.

Algorithm A.2 Graphical Method

1. Formulate the LP.

2. Represent constraints as equalities on x1, x2 coordinate plane and find the convex region

formed by them.

3. Plot the objective function

4. Find the vertices of the convex region and also the value of the objective function at

each vertex. The vertex that gives the optimal value of the objective function gives the

optimal solution to the problem.

It is important to be familiar with the terminology for solutions of the LP models.

Solution is any specification of values for the decision variables; feasible solution is a solution

for which all the constraints are satisfied; infeasible solution is a solution for which at least

67

one constraint is violated; feasible region is the collection of all feasible solutions; optimal

solution is a feasible solution that has the most favorable value of the objective function;

and most favorable value is the largest value is the objective function is to be maximized,

whereas it is the smallest value if the objective function is to be minimized. There are in

fact two basic methods to find the optimal solution.

1. If the problem is to find the point point in the feasible region, which maximizes the

objective function we first draw the objective line when Z = 0 which passes through the

origin. Then go on drawing lines parallel to this line till the line is farthest away from

the origin and passes through only one point of the feasible region. In that case every

point on that gives the maximum value of the objective function.

2. Here we determine all the corner points for the feasible region algebraically. Then eval-

uate the objective function at each of the corner point and identify the optimal value of

the objective function.

We now focus on some simple examples to understand the above concept better.

Example A.1.

Solve the following LP problem using the graphical method.

Maximize Z = 3x1 + 4x2

such that x1 + x2 ≤ 450

2x1 + x2 ≤ 600

x1, x2 ≥ 0

Evaluating the objective function at each of the corner points:

A ≡ (0, 450), ZA = 0 + 4× 450 = 1800

B ≡ (150, 300), ZB = 3× 150 + 4× 300 = 1650

C ≡ (300, 0), ZC = 3× 300 + 0 = 900

O ≡ (0, 0), ZO = 0 + 0 = 0.

68

0

x1(×100)

x2(×100)

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

6

7

x
1
+
x
2 ≤

450

2
x
1
+

x
2
≤

6
0
0

Z
=

0

Z
=

600

A

C

B

O

i

Figure A.1: Feasible region corresponding to Example A.1

Optimal solution occurs at A, where the maximum value is Z = 1800 at x1 = 0, x2 = 450.

Example A.2.

Solve the following LP problem using the graphical method.

Minimize Z = 20x1 + 40x2

such that 36x1 + 6x2 ≥ 108

3x1 + 12x2 ≥ 36

20x1 + 10x2 ≥ 100

x1, x2 ≥ 0

Evaluating the objective function at each of the corner points:

A ≡ (0, 18), ZA = 0 + 40× 18 = 720

B ≡ (2, 6), ZB = 20× 2 + 40× 6 = 280

C ≡ (4, 2), ZC = 20× 4 + 40× 2 = 160

D ≡ (12, 0), ZD = 20× 12 + 0 = 240.

69

0

x1

x2

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3
6
x
1
+

1
0
x
2
≥

1
0
8

2
0
x
1
+

x
2
≥

1
0
0 3x1 + 12x2 ≥ 36

A

B

C

D

i

Figure A.2: Feasible region corresponding to Example A.2

Optimal solution occurs at C, where the minimum value is Z = 160 at x1 = 4, x2 = 2.

However, there are three types of special cases of solutions to LPs. Multiple optimal

solution is when function falls on more than one optimal point. If there are no points that

simultaneously satisfy all constraints in the problem, we call it an infeasible problem. In

some problems the feasible solution space formed by the constraints is not confined within

a closed boundary. In these cases the objective function can sometimes increase indefinitely

without ever reaching its maximum limit since it never reaches a constraint boundary. We

call such a problem as an unbounded problem .

In this section we looked at a geometric method of solving an LP where we had only two

unknowns and thus had a feasible region that is a subset of the real plane. As we introduce

more variables to the LP, the graph of the feasible region becomes more complicated thus

demanding another method to handle the LPs.

70

A.3 Simplex Method

We can solve LP problems with two or more than two variables by using a systematic

procedure known as Simplex Method. The Simplex Method is based on matrix algebra in

which a set of simultaneous constraint equations is solved through matrix inverse procedure.

If there are n decision variables and m constraints in the problem the mathematical

formulation of the LP problem (which we presented in the previous section) may be put in

the following compact form.

Maximize (or minimize) Z =
n∑

j=1

cjxj

subject to the constraints,
n∑

j=1

aijxj (≤,=,≥) bi, i = 1, 2, ...,m

xj ≥ 0, j = 1, 2, ..., n

Then the canonical form of LP problem which has the characteristics: all decision variables

are non-negative, all constraints of the ≤ type, and objective function is of maximization

type, can be stated as below.

Maximize Z =
n∑

j=1

cjxj

subject to the constraints,
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...,m

xj ≥ 0, j = 1, 2, ..., n

Any LP can be put in the canonical form by the use of some elementary transformations:

1. The minimization of a function f(x) is equal to the maximization of the negative expres-

sion of this function.

2. Any inequality in one direction can be changed to an inequality in the opposite direction

by multiplying both sides of the inequality by -1.

3. An equation may be replaced by two-week inequalities in opposite direction.

4. If a variable is unconstrained in sign, it is expressed as the difference between two non-

negative variables.

71

The standard form of an LP problem is when it has the following properties: all the con-

straints are expressed in the form of equations except the non-negative constraints, the

right hand side of each constraint equation is non-negative, the objective function is of the

maximization or minimization type, and all the decision variables are non-negative.

Another key fact to know before we dive into the algorithm of Simplex Method is convert-

ing inequalities into equations. Constraints with ≤ are converted into equations by adding a

slack variable to each constraint. A slack variable represents the quantity of unused resource.

Constraints with ≥ are converted into equations by subtracting a surplus variable from the

left-hand side of the inequality. We now consider the initial Simplex table which takes the

following form.

Basic Variables Coefficients of

Basis x1 x2 x3 .. s1 s2 .. Solution

Z

Table A.1: Initial Simplex table

Before we look at the Simplex Method it is useful to be aware of the special cases that

the method can encounter. Degeneracy (Degenerate Solutions): In any situation, if there is a

tie for the smallest ratio, one can be selected arbitrarily. When this tie happens at least one

basic variable will be zero in the next iteration and the new solution is said to be degenerate.

The zero value of the variable can lead to a rise to a series of solutions that have the same Z

value. This is referred to as cycling or looping. Alternative Optima (more than one optimal

solution): This occurs when the slope of any objective constraint and the objective function

line are the same. In the optimal Simplex table, if the coefficient of at least one non-basic

variable is equal to zero, the problem has alternative optimal solution. Unbounded solution:

If all coefficients of the variables to be entered into the basis have zero or negative values at

any iteration the problem has an unbounded solution. Infeasible solution: If the set of basic

variables contains at least one artificial variable in the optimal Simplex table, then the given

problem has no feasible solution. We may now proceed to the algorithm.

72

Algorithm A.3 Simplex Method

1. Convert the model into the standard form.

Since the slack variables are unused resources, they contribute nothing to the profit Of

the objective function. So the objective function coefficient of the slack variable is zero.

Also, the Simplex Method requires that any variable that appear in one equation must

appear in all the equations. This can be done by proper placement of a zero coefficient.

2. Determine an initial basic feasible solution.

An initial feasible solution is obtained by setting decision variables to zero. The variables

that have positive values are called basic variables in the solution. The set of basic

variables is called as the basis . The remaining variables are called non-basic variables.

3. Construct the initial Simplex table.

4. Select an entering variable using the optimality condition. Stop if there is no entering

variable; last solution is optimal. This is called as the key column pivot column.

Optimality condition: the entering variable in a maximization (minimization) problem

is the non-basic variable having the most negative (positive) coefficient in the Z-row. Ties

are broken arbitrarily.

Theorem A.2 (Optimality in Simplex Method).

For a maximization (minimization) problem the optimum is reached at the iteration where

all the z-row coefficients of the non-basic variables are non-negative (non-positive).

5. Select a leaving variable using the feasibility condition.

Feasibility condition: for the maximization and minimization problems, the leaving

variable the basic variable associated with the smallest non-negative ratio. Ties a broken

arbitrarily. This row is called as the key row or pivot row . To calculate ratios, divide

each value in the solution column by its corresponding pivot column value. The value at

the intersection of the key column and key row is called key element of pivot element .

6. Compute the new basic solution by using the appropriate Gauss-Jordan computations.

The Gauss Jordan computations to produce the new basic solution include:

a. new pivot row = current pivot row / pivot element

b. for all other rows including Z,

new row= current row- (its pivot column coefficient × new pivot row)

73

A.3.1 Artificial Variables Technique

LPs in which all the constraints are ≤ with non-negative right hand side values offer

a convenient all slack starting basic feasible solution. Models that involve = and / ≥ or

constraints do not possess this property. In such cases identity Matrix cannot be obtained

in the starting Simplex table. Therefore a new type of variable called artificial variable is

introduced. These variables cannot have any physical meaning. They play the role of slacks

at the first iteration and then Simplex procedure may be adopted as usual until the optimal

solution is obtained. To solve such LP there are two methods; M-method (big M-method or

method of penalties) and two-phase method.

Algorithm A.4 The Big M-method

1. Express the problem in the standard form.

2. Add non-negative artificial variables to the left-hand side of each of the equations cor-

responding to constraints of the type ≥ or =. The coefficients of the slack and surplus

variables in the objective functions are zero as they contribute nothing to the objective

function. However, if we add zero coefficient to the artificial variable in the objective

function it can be end up in the final solution base as a part of the optimal solution.

Therefore, to get rid of these variables and would not allow to appear them in the final

solution we can assign a very large penalty (-M for maximization and +M for minimiza-

tion) in the objective function.

Tie for the key row When determining the key row it is possible to get the smallest

positive ratio for two or more variables be identical. Ties between artificial variable and

decision/slack variable, select artificial variable. Ties between decision variable and slack

variable, select slack variable. Ties between decision variable and decision variable, select

any one.

Tie for the key column When there is a tie to the key column, selection can be done

arbitrarily. However, to minimize the number of iterations, the following rules may be

used. If there is a tie in between two or more slack (or decision) variables, the choice can

be made arbitrarily. If there is a tie in between decision variable and slack variable, the

decision variable is chosen.

74

Example A.3.

A company produces both interior and exterior paints from two raw materials M1 and M2.

The following table provides the basic data of the problem.

Tons of raw material per ton of Maximum Daily

availability (tons)Exterior Paint Interior Paint

Raw material M1 6 4 24

Raw material M2 1 2 6

Profit per ton ($1000) 5 4

Table A.2: Basic data corresponding to Example A.3

A market survey indicates that the daily demand for interior paint cannot exceed that of

exterior paint by more than one ton. Also, the maximum daily demand of interior paint is

2 tons. Company wants to determine the optimal (best) product mix of interior and exterior

paints that maximizes the total daily profit.

Let x1, x2 be the number of tons of exterior paint and interior paint respectively.

The corresponding LP:

Maximize Z = 5x1 + 4x2

such that 6x1 + 4x2 ≤ 24

x1 + 2x2 ≤ 6

− x1 + x2 ≤ 1

x2 ≤ 2

x1, x2 ≥ 0.

Introducing slack variables,

Maximize Z = 5x1 + 4x2

such that 6x1 + 4x2 + s1 = 24

x1 + 2x2 + s2 = 6

− x1 + x2 + s3 = 1

x2 + s4 = 2

x1, x2, s1, s2, s3, s4 ≥ 0

The initial feasible solution when x1 = 0 and x2 = 0 is: maxZ = 0, s1 = 24, s2 = 6, s3 =

1, and s4 = 2. The basic variables are s1, s2, s3, s4 and non-basic variables are x1, x2.

The above information can be shown in the table form as follows.

75

Basis x1 x2 s1 s2 s3 s4 Solution Ratio

Z -5 -4 0 0 0 0 0

s1 6 4 1 0 0 0 24 24/6 = 4

s2 1 2 0 1 0 0 6 6/1 = 6

s3 -1 1 0 0 1 0 1 1/− 1 = −1

s4 0 1 0 0 0 1 2 2/0 =∞

Table A.3: Initial Simplex table corresponding to Example A.3

We identify column 1 as the pivot column according to item 4 of Algorithm A.3 (that is,

the entering variable is x1). According to item 5 of Algorithm A.3 row 2 can be recognized

as the pivot row (that is, the leaving variable is s1) and pivot element as 6. Then we do

the following calculations: r2 → r2/pivot element, r1 → r1 − (−5)r2, r3 → r3 − (1)r2,

r4 → r1− (−1)r2, and r5 → r5− (0)r2 which leads to the second Simplex table corresponding

to Example A.3.

x1 x2 s1 s2 s3 s4 Solution

r2 6 4 1 0 0 0 24

r2 → r2/pivot element 1 2/3 1/6 0 0 0 4

r1 -5 -4 0 0 0 0 0

r1 → r1 − (−5)r2 0 -2/3 5/6 0 0 0 20

r3 1 2 0 1 0 0 6

r3 → r3 − (1)r2 0 4/3 -1/6 1 0 0 2

r4 -1 1 0 0 1 0 1

r4 → r1 − (−1)r2 0 5/3 1/6 0 1 0 5

r5 0 1 0 0 0 1 2

r5 → r5 − (0)r2 0 1 0 0 0 1 2

Table A.4: Calculations leading to the second Simplex table corresponding to Example A.3

76

Basis x1 x2 s1 s2 s3 s4 Solution Ratio

Z 0 -2/3 5/6 0 0 0 20 30

x1 1 2/3 1/6 0 0 0 4 6

s2 0 4/3 -1/6 1 0 0 2 3/2

s3 0 5/3 1/6 0 1 0 5 3

s4 0 1 0 0 0 1 2 2

Table A.5: Second Simplex table corresponding to Example A.3

Again, we identify pivot column (entering variable), pivot row (leaving variable) and pivot

element. Then do the necessary calculations to get the following table.

Basis x1 x2 s1 s2 s3 s4 Solution Ratio

Z 0 0 3/4 1/2 0 0 21

x1 1 0 1/4 -1/2 0 0 3

x2 0 1 -1/8 3/4 0 0 3/2

s3 0 0 3/8 -5/4 1 0 5/2

s4 0 0 -1/8 -3/4 0 1 1/2

Table A.6: Final optimal Simplex table corresponding to Example A.3

This is the optimal table and the solution is: Zmax = 21, x1 = 3, and x2 = 3/2. That

is we have to produce 3 tons from exterior paint and 1.5 tons from interior paint to get the

maximum daily profit $ 21,000.

There are many applications of Linear Programming that do not accept fractional solu-

tions. If a Linear Programming model necessitates integer solutions it is normal to adopt

the techniques learned beforehand to solve the problem over the real numbers, then round

the solution. Unfortunately, this does not always produce a feasible solution. So we employ

Integer Linear Programming techniques like: Gomory Cut-Planes, and Dankins Branch and

Bound which we discuss in the next section of our Appendix.

77

Appendix B

Integer Programming

An Integer Programming is nothing but a Linear Programming with the added require-

ment that all variables be integers. After setting up the LP of the problem and taking

account all the constraints there are many software like Excel, MATLAB, etc. that can be

used to find the optimal solution and the objective value solution.

A special case of the Integer Programming is the Binary Integer Programming. In binary

problem, each variable can only take on the value 0 or 1. This may represent the selection

or rejection of an option, yes or no questions, an accepted or failed problem, even or odd

problems or many other situations.

B.1 Preliminaries

There are many techniques used to solve Integer Programming problems and the two

most common techniques used are called Cutting Plane (CP) method and Branch and Bound

(BB) method. The Cutting Plane method consists in adding one or more constraints to the

Integer Programming problems to help produce an optimal integer solution. There are no

theoretical reasons for choosing between the cut algorithm and Branch and Bound algorithm.

BB algorithm consists of a systematic enumeration of all candidates to solution by using

upper and lower estimated bounds of the quantity being optimized.

B.2 Cutting Plane Algorithm

The first solution technique we discuss is CP method which we state as follows.

78

Algorithm B.1 Cutting Plane Algorithm

1. Solve the continuous problem as an LP that is ignore integrality.

2. If by chance the optimal basic variables are all integer then the optimal solution has been

found. Otherwise:

3. Generate a cut that is a constraint which is satisfied by all integer solutions to the

problem but not by the current LP solution.

4. Add this new constraint and go to 1.

The problem is to define cuts that ensure the convergence of the algorithm in a finite

number of steps. The first finite algorithm was devised by R.E. Gomory in 1958.0

x

y

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

C
U
T
1

CUT2

C
U
T
3

i

Figure B.1: Gomory cuts

Before introducing the second technique, we consider an example to see how the CP

method works.

79

Example B.1.

Solve the following problem using Cutting Plane Method.

Minimize x− y

such that 3x+ 4y ≤ 6

x− y ≤ 1

x, y ∈ N0

Recall that minimizing f(x) is same as maximizing −f(x).

Maximize − (x− y)

such that 3x+ 4y ≤ 6

x− y ≤ 1

x, y ∈ N0

The feasible region of the current model can be represented as follows.0

x

y

-1 0 1 2 3 4

-1

0

1

2

3

3x
+
4y

=
6

x
−
y
=
1

i

Figure B.2: Initial feasible region corresponding to Example B.1

Introducing slack variables the model can be written as:

Maximize P = −x+ y

such that 3x+ 4y + s1 = 6

x− y + s2 = 1

x, y, s1, s2 ∈ N0.

80

We consider the initial Simplex tableau, with the basic feasible solution: x = y = 0 and

s1 = 6, s2 = 1, P = 0.

Basis x y s1 s2 Solution

P 1 -1 0 0 0

s1 3 4 1 0 6

s2 1 -1 0 1 1

Table B.1: Initial Simplex table corresponding to Example B.1

We can find the final Simplex tableau to be:

Basis x y s1 s2 Solution

P 7/4 0 1/4 0 3/2

y 3/4 1 1/4 0 3/2

s2 7/4 0 1/4 1 5/2

Table B.2: Final optimal Simplex table corresponding to Example B.1

Considering row 2:

3

4
x+ y +

1

4
s1 =

3

2

y =
3

2
− 1

4
s1 −

3

4
x

y = (1 +
1

2
)− (0 +

1

4
)s1 − (0 +

3

4
)x

y = 1 + (
1

2
− 1

4
s1 −

3

4
x)

Introducing 1st Gomory cut:

1

2
− 1

4
s1 −

3

4
x ≤ 0

1

2
≤ 1

4
s1 +

3

4
x

81

Now by first constraint: ⇒ s1 = 6− 3x− 4y

Thus the new constraint can be written as:

1

2
≤ 1

4
(6− 3x− 4y) +

3

4
x

1

2
≤ 3

2
− y

y ≤ 1

Thus the LP problem becomes:

Maximize P = −x+ y

such that 3x+ 4y ≤ 6

x− y ≤ 1

y ≤ 1

x, y, s1, s2 ∈ N0.

The new feasible region of the model can be represented as follows.0

x

y

-1 0 1 2 3 4

-1

0

1

2

3

3x
+
4y

=
6

x
−
y
=
1

y = 1

i

Figure B.3: New feasible region corresponding to Example B.1

82

Again, introducing slack variables:

Maximize P = −x+ y

such that 3x+ 4y + s1 = 6

x− y + s2 = 1

y + s3 = 1

x, y, s1, s2 ∈ N0.

Then the initial Simplex tableau:

Basis x y s1 s2 s3 Solution

P 1 -1 0 0 0 0

s1 3 4 1 0 0 6

s2 1 -1 0 1 0 1

s3 0 1 0 0 1 1

Table B.3: New initial Simplex table corresponding to Example B.1

We can find the final Simplex tableau to be:

Basis x y s1 s2 s3 Solution

P 1 0 0 0 1 1

s1 3 0 1 0 -4 2

s2 1 0 0 1 1 2

y 0 1 0 0 1 1

Table B.4: New final optimal Simplex table corresponding to Example B.1

⇒ y = 1, s1 = 2, s2 = 2.

Again considering the first constraint: x = 6−4y−s1
3

= 0.

Thus x = 0, y = 1 maximizes P = −x+ y and Pmax = 1.

That is x = 0, y = 1 minimizes P = x− y and Pmin = −1.

83

B.3 Branch and Bound Algorithm

Now we consider our second solution technique which was introduced by R.J. Dankin

in 1965. Assume that we are trying to solve the mixed integer problem which we call P0.

The first step is to solve the continuous LP problem obtained by ignoring the integrality

constraints. If in the optimal solution, one or more of the integer variables turn out to be

non-integer, we choose one such variable and use it to split the given problem P0 into two

sub-problems P1 and P2. Suppose the variable chosen is yj and it takes the non-integral

value βj in the continuous optimum. Then P1 and P2 are defined as follows:

P1 = P0 with the added constraint yj ≤ bβjc

P2 = P0 with the added constraint yj ≥ bβjc+ 1.

Now any solution to P0 is either a solution of P1 or P2 and so P0 can be solved by solving P1

and P2. We continue by solving the LP problems associated with P1 and P2. Then choose

one of the problems and if necessary split it into two subproblems as was done with P0. The

principle of Branch and Bound is illustrated below.
0

P0

P1 P2

P3 P4

yj ≤ bβjc yj ≥ bβjc+ 1

yk ≤ bβkc yk ≥ bβkc+ 1

i

Figure B.4: Branch and Bound algorithm

Before stating the algorithm we now include a remark to our discussion regarding the

recent trends in solving Integer Programming problems. Among the methods of solving

Integer Programming problems, CP is fast, yet unreliable while BB is reliable but slow. Now

84

we have a new method called Branch and Cut which is in fact a blend of CP method and

BB algorithm. This method which mergers the advantages of the two techniques CP and

BB to lessen the shortcomings, has recognized to be a very effective method for solving a

diversity of Integer Programming problems.

Algorithm B.2 Branch and Bound Algorithm

1. Solve the Linear Programming problem over the real numbers.

2. Identify a solution variable yj that has a non-integer value βj.

3. Branch the LP problem into two new problems by introducing into one the constraint

yj ≤ bβjc and into the other introduce the constraint yj ≥ bβjc+ 1.

4. Solve each branch as an LP problem over the reals. If either has a solution, stop. Else

repeat 1 for both branches.

Example B.2.

Solve the following problem by incrementally using BB method.

Maximize 4x1 + 3x2 + 3x3

such that 4x1 + 2x2 + x3 ≤ 10

3x1 + 4x2 + 2x3 ≤ 14

2x1 + 1x2 + 3x3 ≤ 7

x1, x2, x3 ∈ N0

Solving over the reals gives a maximum of P = 13.8 when x1 = 1.2, x2 = 2.2 and

x3 = 0.8. The problem now branches into two LP problems with the first Branch having the

additional constraint that x2 ≤ 2 and the second branch x2 ≥ 3. Branch 1 yields P = 13.6

at (1.3, 2, 0.8) where Branch 2 has an integer solution P = 12 at (0, 3, 1). Since we may be

able to do better than P = 12 we further split Branch 1 into Branches 3 and 4 by respectively

introducing constraints x1 ≤ 1 and x1 ≥ 2. Branch 3 yields P = 13 at (1, 2, 1) where Branch

4 gives P = 12.2 at (2, 0.6, 0.8). Branch 3 has an integer solution, but we may be able to

do better than its value of 13. Branch 4 further subdivides by introducing the constraints

x2 ≤ 0, in fact (x2 = 0) (Branch 5) and x2 ≥ 1 (Branch 6). Branch 6 yields another integer

85

solution P = 11 at (2, 1, 0) which is a smaller value compared to the previous integer value

of 13. Branch 5 produces P = 11.6 at (2.3, 0, 0.8). Branch 5 can again be subdivided by

introducing the constraint x1 ≤ 2 (Branch 7) and x1 ≥ 3 (Branch 8). Branch 7 leads to

an integer solution P = 11 at (2, 0, 1) which is again less than the previous integer solution

where P = 13. Branch 8 has an empty feasible region since it clearly violates first constraint.

Continuing down any branch would only lead to smaller values for P , thus we terminate the

process. Taking LP 1 to denote the given problem we can summarize the above as:

Branch LP Solution

LP 1 P = 13.8 at (1.2, 2.2, 0.8)

1 LP 1 P = 13.6 at (1.3, 2, 0.8)

x2 ≤ 2

2 LP 1 P = 12 at (0, 3, 1)

x2 ≥ 3

3 LP 1 P = 13 at (1, 2, 1)

x2 ≤ 2, x1 ≤ 1

4 LP 1 P = 12.2 at (2, 0.6, 0.8)

x2 ≤ 2, x1 ≥ 2

5 LP 1 P = 11.6 at (2.3, 0, 0.8)

x2 ≤ 2, x1 ≥ 2, x2 = 0

6 LP 1 P = 11 at (2, 1, 0)

x2 ≤ 2, x1 ≥ 2, x2 ≥ 1

7 LP 1 P = 11 at (2, 0, 1)

x2 ≤ 2, x1 ≥ 2, x2 = 0, x1 ≤ 2

8 LP 1 not feasible

x2 ≤ 2, x1 ≥ 2, x2 = 0, x1 ≥ 3

Table B.5: Branches of Branch and Bound method corresponding to Example B.2

Further, the process tree for the above example can be illustrated as below.

86

0

P = 13.8 at (1.2,2.2, 0.8)

P = 13.6 at (1.3, 2, 0.8) P = 12 at (0, 3, 1)

P = 13 at (1, 2, 1) P = 12.2 at (2,0.6, 0.8)

P = 11.6 at (2.3, 0, 0.8) P = 11 at (2, 1, 0)

P = 11 at (2, 0, 1) not feasible

x2 ≤ 2
1

x2 ≥ 3
2

x1 ≤ 1
3

x1 ≥ 2
4

x2 ≤ 0
5

x2 ≥ 1
6

x1 ≤ 2
7

x1 ≥ 3
8

i

Figure B.5: Process tree corresponding to Example B.2

Thus, x1 = 1, x2 = 2, x3 = 1 maximizes P and Pmax = 13 units.

87

Bibliography

[1] Jacques F Benders. Partitioning procedures for solving mixed-variables programming
problems. Computational Management Science, 2(1):3–19, 2005.

[2] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, vol-
ume 6. Athena Scientific Belmont, MA, 1997.

[3] Michael J Best and Klaus Ritter. Linear programming. Prentice Hall Upper Saddle
River, NJ, 1985.

[4] John R Birge. Decomposition and partitioning methods for multistage stochastic
linear programs. Operations research, 33(5):989–1007, 1985.

[5] Merve Bodur, Sanjeeb Dash, Oktay Günlük, and James Luedtke. Strengthened ben-
ders cuts for stochastic integer programs with continuous recourse. INFORMS Journal
on Computing, 29(1):77–91, 2016.

[6] Uffe Gram Christensen and Anders Bjerg Pedersen. Lecture note on benders decom-
position, 2008.

[7] Gianni Codato and Matteo Fischetti. Combinatorial benders’ cuts for mixed-integer
linear programming. Operations Research, 54(4):756–766, 2006.

[8] Jean-François Cordeau, Goran Stojković, François Soumis, and Jacques Desrosiers.
Benders decomposition for simultaneous aircraft routing and crew scheduling. Trans-
portation science, 35(4):375–388, 2001.

[9] Alysson M Costa. A survey on benders decomposition applied to fixed-charge network
design problems. Computers & operations research, 32(6):1429–1450, 2005.

[10] Jean-François Côté, Mauro Dell’Amico, and Manuel Iori. Combinatorial benders’ cuts
for the strip packing problem. Operations Research, 62(3):643–661, 2014.

[11] Teodor Gabriel Crainic, Mike Hewitt, and Walter Rei. Partial decomposition strategies
for two-stage stochastic integer programs. CIRRELT, 2014.

88

[12] Bernard Gendron, Maria Grazia Scutellà, Rosario G Garroppo, Gianfranco Nencioni,
and Luca Tavanti. A branch-and-benders-cut method for nonlinear power design
in green wireless local area networks. European Journal of Operational Research,
255(1):151–162, 2016.

[13] Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237–260, 1972.

[14] Arthur M Geoffrion and Glenn W Graves. Multicommodity distribution system design
by benders decomposition. Management science, 20(5):822–844, 1974.

[15] A Grothey, S Leyffer, and KIM McKinnon. A note on feasibility in benders decom-
position. Numerical Analysis Report NA/188, Dundee University, 1999.

[16] John Hooker. Logic-based methods for optimization: combining optimization and con-
straint satisfaction, volume 2. John Wiley & Sons, 2011.

[17] John N Hooker. Planning and scheduling by logic-based benders decomposition. Op-
erations Research, 55(3):588–602, 2007.

[18] John N Hooker and Greger Ottosson. Logic-based benders decomposition. Mathe-
matical Programming, 96(1):33–60, 2003.

[19] Yuping Huang and Qipeng Phil Zheng. Benders decomposition, 2012.

[20] IBM Corporation. Benders algorithm in cplex v12.7.0. https://www.ibm.com/
support/knowledgecenter/en/SSSA5P 12.7.0/ilog.odms.cplex.help/CPLEX/
ReleaseNotes/topics/releasenotes127/newBenders.html, 2016. [Online; ac-
cessed 21-July-2019].

[21] Joris Kinable and Michael Trick. A logic based benders approach to the concrete
delivery problem. In International Conference on AI and OR Techniques in Constri-
ant Programming for Combinatorial Optimization Problems, pages 176–192. Springer,
2014.

[22] Curtiss Luong. An Examination of Benders’ Decomposition Approaches in Large-scale
Healthcare Optimization Problems. PhD thesis, 2015.

89

https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/ReleaseNotes/topics/releasenotes127/newBenders.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/ReleaseNotes/topics/releasenotes127/newBenders.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/ReleaseNotes/topics/releasenotes127/newBenders.html

[23] Richard Kipp Martin. Large scale linear and integer optimization: a unified approach.
Springer Science & Business Media, 2012.

[24] Joe Naoum-Sawaya and Samir Elhedhli. A nested benders decomposition approach for
telecommunication network planning. Naval Research Logistics (NRL), 57(6):519–539,
2010.

[25] Manfred Padberg. Classical cuts for mixed-integer programming and branch-and-cut.
Mathematical Methods of Operations Research, 53(2):173–203, 2001.

[26] Benjamin Peterson and Michael A Trick. A benders approach to a transportation
network design problem. In International Conference on AI and OR Techniques in
Constriant Programming for Combinatorial Optimization Problems, pages 326–327.
Springer, 2009.

[27] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The
benders decomposition algorithm: A literature review. European Journal of Opera-
tional Research, 259(3):801–817, 2017.

[28] Georgios KD Saharidis and Antonios Fragkogios. Open problems on benders de-
composition algorithm. In Open Problems in Optimization and Data Analysis, pages
305–317. Springer, 2018.

[29] NV Sahinidis and Ignacio E Grossmann. Convergence properties of generalized ben-
ders decomposition. Computers & Chemical Engineering, 15(7):481–491, 1991.

[30] M Shahidehopour and Yong Fu. Benders decomposition: applying benders decompo-
sition to power systems. IEEE Power and Energy Magazine, 3(2):20–21, 2005.

[31] Wilfredo S Sifuentes and Alberto Vargas. Hydrothermal scheduling using benders
decomposition: accelerating techniques. IEEE Transactions on Power Systems,
22(3):1351–1359, 2007.

[32] Z Caner Taşkın, J Cole Smith, and H Edwin Romeijn. Mixed-integer programming
techniques for decomposing imrt fluence maps using rectangular apertures. Annals of
Operations Research, 196(1):799–818, 2012.

[33] Zeki Caner Taşkin. Benders decomposition. Wiley Encyclopedia of Operations Re-
search and Management Science, 2010.

90

[34] Richard M Van Slyke and Roger Wets. L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663, 1969.

[35] Jannes Verstichel, Joris Kinable, Patrick De Causmaecker, and G Vanden Berghe. A
combinatorial benders decomposition for the lock scheduling problem. Computers &
Operations Research, 54:117–128, 2015.

[36] Jeffrey Paul Wheeler. An Introduction to Optimization with Applications in Data
Analytics and Machine Learning. CRC press, 2020.

[37] Wikipedia contributors. Jacques f. benders — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Jacques F. Benders&oldid=
832059510, 2018. [Online; accessed 13-June-2019].

[38] Christian Wolf. Advanced acceleration techniques for nested Benders decomposition
in stochastic programming. PhD thesis, Universitätsbibliothek, 2014.

[39] Mohammad Mehdi Fazel Zarandi. Using decomposition to solve facility location/fleet
management problems. University of Toronto, 2010.

91

https://en.wikipedia.org/w/index.php?title=Jacques_F._Benders&oldid=832059510
https://en.wikipedia.org/w/index.php?title=Jacques_F._Benders&oldid=832059510

Index

Alternative Optima, 72
Artificial variable, 74

Basic Model of Benders’ Decomposition, 9
Basic variables, 73
Basis, 73
Branch and Bound Algorithm, 84

Canonical form, 71
Classical Benders’ Decomposition algorithm, 10
Combinatorial Benders’ Decomposition, 37, 58
Complicating variables, 4
Constraints, 65
CPLEX, 63
Cuts, 5
Cutting Plane Algorithm, 79

Degenerate solution, 72
Dual problem, 6
Dual subproblem (DSP), 5

Entering variable, 73

Farkas’ Theorem, 25
Feasibility condition in Simplex Method, 73
Feasibility cut, 11, 20
Feasible solution, 7

Generalized Benders’ Decomposition, 35, 57
Graphical method, 67

IMRT planning, 48
Infeasibility cut, 11, 20
Infeasible solution, 7, 70, 72
Integer Programming, 78

L-shaped Decomposition, 37
Leaving variable, 73
Linear Programming, 65
Logic-based Benders’ Decomposition, 36, 58

Master problem (MP), 4
Multiple optimal solution, 70

Nested Benders’ Decomposition, 38
Non-basic variables, 73

Objective function, 65
Optimality condition, 73

Partitioning Theorem, 25
Pivot column, 73
Pivot element, 73
Pivot row, 73
Primal problem, 6

Relaxed master problem (RMP), 19

Simplex Method, 71
Slack variable, 72
Standard form, 72
Subproblem (SP), 4
Surplus variable, 72

The Facility location problem, 39

Unbounded solution, 7, 70, 72

92

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Some applications of Benders' Decomposition algorithm from rahmaniani2017benders
	2. Some optimization problems solved via Benders' Decomposition from rahmaniani2017benders
	3. The relationship between solutions of primal and dual problems
	4. The relationship between primal and dual problems from shahidehopour2005benders
	5. Some versions of Benders' Decomposition algorithm
	6. Basic data corresponding to Example 6.1.2 from christensen2008lecture
	7. Classification of enhancement strategies from rahmaniani2017benders
	A.1. Initial Simplex table
	A.2. Basic data corresponding to Example A.3
	A.3. Initial Simplex table corresponding to Example A.3
	A.4. Calculations leading to the second Simplex table corresponding to Example A.3
	A.5. Second Simplex table corresponding to Example A.3
	A.6. Final optimal Simplex table corresponding to Example A.3
	B.1. Initial Simplex table corresponding to Example B.1
	B.2. Final optimal Simplex table corresponding to Example B.1
	B.3. New initial Simplex table corresponding to Example B.1
	B.4. New final optimal Simplex table corresponding to Example B.1
	B.5. Branches of Branch and Bound method corresponding to Example B.2

	List of Figures
	1. Schematic representation of Benders' Decomposition algorithm from rahmaniani2017benders
	2. Flowchart of classical Benders' Decomposition algorithm from shahidehopour2005benders
	A.1. Feasible region corresponding to Example A.1
	A.2. Feasible region corresponding to Example A.2
	B.1. Gomory cuts
	B.2. Initial feasible region corresponding to Example B.1
	B.3. New feasible region corresponding to Example B.1
	B.4. Branch and Bound algorithm
	B.5. Process tree corresponding to Example B.2

	List of Algorithms
	1. Classical Benders' Decomposition Algorithm from shahidehopour2005benders
	2. The Classical Algorithm with a Relaxed Master Problem from tacskin2010benders
	3. Multi Step Procedure for Solving Problems of the Form (4.1) from benders2005partitioning
	A.1. Linear Programming Problem Formulation
	A.2. Graphical Method
	A.3. Simplex Method
	A.4. The Big M-method
	B.1. Cutting Plane Algorithm
	B.2. Branch and Bound Algorithm

	Preface
	1.0 Introduction
	2.0 History
	3.0 Definitions and Examples
	3.1 Primal and Dual Linear Programs
	3.2 Basic Model of Benders' Decomposition
	3.3 Solution Steps for the Algorithm
	3.4 Alternative Form of Benders Cuts
	3.5 The Algorithm with a Relaxed Master Problem

	4.0 The Algorithm and its Justification
	5.0 Extensions and Generalizations of Benders' Decomposition Algorithm
	5.1 Generalized Benders' Decomposition
	5.2 Logic-based Benders' Decomposition
	5.3 Combinatorial Benders' Decomposition
	5.4 L-shaped Decomposition
	5.5 Nested Benders' Decomposition

	6.0 Applications
	6.1 The Facility Location Problem
	6.1.1 General Problem christensen2008lecture
	6.1.2 An Actual Example christensen2008lecture

	6.2 The Intensity Modulated Radiation Therapy Problem
	6.2.1 General Problem tacskin2010benders
	6.2.2 An Actual Example tacskin2010benders

	6.3 Advanced Applications
	6.3.1 Simultaneous Aircraft Routing and Crew Scheduling
	6.3.2 Hydrothermal Scheduling
	6.3.3 The Concrete Delivery Problem
	6.3.4 The Lock Scheduling Problem

	7.0 Conclusion
	7.1 Model Selection for Benders' Decomposition
	7.2 Relationship to Other Decomposition Methods
	7.3 Shortcomings of Benders' Decomposition
	7.4 Enhancement Strategies of Benders' Decomposition
	7.5 Promising Research Directions
	7.6 Commercial Software that Implements Benders' Decomposition

	Appendix A. Linear Programming
	 A.1 Preliminaries
	 A.2 Graphical Method
	 A.3 Simplex Method
	 A.3.1 Artificial Variables Technique

	Appendix B. Integer Programming
	 B.1 Preliminaries
	 B.2 Cutting Plane Algorithm
	 B.3 Branch and Bound Algorithm

	Bibliography
	Index

