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RÉSUMÉ

La programmation stochastique en nombres entiers (SIP) combine la difficulté de l’incerti-
tude et de la non-convexité et constitue une catégorie de problèmes extrêmement difficiles à
résoudre. La résolution efficace des problèmes SIP est d’une grande importance en raison de
leur vaste applicabilité. Par conséquent, l’intérêt principal de cette dissertation porte sur les
méthodes de résolution pour les SIP. Nous considérons les SIP en deux étapes et présentons
plusieurs algorithmes de décomposition améliorés pour les résoudre. Notre objectif principal
est de développer de nouveaux schémas de décomposition et plusieurs techniques pour amé-
liorer les méthodes de décomposition classiques, pouvant conduire à résoudre optimalement
divers problèmes SIP.

Dans le premier essai de cette thèse, nous présentons une revue de littérature actualisée sur
l’algorithme de décomposition de Benders. Nous fournissons une taxonomie des améliorations
algorithmiques et des stratégies d’accélération de cet algorithme pour synthétiser la littérature
et pour identifier les lacunes, les tendances et les directions de recherche potentielles. En outre,
nous discutons de l’utilisation de la décomposition de Benders pour développer une (méta-
)heuristique efficace, décrire les limites de l’algorithme classique et présenter des extensions
permettant son application à un plus large éventail de problèmes.

Ensuite, nous développons diverses techniques pour surmonter plusieurs des principaux in-
convénients de l’algorithme de décomposition de Benders. Nous proposons l’utilisation de
plans de coupe, de décomposition partielle, d’heuristiques, de coupes plus fortes, de réduc-
tions et de stratégies de démarrage à chaud pour pallier les difficultés numériques dues aux
instabilités, aux inefficacités primales, aux faibles coupes d’optimalité ou de réalisabilité,
et à la faible relaxation linéaire. Nous testons les stratégies proposées sur des instances de
référence de problèmes de conception de réseau stochastique. Des expériences numériques
illustrent l’efficacité des techniques proposées.

Dans le troisième essai de cette thèse, nous proposons une nouvelle approche de décomposition
appelée méthode de décomposition primale-duale. Le développement de cette méthode est
fondé sur une reformulation spécifique des sous-problèmes de Benders, où des copies locales
des variables maîtresses sont introduites, puis relâchées dans la fonction objective. Nous mon-
trons que la méthode proposée atténue significativement les inefficacités primales et duales
de la méthode de décomposition de Benders et qu’elle est étroitement liée à la méthode de
décomposition duale lagrangienne. Les résultats de calcul sur divers problèmes SIP montrent
la supériorité de cette méthode par rapport aux méthodes classiques de décomposition.
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Enfin, nous étudions la parallélisation de la méthode de décomposition de Benders pour
étendre ses performances numériques à des instances plus larges des problèmes SIP. Les va-
riantes parallèles disponibles de cette méthode appliquent une synchronisation rigide entre les
processeurs maître et esclave. De ce fait, elles souffrent d’un important déséquilibre de charge
lorsqu’elles sont appliquées aux problèmes SIP. Cela est dû à un problème maître difficile qui
provoque un important déséquilibre entre processeur et charge de travail. Nous proposons une
méthode Benders parallèle asynchrone dans un cadre de type branche-et-coupe. L’assouplis-
sement des exigences de synchronisation entraine des problèmes de convergence et d’efficacité
divers auxquels nous répondons en introduisant plusieurs techniques d’accélération et de re-
cherche. Les résultats indiquent que notre algorithme atteint des taux d’accélération plus
élevés que les méthodes synchronisées conventionnelles et qu’il est plus rapide de plusieurs
ordres de grandeur que CPLEX 12.7.
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ABSTRACT

Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity,
and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP
problems is of high importance due to their vast applicability. Therefore, the primary fo-
cus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and
present several enhanced decomposition algorithms for solving them. Our main goal is to
develop new decomposition schemes and several acceleration techniques to enhance the clas-
sical decomposition methods, which can lead to efficiently solving various SIP problems to
optimality.

In the first essay of this dissertation, we present a state-of-the-art survey of the Benders
decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and
the acceleration strategies of this algorithm to synthesize the literature, and to identify
shortcomings, trends and potential research directions. In addition, we discuss the use of
Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the
classical algorithm, and present extensions enabling its application to a broader range of
problems.

Next, we develop various techniques to overcome some of the main shortfalls of the Ben-
ders decomposition algorithm. We propose the use of cutting planes, partial decomposition,
heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges aris-
ing from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear
relaxation. We test the proposed strategies with benchmark instances from stochastic net-
work design problems. Numerical experiments illustrate the computational efficiency of the
proposed techniques.

In the third essay of this dissertation, we propose a new and high-performance decomposition
approach, called Benders dual decomposition method. The development of this method is
based on a specific reformulation of the Benders subproblems, where local copies of the
master variables are introduced and then priced out into the objective function. We show
that the proposed method significantly alleviates the primal and dual shortfalls of the Benders
decomposition method and it is closely related to the Lagrangian dual decomposition method.
Computational results on various SIP problems show the superiority of this method compared
to the classical decomposition methods as well as CPLEX 12.7.

Finally, we study parallelization of the Benders decomposition method. The available par-
allel variants of this method implement a rigid synchronization among the master and slave
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processors. Thus, it suffers from significant load imbalance when applied to the SIP prob-
lems. This is mainly due to having a hard mixed-integer master problem that can take hours
to be optimized. We thus propose an asynchronous parallel Benders method in a branch-
and-cut framework. However, relaxing the synchronization requirements entails convergence
and various efficiency problems which we address them by introducing several acceleration
techniques and search strategies. In particular, we propose the use of artificial subproblems,
cut generation, cut aggregation, cut management, and cut propagation. The results indicate
that our algorithm reaches higher speedup rates compared to the conventional synchronized
methods and it is several orders of magnitude faster than CPLEX 12.7.
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CHAPTER 1 INTRODUCTION

Mixed-integer programming and stochastic programming are essential in addressing some of
the most important engineering and financial applications of optimization, e.g., energy (Wal-
lace and Fleten, 2003), finance (yong Yu et al., 2003; Simsek, 2008), healthcare (Rais and
Viana, 2011), security (Pan and Morton, 2008), transportation (Crainic and Laporte, 1997;
Rahmaniani and Ghaderi, 2013), manufacturing (Zanjani et al., 2013), supply chain (Santoso
et al., 2005), telecommunication (Gendron et al., 1999), just to name a few. These two classes
of the optimization problems are known as the more challenging classes of the mathematical
programming (Nemhauser and Wolsey, 1988; Birge and Louveaux, 1997; Jünger et al., 2009;
Küçükyavuz and Sen, 2017). It is then no surprise that their combination, i.e., stochastic
integer programming (SIP), endures serious conceptual and computational challenges.

Solving realistic SIP problems with off-the-shelf optimization solvers such as CPLEX and
Gurobi is disappointing, see, e.g., the results in Chapters 4 to 6. This is due to the non-
convexities as well as the large number of scenarios required to properly set the value of the
uncertain parameters in the model (Kall et al., 1994; Küçükyavuz and Sen, 2017). For this
reason, decomposition methods are essential and have become the methodology of choice when
dealing with the realistic instances of the SIP problems (Ruszczyński, 1997; Ruszczyński,
2003).

The stochastic problems often exhibit a so-called dual decomposition structure and the dual
of its LP relaxation has a block angular structure (Van Slyke and Wets, 1969). Successful
algorithms take advantage of this special structure to decompose the problem into smaller
pieces, yielding the well-known and classical Benders decomposition (BD) algorithm (Benders,
1962) or Lagrangian dual decomposition (LDD) method (Carøe and Schultz, 1999).

These decomposition methods solve successively several subproblems and a master problem
until an optimal solution is achieved. The BD subproblem is a restriction of the original
problem wherein a specific set of the variables are fixed. At each iteration, the value of these
variables is adjusted by solving the master problem. In the LDD method, the subproblems
are obtained by applying Lagrangian relaxation to some (complicating) constraints. Each
iteration of this method consists of selecting a new set of Lagrangian multipliers by solving
the master problem and solving the subproblems for the chosen multipliers. The master
problems are adjusted using the solution obtained from solving the subproblems, e.g., adding
cuts.

These methods have been subject of intense research due to their practical importance in
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handling a wide gamut of challenging SIP problems (Ruszczyński, 1999, 2003; Wallace and
Ziemba, 2005; Uryasev and Pardalos, 2013). However, the computational performance of these
decomposition methods usually depends on some (problem-specific) acceleration techniques
(Jojic et al., 2010; Rush and Collins, 2012; Rahmaniani et al., 2017a). For instance, the BD
method usually becomes ineffective if the underlying LP relaxation is weak and the LDD
method often exhibits slow convergence due to having hard-to-solve subproblems, updating
the multipliers, and difficulty in generating good feasible solutions from the subproblems.
Likewise, one of the most time consuming part of these decomposition methods lies in solving
the subproblems at each iteration. This is because a large number of scenarios are usually
required to properly set the value of the uncertain parameters and the decomposition methods
yield a subproblem for each scenario. These scenario-subproblems are disjoint. Therefore, in
addition to mathematical techniques, parallel computing techniques are oftentimes used to
accelerate the numerical performance of these methods (Nielsen and Zenios, 1997; Linderoth
and Wright, 2003; Crainic, 2015; Deng et al., 2018).

While many efforts have been made to accelerate the computational performance of these
decomposition methods, the existing methods are yet far from introducing a high-performing
algorithm. In fact, as the results of this dissertation illustrate, there is still significant room for
improvements. Thus, in this dissertation, we strive to improve the efficiency of decomposition
algorithms, particularly the BD method.

This dissertation consists of four papers, concerning the synthesis of the literature, deve-
lopment of the methodological techniques to accelerate the BD method, and presenting a
new decomposition scheme which is closely related to the BD and the LDD methods. Most
of our developments are general and applicable to the two main branches of mathematical
optimization, i.e., mixed-integer and stochastic programming.

To analyze the computational performance of our developments, we consider a wide range
of benchmark instances related to various important and challenging optimization problems.
In particular, we consider network design problems (Magnanti and Wong, 1984; Crainic and
Laporte, 1997; Gendron et al., 1999; Klibi et al., 2010) as one of our main applications
in assessing our methods. This family of challenging problems naturally appear in many
applications (Klibi et al., 2010) and has served as one of the most attractive testbeds for the
BD method (Costa, 2005).

We close this section with an overview of the contributions and structure of this dissertation,
which provides various numerical and theoretical contributions to two main branches of
mathematical optimization, i.e., mixed-integer and stochastic programming.
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1.1 Thesis contribution

The most notable contributions of this dissertation are as follows :
• In the first essay,

- Presenting the first comprehensive literature review of the BD method ;
• In the second essay,

- Proposing new valid inequalities for the network design problems when the BD
method is used to solve them ;

- Proposing the use of add-on cutting plane methods to iteratively add valid in-
equalities to the master and sub- problems of the BD method which significantly
reduces the number of the iterations and tightens the LP relaxation ;

- Revisiting the generation of Pareto-optimal cuts to accelerate the resolution of the
auxiliary subproblem ;

- Proposing an alternative strategy to the classical feasibility cuts by making use of
auxiliary variables and strengthened combinatorial cuts ;

- Proposing a simple and effective warm-start strategy to quickly generate Benders
cuts ;

- Proposing a state-of-the-art Benders decomposition algorithm ;
• In the third essay,

- Proposing a new decomposition technique which combines the complementary ad-
vantages of the classical decomposition methods, i.e., Benders and Lagrangian dual
decomposition method ;

- Showing that the algorithm can theoretically generate stronger optimality and
feasibility cuts than the BD method ;

- Demonstrating that our method can converge to an optimal integer solution at the
root node, i.e., no branching effort being required ;

- Developing various numerically efficient implementation methodologies for the pro-
posed decomposition strategy ;

• In the fourth essay,
- Presenting an extensive literature review and synthesize of the existing parallel BD
methods ;

- Presenting parallelization strategies for the BD algorithm in a branch-and-cut fra-
mework ;

- Designing a framework which maintains the global convergence of our parallel
algorithms when asynchronous communications are used ;

- Modifying some the classical acceleration strategies to properly fit into our parallel
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algorithms ;
- Proposing new acceleration strategies to increase the efficiency of our parallel al-
gorithms.

1.2 Thesis organization

Chapter 2, the first essay of this dissertation, reviews and synthesizes the decades of research
on the BD method in order to clarify the state-of-the-art techniques of the BD’s toolbox and
to identify shortcomings, trends, potential research directions, its relation to other methods
and its extensions.

In Chapter 3, we recall some of the most important definitions and concepts that we exten-
sively use in this dissertation. This chapter helps the readers to have a better insight on the
methodologies that we develop in this dissertation.

Chapter 4 constitutes the second essay of this dissertation. This essay presents various empi-
rical and mathematical techniques to overcome some of the main numerical inefficiencies of
the BD method in solving mixed-integer problems, particularly SIPs. Specifically, to obtain
a state of the art Benders method, it presents various acceleration techniques, including the
use of cutting planes, partial decomposition, heuristics, stronger cuts, reduction and warm-
start strategies. This chapter finishes with extensive computational experiments conducted
on benchmark instances and compares the obtained results to the existing methods.

The third essay of this dissertation is presented in Chapter 5. In this chapter a novel decom-
position algorithm is proposed which is closely related to the Benders and Lagrangian dual
decomposition methods. The proposed method is illustrated over a toy example and various
implementation strategies are proposed. This chapter concludes with the presentation of the
numerical comparisons versus the classical decomposition methods and CPLEX 12.7.

Chapter 6, forming the fourth essay of this dissertation, addresses the parallelization tech-
niques for the BD method in a branch-and-cut framework. The existing parallel BD algo-
rithms are reviewed and the relation of our algorithm to other parallel branch-and-cut is
illustrated. Moreover, to enhance the proposed algorithms various acceleration techniques
and search strategies are proposed. This chapter concludes with the presentation of the nu-
merical results and an evaluation of the performance of our parallel algorithms.

Finally, Chapter 7 provides summary of this dissertation and Chapter 8 gives the conclusions,
including the limitations of our work and various fruitful future research directions.
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CHAPTER 2 CRITICAL LITERATURE REVIEW::: ARTICLE 1::: THE
BENDERS DECOMPOSITION ALGORITHM::: A LITERATURE REVIEW

Ragheb Rahmaniani1, Teodor Gabriel Crainic2, Michel Gendreau1, Walter Rei2
1 CIRRELT & Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville, Montréal H3C 3A7, Canada.
2 CIRRELT & School of Management, Université du Québec à Montréal, P.O. Box 8888, Station

Centre-Ville, Montréal H3C 3P8, Canada.

Abstract. The Benders decomposition algorithm has been successfully applied to a wide
range of difficult optimization problems. This paper presents a state-of-the-art survey of
this algorithm, emphasizing its use in combinatorial optimization. We discuss the classical
algorithm, the impact of the problem formulation on its convergence, and the relationship
to other decomposition methods. We introduce a taxonomy of algorithmic enhancements
and acceleration strategies based on the main components of the algorithm. The taxonomy
provides the framework to synthesize the literature, and to identify shortcomings, trends
and potential research directions. We also discuss the use of the Benders Decomposition to
develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and
present extensions enabling its application to a broader range of problems.

Keywords. Combinatorial optimization, Benders decomposition, Acceleration techniques, Li-
terature review.

History. This article is published in European Journal of Operational Research.

2.1 Introduction

It has been more than five decades since the Benders Decomposition (BD) algorithm was
proposed by Benders (1962), with the main objective of tackling problems with complica-
ting variables, which, when temporarily fixed, yield a problem significantly easier to handle.
The BD method (also referred to as variable partitioning (Zaourar and Malick, 2014) and
outer linearization (Trukhanov et al., 2010)) has become one of the most widely used exact
algorithms, because it exploits the structure of the problem and decentralizes the overall com-
putational burden. Successful applications are found in many divers fields, including planning
and scheduling (Hooker, 2007; Canto, 2008), health care (Luong, 2015), transportation and
telecommunications (Costa, 2005), energy and resource management (Cai et al., 2001; Zhang
and Ponnambalam, 2006), and chemical process design (Zhu and Kuno, 2003), as illustrated
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in Table 2.1.

Table 2.1 Some applications of the Benders decomposition method

Reference Application Reference Application

1 Behnamian (2014) Production planning 17 Jiang et al. (2009) Distribution planning
2 Adulyasak et al. (2015) Production routing 18 Wheatley et al. (2015) Inventory control
3 Boland et al. (2015) Facility location 19 Laporte et al. (1994) Traveling salesman
4 Boschetti and Maniezzo (2009) Project scheduling 20 Luong (2015) Healthcare planning
5 Botton et al. (2013) Survivable network design 21 Maravelias and Grossmann (2004) Chemical process design
6 Cai et al. (2001) Water resource management 22 Moreno-Centeno and Karp (2013) Implicit hitting sets
7 Canto (2008) Maintenance scheduling 23 Oliveira et al. (2014) Investment planning
8 Codato and Fischetti (2006) Map labeling 24 Osman and Baki (2014) Transfer line balancing
9 Cordeau et al. (2006) Logistics network design 25 Pérez-Galarce et al. (2014) Spanning tree
10 Cordeau et al. (2001a) Locomotive assignment 26 Pishvaee et al. (2014) Supply chain network design
11 Cordeau et al. (2001b) Airline scheduling 27 Rubiales et al. (2013) Hydrothermal coordination
12 Corréa et al. (2007) Vehicle routing 28 Saharidis et al. (2011) Refinery system network planning
13 Côté et al. (2014) Strip packing 29 Sen et al. (2015) Segment allocation
14 Fortz and Poss (2009) Network design 30 Bloom (1983) Capacity expansion
15 Gelareh et al. (2015) Transportation 31 Wang et al. (2016a) Optimal power flow
16 Jenabi et al. (2015) Power management 32 Errico et al. (2016) Public transit

The BD method is based on a sequence of projection, outer linearization, and relaxation
(Geoffrion, 1970a,b). Thus, the model is first projected onto the subspace defined by the
set of complicating variables. The resulting formulation is then dualized, and the associated
extreme rays and points respectively define the feasibility requirements (feasibility cuts) and
the projected costs (optimality cuts) of the complicating variables. Thus, an equivalent for-
mulation can be built by enumerating all the extreme points and rays. However, performing
this enumeration and, then, solving the resulting formulation is generally computationally
exhausting, if not impossible. Hence, one solves the equivalent model by applying a relaxation
strategy to the feasibility and optimality cuts, yielding a Master Problem (MP) and a sub-
problem, which are iteratively solved to respectively guide the search process and generate
the violated cuts.

The BD algorithm was initially proposed for a class of mixed-integer linear programming
(MILP) problems. When the integer variables are fixed, the resulting problem is a continuous
linear program (LP) for which we can use standard duality theory to develop cuts. Many
extensions have since been developed to apply the algorithm to a broader range of problems
(e.g., Geoffrion, 1972; Hooker and Ottosson, 2003). Other developments were proposed to
increase the algorithm’s efficiency on certain optimization classes (e.g., Costa et al., 2012;
Crainic et al., 2014a). In addition, BD often provides a basis for the design of effective
heuristics for problems that would otherwise be intractable (Côté and Laughton, 1984; Raidl,
2015). The BD approach has thus become widely used for linear, nonlinear, integer, stochastic,
multi-stage, bilevel, and other optimization problems, as illustrated in Table 2.2.

Figure 2.1 depicts the increasing interest in the BD algorithm over the years. Despite this level
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Table 2.2 Examples of optimization problems handled via Benders method
Reference Model Reference Model

1 Adulyasak et al. (2015) Multi-period stochastic problem 16 Jenabi et al. (2015) Piecewise linear mixed-integer problem
2 Behnamian (2014) Multi-objective MILP 17 Wolf (2014) Multi-stage stochastic program
3 Cai et al. (2001) Multi-objective nonconvex nonlinear problem 18 Laporte et al. (1994) Probabilistic integer formulation
5 Cordeau et al. (2001b) Pure 0–1 formulation 19 Li (2013) Large-scale nonconvex MINLP
6 Corréa et al. (2007) Binary problem with logical expressions 20 Moreno-Centeno and Karp (2013) Problem with constraints unknown in advance
7 Gabrel et al. (1999) Step increasing cost 21 Bloom (1983) Nonlinear multi-period problem with reliability constraint
8 Côté et al. (2014) MILP with logical constraints 22 Osman and Baki (2014) Nonlinear integer formulation
9 de Camargo et al. (2011) Mixed-integer nonlinear program (MINLP) 23 Pérez-Galarce et al. (2014) Minmax regret problem
10 Emami et al. (2016) Robust optimization problem 24 Pishvaee et al. (2014) Multi-objective possibilistic programming model
11 Fontaine and Minner (2014) Bi-level problem with bilinear constraints 25 Raidl et al. (2014) Integer, bilevel, capacitated problem
12 Fortz and Poss (2009) Multi-layer capacitated network problem 27 Rubiales et al. (2013) Quadratic MILP master problem and nonlinear subproblem
13 Gendron et al. (2016) Binary problem with nonlinear constraints 28 Sahinidis and Grossmann (1991) MINLP and nonconvex problems
14 Grothey et al. (1999) Convex nonlinear problem 29 Harjunkoski and Grossmann (2001) Multi-stage problem with logical and big-M constraints
15 O’Kelly et al. (2014) MINLP with concave objective function and staircase constraint matrix structure

of interest, there has been no comprehensive survey of the method in terms of its numerical
and theoretical challenges and opportunities. The now out-of-date survey by Costa (2005)
reviews only applications to fixed-charge network design problems. The main goal of this
paper therefore is to contribute to filling this gap by reviewing the current state-of-the-art,
focusing on the main ideas for accelerating the method, discussing the main variants and ex-
tensions aimed to handle more general problems involving, e.g., nonlinear/integer/constraint
programming subproblems, and identifying trends and promising research directions.
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Figure 2.1 Annual number of mentions of the Benders decomposition according to
https ://scholar.google.com/.

Many different enhancement strategies were proposed to address the shortcomings of the BD
method and accelerate it. This effort contributed significantly to the success of the method.
We propose a taxonomy of the enhancement and acceleration strategies based on the main
components of the algorithm : the decomposition strategy, the strategies to handle the MP
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and subproblem, and the strategies to generate solutions and cuts. The taxonomy provides the
framework to classify and synthesize the literature and to identify relations among strategies
and between these and the BD method.

The remainder of this article is organized as follows. Section 2.2 presents the classical BD
algorithm, the associated model selection criteria, and its relationship to other decomposi-
tion methods. Section 2.3 presents the proposed taxonomy, used to survey the acceleration
strategies in Sections 2.4 to 2.7. Section 2.8 presents Benders-type heuristics, and Section 2.9
describes extensions of the classical algorithm. Finally, Section 2.10 provides concluding re-
marks and describes promising research directions.

2.2 The Benders decomposition method

We present in this section the classical version of the Benders algorithm (Benders, 1962). We
review its extensions to a broader range of optimization problems in Section 2.9.

2.2.1 The classical version

We consider an MILP of the form

Minimize fTy + cTx (2.1)

subject to Ay = b (2.2)

By +Dx = d (2.3)

x ≥ 0 (2.4)

y ≥ 0 and integer, (2.5)

with complicating variables y ∈ Rn1 , which must take positive integer values and satisfy the
constraint set Ay = b, where A ∈ Rm1×n1 is a known matrix and b ∈ Rm1 is a given vector.
The continuous variables x ∈ Rn2 , together with the y variables, must satisfy the linking
constraint set By + Dx = d, with B ∈ Rm2×n1 , D ∈ Rm2×n2 , and d ∈ Rm2 . The objective
function minimizes the total cost with the cost vectors f ∈ Rn1 and c ∈ Rn2 .

Model (2.1–2.5) can be re-expressed as

min
ȳ∈Y
{fT ȳ + min

x≥0
{cTx : Dx = d−Bȳ}, (2.6)

where ȳ is a given value for the complicating variables which belongs to the set Y = {y|Ay =
b, y ≥ 0 and integer}. The inner minimization is a continuous linear problem that can be
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dualized by means of dual variables π associated with the constraint set Dx = d−Bȳ :

max
π∈<m2

{πT (d−Bȳ) : πTD ≤ c} (2.7)

Based on duality theory, the primal and dual formulations can be interchanged to extract
the following equivalent formulation :

min
ȳ∈Y
{fT ȳ + max

π∈<m2
{πT (d−Bȳ) : πTD ≤ c}} (2.8)

The feasible space of the inner maximization, i.e., F = {π|πTD ≤ c}, is independent of the
choice of ȳ. Thus, if F is not empty, the inner problem can be either unbounded or feasible
for any arbitrary choice of ȳ. In the former case, given the set of extreme rays Q of F , there
is a direction of unboundedness rq, q ∈ Q for which rTq (d − Bȳ) > 0 ; this must be avoided
because it indicates the infeasiblity of the ȳ solution. We add a cut

rTq (d−Bȳ) ≤ 0 ∀q ∈ Q (2.9)

to the problem to restrict movement in this direction. In the latter case, the solution of the
inner maximization is one of the extreme points πe, e ∈ E, where E is the set of extreme
points of F . If we add all the cuts of the form (2.9) to the outer minimization problem, the
value of the inner problem will be one of its extreme points. Consequently, problem (2.8) can
be reformulated as :

min
ȳ∈Y

fT ȳ + max
e∈E
{πTe (d−Bȳ)} (2.10)

subject to rTq (d−Bȳ) ≤ 0 ∀q ∈ Q (2.11)

This problem can easily be linearized via a continuous variable η ∈ <1 to give the following
equivalent formulation to problem (2.1–2.5), which we refer to as the BendersMaster Problem
(MP) :

min
y,η

fTy + η (2.12)

subject to Ay = b (2.13)

η ≥ πTe (d−By) ∀e ∈ E (2.14)

0 ≥ rTq (d−By) ∀q ∈ Q (2.15)

y ≥ 0 and integer (2.16)
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Constraints (2.14) and (2.15) are referred to as optimality and feasibility cuts, respectively.
The complete enumeration of these cuts is generally not practical. Therefore, Benders (1962)
proposed a relaxation of the feasibility and optimality cuts and an iterative approach. Thus,
the BD algorithm repeatedly solves the MP, which includes only a subset of constraints (2.14)
and (2.15), to obtain a trial value for the y variables, i.e., ȳ. It then solves subproblem (2.7)
with ȳ. If the subproblem is feasible and bounded, a cut of type (2.14) is produced. If the
subproblem is unbounded, a cut of type (2.15) is produced. If the cuts are violated by the
current solution, they are inserted into the current MP and the process repeats.

Figure 2.2 illustrates the BD algorithm. After deriving the initial MP and subproblem, the
algorithm alternates between them (starting with the MP) until an optimal solution is found.
To confirm the convergence, the optimality gap can be calculated at each iteration. The
objective function of the MP gives a valid lower bound on the optimal cost because it is a
relaxation of the equivalent Benders reformulation. On the other hand, if solution ȳ yields
a feasible subproblem, then the sum of both fT ȳ and the objective value associated to the
subproblem provides a valid upper bound for the original problem (2.1)-(2.5).

Benders
Decomposition

Master problem

Subproblem

Information
(solutions)

Feedback
(cuts)

Figure 2.2 Schematic representation of the Benders decomposition method.

2.2.2 Model selection for Benders decomposition

A given problem can usually be modeled with different but equivalent formulations. However,
from a computational point of view, the various formulations may not be equivalent. Geoffrion
and Graves (1974) observed that the formulation has a direct impact on the performance of
the BD. Magnanti and Wong (1981) demonstrated that a formulation with a stronger LP
relaxation will have, in general, a better performance. This is because of the tighter root
node and the smaller number of fractional variables and also because the generated cuts are
provably stronger. Sahinidis and Grossmann (1991) proved that the BD method applied to
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a mixed integer nonlinear programming (NLP) formulation with a zero NLP relaxation gap
requires only the cut corresponding to the optimal solution to converge. Cordeau et al. (2006)
studied a stochastic logistic network design problem. They found that when the original
formulation was strengthened with a set of valid inequalities (VIs), the performance of the
BD method was considerably improved.

These observations confirm the importance of tight formulations in the context of the BD
method. However, tighter formulations are often obtained by adding additional (problem
dependent) constraints. This may result in a more time-consuming subproblem, which may
also exhibit a higher degree of degeneracy. Therefore, there must be a trade-off between the
reduction in the number of iterations and the additional difficulty of the subproblem.

2.2.3 Relationship to other decomposition methods

The BD method is closely related to other decomposition methods for LP, such as Dantzig–
Wolfe and Lagrangian optimization (see Lim (2010) for details). In particular, solving an LP
by Dantzig–Wolfe decomposition is equivalent to applying the BD approach to its dual. The
relationship is clear since Dantzig–Wolfe is particularly suitable for problems with complica-
ting constraints, and the dual of these constraints will be the complicating variables in the
BD method. Note that the subproblems are also equivalent in the two methods. The BD
method is also equivalent to a cutting-plane method applied to the Lagrangian dual.

In integer programming, the situation is more complex, and there is no simple relationship
among the decomposition methods. In contrast to Lagrangian relaxation and Dantzig–Wolfe
decomposition, the BD method directly converges to an optimal solution to the MILP rather
than to a relaxation of the problem ; therefore, there is no need to embed it in a branch-and-
bound framework. However, the classical BD approach cannot handle integrality requirements
in the subproblems ; variants have been proposed (Section 2.9).

Finally, there are close relationships between Benders cuts and various classical VIs (Magnanti
et al., 1986). For instance, Costa et al. (2009) demonstrated that cutset inequalities are
essentially Benders feasibility cuts, while Benders feasibility cuts are not, in general, metric
inequalities and require additional lifting procedures for conversion into metric inequalities.
Therefore, the classical BD method has several numerical and theoretical limitations, for
which various enhancement and acceleration strategies have been proposed.
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2.3 Taxonomy of the enhancement strategies

A straightforward application of the classical BD algorithm may require excessive computing
time and memory (Magnanti and Wong, 1981; Naoum-Sawaya and Elhedhli, 2013). Its main
drawbacks include : time-consuming iterations ; poor feasibility and optimality cuts ; ineffec-
tive initial iterations ; zigzagging behavior of the primal solutions and slow convergence at
the end of the algorithm (i.e., a tailing-off effect) ; and upper bounds that remain unchanged
in successive iterations because equivalent solutions exist.

Much research was dedicated to exploring ways to improve the convergence of the algorithm
by reducing the number of iterations and the time required for each iteration. The former
goal is aimed for by improving the quality of both the generated solutions and the cuts, and
the latter by improving the solution procedure used to optimize the MP and subproblem
in each iteration. The decomposition strategy that defines the initial MP and subproblem
is another fundamental building block of the algorithm with significant consequences for its
efficiency, as it determines both the difficulty of the problems and the quality of the solutions.
We define therefore a four-dimension taxonomy, illustrated in Figure 2.3, that captures all
these factors.

Solution Procedure
Cut Generation

Decomposition Strategy
Solution Generation

regular MP
improved MP

alternative MP
heuristics

hybrid

S/S
S/A

A/S
A/A

C/C
C/I

I/C
I/I

classical
modified

Figure 2.3 Components of taxonomy.

The decomposition strategy specifies how the problem is partitioned to obtain the initial MP
and subproblem. In a classical decomposition all the linking constraints and noncomplicating
variables are projected out. In a modified decomposition these constraints and variables are
partially projected to maintain an approximation of the projected terms in the MP.

The solution procedure concerns the algorithms used for the MP and subproblem. The stan-
dard techniques are the simplex method and branch-and-bound. They are treated as black-
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box solvers, and no attempt is made to adapt them to the characteristics of the problem or the
convergence requirements of the BD algorithm. Advanced strategies exploit the structure of
the MP and subproblem or the search requirements of the BD algorithm. For example, these
strategies may aim to control the size of the problems or relax the requirement that they are
solved to optimality at every iteration. We write “S/A” to indicate that standard techniques
are used for the MP and advanced techniques are used for the subproblem. Similarly, we
define A/A, A/S, and S/S.

The solution generation concerns the method used to set trial values for the complicating
variables. The classical strategy is to solve the MP without modification (referred to as regular
MP). Heuristics, an alternative MP, or an improved MP can be used to generate solutions
more quickly or to find better solutions. Hybrid strategies can also be defined, e.g., one can
use the regular MP to get an initial value for the master variables and then use heuristics to
improve it.

The cut generation concerns the strategy used to generate optimality and feasibility cuts.
Classically, this is done by solving the regular subproblem obtained from the decomposition.
Other strategies reformulate the subproblem or solve auxiliary subproblems. The “C” and “I”
symbols represent the classical and the improved strategies, respectively. For example, “C/I”
indicates that the classical strategy is used to generate optimality cuts and the improved
strategies are used to generate feasibility cuts. Sections 2.4 to 2.7 survey the strategies of
each component of the taxonomy.

2.4 Decomposition strategies

Recent studies have presented various modified decomposition strategies. Crainic et al. (2016,
2014a) emphasized that the BD method causes the MP to lose all the information associated
with the noncomplicating variables. This results in instability, erratic progression of the
bounds, and a large number of iterations. Moreover, the problem structure associated with
the linking constraints (2.3) is lost, and thus many classical VIs are not applicable. The
authors proposed Partial Benders Decomposition strategies that add to the master explicit
information from the scenario subproblems, by retaining or creating scenarios, or both. They
obtained significant improvements in terms of number of generated cuts and computational
time.

The nonstandard decomposition strategy of Gendron et al. (2016) is another interesting
example of a modified decomposition. After decomposing the problem, the authors obtained
a subproblem with integer variables and nonlinear constraints. To improve the convergence
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of the algorithm, the authors retained the projected variables in the MP but relaxed the in-
tegrality requirement. They also included in the MP a linear approximation of the nonlinear
constraints. They observed a significant improvement in performance, although the difficulty
of the MP was noticeably increased.

As indicated by the results mentioned above and the limited studies conducted in this dimen-
sion (4.17% of the cited articles in this review paper), further research into decomposition
strategies is worthwhile, as modified decomposition strategies may significantly strengthen
the relaxed MP. Such approaches are not only complementary to adding VIs, discussed in
Section 2.6.2, but may also provide the opportunity to derive a wider range of, possibly
stronger, VIs.

2.5 Solution procedure

The iterative solution of the MP and subproblem is a major computational bottleneck. In
particular, the MP, an MILP formulation, is often lacking special structure, and is continually
growing in size becoming more and more difficult to solve. Classically, the MP is solved to
optimality via branch-and-bound, while the subproblem is handled with the simplex method.
In this section, we survey the various alternatives that have been proposed. These strategies
exploit the structure of the MP and subproblem or are designed to improve the convergence
speed. Figure 2.4 lists the strategies that we discuss.

Advanced solution procedures

MP level

Solution proce-
dure

Size manage-
ment

ε-optimality

Heuristics
Constraint program-
ming

Column generation

Single search tree

Cut removal
Cut selection

Subproblem level

Approximation

Column generation

Specialized methods

Re-optimization techniques

Parallelism

Figure 2.4 Advanced solution procedures.
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2.5.1 MP level

It has often been reported that more than 90% of the total execution BD time is spent
on solving the MP (Magnanti and Wong, 1981; Zarandi, 2010). The strategies proposed to
partially alleviate this computational bottleneck, discussed in the next two subsections, either
a) manage the size of the problem or b) solve it more efficiently.

Size management

In any optimal solution to the MP, the number of active constraints never exceeds the number
of decision variables (Minoux, 1986). Thus, many of the generated cuts do not contribute to
the convergence of the algorithm and merely slow it down (extra handling effort and memory
limitations). Therefore, cut deletion or clean-up strategies are important, especially when
multiple cuts are inserted into the MP at each iteration.

There is no reliable way to identify the useless cuts, so the clean-up strategies are heuristic
(Ruszczyński, 2003). They usually inspect the slack values associated with each cut, a cut
with a relatively high slack value over some predetermined number of iterations being a good
candidate for removal. One can avoid the regeneration of eliminated cuts (and prevent the
possible cycling of the algorithm) by keeping them in a pool and reinserting them into the
MP whenever they are violated by the current solution. Cuts should be removed infrequently
because constraint removal has a disturbing impact on off-the-shelf optimization solvers, es-
pecially when re-optimization techniques are used for faster solution of the MP ; see Geoffrion
(1972) and Pacqueau et al. (2012) for implementation details.

Sometimes, multiple cuts are available for insertion but not all of them are worth adding.
It is actually important to add cuts cautiously to avoid an explosion in the size of the
MP. Holmberg (1990) defined cut improvement as follows : an optimality cut provides cut
improvement if it is new and may be active in an optimal solution. Rei et al. (2009) used this
definition when selecting solutions in order to generate cuts. They stated that a solution yields
cut improvement if its value in the current MP is strictly smaller than the best known upper
bound. Yang and Lee (2012) selected tighter (feasibility) constraints from a set of available
cuts by measuring their distance from different interior points. After choosing a first cut from
the pool, they added other cuts for which the “difference measure” from the first cut was
greater than a user-defined threshold. This yielded considerable savings in computational
time and number of iterations.

In summary, one can control the size of the MP by removing unnecessary cuts or avoiding
the insertion of an available cut. However, these strategies are not often used. Considering
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the articles cited in the present paper, only 3.13% of them used these strategies. One reason
is that simultaneously inserting many cuts into the MP reduces the number of iterations, and
this often compensates for the increase in the difficulty of addressing the problem. Another
reason is that these techniques are heuristic, so they may remove necessary cuts or add cuts
that prove unhelpful. There is a need for further research in this area.

Algorithm

It is not necessary to solve the MP to optimality at every iteration in order to achieve global
convergence. Some researchers have focused on quickly finding suboptimal solutions. Others
have taken advantage of the structure of the MP to solve it more efficiently.

Geoffrion and Graves (1974) were the first to address the MP’s computational difficulties.
They observed that it is not necessary to solve the MP to optimality at every iteration to
produce valid cuts. In fact, there is no incentive to do so at the beginning of the algorithm
because the relaxation is weak. They solved the MP to ε-optimality at each iteration, with ε
decreasing as the algorithm proceeds to ensure global convergence. Lin and Üster (2014) ter-
minated the algorithm whenever the MP could not produce feasible solutions in the presence
of an ε-optimality constraint, indicating that the upper bound lies within ε% of optimality.
Kewcharoenwong and Üster (2014) obtained an encouraging speedup with this approach in
the context of fixed-charge relay network design in telecommunications.

An alternative is to solve the MP via (meta-)heuristics, which not only reduces the time but
also allows the generation of multiple cuts per iteration, yielding faster improvement of the
lower bound (Raidl, 2015). This strategy may lead, however, to worse bounds and a lack of
control, which could prevent the generation of necessary cuts. For an MILP, the bounds may
be worse than those of the LP relaxation of the original problem (Holmberg, 1994). Thus, the
MP must be solved, at certain iterations, to optimality in order to ensure global convergence.
However, fewer of these iterations are usually needed (Poojari and Beasley, 2009).

Constraint Programming (CP) is another possible approach. In a workforce scheduling ap-
plication, Benoist et al. (2002) showed that CP can be a better choice than mixed integer
programming (MIP) solvers, because of its greater ability to handle special constraints. Simi-
larly, Corréa et al. (2007) considered the simultaneous scheduling and routing of automated
guided vehicles, using CP to solve the scheduling MP and an MIP solver to handle the rou-
ting subproblem. They observed improvements of several orders of magnitude when the MP
was solved by CP.

A few researchers have applied Column Generation (CG) to the MP to handle certain struc-
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tures more effectively, aiming for tighter bounds at the root node of the branch-and-bound
tree. Cordeau et al. (2001b) proposed using BD to handle linking constraints in a simul-
taneous aircraft routing and crew scheduling problem. They formulated an aircraft routing
MP and a crew pairing subproblem. Because of their special structure, the linear relaxation
of both problems were handled by CG (see Mercier et al., 2005, for a similar application).
Restrepo et al. (2015) applied BD to solve a multi-tour activity scheduling problem ; the MP
was handled by CG embedded in a branch-and-price framework because of its large number
of variables. The integration of CG into the BD framework appears theoretically challenging
because of the simultaneous addition of rows and columns that are often interdependent. The
discussion of this issue is beyond the scope of this article ; see Muter et al. (2015) for further
information.

In the classical BD, one MP (an MILP) is solved to optimality at each iteration. Each time, a
new branch-and-bound tree is built and considerable time is likely spent revisiting candidate
solutions that have been eliminated earlier. One can instead build a single search tree and
generate valid cuts for the integer (and fractional) solutions encountered inside the tree,
attaining the same optimal solution. This strategy, often referred to as Branch-and-Benders-
cut (B&BC ), yielded promising results (e.g., Fortz and Poss, 2009; Fischetti et al., 2010;
de Camargo et al., 2011; Taşkın and Cevik, 2013; de Sá et al., 2013; Gendron et al., 2016;
Crainic et al., 2014a; Pérez-Galarce et al., 2014). In addition to the numerical superiority of
a modern implementation in comparison with the classical one, Naoum-Sawaya and Elhedhli
(2013) showed that B&BC can make better use of the re-optimization tools of MILP solvers.
Various strategies can be used to produce the cuts. For example, one can generate cuts in all
feasible nodes or only when new incumbent solutions are found. It is necessary to establish
a trade-off between cut generation and branching effort. For instance, Botton et al. (2013)
studied when to generate cuts, their results indicating that generating cuts at every node of
the search tree is inefficient because too many cuts are added and too much time is spent
solving the subproblems. Better performance was achieved by finding as many violated cuts
as possible at the root node and subsequently checking for violated Benders inequalities only
at integer nodes.

We complete this section with two remarks. First, solving the MP via approximations, heuris-
tics, or a single search tree may not be superior to the classical cutting-plane implementation,
especially in applications where solving the MP takes significantly less time than the dual
component of the algorithm. The modified approaches may then enumerate many solutions
that are usually ignored by classical implementations. This is not the case, however, for most
combinatorial optimization problems, for which the acceleration strategies we discussed are
the most popular to handle the MP. Considering the cited researches throughout this article,
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33.33% of them implemented one of these strategies. In particular, the single search tree has
recently received considerable attention. This strategy leads to interesting research perspec-
tives regarding the cut-generation strategies, the branching rules, the node selection, and the
pruning strategies that have not been fully explored.

Second, CP has been shown to be better than MIP techniques for the MP if there are special
constraints such as “all-different” constraints, logical relations, arithmetic expressions, integer
division, and expressions that index an array of values by a decision variable. Finally, one
can use alternative formulations for the MP to generate solutions more quickly, reducing the
number of iterations. This topic is addressed in Section 2.6.1.

2.5.2 Subproblem level

The subproblem can be large, inherit complex features, or decompose into an excessive num-
ber of smaller subproblems. Various strategies have been proposed to solve the subproblem
more effectively.

The solution of the subproblem may be extremely complex because it is a large-scale LP.
Zakeri et al. (2000) showed that suboptimal solutions of the dual subproblem can be used to
generate useful valid cuts. The authors observe that these inexact cuts are computationally
less expensive and produce good results. In the same situation, commercial solvers (e.g.,
CPLEX) prefer the interior point approach to the simplex method. Thus, the BD method may
converge to an incorrect solution, since the cuts are not necessarily associated with extreme
points of the dual polyhedron (Yang and Lee, 2012). However, given the condition introduced
by Zakeri et al. (2000) for inexact Benders cuts, convergence can still be guaranteed.

CG is another effective approach for large-scale linear subproblems with special structure
(Cordeau et al., 2001b). Mercier et al. (2005) showed that for large subproblems complete
enumeration is impossible, but that variables can be iteratively generated via CG. Similar
applications of CG within a BD framework can be found in Cordeau et al. (2001a), Mercier
and Soumis (2007), and Papadakos (2009).

Subproblems with special structure can often be solved efficiently. One can derive a closed-
form solution or apply specialized algorithms. Fischetti et al. (2016) observed that the sub-
problem for the uncapacitated facility location problem can reduce to a knapsack problem,
which has a closed-form solution. Similarly, Randazzo et al. (2001) obtained a series of trivial
network flow subproblems with a closed-form solution. Contreras et al. (2011) obtained a
semi-assignment problem for each commodity in their hub location application ; these pro-
blems could be solved more efficiently by a specialized method compared to an LP solver.
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Kouvelis and Yu (1997) derived shortest-path subproblems that were solved with Dijkstra’s
algorithm.

The decomposition sometimes yields several independent subproblems. One may consider
solving only a subset of the subproblems at each iteration, especially at the beginning of
the algorithm. To the best of our knowledge, there is no such strategy for combinatorial
optimization problems, but Fábián (2000) has studied a similar idea for convex program-
ming problems. The algorithm initially calculates rough estimates of the function values and
gradients. As it proceeds, the calculations become more accurate.

In some applications, many subproblems are similar. Considering that the algorithm updates
only the objective function of the dual subproblem between two consecutive iterations, one
can exploit these similarities using re-optimization techniques : given the solution to one
subproblem, the next can be optimized in just a few iterations (see, e.g., Birge and Lou-
veaux, 1997; Vladimirou, 1998). However, since the algorithm updates only the objective
function of the dual subproblem between one iteration and the next, further investigation of
re-optimization techniques is required.

When there are many subproblems, parallel computing techniques are often used : the subpro-
blems are solved in parallel on different processors. One processor, the master, usually solves
the MP and coordinates the other processors, the slaves, which solve the subproblems. The
primal solution of the MP is passed to the slave processors, and the objective function and the
dual information obtained from solving the subproblems is returned to the master processor.
Experiments have shown that this strategy is effective (e.g., Ariyawansa and Hudson, 1991;
Nielsen and Zenios, 1997; Linderoth and Wright, 2003; Wolf and Koberstein, 2013; Pacqueau
et al., 2012). The literature discusses some of the algorithmic challenges of this approach.
For example, Linderoth and Wright (2003) implemented asynchronous communications in
which the MP is re-optimized as soon as λ% of the cuts are received. Dantzig et al. (1991)
used dynamic work-allocation : the next idle processor gets the next subproblem based on a
first-in-first-out strategy until all the subproblems are solved and the MP can be recomputed
with the added cuts. Nielsen and Zenios (1997) exploited the structural similarities of the
subproblems, applying an interior point algorithm on a fine-grained parallel machine. Vladi-
mirou (1998) implemented a partial-cut aggregation approach to reduce the communication
overheads. Chermakani (2015) observed that when the number of subproblems is considera-
bly larger than the number of available processors, so that some subproblems must be solved
sequentially, it may be better to aggregate some of the subproblems.

In summary, the simplex method is the most widely used algorithm for the subproblem.
However, when the subproblem has special structure, specialized algorithms are a better
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option. In either case, when the decomposition yields several independent subproblems, pa-
rallelization is the method of choice. There has been limited investigation of approximation
and heuristic methods. Yet, when the subproblem is a large-scale LP that cannot be fur-
ther decomposed and has no special structure, heuristics may yield considerable speed-up.
Constraint programming has also been a prominent technique to solve subproblems with par-
ticular structures. This is discussed in Sections 2.9.1 and 2.9.2. In terms of statistics, 31.25%
of the cited works in this article implemented one of the outlined acceleration strategies,
among which parallelization and specialized algorithms are the most popular techniques.

2.6 Solution generation

The quality of the solutions for the set of complicating variables directly determines the
number of iterations, as they are used to generate cuts and bounds. These solutions are
traditionally found by exactly or approximately solving the regular MP. Three approaches
have been proposed to improve the quality of the solutions or generate them more quickly :
(1) using alternative formulations, (2) improving the MP formulation, and (3) using heuristics
to independently generate solutions or to improve those already found. Figure 2.5 lists the
techniques that we discuss. Note that, the strategies are not mutually exclusive, and hybrid
approaches may work well. A complete presentation of the hybrid strategies is beyond the
scope of this article, however, since the appropriate combination of strategies is problem-
dependent.

Solution generation

Improved MP

Valid inequalities

Multi-cut reformu-
lation

Alternative MP
Cross decomposition

Two-phase approach

Stabilized formulation

Heuristics
Warm start
Intensification/diversification

Feasibility restora-
tion
Upper bounding

Figure 2.5 Strategies to generate solutions for the set of complicating variables.

2.6.1 Alternative formulation

Altering the MP, albeit temporarily, provides the means to address two main drawbacks in
addressing it : (1) slow generation of solutions that may be poor-quality and (2) instabi-
lity. The two-phase approach of McDaniel and Devine (1977) and the cross decomposition
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of Van Roy (1983) address the first drawback. The former uses an approximation of the
MP to generate solutions more quickly, while the latter uses an alternative MP to generate
potentially better solutions.

McDaniel and Devine (1977) showed that valid Benders cuts can be obtained from the so-
lutions to the LP relaxation of the MP. They applied the BD algorithm in two phases. In
the first phase, the linear relaxation of the MILP MP is used to quickly generate solutions
and tighten the relaxed MP, and in the second phase the integrality requirements are rein-
troduced and the solution process continues. The cross-decomposition algorithm (Van Roy,
1983) exploits the structure of both the primal and dual problems, combining the advantages
of Lagrangian relaxation and BD. It alternates between two steps : (i) for a given y, the
Benders subproblem (2.7) is solved to get the dual multipliers π, and (ii) for a given π, the
Lagrangian subproblem is solved to produce a new y. After this alternation is terminated,
the solutions of both the Benders and Lagrangian subproblems are used to generate new cuts
for the Benders or Lagrangian MP. Again, convergence to optimality can only be ensured by
periodically solving the Benders MP. However, doing this less often accelerates the solution
process.

Instability is another widely recognized drawback of the regular MP (Birge and Louveaux,
1997; Zaourar and Malick, 2014), as it can yield excessively slow convergence. Two reasons are
evoked for this phenomenon, the large initial steps and the excessive oscillation that occurs as
the algorithm approaches the optimal solution (Rubiales et al., 2013). Several studies aimed to
mitigate this undesirable behavior by adding constraints to the MP or changing the objective
function. Regularized decomposition, trust-region, and level decomposition strategies have
been used to obtain a stabilized MP formulation.

Regularized decomposition was introduced by Ruszczyński (1986) and extended by Ruszc-
zyński and Świȩtanowski (1997). A quadratic term is added to the MP objective function to
keep the solutions close to the current reference point, which is updated whenever certain
conditions are satisfied. Computational results indicate that the method is efficient although
it solves a quadratic problem rather than a linear one, since it decreases the number of
expensive iterations (Ruszczyński and Świȩtanowski, 1997). The trust-region method can
be thought of as a hypercube around a reference solution at iteration k, denoted yk. The
next solution must stay within this “trusted region.” This is usually achieved by adding the
constraint ||y − yk||∞ ≤ ∆ to the MP ; the reference point yk and the trust-region bound ∆
will be updated during the algorithm (see Linderoth and Wright, 2003, for an implementa-
tion, computational results, and a proof of convergence). Level decomposition was developed
by Lemaréchal et al. (1995) for nonsmooth convex optimization and adapted to stochastic



22

programming by Fábián and Szőke (2007). Its goal is to dampen the zigzagging behavior of
the BD method with respect to the master solutions. This is achieved by solving a modi-
fied MP that minimizes the Euclidean distance of its solution y from the previous solution
yk (initialized to y0), while ensuring that the approximate value of the next solution is not
greater than a convex combination of the current best lower and upper bounds. A favorable
comparison of this method with the standard BD method, regularized decomposition, and
the trust-region approach was carried out by Zverovich et al. (2012).

The above stabilization techniques may not be directly applicable to combinatorial opti-
mization contexts. Santoso et al. (2005) demonstrated that a trust region with the `2- or
`∞-distance either yields a quadratic MILP or is not meaningful for a 0–1 MILP MP. Thus,
they used a trust region that bounds the Hamming distance between the current MP solution
and the previous one. However, since convergence cannot be ensured in the presence of this
constraint, they used it only in the early iterations. Oliveira et al. (2014) observed an acce-
leration of up to 46% with the approach of Santoso et al. (2005). van Ackooij et al. (2015)
instead stabilized the BD method via a proximal term (a trust region in the `1 norm) or a
level constraint rather than adding quadratic terms to the objective function. In continuous
problems the quadratic proximal term provides second-order information to the MP, but its
impact in the combinatorial case tends to be insignificant. The authors showed the potential
of stabilization techniques, particularly for large and difficult instances. Zaourar and Malick
(2014) studied quadratic stabilization. This approach, common in the context of constraint
decomposition methods, could drastically reduce the number of cuts, especially feasibility
cuts. The computational time may not decrease, however, due to complexity of the method.

In summary, an alternative master formulation is used in more than 34% of the works cited in
this article. The two-phase approach has become one of the most popular acceleration strate-
gies for problems with time-consuming integer MPs (see e.g., Angulo et al., 2016; Rei et al.,
2009; Papadakos, 2008; Cordeau et al., 2006; Costa, 2005; de Sá et al., 2013; Sen et al., 2015).
Algorithms based on the single-search-tree strategy often use this approach to tighten the
root node and reduce the size of the tree (see e.g., Botton et al., 2013). Cross-decomposition
has received much less attention, although a recent study by Mitra et al. (2016) has demons-
trated that it can be superior to the BD method when the underlying LP relaxation is weak.
Stabilization techniques significantly reduce the number of iterations, but the cost of each
iteration may increase because of the additional complexities that they introduce in the MP.
This has usually prevented the use of stabilization techniques in combinatorial contexts.

Inexact methods offer a simple and efficient stabilization tool that may lead to a considerable
time reduction. The success of these methods highlights the potential of heuristics, local
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branching in particular, for solving the MP or more thoroughly exploring the neighborhood
of the current solution to partially dampen the oscillations of the primal solutions.

Finally, as the instability of the classical BD method, especially in the early iterations, is
mainly the result of a weak MP, strategies that strengthen the relaxation can mitigate the
chaotic behavior. These strategies are the subject of the following subsection.

2.6.2 Improving the master formulation

After the projection and relaxation steps, the MP has no information on the subproblems
and provides a weak approximation of the original feasible region. Therefore, we can expect
erratic progression of the bounds and ineffective initial iterations. We can partially overcome
these drawbacks by modifying the decomposition (see Section 2.4). The strategies discussed
in this section will further improve the convergence rate (see e.g., Crainic et al., 2016, 2014a).

One way to strengthen the MP is to add VIs. Naoum-Sawaya and Elhedhli (2010) observed
that this can significantly reduce the solution time and the number of generated cuts (feasibi-
lity cuts in particular). As a result, a wider range of instances can be solved. Saharidis et al.
(2011) applied the BD method to a refinery system, adding two groups of VIs to the initial
MP. The total time reduction ranged from 26% to 76%. Tang et al. (2013) used VIs to improve
the initial lower bound by 21.39% to 208.95%. In addition, the number of instances solved
increased by 30%. Adulyasak et al. (2015) studied a production routing problem and added
lower-bound lifting inequalities to improve the initial lower bounds and solutions. These cuts
provide information about the part of the original objective function that has been removed.
The authors observed a significant reduction in the time, the optimality gap and the number
of explored nodes. For other uses of VI see Taşkın and Cevik (2013), Kewcharoenwong and
Üster (2014), Pishvaee et al. (2014), Jenabi et al. (2015), Emami et al. (2016), and Jeihoonian
et al. (2016).

Feasibility cuts are undesirable because they do not improve the lower bound. In some ap-
plications, one can avoid unboundedness of the dual subproblem by including a set of VIs
that exclude the infeasible solutions (see, e.g., Geoffrion and Graves, 1974; Birge and Lou-
veaux, 1997; Contreras et al., 2011; de Sá et al., 2013). This avoids the burden of deriving
the feasibility cuts. It can also reduce the cost of solving the MP, since the addition of both
optimality and feasibility cuts makes it more difficult to solve (Wu et al., 2003).

Once we fix the complicating variables, it may be possible to make the decisions in the remai-
ning problem independently. Thus, multiple smaller subproblems can be solved separately.
The classic BD method inserts a single cut into the MP per iteration by aggregating the dual
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information gathered from all the subproblems (Van Slyke and Wets, 1969). An alternative
approach is to add a cut for each subproblem. This strategy, often referred to as multi-cut
reformulation, generally outperforms the single-cut approach : it strengthens the MP more
quickly and prevents the loss of information in the aggregation step (see, e.g., Contreras et al.,
2011; Tang et al., 2013; Pishvaee et al., 2014; Sen et al., 2015; Jenabi et al., 2015). The size
of the MP grows more rapidly, however, and the trade-off between the number of iterations
and the computational time is problem-dependent. Birge and Louveaux (1997) gave the rule
of thumb that the multi-cut is generally preferable when the number of subproblems is not
much larger than the size of the dimension space of the master variables. Trukhanov et al.
(2010) explored partial cut aggregation, in which the subproblems are divided into |D| clusters
and a cut is added for each cluster. They concluded that the best performance is attained for
1 < |D| < |S|, where |S| is the number of subproblems. They did not offer a specific strategy
for the clustering. Brandes (2011) showed that clustering methods, in particular k-means and
hierarchical clustering, can reduce the number of major iterations.

In summary, it is essential to strengthen the relaxed MP, and VIs are a powerful tool for
this. Multi-cut reformulation is useful when the subproblem can be further decomposed into
smaller problems. Using both strategies will often be more efficient. It should be noted that
the reviewed strategies in this section have been used in 37.50% of the cited articles in this
review paper. Finally, heuristics can be used to quickly tighten the MP by generating a set
of initial cuts or multiple cuts per iteration. We discuss these strategies in the following
subsection.

2.6.3 Heuristics

Numerous modifications may be needed to develop an efficient and competitive BD method
(O’Kelly et al., 2014). Many researchers therefore apply heuristic procedures to generate
solutions or, as a subordinate method, improve previously generated ones (Gelareh et al.,
2015; Kewcharoenwong and Üster, 2014; Oliveira et al., 2014; Botton et al., 2013; Taşkın and
Cevik, 2013).

Heuristics are widely used as a warm-start strategy to generate an initial set of tight cuts
to strengthen the relaxed MP. Obviously, the selected heuristic should be appropriate for
the problem at hand (Contreras et al., 2011). Lin and Üster (2014) observed that the initial
selection of cuts is important in the context of wireless network design. They proposed a
simple heuristic to generate feasible solutions and a set of good initial cuts. Easwaran and
Üster (2009) used a tabu search as a warm-start meta-heuristic for a supply-chain network
design problem ; the convergence rate and the size of the instances solved were considerably
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increased. A different warm-start approach is to generate particular solutions. Randazzo et al.
(2001) applied a shortest-path algorithm to obtain a special feasible solution to their local-
access uncapacitated network design problem. Papadakos (2008) showed that convergence
can be significantly improved when the algorithm starts from an initial point that lies in the
interior of the MP solution domain rather than the initial MP solution itself.

Heuristics are also used to explore the neighborhood of the current MP solution as an inten-
sification/diversification strategy. Rei et al. (2009) use a local branching heuristic to simulta-
neously improve the lower and upper bounds. They apply a limited number of local branching
steps to either determine that the neighborhood contains no feasible solutions to the original
problem or provide a pool of high-quality and diverse solutions. When the neighborhood is
infeasible, they exclude the infeasible region by adding combinatorial cuts, which are a better
alternative to classical feasibility cuts. When a pool of solutions is found, they are used to
generate multiple optimality cuts. These cuts reduce the number of major iterations and
cause the lower bound to increase more quickly. This strategy has also been applied to the
closed-loop supply chain problem (Jeihoonian et al., 2016) and the sustainable supply chain
network design problem (Pishvaee et al., 2014). Costa et al. (2012) gave general guidelines for
the application of heuristics within the two-phase approach of McDaniel and Devine (1977).
The goal is to quickly generate extra cuts associated with the heuristic feasible or infeasible
solutions to reduce the need for integer iterations. The authors suggested using simple heu-
ristics after each regular iteration of the BD method or whenever the incumbent solution is
updated. The gains should compensate for the additional time spent on the heuristics.

Heuristics can be used to alleviate undesirable properties of the MP solutions. Wu et al. (2003)
avoided the generation of feasibility cuts because they made the solution of the MP more
expensive. It is possible in their application to acquire additional supply capacity at arbitrarily
high prices, but convergence may be slow because of the side effects of big-M coefficients. The
authors applied a heuristic to restore the feasibility of the solutions. The heuristic shifts excess
demand from an infeasible subproblem to another source (i.e., to a different subproblem) so
that a feasible solution can be found quickly. Emami et al. (2016) used a heuristic to extract
feasible solutions from infeasible MP solutions, considerably improving convergence.

The upper bounds obtained from heuristics are often better than those obtained by the BD
method itself, especially in the early stages of the algorithm. Roussel et al. (2004) successfully
accelerated the BD method by applying tabu search to the original formulation to improve
the upper bound. Santoso et al. (2005) stated that when the algorithm approaches an optimal
solution, the various incumbent solutions differ in variables that have a small impact on the
objective function, and so the upper bound changes little. They found that a simple fix-and-
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optimize heuristic can yield a considerable acceleration. Improving the upper bound will also
impact other parts of the algorithm. For instance, Contreras et al. (2011) observed that their
heuristic not only improved overall convergence but also found better upper bounds that help
with the reduction testing procedures. Pérez-Galarce et al. (2014) examined the interaction
between the incumbent solution and the branching efforts. To improve the performance of
their B&BC algorithm, the authors used a heuristic to enhance the incumbent solution.

In summary, heuristics are an important component of acceleration strategies. They are used
in more than 25% of the cited articles in this review paper. Heuristics, even simple ones,
can generate high-quality initial solutions and cuts, repair infeasible solutions, improve the
quality of the MP solutions, reduce the computational cost of the MP and subproblem, and
generate multiple cuts per iteration. Moreover, the BD method can be used to design effective
heuristics ; see Section 2.8.

2.7 Cut generation

The number of iterations is closely related to the strength of the cuts, i.e., the values selected
for the dual variables. Researchers have explored ways to select or strengthen the traditional
feasibility and optimality cuts or to generate additional valid cuts.

Magnanti and Simpson (1978) and Magnanti and Wong (1981) were the first to consider the
degeneracy of the subproblems, when the dual subproblem has multiple optimal solutions
that do not yield cuts of equal strength. Hence, to find the strongest cuts, the solution of the
dual subproblem must be judiciously chosen at each iteration. Magnanti and Wong (1981)
selected a dual solution that dominates other possible cuts in terms of Pareto-optimality. A
Pareto-optimal solution produces the maximum value at a core point ŷ, which is required to
be in the relative interior of the convex hull of the subregion defined by the MP variables.
After solving the regular dual subproblem (2.7), the authors solve an auxiliary subproblem
of the form (2.17) to find the Pareto-optimal optimality cut.

max
π∈<m2

{πT (d−Bŷ) : πTD ≤ c, πT (d−Bȳ) = Q(ȳ)}, (2.17)

where Q(ȳ) indicates the optimal cost of the regular subproblem for the current MP solution
ȳ. Although this approach has proven effective in practice (e.g., Mercier et al., 2005), it must
solve the secondary problem (2.17), which may be numerically instable and time-consuming.
Additionally, it may be difficult to find a core point. This difficulty can be overcome by
using approximate core points (Santoso et al., 2005), arbitrarily fixing components of the
core-point vector (Mercier et al., 2005), or finding alternative points for a given problem
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structure (Papadakos, 2008), although these methods do not guarantee the generation of
Pareto-optimal cuts.

Papadakos (2008) proposed an algorithmic modification to circumvent the computational
difficulties of Magnanti and Wong (1981)’s approach. The author showed that if a new core
point is utilized at each iteration, Pareto-optimal cuts can be obtained from an independent
formulation of the Magnanti–Wong cut generation procedure. This formulation removes the
equality constraint in (2.17) that implies the dependency on the solution of the regular
subproblem (2.7). The author showed that any convex combination of a valid initial core
point and the MP solution gives an alternative Magnanti–Wong core point. de Sá et al. (2013)
then showed that when the MP solution is rendered infeasible by the primal subproblem, a
clever choice of the convex-combination weights can yield significant speed-ups. They chose
the weights in such a way that the convex combination of the current MP solution with the
previous Magnanti–Wong point results in a feasible subproblem.

Fortz and Poss (2009) and Naoum-Sawaya and Elhedhli (2013) generated Pareto-optimal cuts
from the points obtained by an analytic-center cutting plane method. In other words, the
extracted analytic centers are used as core points. Note that the dual subproblem is equivalent
to that of Papadakos (2008), although this is not directly mentioned. The procedure has
great potential for accelerating the classical BD algorithm in the context of capacitated
facility location and multi-commodity capacitated fixed charge network design problems.
However, its effectiveness depends on the quality of the core points and the efficiency of the
re-optimization techniques. Moreover, similarly to the methodology of Magnanti and Wong
(1981) and Papadakos (2008), they produce classical feasibility cuts based on the random
selection of an extreme ray to cut-off the infeasibility.

Gelareh et al. (2015) generated analytic center points at every integer node of their B&BC
algorithm to deal with degeneracy. They used analytic centers and their convex combination
with the current MP solution to generate multiple cuts. The authors presented a box method
to deal with degeneracy. A constraint is included in the auxiliary subproblem to bound the
dual objective function, while the dual solution must be at least κ units distant from the
actual optimal dual. The cuts produced are inexact, but the method performed well.

Sherali and Lunday (2013) developed the maximal nondominated cut generation scheme by
formulating the cut selection as a multi-objective optimization problem. They showed that
a small perturbation in the right-hand side of the primal subproblem is enough to give a
maximal nondominated optimality cut, avoiding the need to solve the secondary subproblem
as in Magnanti and Wong (1981) and Papadakos (2008). Given a goal-programming weight
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µ > 0, the dual subproblem is

max
π∈<m2

{πT (d−Bȳ) + µπT (d−Bŷ) : πTD ≤ c}, (2.18)

Oliveira et al. (2014) considered the definition of the weight µ. The authors observed that the
solutions obtained in the early iterations gave poor descriptions of the project cost, which is
what the cuts attempt to approximate. They iteratively adjusted µ to favor solutions that
focus on improving the original objective value πT (d − Bȳ) rather than (2.18). To ensure
convergence, the sequence {µ(k)}k=1,...,∞ must satisfy ∑k=1,...,∞ µ

(k) → ∞ and µ(k) → 0 as
k → ∞. The authors obtained results that compared favorably with those of Sherali and
Lunday (2013) and Magnanti and Wong (1981).

Better feasibility cuts have also been investigated. Codato and Fischetti (2006) considered
a binary problem where the BD method generates feasibility cuts exclusively. The authors
observed that these cuts are weak because of the big-M constraints, and showed that stronger
cuts, referred to as combinatorial Benders cuts, can be obtained by searching for minimal
infeasible subsystems for the MP solutions. Experiments on two classes of mixed-integer
problems indicated significant improvements in the bounds for the LP relaxation of the MP.
Note that combinatorial cuts are not in general stronger than the classical feasibility cuts.
Yang and Lee (2012) observed that the slow convergence of the BD algorithm is due to the
selection of weak feasibility cuts. They extended the dominance rule of Magnanti and Wong
(1981) in order to extract tighter feasibility cuts. However, this involves solving an auxiliary
bilinear problem, which can be computationally expensive.

Fischetti et al. (2010) used an idea from Fukuda et al. (1997) : finding the most-violated
optimality cut is equivalent to finding an optimal vertex of a polyhedron with unbounded
rays. Fischetti et al. (2010) thus reformulated the subproblem as a feasibility problem where
the optimality and feasibility cuts are derived by searching for minimal infeasible subsystems :

max
π∈<m2 ,π0∈<1

{πT (d−Bȳ)− π0η̄ : πTD ≤ π0c, wTπ + w0π0 = 1}, (2.19)

where η̄ is the current value of η, and w is a vector of normalization coefficients. The generated
cut takes the form π̄T (d − By) ≤ π̄0η. This approach simultaneously generates optimality
and feasibility cuts without solving an auxiliary subproblem. It compared favorably with the
classical cut selection scheme.

Some algorithms iteratively generate multiple cuts to obtain specific desirable characteristics.
Saharidis et al. (2010) considered low-density cuts, i.e., cuts that include only a few MP va-
riables. The ability of such cuts to strengthen the relaxed MP tends to be limited. To improve
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these cuts, the authors developed a covering cut bundle cut-generation procedure. At each
iteration, it produces a set of low-density BD cuts that cover α% of the MP variables. The
authors observed that adding several low-density cuts is better than adding a single high-
density cut corresponding to the sum of the low-density cuts because it ensures a level of
diversification in the cuts. Saharidis and Ierapetritou (2013) observed that it can be computa-
tionally less expensive to cover all the MP variables. Their strategy, referred to as maximum
density cut generation, generates a cut that involves all the MP decision variables that are
not covered in the BD cut. The authors observed that this significantly decreases the number
of iterations and the time requirement for two different scheduling problems. Saharidis and
Ierapetritou (2010) considered a case where obtaining optimality cuts using the classical BD
method is hard. The bounds progress slowly because numerous feasibility cuts are generated
before an initial feasible solution yielding an optimality cut is found. Whenever a feasibility
cut is generated, they apply a maximal feasible subsystem to produce an optimality cut. This
cut is produced by relaxing a minimum number of constraints in order to obtain a feasible
subproblem. The authors observed significant improvements in convergence. The weakness
of this strategy is that the reduction in the number of iterations may not always compensate
for the additional time required to solve the auxiliary MILP subproblem.

In summary, the classical cut-generation scheme can be inefficient, particularly when the sub-
problems are degenerate or infeasible. Thus, 31.25% and 17.71% of the cited articles in this
review paper have used one of the mentioned strategies to generate optimality and feasibility
cuts, respectively. Almost every application of the BD that yields degenerate subproblems
uses one of the strategies we have discussed to generate Pareto-optimal cuts. However, genera-
ting Pareto-optimal cuts may not yield a net computational advantage, since the reduction in
the number of iterations might not compensate for the increase in the number of subproblems
at each iteration (Mercier and Soumis, 2007). Strategies such as maximal nondominated cut
generation may be more efficient since they eliminate the need to solve the auxiliary subpro-
blem. Regarding the feasibility cuts, the strategies based on nondominated cuts have focused
on optimality cuts ; feasibility cuts are found based on a random selection of the extreme rays.
Only the strategy that generates combinatorial cuts for subproblems with big-M constraints
has proven its worth in practice. Moreover, feasibility and optimality cuts are usually treated
separately. To the best of our knowledge, only Fischetti et al. (2010) have developed a unified
framework for both types of cuts. Clearly, further research is necessary.
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2.8 Benders-type heuristics

Because of time and memory limitations, the execution of the BD method might be stopped
before its convergence is established. it may not be possible to prove the convergence of
the BD method. Moreover, in many practical applications, decision-makers do not need a
provably optimal solution, a good feasible solution being deemed sufficient. Such a solution
is often obtained somewhat early in the solution process.

From a heuristic point of view, the BD method is an attractive methodology because it can
take advantage of special structures and provides a rich framework for the design of efficient
search mechanisms (Côté and Laughton, 1984; Raidl, 2015). The method also overcomes
many drawbacks of heuristics such as the inability to verify the solution quality and the
difficulty to reduce the search space by using dual information (Easwaran and Üster, 2009;
Boschetti and Maniezzo, 2009). These factors have promoted the development of algorithms
that we refer to as Benders-type heuristics. We now discuss some of these.

Applying Lagrangian relaxation to the Benders cuts has been a popular approach, especially
when the MP without cuts has a special structure (Minoux, 1984). Côté and Laughton (1984)
applied Lagrangian relaxation to the feasibility and optimality cuts so that the remaining
constraint sets have a special structure and specialized algorithms can be applied. Aardal and
Larsson (1990) proposed a heuristic for a multi-item dynamic production planning problem.
They created structured subproblems and MPs, priced out the BD cuts using Lagrangian
multipliers in order to maintain the problem structure, and used a subgradient procedure to
update the Lagrangian multipliers. The algorithm attained an average deviation of 2.34%
from the optimum. Holmberg (1994) studied different approximations for the Benders MP,
concluding that its Lagrangian dual cannot yield better bounds than the Lagrangian dual of
the original problem even if all the feasibility and optimality cuts are present in the MP.

An alternative to the above approaches is to first apply Lagrangian relaxation and then use
the BD method to optimize the Lagrangian dual subproblem. Pinheiro and Oliveira (2013)
tackled problems with complicating constraints that are challenging for the BD method.
They first applied Lagrangian relaxation to these constraints and then used the BD method
to optimize the problem at each iteration of the dual Lagrangian algorithm. Wang et al.
(2016a) applied a similar methodology to solve a corrective risk-based security-constrained
optimal power flow problem. The results of both studies point to the ability of the approach to
handle large-scale, complex problems. Further research in this area would thus be worthwhile.

One challenge in large-scale problems is the need to solve a sequence of difficult integer MPs.
Many researchers have explored the use of meta-heuristics for the MPs. Poojari and Beasley
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(2009) used a genetic algorithm combined with a feasibility pump. This enabled the authors to
add multiple cuts per iteration, which yielded larger increases in the lower bounds. Although
the MP was never solved to optimality, good results were obtained. Jiang et al. (2009) used
a similar hybridization, based on tabu search, for multi-product distribution network design.
A genetic-BD hybrid algorithm for vehicle routing and scheduling (Lai et al., 2012) and the
capacitated plant location problem (Lai et al., 2010) has greatly reduced the computational
time in comparison with the classical BD method. Boschetti and Maniezzo (2009) solved
both the MP and the subproblem heuristically ; their algorithm was competitive with state-
of-the-art meta-heuristics. Note that these strategies do not provide a valid lower bound, and
thus, to assess the solution quality, the MP must be solved to optimality or approximated
from below.

Proximity Benders is a decomposition heuristic proposed by Boland et al. (2015). The authors
observed that the BD method rarely improves the incumbent solution, and finding good
solutions may require considerable computing time. The authors used a proximity heuristic
to more frequently improve the upper bound obtained from the sequence of MP solutions.
Computational experiments demonstrated the potential of the method. Kudela and Popela
(2015) proposed a genetic algorithm where the BD method is used to take advantage of
the block structure. The authors reported favorable results in comparison with the genetic
algorithm without the decomposition. Behnamian (2014) proposed a Benders-based variable
neighborhood search algorithm for a multi-objective scheduling problem. The goal was to
accelerate the assessment of the estimated improvement of each neighborhood. The new
heuristic outperformed a variable neighborhood search, a tabu search, and a hybrid of these
two methods, particularly on larger instances.

Another approach solves the LP relaxation of the MP and uses round-off heuristics to find
an integer solution. Pacqueau et al. (2012) use the BD method to solve the linear relaxation
and then fix some of the variables to their upper/lower bounds. Their algorithm iterates
until an integer solution is obtained. They solved problems with up to 10 million integer
variables in less than 27 minutes with an average accuracy of 0.2%, while CPLEX could
handle only instances with fewer than 500000 integer variables. This highlights the poten-
tial of efficient Benders-type heuristics for problems with computationally intractable MPs,
particularly those with tight linear relaxations.

In summary, the BD method enables heuristics to take advantage of special structures and
use dual information. Many Benders-type heuristics either solve the MP heuristically or use
approximate MP formulations that do not provide global convergence. Benders-type heuris-
tics can handle a wider range of structures than the BD method. However, these algorithms
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cannot find a provably optimal solution. We discuss extensions of the BD algorithm that can
exactly solve a wider range of problems in Section 2.9.

2.9 Extensions of the classical Benders decomposition method

The classical BD algorithm was proposed for certain classes of MILPs for which the integer
variables were considered to be complicating, and standard duality theory could be applied
to the subproblem to develop cuts. Extensions of the method have allowed it to address
a broader range of optimization problems, including integer subproblems (e.g., Carøe and
Tind, 1998), nonlinear functions (e.g., Cai et al., 2001; Geoffrion, 1972), logical expressions
(e.g., Eremin and Wallace, 2001), multi-stage programming (e.g., Lorenz and Wolf, 2015),
and stochastic optimization (e.g., Van Slyke and Wets, 1969). When applied to stochastic
problems the BD method is commonly referred to as L-shaped decomposition. It enables such
problems to be decomposed by the realization of the uncertain parameters. Many algorithms
for these important and challenging problems rely heavily on its premises (Ruszczyński, 2003).
We have already discussed the literature on this variant, which is equivalent to the classical
BD method. In this section, we discuss the extensions to problems with discrete subproblems,
logical expressions, and nonlinear terms as well as multi-stage programming.

2.9.1 Discrete subproblems

When some of the projected variables are required to be integer, standard duality theory
cannot be applied to derive the classical Benders cuts. A different theoretical framework or
modifications to the generation scheme are needed to handle integer subproblems effectively.

When the complicating variables are required to take 0–1 values, one can use lower-bounding
functions (LBF) instead of the regular optimality cuts (Laporte and Louveaux, 1993). These
constraints enforce a change to the current solution or the acceptance of its associated cost.
They usually take the form

η ≥ (Q(ȳ)− L)
∑
a∈A1

ya −
∑
a∈A0

ya − |A1|

+Q(ȳ), (2.20)

where Q(ȳ) is the cost of the subproblem for the given solution ȳ, A1 and A0 are respectively
the variables with values of 1 and 0 in ȳ, and L is a lower bound on Q(y) over y. The BD
method with LBF cuts (2.20) is also applicable to problems where the subproblem can be
evaluated with a closed-form analytical formula. Given the enumerative nature of (2.20), it
is usually complemented with other VIs to improve the lower bound. A common strategy
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is based on solving the linear relaxation of the subproblem to generate regular optimality
cuts (Cordeau et al., 2001b; Mercier and Soumis, 2007; Papadakos, 2008). Moreover, the
optimality cut (2.20) depends on the exact solution of Q(ȳ) and gives no useful information
on the other y solutions. These issues are partly addressed by Angulo et al. (2016).

A similar variant of the classical BD method, often referred to as combinatorial Benders
decomposition, likewise does not use the dual information to generate cuts. This variant can
handle problems where the MP is a 0–1 integer program and the subproblem is a feasibility
problem (i.e., a problem with no objective function). It excludes the current MP solution
from further consideration via combinatorial cuts, which usually take the form

∑
a∈A:ȳa=1

(1− ya) +
∑

a∈A:ȳa=0
ya ≥ 1, (2.21)

Constraints of the form (2.21) are frequently used in the BD method as feasibility cuts. They
are often strengthened according to the structure of the application, e.g., nonlinear power
design in green wireless local networks (Gendron et al., 2016), lock scheduling (Verstichel
et al., 2015), strip packing (Côté et al., 2014), and radiation therapy (Taşkın and Cevik,
2013).

Carøe and Tind (1998) used general duality theory to reformulate the subproblems, using
VIs based on dual price functions to produce the BD cuts. They showed how such functions
can be obtained when the subproblem is solved via standard techniques such as branch-and-
bound or cutting planes. Sherali and Fraticelli (2002) considered applications with 0–1 mixed
integer subproblems. They showed that the classical BD method is applicable if a convex
hull representation of the constrained region is available. They employed the reformulation–
linearization technique and lift-and-project cuts as a sequential convexification procedure
for the subproblems. The cuts generated by these two methods were functions of the MP
variables and were globally valid, which could lead to a finite convergent BD algorithm.
Sen and Higle (2005) applied disjunctive programming to produce a convex characterization
for the discrete subproblems. They showed that VIs generated for a given MP solution and
a particular subproblem can be used to obtain VIs for any other solution or subproblem.
This result can be used to define the cut-generation procedure in an overall BD approach.
This approach was extended by Sen and Sherali (2006), who showed how branch-and-cut
algorithms can be used for the subproblems.

We conclude with a remark on solving the integer subproblems. Heuristics have proven
their worth in accelerating the BD method, particularly when the subproblem reduces to
a feasibility-checking program or generates more feasibility cuts than optimality cuts (Os-
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man and Baki, 2014). Heuristics can rapidly detect infeasibility and avoid the exact solution
of difficult subproblems (e.g., Luong, 2015) or find approximate optimality cuts quickly (e.g.,
Raidl et al., 2014). In the latter case additional refinement is required, since the cuts may
eliminate optimal solutions. On the other hand, CP is widely used to handle feasibility subpro-
blems with special constraints because of its ability to handle those constraints and because
it identifies infeasibility more quickly than traditional MIP-based approaches can (see e.g.,
Jain and Grossmann, 2001; Maravelias and Grossmann, 2004).

2.9.2 Logic-based Benders decomposition

There is a growing interest in optimization models that include logic relations. These models
can usually be transformed into regular optimization models, but the extra variables and
big-M constraints often yield a weak formulation. Furthermore, one cannot always obtain a
continuous linear subproblem ; it may contain some integer variables and nonlinear functions.
In these cases, standard linear duality cannot be used to develop classical BD cuts.

Hooker and Ottosson (2003) and Hooker (2011) introduced an extension known as logic-
based Benders decomposition (LBBD). The LBBD method is similar to the classical BD
method. It decomposes a given problem into an MP and one or many subproblems, and it
uses constraint-generation techniques to gradually reduce the solution space of the relaxed
MP. However, each subproblem is an “inference dual” problem that finds the tightest bound
on the MP’s cost function implied by its current solution. This bound is then used to generate
cuts that are passed back to the MP. If the MP solution satisfies all the bounds produced by
the subproblems, convergence has been achieved ; otherwise, the process continues.

A major advantage of the LBBD method is that the subproblem needs not take a specific
form : it can be an MILP (Roshanaei et al., 2017), a CP (Hooker, 2005), an NLP (Wheatley
et al., 2015), or a feasibility-checking problem (Harjunkoski and Grossmann, 2002). Howe-
ver, the LBBD method does not have a standard template for the production of valid cuts.
Instead, they must be tailored to the problem at hand, typically based on knowledge of its
structure. For some problems simple cuts exist (Hooker, 2007), but one must balance their
effectiveness with the ease of extraction (Zarandi, 2010). It has been shown that The LBBD
method can outperform state-of-the-art MIP and CP solvers in various applications, often by
several orders of magnitude (e.g., Jain and Grossmann, 2001). It has been applied to a range
of problems, including planning and scheduling (e.g., Hooker, 2007; Benoist et al., 2002),
facility location/fleet management (Zarandi, 2010), radiation therapy (Luong, 2015), trans-
portation network design (Peterson and Trick, 2009), and the minimal dispatching problem
of automated guided vehicles (Corréa et al., 2007). It is worth mentioning that the B&BC
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framework discussed in Section 2.5.1 is often referred to as the branch-and-check method in
context of LBBD (Thorsteinsson, 2001; Beck, 2010).

2.9.3 Generalized Benders decomposition

Many optimization problems involve nonlinear functions and constraints. If the problem is
easily linearized or the nonlinearity occurs only in the domain of the complicating variables,
it can be solved via the classical BD method (Fontaine and Minner, 2014; Osman and Baki,
2014; Cai et al., 2001). Specifically, whenever the subproblem takes the form of a continuous
linear formulation. Otherwise, an extended BD method is necessary.

Geoffrion (1972) proposed Generalized Benders Decomposition (GBD). It can solve nonlinear
problems for which the subproblem is a convex program, because dual multipliers satisfying
strong duality conditions can be calculated for such problems (Bazaraa et al., 2013). It is
also particularly appealing for nonconvex nonlinear problems that can be convexified after
fixing a subset of variables (Costa, 2005).

Sahinidis and Grossmann (1991) showed that the GBD method may not lead to a global or
even local optimum for MINLP problems. Specifically, when the objective function and some
of the constraints are nonconvex or when nonlinear equations are present, the subproblem
may not have a unique local optimum and the MP may cut off the global optimum. Rigorous
global optimization approaches can be used if the continuous terms have a special structure
(e.g., bilinear, linear fractional, concave separable). The basic idea is to use convex envelopes
(or underestimators) to formulate lower-bounding convex MINLPs. These are then integrated
with global optimization techniques for continuous variables, which usually take the form
of spatial branch-and-bound methods (see Grossmann, 2002, for further details). Similarly,
Grothey et al. (1999) observed that a simplistic application of the GBD algorithm to a
convex nonlinear problem may converge to a nonstationary point. They showed that the
convergence failure results from the way in which the infeasible subproblems are handled,
and they proposed a feasibility restoration procedure.

2.9.4 Nested Benders decomposition

The Nested Benders Decomposition (NBD) method is based on the idea of applying the
BD method to a problem more than once. It is particularly appropriate for multi-stage
(stochastic) problems (Birge, 1985) in which each pair of adjacent stages can be considered
“separately". The NBD views the scenario tree as a set of nested two-stage problems and
applies the BD method recursively. Every problem associated with an inner node in the tree
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is both MP to its children and a subproblem of its parent. It is necessary to choose the
sequencing protocols : after solving the problems at a given stage, one can either push primal
information down toward the leaf nodes or pass dual information up toward the root node.
This issue and some acceleration strategies are addressed by Wolf (2014).

The NBD method can also be applied to deterministic single-stage problems, particularly
when one wishes to simplify the MP by reducing the number of integer variables. For example,
Naoum-Sawaya and Elhedhli (2010) applied the BD method to obtain a binary MP and a
mixed integer subproblem. They then applied the BD method to the subproblem to obtain
an integer MP and a linear subproblem.

2.9.5 Bi-level programming and global optimization

Bi-level programming problems are often handled via the reformulation techniques that trans-
fer the bi-level problem into single level using the Karush-Kuhan-Tucker (KKT) optimality
conditions or strong duality from linear programming theory. This transformation, however,
is not always possible, particularly when the second level is an MIP program. (Saharidis and
Ierapetritou, 2009) employed the BD method to make the use of the KKT optimality condi-
tions valid for resolution of MIP bi-level problems. In this method the decomposition creates
a MIP master formulation and a bi-level continuous linear program which is amenable to the
KKT optimality condition.

2.10 Conclusions

We have presented a state-of-the-art survey of the BD method. We have discussed the classical
algorithm, the impact of the problem formulation on its convergence, and the relationship to
other decomposition methods. We have developed a taxonomy to classify the literature on
acceleration strategies, based on the main components of the algorithm, which provided rich
guidelines to analyze various enhancements, identifying shortcomings, trends and potential
research directions. We have also discussed the use of the BD to develop efficient (meta-
)heuristics, described the limitations of the classical algorithm, and presented extensions
enabling its application to a broader range of problems.

The BD method was originally proposed for MILPs with continuous subproblems, and it has
since been extended to handle a wider range of problems such as nonlinear, integer, multi-
stage, and constraint programming problems. Four main classes of acceleration strategies have
been developed to enhance the classical algorithm : modifying the decomposition, solving
the MP and subproblem more effectively, generating stronger cuts, and extracting better
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solutions. The effectiveness of these strategies is problem-dependent, and a combination of
them usually gives the best results. The BD method has also been used to develop efficient
heuristics for complex problems, particularly those that numerically or structurally are out
of reach of the method. This is not however to say that research into the BD is over. There
are still many challenges and open questions.

Generally speaking, the BD method has been suitable for problems in which temporarily
fixing the complicating variables makes the remaining problem significantly easier to handle
by, e.g., becoming suitable for specialized algorithms or offering the opportunity to transform
a nonconvex problem into a convex one. The BD method appeared particularly appropriate
for problems with a "few" complicating (normally 0–1) variables and so many continuous
variables that solving the problem as a whole is inefficient. There are many examples of
such problems in stochastic programming. The range of problem settings addressed is also
expanding, however. Moreover, many problems suffer from having weak linear relaxations
and numerical instability as a result of big–M constraints and the binary variables used
to turn them on and off. The BD method can handle such problems by moving the big–
M constraints to the subproblems and using specialized cuts to represent them. The BD
algorithm has also been applied to bilevel optimization problems that cannot be transformed
via the Karush–Kuhn–Tucker optimality conditions into single-level problems (Saharidis and
Ierapetritou, 2009). Moreover, there are interesting optimization problems for which some of
the constraints are not known in advance and must be generated iteratively. In other cases
the subproblem does not have an amenable formulation but can be obtained via a closed-form
analytical formula. We are aware of only one survey article focusing on the applications of
the BD method, and it restricted its scope to fixed-charged network design problems (Costa,
2005). There is certainly a need for a comprehensive synthesis of the various applications of
the BD algorithm.

The acceleration strategies are all problem-dependent, so they are all part of the BD toolbox
and their interconnections are important. A better understanding of these interconnections
could have a considerable impact on the convergence rate. There is also a need for compre-
hensive research into the acceleration methodologies to better understand their limitations
and implications. This is certainly true for more recent strategies, e.g., decomposition and
cut generation schemes.

Strategies that tighten the MP usually add inequalities only once, before the initial iterations.
Given the encouraging results obtained, it would be interesting to explore the use of more
advanced cutting-plane methods to further tighten the MP at each iteration. The proper
sequencing of the VIs and the classical BD cuts would be of great importance.
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Tightening the subproblem is another effective acceleration strategy, since stronger cuts will
be generated. We are aware of only one relevant study, Bodur et al. (2017) that iteratively
generate Gomory mixed-integer cuts to tighten the subproblem. We encourage further re-
search in this area. We note that one can solve the linear relaxation of the original problem
with a cutting-plane method, adding VIs that involve the continuous variables. After the
decomposition, these VIs will be moved to the subproblem, and this can yield a pronounced
improvement in the quality of the Benders cuts. Moreover, one can use the partial decompo-
sition to iteratively generate VIs for the subproblems, provided the subproblem retained in
the MP gives VIs for the projected subproblems as well.

In terms of generating solutions for the set of complicating variables, we are not aware of any
study showing how to obtain better cuts via a careful selection from the multiple optimal
solutions of the MP or showing how to modify the MP to generate solutions with specific
characteristics, e.g., geometrically centered solutions. These two ideas have been successfully
applied in the context of Dantzig–Wolfe decomposition (e.g., Holloway, 1973; Nemhauser and
Widhelm, 1971).

Sometimes the subproblem further divides into several independent subproblems that can be
optimized concurrently. The literature on parallel algorithms for combinatorial optimization
problems indicates that the parallel variants of the BD algorithm are still in their infancy.
The current model is the master–slave paradigm, which is not the most efficient strategy
(Crainic, 2015). Executing heuristics in the inner loop of the BD method or hybridizing the
algorithm with other methods can yield tremendous improvements in the convergence rate.
These approaches have been developed in a sequential framework, although they can be run
almost independently of the main BD algorithm. Therefore, the development of new parallel
algorithms, particularly in cooperative frameworks, would be worthwhile.

The BD decomposition often yields subproblems with identical dual polyhedra. In this si-
tuation, the solution of any subproblem gives valid cuts for the other subproblems. To the
best of our knowledge, this information has not yet been used in an acceleration strategy.
It should be interesting to develop a strategy in which only some of the subproblems are
solved at each iteration and their solutions are used to generate cuts for other subproblems.
Clearly, the main challenges are the selection of the set of representative subproblems and
the demonstration of the convergence of the algorithm.

There has been limited research into stabilization techniques for the BDmethod in the context
of combinatorial optimization. All the approaches surveyed were based on binary complicating
variables, and state-of-the-art strategies for combinatorial problems, attempt to stabilize the
MP only at the beginning of the algorithm. There is thus a need for more effective techniques



39

in more general settings. One can take advantage of stabilization strategies developed for
continuous problems by first solving the linear relaxation of the MP. Although this idea has
not yet been explored, it may prove effective.

There are various BD extensions for which researchers have explored ways to enhance them.
We plan to survey these enhancements in a future article.



40

CHAPTER 3 BACKGROUNDS AND PRELIMINARIES

In this Chapter, we recall important definitions and concepts that we extensively use in the
following Chapters to help the readers have a better insight on the methodologies that we
develop in this dissertation. We first recall the mixed-integer programming tools in Section
3.1. In Section 3.2, we remind some important definitions and results from stochastic (integer)
programming. In Section 3.3, we introduce the general concept of solution methods for SIPs.
Next, we present an overview of the parallel computing techniques. Finally, we close this
Chapter with a brief overview of network design problems as we extensively use them in
assessing our algorithms.

3.1 Mixed-integer programming

Mixed-integer programming (MIP) is a form of optimization problems in which some or all
of the variables are restricted to be integer. We assume that the MIP problem is linear, i.e.,
the objective function and the constraints are linear, which is known as mixed-integer linear
programming (MILP). A canonical representation of an MILP is

z∗ := min
y,x

f>y + c>x (3.1)

s.t. By ≥ b (3.2)

Ty +Wx ≥ h (3.3)

y ∈ Zn+, x ∈ Rm
+ (3.4)

with f ∈ Rn, B ∈ Rk×n, b ∈ Rk, c ∈ Rm, W ∈ Rl×m, h ∈ Rl, T ∈ Rl×n. Mixed 0-1 linear
programming and pure integer programming are special cases of the above problem where
the y variables are restricted to take binary values and m = 0, respectively. For ease of
presentation, we only consider MILP in the present Chapter.

The MILPs, except for the trivial cases, belong to the NP-hard class of optimization problems.
This means that generally no polynomial algorithm is known to solve MILPs. Moreover, the
difficulty of solving them increases exponentially as the problem size grows (Nemhauser and
Wolsey, 1988).

Many of the practical solution algorithms to address problem (3.1)-(3.4) rely on ignoring the
integrality requirements of the y variables. This is commonly known as the linear programming
(LP) relaxation (Jünger et al., 2009). The LP relaxation of (3.1)-(3.4) is significantly easier
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to solve and more importantly it gives a lower bound on the optimal integer solution. The
simplex method, due to Dantzig (1998), is the most common solution approach to solve the
LP problems. To measure the quality of the lower bound obtained from the LP relaxation, an
optimality gap is calculated as the relative distance of the LP optimal objective value from a
known upper bound value.

Currently, the most successful (exact) method to address MILPs depends on iteratively sol-
ving the LP relaxation of the problem such that at each iteration a better approximation of
the feasible region (3.3)-(3.4) is obtained (Conforti et al., 2010). This method is known as
branch-and-cut approach, which is a combination of the branch-and-bound algorithm with
the cutting plane method.

3.1.1 Branch-and-bound algorithm

Solving integer programs relies on the branch-and-bound (B&B) method due to Land and
Doig (1960) and Little et al. (1963). It is based on an implicit enumeration of the integer
solutions. The algorithm works with the LP relaxation of the problem. It creates a rooted
tree, where the root node is the LP relaxation of the problem. It then explores the branches of
this tree, where each node is a subproblem because it corresponds to a subset of the feasible
region. After evaluating the subproblem at the current node, i.e., bounding, the node solution
is checked against upper and lower estimated bounds on the optimal solution. Then, that
node is discarded if it cannot produce a better solution than the best one found so far by
the algorithm. This step is called pruning. If the node cannot be pruned, a branching step
is performed by creating two (or more) new disjoint subsets of the feasible region (i.e., two
nodes) by restricting the range of integer variables.

The algorithm starts by solving the LP relaxation of the problem at the root node and then
it proceeds with branching. After evaluating any node, it will be pruned if it was infeasible,
integer or its value function exceeds the upper bound. Otherwise, one (or several) index
a ∈ {1, ..., n} are selected such that ȳa /∈ Z and two new nodes are created by adding two
complementary constraints to the LP relaxation of the node. Various branching rules can be
applied depending on the application. A standard format for creating the two new nodes in
the branching step is to use following constraints ya ≤ bȳac and ya ≥ dȳae.

Two key decisions regarding variable selection and node selection are to be made. The first
addresses the selection of a fractional variable in the branching step. The latter addresses
the order in which the nodes are explored. These two decisions define the search strategy by
which the tree is explored. Various strategies can be considered for each decision. We refer the
reader to Linderoth and Savelsbergh (1999) and Achterberg et al. (2005) for a comprehensive
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treatment of such strategies.

If an integer node is found, its value provides an upper bound on the optimal solution. Also,
the minimum value among all active nodes gives a lower bound on the optimal cost. Therefore,
the algorithm stops when the optimality gap is within a desired threshold or there are no
more subproblems to explore.

3.1.2 Cutting plane method

The cutting plane method for integer programming was first proposed in the seminal works of
Dantzig et al. (1954) and Gomory (1958). Cutting plane is a technique to refine the feasible
region of a mixed-integer program such that its LP relaxation provides a better (tighter)
characterization of the convex hull of the true feasible set.

Cutting plane methods work with the LP relaxation of the problem. When this problem is
solved and a non-integer value for a integer variable is obtained, an inequality, called cut, is
extracted which violates the current fractional solution and satisfies all the (feasible) integer
ones. This step is called separation. This process of solving the LP problem and adding cuts
repeats until an integer feasible solution is found or it is proven that the problem is infeasible
or no more cuts can be found.

In other words, recall that the convex hull of set Y is the set of all convex combination of its
(extreme) points and it is denoted as conv(Y ), i.e., conv(Y ) = {∑i=1,...,|Y | λiyi|

∑
i=1,...,|Y | λi =

1 and λi ≥ 0 ∀i}. If Y is defined as a mixed-integer set, i.e., Y = {(y, x) ∈ Zn × Rm :
Wx + Ty ≥ h}, then its conv(Y ) is a polyhedron according to Meyer (1974). This means
that we can write a mixed-integer program as an LP, i.e., miny,x{g(y, x) : (y, x) ∈ Y } ≡
miny,x{g(y, x) : (y, x) ∈ conv(Y )}, if description of its convex hull by means of a set of cuts
is known.

The important questions in cutting plane methods are how to find a violating cut at each
iteration and how to guarantee the finite convergence of the algorithm. From polyhedral
theory, if y /∈ conv(Y ), there always exists a hyperplane (i.e., a cut) that separates y from
conv(Y ) (Nemhauser and Wolsey, 1988). Note that conv(Y ) is convex hull of set Y . To assure
the finite convergence, the cut needs to be a facet of Y , because although there are infinitely
many cuts, there are only a finite faces of a polyhedron.

It is generally very difficult to construct the convex hull representation of Y , because finding
a class of facet-defining cuts and solving the separation problems, in general, can be as hard
as solving the original problem. So, the primary goal of cutting plane methods is to find a
good approximation of the convex hull.
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Cuts can be generic or problem specific. The first class are based on algebraic arguments and
does not depend on the problem structure. Thus, they can be applied to the LP relaxation
of any integer (linear) program. The finite convergence of cutting plane method with generic
cuts for some subclasses of integer problems is known, see for instance Gomory (1958), Balas
et al. (1993) and Chen et al. (2011) for pure integer, mixed 0-1 integer problems, and general
integer problems with bounded integer variables, respectively. The second class of cuts, also
known as valid inequalities, exploit some structural properties of the problem and they are
often stronger than the generic ones. Therefore, they are rarely used in general purpose
solvers because they are valid only for some specific problems. However, they are widely used
to tighten the LP relaxation, if available, see e.g., Chouman et al. (2017).

3.1.3 Branch-and-cut

Performance of the B&B method highly depends on the bounding step. Generally speaking,
number of the explored nodes depends on the bound at each node, particularly the root node.
Therefore, a cutting plane method is often used in conjunction with B&B in order to refine
the representation of the feasible region at some nodes of the B&B tree so as to tighten the
LP relaxation bound. To this end, a cutting plane method is used before branching occurs.
This combination of the cutting plane method and B&B is known as branch-and-cut (B&C).

In other words, after solving the LP relaxation at a node of the B&B tree, cuts are (iteratively)
added to the formulation in order to tighten its bound. Clearly, the bound improves and
fractionality of the solution reduces. Therefore, it increases the chance to prune that node
or it requires less subsequent branching steps. This strategy is common in almost every
commercial solver and generally it is currently the most successful method to solve integer
programs (Conforti et al., 2010).

The cuts generated at each node of the B&C tree can be local or global. If a cut is only valid
to that node and its subsequent children, it is called local, while a global cut is valid to the
original problem and thus all nodes of the B&B tree. Generally speaking, the global cuts are
preferred over the local cuts due to their wider impact and entailing less complications in the
backtracking steps. The decisions of where and how many cuts to generate are usually made
empirically. Generally speaking, several iterations of the cutting plane method are executed
at the root node, while fewer or no iterations are performed in deeper levels of the B&B tree.
We note here that if cuts are only added at the root node of the tree before branching, the
method is called cut-and-branch.

A variant of the B&C method is known as delayed constraint generation (Nemhauser and
Wolsey, 1988). This method is particularly useful for problems where constraints need to be
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generated on-the-fly because there are an exponential large number of them or they are not
known beforehand. For example, some graph problems such as the traveling salesman problem
involve the so-called subtour elimination constraints that grow exponentially with the size
of the network. Only a small subset of these constraints are actually needed and adding all
them to the formulation may even prevent solving the LP relaxation. In this framework, after
evaluating each (integer) node and before branching, it checks if violated cuts are available
to add to the formulation. To ensure the convergence to an optimal solution, all violated cuts
need to be extracted.

3.2 Stochastic programming

In many applications, the actual value of data becomes known over time and the decisions
that need to be made now depend on the value of these parameters. For instance, in a simple
crop planning problem, the farmer has to make a strategic decision about how much land to
devote to each crop prior to knowing the weather conditions. Stochastic programming offers
a powerful tool to model such optimization problems (Kall et al., 1994; Birge and Louveaux,
1997). We note that there are other approaches for optimization under uncertainties such as
probabilistic programming (Charnes and Cooper, 1959) and robust optimization (Ben-Tal
et al., 2009). However, the description of these methods of our scope.

Uncertainty in the input data for an optimization model comes from unknown future events.
For instance, in the crop planning example, the amount of rain in each session is unknown
to the farmer when she makes her strategic decisions at the beginning of session. Unfor-
tunately, these uncertainties are unavoidable because the farmer has no control over them.
However, there usually exists some historical or simulated data about the uncertain parame-
ters (e.g., amount of rain) that gives some statistical information to estimate the probability
distributions for the uncertain data (Dupačová et al., 2000; Kaut and Wallace, 2003).

In stochastic programming, having the probability distribution is the main assumption. Given
the probability distributions, the uncertain data can be taken into account by modeling the
uncertain parameters as random variables (Shapiro et al., 2014).

To model stochastic problems, different objectives can be used. Among all, minimization of
expected costs is the most common function ; see Sen and Higle (1999) for different objective
terms. Such an objective is appropriate especially for problems that yield decisions to be used
repetitively over a certain time horizon (Santoso et al., 2005). Therefore, the Law of Large
Numbers justifies the expected value objective functions, because if the process repeats itself
for many times, the average cost will converge to the true value. There are a vast number
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of such situations in optimization problems ; see, for example, Wallace and Ziemba (2005)
and Uryasev and Pardalos (2013). Two-stage stochastic programs with recourse are the most
widely applied and studied problems of this type (Shapiro et al., 2014).

In the first-stage, also called here-and-now, the decision maker must take a decision now,
while not knowing the exact outcome of the uncertain parameters. In the second-stage, also
known as recourse decisions, when the parameters have became known, the decision maker
can take a recourse action to adjust her plan accordingly. For instance, in the crop planning
problem, the allocation of land to different seeds must be made before knowing the amount
of rain during the session, i.e., the first-stage. At the end of the session, the amount of rain
is observed and the yields are known. Therefore, the farmer can take recourse actions to
sell/store the additional grains or to buy from external sources to cover the deficits for the
next session.

The two-stage stochastic programming provides a set of implementable strategies specifying
how to react when a particular random value is observed, which, appropriately emulates
the decision-makers behavior. Therefore, the goal is to obtain a solution that, on average,
performs well in the long-run. To do so, all possible realizations of the random variables
need to be considered. This, however, entails a noticeable computational challenge because
it requires to calculate the expected value function. This computational challenge depends
on the dimension of the random variables. However, even for small dimensions, the exact
calculation of the objective function may numerically be very intense. Therefore, the uncertain
parameters are characterized with a finite set of discrete realizations, called scenarios. As an
example see Crainic et al. (2011).

A common approach to sample the scenarios is Monte Carlo sampling. The resulting pro-
blem for the chosen set of the scenarios is usually known as sample average approximation
(Rubinstein and Shapiro, 1990). In this method the set of scenarios are sampled such that
they, collectively, closely approximate the (continuous) distribution. Each scenario is asso-
ciated with a positive weight to reflect its occurrence probability. Once the appropriate set
of scenarios is generated, the stochastic problems can be modeled as a deterministic optimi-
zation problem. We should note that in this method the optimization problem is solved with
a fixed set of scenarios. In stochastic approximation method, however, the set of scenarios is
iteratively sampled during the optimization procedure (Nemirovski et al., 2009).

The quality of the sample average approximation highly depends on the number of scenarios
created to estimated the uncertain parameters. Clearly, larger number of scenarios give a bet-
ter approximation of the original stochastic program, but solving the associated deterministic
optimization problem would become very challenging due to its size. Moreover, to measure
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the quality of the solutions obtained from the approximated problem, statistical lower and
upper bounds on the optimality gap are needed. This requires solving multiple deterministic
problems associated with different scenario samples. Therefore, it is very important to have
efficient algorithms to get good solutions and to be able to evaluate the candidate solutions
in a reasonable amount of time.

In many applications of stochastic programming, some discrete decisions have to be made.
For instance, in a simple portfolio management problem, the investor has to decide whether or
not to buy a specific asset prior to knowing the return rate for each asset. This combination of
stochastic programming and integer programming is known as stochastic integer programming
(Louveaux and Schultz, 2003; Ahmed, 2010). This class of optimization problems is very
challenging to solve, because they are generally NP-hard due to their combinatorial nature
and also they have a large-scale size due to the data uncertainty. Thus, it is no surprise that
effective solution algorithms are scarce.

3.2.1 Two-stage stochastic integer programming

In this dissertation, we mainly focus on the two-stage stochastic integer programming. Thus,
in this part, we recall some of the main backgrounds that we use in this dissertation. We
refer the reader to the introduction by Ahmed (2010), the surveys by Louveaux and Schultz
(2003) and Sen and Higle (2005), the books by Birge and Louveaux (1997) and Kall et al.
(1994), for a comprehensive treatment of this subject.

In the two-stage stochastic programming, versus the multi-stage case, the uncertainty is
observed only once and the decisions are made before and after observing the uncertainties.
Let ξξξ be vector of random variables governed by probability function P with support Ω which
is a closed set in the real space. We consider a canonical representation of these optimization
problems with the following form, called extensive formulation

z∗ := min
y

f>y + Eξξξ[Q(y, ξ)] (3.5)

s.t. By ≥ b (3.6)

y ∈ Y (3.7)
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where for each realization ξ of the uncertainty set

Q(y, ξ) = min
x

c>ξ x (3.8)

s.t. Wξx ≥ hξ − Tξy (α) (3.9)

x ∈ X (3.10)

with f ∈ Rn, B ∈ Rk×n, b ∈ Rk, cξ ∈ Rm,Wξ ∈ Rl×m, hξ ∈ Rl, Tξ ∈ Rl×n. Here, X ⊆ Rm and
Y ⊆ Rn are nonempty closed subsets which define the nature of the x and y decision variables
in terms of sign, bounds and integrality restrictions. In this program, y represents the first-
stage decisions and x represents the second-stage decisions. We seek a feasible solution that
minimizes the first-stage cost f>y plus the expected cost of the second-stage decisions.

Note that the decisions are made in sequence. The second-stage problem takes the first-stage
decisions y as fixed and determines the best recourse action associated with that decision for
each realization of the uncertainties. Among all these possible solutions, the one that entails
minimum first-stage and expected second-stage cost is chosen. Therefore, it provides a set
of implementable strategies specifying how to react when a particular scenario is realized,
which, appropriately emulates the decision-maker’s behavior.

A common assumption in stochastic programming is to assume that the recourse problem is
bounded from below. Thus, for any first-stage solution ȳ and realization of the uncertainty
ξ, we have Q(ȳ, ξ) > −∞. Another common assumption is known as the relatively com-
plete recourse property which means that the recourse problem is always feasible for every
first-stage solution. An extended version of this property is complete recourse property which
means that the recourse problems are feasible for any y ∈ Rn. These properties usually exist
in many applications. However, if the problem does not have such properties, it can easily
be achieved by adding nonnegative dummy variables to the recourse constraints (3.9) and
penalizing them in the objective function (3.8). Another common assumption in stochastic
programming is to assume that the recourse matrix Wξ in the second-stage problem is in-
dependent of the uncertainty, i.e., Wξ = W for every ξ. Such problems are called stochastic
programs with fixed recourse. These properties are usually important in the development of
some algorithms, because they allow a convenient characterization of the feasibility region in
computational steps.

The solution of program (3.5)-(3.7) is often referred to as here-and-now because we take the
strategic decisions before realization of the uncertainty. On the contrary, if we wait until
the uncertainty unfolds and then take the strategic decisions, i.e., first-stage decisions, such
solution is referred to as wait-and-see. The latter provides a lower estimation of the optimal



48

cost of the former, which is very weak if the uncertainty has noticeable impact on the decisions
(Wets, 2002).

To generate the appropriate set of scenarios, the common practice is to approximate the
probability distribution P of ξ by a discrete probability distribution with finite support.
This gives a finite set of scenarios each representing a possible realization of the random
event. Given the scenario set S, we denote the probability of occurrence for scenario s by
ps := P (ξs) > 0, and the corresponding data by (cs,W s, T s, hs) := (cξ,Wξ, Tξ, hξ) for every s
in S such that ∑s∈S ps = 1. Accordingly, the extensive formulation, also called deterministic
equivalent formulation, can be written as follows

EF := min
y

f>y +
∑
s∈S

psc
s>xs (3.11)

s.t. By ≥ b (3.12)

y ∈ Y (3.13)

T sy +W sxs ≥ hs, ∀s ∈ S (3.14)

xs ∈ X ∀s ∈ S (3.15)

where xs defines the recourse variables for scenario s ∈ S. The objective function (3.11)
minimizes the total cost consisted of first-stage cost and the expected second-stage cost.
Constraints (3.12) and (3.13) enforce the first-stage requirements and constraints (3.14) and
(3.15) make sure that the second-stage constraints are satisfied for every scenario.

3.3 Decomposition methods

The deterministic equivalent formulation (3.11)-(3.15) is a standard mixed-integer optimiza-
tion program. Therefore, one can attempt to directly solve it. For example, if the problem is a
linear continuous program, i.e., Y = Rn and X = Rm , it might be solvable with a simplex or
an interior point method. If it is a linear integer program, it can be solved with a branch-and-
bound type algorithms or MIP solvers such as Gurobi or CPLEX. However, these methods
generally fail due to the large-scale of the formulation. Although heuristics may seem the
natural methodology of choice (Crainic et al., 2011), they are also subject to failure because
of the same reason and more importantly, they provide no proof of convergence.

In this regard, decomposition techniques are essential in solving stochastic programs. Each
decomposition method is based on four main mechanisms : (i) how the problem is divided into
smaller subproblems, (ii) what information is generated and shared among the subproblems,
(iii) how the results are combined to build a complete solution for the original problem
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and (iv) how the search continues. For some decomposition examples, see Laporte (1992),
Ruszczyński (1997), Lahrichi et al. (2015), Qi et al. (2015) and Chaieb et al. (2015).

The stochastic program (3.11)-(3.15) has a so-called dual decomposition structure and the
dual of its LP relaxation has a block angular structure. In this dissertation, we are interested
in mathematical decomposition methods which exploit these primal or dual structure of the
problem, yielding the Benders decomposition (BD) algorithm or Lagrangian dual decompo-
sition (LDD) method.

3.3.1 Benders decomposition algorithm

In this section, we consider two-stage stochastic integer programs with continuous recourse.
We specifically consider the formulation (3.11)-(3.15) with X = Rm

+ . We shall discuss variants
of the BD algorithm which relax this requirement, see Chapters 2 and 5. Various solution
algorithms have been designed to solve this problem, see, for example, Wets (1983), Kall
(1994), Birge and Louveaux (1997), Carøe and Schultz (1999) and Ruszczyński (2003). Most
of these solution procedures rely heavily on the premises of the Benders decomposition me-
thod (Benders, 1962). Note that the application of BD to stochastic problems is often referred
to as the L-shaped method due to Van Slyke and Wets (1969).

The BD method is to tackle problems with complicating variables, which, when temporarily
fixed, yields a problem significantly easier to handle. It is based on a pattern of projection,
outer approximation and relaxation (Geoffrion, 1970a,b). First, the model is projected onto
the subspace defined by the first-stage variables. The projected term is then dualized and an
equivalent model is built by enumerating all extreme points and rays of the dual polyhedron.
The extreme rays indicate feasibility requirements for the first-stage variables (i.e., feasibility
cuts) and the extreme points state the projected cost (i.e., optimality cuts). Enumerating
all the extreme points and rays of the dual polyhedron is not computationally practical and
most of the associated cuts will not be active at an optimal solution. Therefore, a relaxation
of the equivalent formulation is performed such that it initially includes no cuts, these being
iteratively generated by sequentially solving a Master Problem (MP) and one or several
Subproblems (SPs).

For a tentative value of the first-stage variables ȳ, the recourse problem (3.8)-(3.10) is a
continuous linear program. Given a dual variable α associated with constraint (3.8), the dual
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formulation of Q(ȳ, s) is,

(SP (ȳ, s)) Q(ȳ, s) = max
α

(hs − T sȳ)>α (3.16)

s.t. W s>α ≤ cs (3.17)

α ∈ Rl
+. (3.18)

The above program is either unbounded or feasible and bounded. In the former case, the
ȳ solution is infeasible and thus there exits a direction of unboundedness rq,s, q ∈ F s that
satisfies (hs−T sy)>rq,s > 0, where F s is the set of solutions of the cone defined byW s>α ≤ 0
and α ∈ Rl

+, i.e., the set of extreme rays of the polyhedron defined by (3.17) and (3.18). To
assure the feasibility of the y solutions, we need to forbid the directions of unboundedness
through imposing (hs − T sy)>rq,s ≤ 0, q ∈ F s on the y variables. In the latter case, the
optimal solution of the subproblem is an extreme point αe,s, e ∈ Es of the polyhedron
defined by W s>α ≤ cs and α ∈ Rl

+, where Es is the set of extreme points of this polyhedron.
We can thus rewrite the extensive formulation (3.5)-(3.7) by interchanging Q(y, s) with its
dual formulation, i.e., SP (y, s), and ensuring the feasibility of the y solutions

MP := min
y
f>y +

∑
s∈S

ps max
e∈Es
{(hs − T sy)>αe,s} (3.19)

s.t. By ≥ b (3.20)

(hs − T sy)>rq,s ≤ 0 s ∈ S, q ∈ F s (3.21)

y ∈ Y (3.22)

If we capture the value of inner maximization in a single variable θs for every s ∈ S, we can
obtain following equivalent reformulation of the extensive problem (3.5)-(3.7), called Benders
equivalent reformulation

MP = min
y
f>y +

∑
s∈S

psθ
s (3.23)

s.t. By ≥ b (3.24)

(hs − T sy)>rq,s ≤ 0 s ∈ S, q ∈ F s (3.25)

(hs − T sy)>αe,s ≤ θs s ∈ S, e ∈ Es (3.26)

y ∈ Y . (3.27)

Enumerating all the extreme points Es and extreme rays F s for each s ∈ S is computationally
burdensome and unnecessary. Thus, Benders (1962) suggested a relaxation on the feasibility
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cuts (3.25) and optimality cuts (3.26) and a delayed constraint generation method. The me-
thod starts from MP formulation with initially no optimality and feasibility cuts, i.e., Es = ∅
and F s = ∅ for every s ∈ S. At iteration t, the obtained solution yt from solving MP is fixed in
subproblem SP (yt, s), s ∈ S to extract an extreme point/ray and thus add the corresponding
optimality/feasibility cut to the MP formulation. This alternation between the MP and the
subproblems continues until the lower and upper bounds collide. To calculate these bounds,
notice that the objective value of the MP at each iteration and f>yt +∑

s∈S psSP (yt, s) give
the lower and upper bounds on the optimal value.

The aforementioned BD method is known as multi-cut reformulation as it adds a cut to
the MP per scenario SP. However, if we aggregated the cuts into a single constraint, it is
commonly referred to as single-cut version.

The BDmethod has been the subject of extensive study to improve its numerical performance,
extend its application to a wider range of optimization problems and even to design new
solution algorithms. Due to the extensive use of this method in this dissertation, we provide
a comprehensive literature review of this method in Chapter 2.

3.3.2 Lagrangian dual decomposition algorithm

Carøe and Schultz (1999) developed an algorithm based on a specific reformulation of the
extensive formulation and Lagrangian relaxation. We refer to this method as Lagrangian dual
decomposition (LDD) method. It breaks the problem into |S| disjoint subproblems where
each subproblem is a single-scenario form of the extensive formulation. This is achieved by
duplicating the first-stage variables, i.e., y1, y2, ..., y|S|. According to the nonanticipativity of
the first-stage decisions, these variables need to take the same value, i.e., y1 = ... = y|S|.
Relaxing constraints enforcing this requirement by Lagrangian duality yields the respective
decomposition method.

In other words, we rewrite our two-stage stochastic program of interest as follows :

min
y,y1,...,y|S|

∑
s∈S

ps[f>ys + cs>xs] (3.28)

s.t. Bys ≥ b s ∈ S (3.29)

ys ∈ Y s ∈ S (3.30)

W sx+ T sys ≥ hs s ∈ S (3.31)

xs ∈ X s s ∈ S (3.32)

y = ys s ∈ S (πs) (3.33)
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This formulation is referred to as the scenario formulation or split-variable formulation.
Relaxing the nonanticipativity constraint (3.33) using Lagrangian multipliers πs ∈ Rn for
each s ∈ S, we get following Lagrangian dual subproblem for each s ∈ S

L(πs) := min
ys∈Y s,y∈Rn

+
{(psf − πs)>ys + psQ(ys, s) + πs>y} (3.34)

where Y s = {ys|Bys ≥ b, ys ∈ Y} for every s ∈ S. Note that L(πs) is a piecewise concave
function of πs and the last term can easily be solved by inspecting the coefficients. The
Lagrangian dual problem is thus to find the multipliers that maximize the sum of L(πs)
functions over S, i.e,

LDD := max
πs,...,π|S|∈Rn

∑
s∈S

min
ys∈Y s,y∈Rn

+
{(psf − πs)>ys + psQ(ys, s) + πs>y} (3.35)

We observe that for a given π1, π2, ..., π|S| the minimization problem can be solved disjointly
for each s ∈ S. To solve the Lagrangian dual problem, Carøe and Schultz (1999) employed
a subgradient method. In this case, a duality gap may arise since the nonanticipativity
constraints are not necessarily satisfied for a mixed-integer problem. Thus, a branch-and-
bound method is used to close the gap. Note that solving linear continuous problems by
Lagrangian dual program using a cutting plane method is equivalent to solving its dual with
the BD method, see Lim (2010) for complete details.

The LDD method is frequently referred to as scenario decomposition in the context of sto-
chastic programming (Ahmed, 2013). This method is one of the most popular approaches
in stochastic programming not only because it breaks the extensive formulation into more
manageable pieces that can be solved in parallel but also due to the creation of subproblems
that structurally resemble the original extensive formulation (Ruszczyński, 1997; Rockafellar
and Wets, 1991). In addition, it offers the ability to address problems with integer recourse
variables (Zou et al., 2016). This method entails interesting theoretical results which have
motivated the development of both exact and heuristic methods ; see Fisher (2004), Rush
and Collins (2012) and Koko (2013) for a more detailed information.

In practice, the LDD method usually reaches a lower bound which is much tighter than
the LP relaxation bound. This bound is equal to solving the LP relaxation of the extensive
formulation over ⋂s=1,2,...,|S| conv(Xs) due to Theorem 6.2 in Nemhauser and Wolsey (1988),
where Xs := {(ys, xs)|Bys ≥ b, W sxs + T sys ≥ hs, ys ∈ Zn+, xs ∈ Rm

+}. However, this
requires updating the Lagrangian multipliers by subgradient (Held et al., 1974) or cutting
planes (Mitra et al., 2016) which can be a bottleneck of the algorithm due to the slow
convergence. Acceleration techniques have thus been developed for which examples include
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the bundle method (Crainic et al., 2001), the volume algorithm (Barahona and Anbil, 2000),
and analytical center cutting plane method (Goffin et al., 1992).

At each iteration, the LDD method yields a pool of integer solutions obtained from solving
the Lagrangian dual subproblems (3.34). These solutions can be used to derive near-to-
optimal upper bounds (Ahmed, 2013). In some cases, however, it might be hard to derive a
good feasible solution from these solutions because they may not satisfy the nonanticipativity
constraints (3.33). Crainic et al. (2011) used a heuristic scheme to update the first-stage costs
iteratively in order to attain a consensus for the first-stage values among all the scenario
subproblems. In a later study, Crainic et al. (2014b) argues that superior performance can
be reached if a subproblem is associated with a cluster of scenarios rather a single scenario.

The LDD method cannot offer a provable convergence for non-convex problems, although
in practice it might find very close-to-optimal ones. Convergence for mixed-integer problems
might be difficult to obtain and it is even more unlikely when integer variables are indicator
variables (i.e. their value has a great impact on other variables). Strategies have thus been
designed to overcome this issue. Schütz et al. (2009) solved the resulting Lagrangian dual
program by a cutting plane method in a bundle method with box constraints. Ahmed (2013)
proposed a LDD-based convergent method using valid inequalities to prevent revisiting ge-
nerated integer solutions at each iteration. Note that this algorithm can work independently
of updating the Lagrangian multipliers. Branch-and-fix (Alonso-Ayuso et al., 2003) is ano-
ther convergent LDD-based method which removes the nonanticipativity constraints and
gradually enforces them inside the search tree. Branch-and-price algorithms can also be used
to solve the Lagrangian dual problem and converge to a global optima (Lulli and Sen, 2004).

3.4 Parallel computing

Time requirement to solve many combinatorial optimization problems can disappointingly
be large. Especially, in stochastic (integer) programming, one needs to iteratively solve many
subproblems, usually, for a large number of iterations. Parallel computing can offer huge
advantages to cope with this problem by, for example, solving the disjoint subproblems
concurrently.

Parallelism has been employed for many years, but interests in it have grown lately due to
the developments in computers and increasingly need from science and engineering commu-
nities. In this part, we attempt to provide the definition of parallel computing, how it is
achieved, what are parallelization strategies, and how to measure the performance of paral-
lel algorithms. We refer the reader to the excellent works by Gendron and Crainic (1994),
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Crainic and Gendreau (2002), Ralphs et al. (2003), Talbi (2006) and Crainic (2017) for a
comprehensive literature review of this topic with extensive examples and details.

3.4.1 Source of parallelism

Parallel computing is based on dividing the problem into smaller disjoint ones which can be
solved in parallel. This follows from a decomposition of the total computational workload
and distribution of the resulting tasks among available processors. Given a problem instance
and an algorithm to solve it, the decomposition of total computational load may concern
the problem’s domain or the solution algorithm itself. In other words, if the computational
workload is decomposable, it is usually done in one of the following ways :

— the solution domain is divided among processors, known as data parallelism or search-
space decomposition,

— the algorithm tasks themselves are divided among processors, known as functional
decomposition.

Domain decomposition may concern the problem’s data or problem’s structure. The former
refers to the case where the problem-instance data is divided among several processes by
assigning each process with the data on which it operates. A process may require data from
several other processes thus, communications are required to respond to the requests. A
classical example of data parallelism can be observed in solving finite difference equations.
In this problem, there is a mesh of points and at iteration t of algorithm, following equation
needs to be calculated :

xti,j =
xt−1
i−1,j + xt−1

i,j−1 + xt−1
i+1,j + xt−1

i,j+1

4 (3.36)

As depicted in Figure 3.1, the domain is divided among three processors where each processor
runs the same process but on different data. Therefore, the mesh points on the boundary of
region assigned to a processor must share data in order to perform an iteration.

In the second case, the decomposition is generally implemented by partitioning the vector
of decision variables (or attributes). For instance, in rich VRP problems, one can partition
the solution space by only considering a set of particular attributes (e.g., client-day or client-
depot) in each subproblem while the variables associated with the other attributes are fixed
to a certain value. Or, it can be achieved by utilizing projection or relaxation techniques
presented in the previous section.

In the functional decomposition, the focus is on the computations to be performed rather
than manipulating data, i.e., it seeks computing-intensive and disjoint tasks in the inner loop
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Figure 3.1 Illustrative example of data-parallelism and communication (Linderoth, 1998)

of algorithm to be performed in parallel by several processors. For example, in the presented
decomposition methods, each processor receives a subset of the subproblems associated with
the current solution, solve them and, returns the results.

Another source of parallelization is based on non-decomposition multi-walk strategies, which
does not properly fit into these two lines of parallelization. Because no explicit attempt
to decompose the total computational workload is carried out. This strategy mainly aims
at providing a higher search robustness, particularly when various search parameters and
randomness are involved in the algorithm. For example, several independent algorithms,
each with different search mechanism, can be launched to address the same problem instance
rather than distributing (or in some sense reducing) the total computational load. These
algorithms may or may not communicate. Figure 3.2 gives a general picture on sources of
parallelism.

Figure 3.2 Main sources of parallelism for combinatorial optimization problems

Using these sources of parallelism, one can design a wide variety of parallel solution algo-
rithms. In the rest of this section, we attempt to describe such algorithms. We first present
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a taxonomy of the parallelization strategies that clearly illustrates the main components of
these algorithms.

3.4.2 Taxonomy and paradigms

We follow the three-dimension classification of parallel algorithms presented by Crainic and
Toulouse (1998). This taxonomy is based on the number of processors that control the search,
the communications strategies used, and variety of algorithms running in parallel.

The first dimension in designing any parallel algorithm is “how the global problem solving
is controlled ?”. This refers to the so-called search control cardinality, indicating whether the
global search is controlled by a single processor, 1-control (1C), or by several processors that
may collaborate or not, p-control (pC). Note that considering parallel B&B algorithms, these
two parameters are frequently referred to as centralized or distributed (also called collegial)
control.

The second dimension addresses “how information is exchanged ?”. In other words, every
parallelization necessitates some kinds of communications to provide the necessary data for
computation or control the global search. Therefore, the second dimension is called search
control and communications addressing the issue of information exchange. In this context,
one generally refers to synchronous and asynchronous communications. In the former case,
all concerned processes stop and engage in some form of communication to exchange informa-
tion at the pre-specified moments determined either by hard-coded or by a control (master)
process. While in the latter case, communications may occur at any time and depend only
on the local algorithmic logic of the interacting processes. On the other hand, there is a
possibility to work on the shared information to derive additional knowledge. Therefore, one
can further classify this dimension based on the quantity and quality of the exchanged in-
formation. These levels are defined as follows. Note, in order to make the presentation clear,
we provide a brief discussion on the possible combination of this parameter with the search
cardinality parameter.

— Rigid synchronization, RS : the information is exchanged in its original form and at the
predefined moments. In 1C/RS there is a central master process that sends the tasks to
the slaves, and waits until all slaves finish their task before performing next iteration.
On the other hand, in pC/RS strategy several searches are separately conducted with
no communication among the various processors except at synchronization point.

— Knowledge synchronization, KS : a predefined number of explorations has been per-
formed and possibly shared information is modified or used to infer new knowledge.
The difference between rigid and knowledge synchronization in a 1C control context
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is based on how much work the master assigns to each slave, while for p-C strate-
gies it corresponds to the absence or presence of inter-process communications and
knowledge exchanges.

— Collegial, C : communications between processes are established without prior agree-
ment (asynchronously). In 1C/C strategy that follows master-slave model, each slave
will be assigned with a work unit as soon it becomes idle. In pC/C strategy several
search threads run independently and asynchronously communicate to share informa-
tion.

— Knowledge collegial, KC : asynchronous communications with creation of new infor-
mation from exchanged data. The only difference from the previous category is that
in this category new knowledge based on the exchanged information is inferred.

In line with this subject, the way information is accessed is important. In this context, there
are two possible options : shared memory or distributed memories. In shared memory there
is a common "central memory", referred as blackboard, where every thread can write/read
information on/from it. In the latter strategy, every process (or possibly a set of processes to-
gether) has its own memory and they communicate to each other accordingly to a pre-specified
communication topology (e.g. a complete-graph connection scheme or a ring topology).

The third and last dimension to classify parallel algorithms is referred as search differentia-
tion, because more than one solution method or variant (e.g. same algorithm with different
parameter setting or different initial point) may be involved in the search. It specifies if
search threads start from the same/different point, use same/different search strategy, and
how many different algorithms are parallelized. Figure 3.3 represents this three-dimension
taxonomy of parallelization strategies.

Figure 3.3 Main sources of parallelism for combinatorial optimization problems
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Combination of the various sources of parallelism with different parallelization strategies gives
a broad range of possibilities to design parallel algorithms. However, these algorithms can be
accounted for with a relatively small number of frameworks (paradigms) :

— Low-level parallelism : they aim at accelerating the resolution process without modi-
fying the algorithmic logic or the search space. They seek computing-intensive and
disjoint tasks in the inner loop of algorithm to be performed in parallel by several
processors, e.g., solving Benders subproblems on various processors. Moreover, they
are implemented following the classical master-slave parallel programming model.

— Multi search : this strategy consists in running several search algorithms simulta-
neously and independently, each exploring the entire solution domain of the problem
but with a different search trajectory.

— Cooperative search : this paradigm goes one step further than the previous strategy
and integrates the mechanism to share the information obtained from the diversified
search algorithms while the exploration is in progress. Sharing and eventually creation
of new information yields a cumulative value with better output than the independent
multi-search parallelism.

— Integrative search : in this class of parallelism the domain or search-space is divided
into smaller sub-regions and then, each of the resulted subproblems is solved by a
sequential algorithm, the (partial) solutions are collected to build a complete one and
the decomposition is modified (if required).

— Hybrid parallelism : any combination of the previous paradigms. This strategy is also
often called hierarchical parallelism.

3.4.3 Efficiency measurement

The traditional goal of designing parallel algorithms is to reduce the time required to solve
a given problem instance. For the algorithms that run until the optimal solution is found,
this translates into the well-known speedup measure. Absolute speedup with P processors is
defined as ratio of the time required by best serial algorithm over that obtained by parallel
algorithm using P processors. For the sake of simplicity, relative speedup is often used and
means the ratio of the time taken for solving an instance on one processor over that required
to solve the same instance using P processors. Speedup measures are more difficult to define
when the parallel and sequential algorithm does not yield the same solution quality. In this
circumstance, time comparison is not fair. Thus, the parallel methods should outperform their
sequential counterparts in terms of solution quality and, ideally, computational efficiency, or,
the additional time requirement has to be justified by higher quality solutions.
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Efficient utilization of additional resources in parallelism is important. Thus, efficiency is com-
puted as the speedup divided by the number of processors. When efficiency is equal/greater
to one it is normally referred to as linear/superliner speedup. However, if this ratio is inferior
to one, it exhibits the speedup anomalies due to overheads. More precisely, parallel algorithms
might create redundant and/or unnecessary tasks. On the other hand, the algorithmic design
might cause delays and idle times. These yield speedup anomalies and when efficiency is
smaller than one, parallel overhead is measured as "total run time×(1-efficiency)".

3.5 Application problem

In this dissertation, network design (ND) constitutes one of our main application in numeri-
cally assessing the algorithmic developments, because of its vast applicability, its generality
(i.e., appearing in the backbone of many optimization problems), and its complexity. We thus
aim at reviewing some of the main aspects of the ND problems. However, the literature is so
broad that a complete treatment of the topic is a significant endeavour by itself and clearly
well beyond the scope of this document. Our central goal is to briefly discuss the general
concept behind ND problems, illustrate their practical importance, and highlight some of the
main challenges in solving them. We refer the reader to Magnanti and Wong (1984); Crai-
nic and Laporte (1997); Gendron et al. (1999); Crainic (2000); Minoux (2001); Wieberneit
(2008); Klibi et al. (2010) for a more elaborated and comprehensive treatment of this subject.

3.5.1 Network design problems

The ND problems are central to a large number of real-world applications including trans-
portation, telecommunication, logistics, manufacturing, power systems, just to name a few
(Klibi et al., 2010). Generally speaking, these problems revolve around the selection of a
subset of (capacitated) arcs out of a potential set in order to support the flow requirements
between various origin-destination (OD) pairs. The decisions are to be made such that an
effective trade-off between the cost of design decisions and their impact on the performance
of the resulting network is achieved, while demand requirements and a set of problem-specific
constraints are satisfied.

The ND problems are defined on a graph, G = (N ,A), consisting a set of nodes N (re-
presenting cities, terminals, depots, power plants, etc.) and a set of links A (represen-
ting roads, cables, pipelines, flight legs, services, etc.), where each link connects a spe-
cific pair of nodes. Links can be unidirectional (arc) or bidirectional (edge) and defined
with various characteristics, e.g., capacity, cost, length, etc. The underlying goal is to se-
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lect (build/install/acquire/upgrade) a subset of these links so as to move some entities (e.g.,
electricity, goods, people, messages, data) between some properly chosen pairs of nodes (e.g.,
supplier and vendor) in order to meet a set of specific requirements (e.g., following prescribed
traffic requirements, achieving a level of security, and so on). These actions need to be done
as efficiently as possible (e.g., minimum costs or travel times, maximum coverage or profit,
and so on). Probably, the simplest example of the ND problems is the shortest spanning tree
problem, which consists of determining a minimal length tree linking all nodes in a given
graph.

There are various common and basic characteristics in almost every ND formulation. Broadly
speaking, every formulation for these problems includes information on each of the three follo-
wing important parameters : (1) parameters specifying the intensity level of communications
to be established between pair of nodes (e.g. demand), (2) parameters specifying the amount
of available resources (e.g. capacities), and (3) parameters indicating the costs of creating
and using the network (e.g. fixed and flow costs). In terms of decision variables, network
design problems usually involve two groups of decisions : design and flow. The former defines
the structure and characteristics of the network, while the latter specifies how the network
is used to satisfy the specified goals and requirements (Crainic and Laporte, 1997; Minoux,
2001). The main goal is to optimize both decisions simultaneously while satisfying a set of
constraints. Hence, the fundamental trade-offs are usually between the fixed-charge costs and
the variable (flow) costs.

3.5.2 The multicommodity capacitated fixed-charge network design problem

The multicommodity capacitated fixed-charge network design (MCFND) is a generic ND pro-
blem that properly captures many of the fundamental characteristics of the ND problems
(Gendron, 2011). In the MCFND problem, a set of commodities K are to be simultaneously
routed on a directed graph consisting a set of nodes N and a set of potential arcs A. Each
commodity k ∈ K has a demand of dk ≥ 0, which is to be routed from a unique origin node
O(k) ∈ N to a unique destination node D(k) ∈ N . The goal is to select a subset of the arcs
to meet all demand at minimum cost, computed as the sum of the fixed design costs, charged
whenever an arc is used, and the transportation costs. The unit transportation cost on arc
a ∈ A for commodity k is denoted cka, and the fixed design cost for arc a ∈ A is represented
by fa. Also, there is a capacity limit ua on each arc a ∈ A, limiting the maximum flow
traversing it.

To model the MCFND as an MILP, we define binary design variables ya indicating if arc
a ∈ A is used (1) or not (0) and a flow variable xka ≥ 0 to reflect the amount of flow on arc
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a ∈ A for commodity k ∈ K. The formulation of the MCFND is,

MCFND = min
y,x

∑
a∈A

faya +
∑
k∈K

∑
a∈A

ckax
k
a (3.37)

s.t :
∑

a∈A(i)+

xka −
∑

a∈A(i)−
xka =


dk if i = O(k)
−dk if i = D(k)
0 otherwise

∀i ∈ N , k ∈ K, (3.38)

∑
k∈K

xka ≤ uaya ∀a ∈ A (3.39)

y ∈ {0, 1}|A|, x ∈ R|A||K|+ , (3.40)

where A(i)+ and A(i)− are respectively the set of outward and inward arcs incident to node
i ∈ N . Constraints (3.38) impose the flow conservation requirements for each commodity on
each node. Constraints (3.39) enforce the capacity limit on each arc and constraints (3.40)
indicate the non-negativity and integrality requirements of the decision variables.

To improve the LP relaxation of the MCFND, the so-called strong inequalities (SIs) are often
used (Chouman et al., 2017). The SIs are derived from the observation that any commodity
flow on an arc cannot be larger than its corresponding demand or the arc capacity, i.e.,
xka ≤ min{ua, dk}ya. Although they are redundant at the integer points, they can remove
many fractional solutions and provide a better characterization of the mixed-integer convex
hull when the LP relaxation of the problem is solved.

3.5.3 Solution methods

Considering the ND problems from the solution perspective, they are NP-hard problems in
all but the simplest cases (Magnanti and Wong, 1984). Generally speaking, three features
in these problems can significantly change the level of resolution difficulty : (i) capacity
restriction, (ii) multi-commodity flow, and (iii) side constraints. For instance, it is very well-
known that for some uncapacitated network problems polynomial algorithms exist while we
are unaware of any such algorithms for the capacitated counterparts. On the other hand, side
constraints on the design (e.g. cyclic design or existence of multiple paths between the origin
destination pairs) can significantly increase the difficulty of the problem.

In short, the main difficulty of solving the ND problems is rooted in the complex interrelation
between the design and flow costs, weak LP relaxation, degeneracy, the additional challenges
stemming from the very large problem dimensions characterizing most applications, and data
uncertainty (Gendron et al., 1999).
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Various solution algorithms have been used to solve the ND instances. This includes, for
example, Lagrangian relaxation (Crainic et al., 2001; Sellmann et al., 2002; Frangioni and
Gendron, 2009), cutting plane (Kliewer and Timajev, 2005; Chouman et al., 2017; Gendron
and Gouveia, 2017), branch-and-cut (Günlük, 1999), Benders decomposition (Costa, 2005),
heuristics (Ghamlouche et al., 2003; Hewitt et al., 2010), parallel methods (Crainic et al.,
2000; Crainic and Gendreau, 2002), column generation (Maculan et al., 2002; Santini et al.,
2018), etc. Among these methods, heuristics have often been the methodology of choice due
to the difficulty of solving the ND problems to optimality (Gendron et al., 2018). On the
other hand, significantly less efforts have been devoted to solve the stochastic variant of the
ND problems due to the additional complexity stemming from the data uncertainty. In this
case, the solution algorithms have mainly been based on approximations (Maggioni et al.,
2016; Wang et al., 2016b) or decomposition techniques (Crainic et al., 2011; Ahmed, 2013;
Crainic et al., 2016).
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CHAPTER 4 ARTICLE 2::: ACCELERATING THE BENDERS
DECOMPOSITION METHOD::: APPLICATION TO STOCHASTIC
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Abstract. This paper describes a Benders decomposition algorithm capable of efficiently
solving large-scale instances of the well-known multi-commodity capacitated network design
problem with demand uncertainty. The problem is important because it models many appli-
cations, including telecommunications, transportation, and logistics. This problem has been
tackled in the literature with meta-heuristics and exact methods, but many benchmark ins-
tances, even though of moderate size, remain unsolved. To successfully apply Benders method
to these instances, we propose various acceleration techniques, including the use of cutting
planes, partial decomposition, heuristics, stronger cuts, reduction and warm-start strategies.
Extensive computational experiments on benchmark instances were conducted to evaluate
the efficiency and robustness of the algorithm as well as of the proposed strategies. The
numerical results confirm the superiority of the proposed algorithm over existing ones.

We dedicate this work to Professor Jacques F. Benders who left this world January 2017.

Keywords. Network design ; Stochastic programming ; Benders decomposition.

History. To appear in SIAM Journal on Optimization.

4.1 Introduction

A wide range of real-world applications in diverse settings such as logistics, transportation,
and telecommunications can be modeled as Network Design (ND) problems (Crainic, 2000;
Minoux, 2001). In general terms, these problems revolve around the selection of a subset of
(capacitated) arcs out of a potential set in order to support the flow requirements between
various origin-destination (OD) pairs. The decisions are to be made such that an effective
trade-off between the cost of design decisions and their impact on the performance of the
resulting network is achieved, while demand and a set of problem-specific constraints are
satisfied (Magnanti and Wong, 1984; Crainic et al., 2001).
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Uncertainty characterizes many cases for which ND models are the methodology of choice,
in particular the strategic and tactical planning processes yielding decisions to be used re-
petitively over a certain time horizon (Crainic et al., 2006a; Santoso et al., 2005). Moreover,
the impact on the performance of a system of the uncertainty regarding its future state is far
from trivial because mid to long-term decisions are generally difficult to reverse or costly to
adjust (Wang et al., 2016b). Stochastic programming has become the methodology of choice
to properly capture the uncertainty in such cases (Crainic et al., 2011).

Stochastic Network Design (SND) problems aim to find a single design that remains cost-
effective when plausible realizations of the uncertain elements are encountered. To characte-
rize the uncertainty set, a common practice is to use a set of discrete scenarios (Birge and
Louveaux, 1997). Once the appropriate set of scenarios is generated, the SND problem can
be formulated in an extensive form as a two-stage stochastic program. The first-stage models
the design decisions, i.e., selection of arcs. The second-stage formulates the recourse actions
by measuring the cost-effectiveness of the first-stage design in servicing the demands (e.g.,
flow decisions) for each realization of the uncertainty.

ND constitutes a challenging class of NP-hard combinatorial optimization problems. Conside-
ring the uncertainty does not make them any easier to solve as it yields much larger instances.
Thus, they remain notoriously hard to address with exact methods and off-the-shelf solvers
(Chouman et al., 2014; Crainic et al., 2014b). To give an idea of the inherent difficulty of the
SND problems, moderate instances with more than 20 scenarios remain still unattainable for
state-of-the-art algorithms and optimization solvers ; see section 4.5. Given the economical,
political and environmental significance of ND problems (Crainic and Florian, 2008; Rahma-
niani et al., 2014), we need efficient and accurate methodologies to address more realistically
sized instances of this important family of optimization problems, particularly in stochastic
settings.

Various solution algorithms have been designed to handle stochastic programs with recourse ;
see (Ruszczyński, 1999) for a comprehensive review. Most of these solution procedures rely
heavily on the premises of the Benders Decomposition (BD) method (Benders, 1962; Rahma-
niani et al., 2017a). BD is based on a pattern of projection, outer linearization and relaxation
(Geoffrion, 1970a,b). First, the model is projected onto the subspace defined by the first-stage
variables. The projected term is then dualized and an equivalent model is built by enumera-
ting all extreme points and rays of the dual polyhedron. The extreme rays indicate feasibility
requirements for the first-stage variables (i.e., feasibility cuts) and the extreme points state
the projected cost (i.e., optimality cuts). Enumerating all the extreme points and rays of the
dual polyhedron is not computationally practical and most of the associated cuts will not be
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active at an optimal solution. Therefore, a relaxation of the equivalent formulation is perfor-
med such that it initially includes no cuts, these being iteratively generated by sequentially
solving a Master Problem (MP) and one or several Subproblems (SPs).

The BD method enables decomposing the SND problems according to the realization of the
random elements that set the values of the uncertain parameters in the model. It thus sim-
plifies the solution of these problems since, often, a large portion of variables and constraints
are associated to the large number of scenarios used to represent the uncertainty (Boland
et al., 2015). The BD algorithm is also known to be largely used as an exact method for de-
terministic ND problems, as it provides the means to separate the design and flow decisions
(Costa, 2005). Moreover, it constitutes currently the state-of-the-art exact method for SND
problems (Crainic et al., 2016). We aim to further enhance this algorithm by refining existing
acceleration strategies and proposing novel ones.

We investigate, in particular, the idea of tightening the MP by means of various valid in-
equalities (VI s) appended in a cutting-plane fashion. More importantly, we propose a set of
VIs that can be used to improve the quality of the classical Benders cuts. We also propose
a new strategy to generate Pareto-optimal cuts, which is equivalent to the most widely used
strategy in the literature, but numerically performs better. To avoid the generation of feasi-
bility cuts, we propose to apply a relatively complete recourse property to the formulation
that, when combined with the use of strengthened combinatorial cuts, can be tailored to en-
force the original feasibility requirements of the problem. In essence, this strategy completely
eliminates the need to generate feasibility cuts, in favor of a focused search for optimality
cuts, which have a greater effect on improving the value of the lower bound generated by
the BD method. Moreover, to mitigate the ineffective initial iterations of the BD method,
we propose a strategy based on the idea of “properly deflecting the master solutions” so as
to chose better dual values for the set of initial cuts. Last but not least, to handle large
instances more effectively, size-reduction procedures and a simple heuristic are developed,
and the algorithm is embedded in a branch-and-cut framework.

To test our method, we address the well-known Multi-Commodity Capacitated Fixed-charge
Network Design Problem with Stochastic Demands (MCFNDSD). Extensive numerical expe-
riments on a broad range of instances show that the algorithm delivers superior performance
compared to state-of-the-art algorithms and solvers.

The contribution of this paper is threefold : 1) To enhance the state-of-the-art of BD algo-
rithms, through new acceleration strategies and the refinement of existing ones ; 2) To propose
an exact algorithm capable of efficiently solving benchmark instances of the MCFNDSD ; 3)
To study experimentally the algorithm and proposed strategies, and to characterize their
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behavior and suggest fruitful research directions.

The rest of this article is organized as follows. The problem is presented in Section 4.2, while
Section 4.3 provides the literature review of the BD algorithm and its application to the
problem at hand. Section 4.4 details the proposed and enhanced acceleration strategies, and
Section 4.5 displays the numerical experiments and the associated analyzes. Section 4.6 gives
the conclusions and future research directions.

4.2 Problem definition

In the MCFNDSD problem, a set of commodities K are to be simultaneously routed on
a directed graph consisting a set of nodes N and a set of potential arcs A. With each
commodity k ∈ K is associated a stochastic demand dk(ω) ≥ 0 which is to be routed from
a unique origin node O(k) ∈ N to a unique destination node D(k) ∈ N for each realization
ω of the uncertainty set Ω. The goal is to select a subset of the arcs to meet all demand at
minimum cost, computed as the sum of the fixed design costs, charged whenever an arc is
used, and the expected transportation costs. The unit transportation cost on arc a ∈ A for
commodity k is denoted cka, and the fixed design cost for arc a ∈ A is represented by fa. Also,
there is a capacity limit ua on each arc a ∈ A, limiting the maximum flow traversing it.

The MCFNDSD is modeled as a two-stage stochastic mixed-integer linear program (MILP)
by using binary design variables ya indicating if arc a ∈ A is used (1) or not (0) and a
recourse function Q : {0, 1}|A| → R∪{+∞} measuring the expected flow costs. The compact
formulation of the MCFNDSD is

MCFNDSD = min
y∈Y

fTy +Q(y). (4.1)

The objective function minimizes the total fixed cost plus the expected routing costs. The
feasible space of the first-stage variables, denoted by set Y , is written in compact form in
order to keep the generality of formulation for a broader class of the ND problems. The
recourse function associated to the design vector y is defined by Q(y) = Eω [Φ(y;ω)], where
the function Φ(y;ω) can be defined by using continuous flow variables xka(ω) ≥ 0 to reflect
the amount of flow on arc a ∈ A for commodity k ∈ K under realization ω ∈ Ω. The recourse
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problem ω ∈ Ω is

Φ(y;ω) = min
x(ω)∈R|A||K|+

∑
k∈K

∑
a∈A

ckax
k
a(ω) (4.2)

s.t.
∑

a∈A(i)+

xka(ω)−
∑

a∈A(i)−
xka(ω) = dki (ω) ∀i ∈ N ,∀k ∈ K (4.3)

∑
k∈K

xka(ω) ≤ uaya ∀a ∈ A, (4.4)

where A(i)+ and A(i)− indicate the set of outward and inward arcs incident to node i. The
vectors dki (ω) express the nodal balance and are defined as

dki (ω) =


dk(ω) if i = O(k)
−dk(ω) if i = D(k)
0 otherwise.

(4.5)

The objective function (4.2) minimizes the total flow costs. Constraint set (4.3) imposes the
flow conservation requirements for each commodity on each node. Constraints (4.4) enforce
the capacity limit on each arc.

4.2.1 A brief review on the MCFNDSD

The outlined MCFNDSD problem is notoriously difficult to solve. Its main difficulty is rooted
in the complex interrelation between the design and flow costs, weak linear programming (LP)
relaxation, degeneracy, and the additional challenges stemming from the very large problem
dimensions characterizing most applications (Gendron et al., 1999). Therefore, heuristics
have been the most used solution algorithms to obtain good solutions within reasonable
running times. Crainic et al. (2011) devised a master-slave parallel progressive hedging based
meta-heuristic. They decomposed the problem according to the scenarios where each SP is
an NP-hard deterministic ND formulation. Then, the algorithm seeks a consensus for the
design decisions among the SPs by systematically updating the fixed costs. An improvement
to this algorithm, by investigating the idea of having multiple subproblems, is proposed in
Crainic et al. (2014b). The authors observed that despite the increased difficulty of each
subproblem, more elegant results could be obtained. A BD-based heuristic for the problem
with large number of scenarios was introduced in Boland et al. (2015), the authors reporting
encouraging results compared to the classical algorithm and state-of-the-art of commercial
solvers.

It has been only quite recently that tight bounds were obtained for the deterministic version
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of the problem at hand (Chouman et al., 2014). The results obtained provide a promising
overture toward handling deterministic ND problems exactly. However, it is not a viable tool
to address the stochastic variant of the problem, since it considers all the scenarios at the
same time. An enhanced BD method and applied to the SND problems was presented in
Crainic et al. (2014a) , the authors further improved the algorithm in Crainic et al. (2016).
To the best of our knowledge, it constitutes the state-of-the-art of the exact methods for the
MCFNDSD problem. Due to the closeness of this algorithm to the method presented in this
article, we shall shortly discuss it in more details.

4.3 The Benders decomposition method

Let ȳ be an arbitrary value of y, π and α be the dual variables of (4.3) and (4.4). The dual
of Φ(ȳ;ω) can be stated as

DSP(ȳ;ω) := max
π∈R|N||K|,α∈R|A|+ ,s∈R|A||K|+

∑
k∈K

dk(ω)
(
πkO(k) − πkD(k)

)
−
∑
a∈A

uaȳaαa (4.6)

s.t. πka− − πka+ − αa + ska = cka ∀a ∈ A, k ∈ K, (4.7)

where a+ and a− respectively indicate the tail and head of arc a, and ska is the slack variable
associated to the constraint (4.7) for commodity k ∈ K and arc a ∈ A. The DSP (ȳ;ω) can be
either unbounded or feasible, if the dual polyhedron is not empty. The former case indicates
the infeasibility of the ȳ solution. Thus, there is direction of unboundedness which satisfies

∑
k∈K

dk(ω)
(
πkO(k) − πkD(k)

)
−
∑
a∈A

uaȳaαa > 0, (4.8)

the (π, α) is the solution of the dual cone obtained by replacing cka with 0 in constraint (4.7).
In the latter case, capturing the optimal value of DSP (ȳ;ω) in a single variable θω ∈ R1, the
goal is being θω never exceeds the optimal value associated to ȳ, i.e.,

∑
k∈K

dk(ω)
(
πkO(k) − πkD(k)

)
−
∑
a∈A

uaȳaαa > θω. (4.9)

The BD method exploits these results. It iteratively solves an MIP problem, called MP,
which involves only the y and θ variables. The MP has initially no constraints except for
those imposed on the design variables. Each time the MP is solved, the optimal value of
the design variables is extracted and fixed in the formulation (4.6)-(4.7) for each ω ∈ Ω. A
feasibility or optimality cut for each scenario can then be generated by complementing (4.8)
or (4.9) and replacing the fixed design variables with arbitrary values. These cuts are then
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inserted in the MP and the next iteration is performed. Accordingly, the MP at iteration t
has the following form

MP t = min
y∈Y,θ∈R|Ω|

fTy + Eω [θω] (4.10)

s.t.
∑
k∈K

dk(ω)
(
π̄kO(k) − π̄kD(k)

)
−
∑
a∈A

uaᾱaya ≤ 0 ∀ω ∈ Ω, (π̄, ᾱ) ∈ Et
ω (4.11)

∑
k∈K

dk(ω)
(
π̄kO(k) − π̄kD(k)

)
−
∑
a∈A

uaᾱaya ≤ θω ∀ω ∈ Ω, (π̄, ᾱ) ∈ Ltω, (4.12)

where Et
ω and Ltω stand for the set of feasibility and optimality cuts associated to scenario ω

up to iteration t. This process continues until the upper and lower bounds coincide, To verify
the optimality gap, the MP gives a valid lower bound (LB) on the optimal cost because it
is a relaxation of the Benders equivalent formulation. On the other hand, the cost of the ȳ
solution plus the expected cost of the SPs gives a valid upper bound (UB) on the optimal
cost, because it is equivalent to fixing the current solution ȳ in the original formulation.

4.3.1 Literature review on acceleration strategies

The BD method is closely related to other decomposition methods such as Dantzig-Wolfe and
Lagrangian decomposition, see e.g., Rahmaniani et al. (2017a) for more information. It has
proven successful for a wide range of difficult optimization problems, including ND problems
(Costa, 2005). A naive implementation of the classical algorithm may however preform disap-
pointingly. Researchers have thus explored ways to overcome the drawbacks of the algorithm
when applied to various optimization problems. We briefly review the acceleration strategies
that are closest to what we will present in this article and refer the interested readers to
Rahmaniani et al. (2017a) for a detailed review on this subject.

Probably the most studied line of accelerations revolves around the generation of cuts. Ma-
gnanti and Wong (1981) were the first to propose the generation of non-dominated optimality
cuts when the dual SP has multiple optima for a given feasible solution. This strategy, which
entails the solution of an additional SP, is instantiated using a core point of the MP to
identify a non-dominated cut. Papadakos (2008) emphasized that the previous method can
be inefficient due to the dependency on the auxiliary SP and the difficulty of extracting the
core point, and showed how alternative core points can be used in each iteration to gene-
rate Pareto-optimal cuts by means of an independent SP. Sherali and Lunday (2013) showed
that Pareto-optimal cuts could be generated by perturbing the right-hand side values of the
constraints in the primal SP. Alternative feasibility cuts for binary problems where the SP
is a feasibility program and involves big-M constraints, were proposed in Codato and Fi-
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schetti (2006). The authors showed that the combinatorial cuts can efficiently be separated
by searching for minimal infeasible subsystems in the solutions of the relaxed MP. Bodur
et al. (2017) employed Gomory mixed-integer cuts to strengthen the classical Benders cuts,
by adding them to the SP each time it is solved.

The numerical burden of iteratively solving an MIP MP and a series of SPs is a major
drawback of the BD method. Geoffrion and Graves (1974) proposed to solve the MP each
time to ε-optimality and steadily decrease the ε value as the algorithm proceeds in order to
ensure the global convergence. Similar idea at the SP level has been applied in Zakeri et al.
(2000) to extract sub-optimal solutions of the dual polyhedron. McDaniel and Devine (1977)
showed that valid cuts can be produced when the LP relaxation of the MP is solved. The
authors proposed to apply the algorithm in two phases. In the first phase, all integrality
requirements are ignored to quickly generate cuts and tighten the master formulation. In the
second phase, the integrality constraints are reintroduced and the solution process continues
until the global optimum is found. Solving the MP heuristically has been proposed by Côté
and Laughton (1984). The authors applied Lagrangian relaxation on the optimality and
feasibility cuts to maintain the nice structure of their MP. Related to this general idea,
different (meta-)heuristic algorithms have been employed to faster optimize the MP and avoid
many costly iterations of the MP (Poojari and Beasley, 2009). Similarly, heuristics have been
employed to extract approximate optimality (Raidl et al., 2014) and feasibility cuts (Luong,
2015). To avoid solving a MILP program at each iteration, modern implementations of the
BD method work by building a single branch-and-bound tree (e.g., Gendron et al. (2016)).
The algorithm generates the Benders cuts for the integer (and possibly fractional) solutions
encountered inside the tree, and guarantees the convergence. Finally, managing the size of
the MP by periodically removing ineffective cuts has appeared as a promising technique to
reduce the computational burden, especially when multiple cuts per iteration are added to
the MP (e.g., Pacqueau et al. (2012)).

Enhancing the quality of the master solutions, particularly at the initial iterations, has been
the subject of various researches. The instability of the MP in respect to the generated
solutions is one of the main drawbacks of the BD which can cause slow convergence due to
initial large steps and excessive oscillations when it approaches a local optimum. A constraint
to restrict the Hamming distance of the generated solutions from a stabilizing point was
proposed to address the issue in Santoso et al. (2005). Heuristics are also often used as a
warm-start strategy to generate a set of high-quality initial solutions and their associated
cuts to tighten the relaxed MP, e.g., Lin and Üster (2014) or exploring the neighborhoods
of the current solution, e.g., Rei et al. (2009). Strengthening the relaxed MP with VIs is
also a widely-used strategy to tighten the initial MP, e.g., Saharidis et al. (2011). Birge and
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Louveaux (1988) demonstrated that it is preferable to add a single cut per SP when the
decomposition yields several independent SPs.

The last category of accelerations is specifically tailored for two-stage stochastic programs.
This idea was first tested in MirHassani et al. (2000) where the authors proposed to retain in
the MP a scenario SP associated to the maximum demand. Crainic et al. (2014a) proposed
various strategies to properly chose and retain a subset of the SPs in the MP, and then
significantly improvements to this strategy through simultaneously selecting and creating
SPs to be retained in the MP (Crainic et al., 2016) . The authors referred to this technique
as partial-decomposition strategy (PDS).

In short, not a single strategy is a silver bullet and various accelerations need to be in-
corporated into the BD framework. This is particularly true for realistic instances of SND
problems, for which multi-cut reformulation, Pareto-optimal cut generation scheme, a two
phase approach, single search tree strategy and PDS are considered. As the results of this
paper indicate, however, these strategies are not sufficient to reach a high-performance BD
method. Our goal is thus to contribute to the enhancement of the categories mentioned above,
as outlined in the following section.

4.4 Enhancing Benders decomposition method

We present in this part various strategies to address several drawbacks of the algorithm,
including : (1) weak relaxation of the MP, (2) generation of low-quality cuts, (3) ineffective
initial iterations, (4) slow progression of the primal bound, and (5) time consuming iterations.
In section 4.4.1, VIs are proposed to alleviate the weak relaxation of the MP. The cut-
generation scheme is revisited in section 4.4.2 to efficiently generate stronger/better cuts. A
warm-start strategy is presented in section 4.4.3 to improve the quality of the initial cuts.
Finally, reduction strategies, heuristic, branching and node selection rules are discussed in
section 4.4.4 to effectively handle the integer phase of the algorithm.

4.4.1 Valid inequalities

At the relaxation step of the BD method, an important part of the formulation is projected
out. Thus, the algorithm exhibits a poor performance due to the absence of sufficient leading
information. Although the PDS can considerably dampen these undesirable behaviors, more
significant accelerations can be achieved by making use of strong VIs. We shall numerically
show that the best results can be attained when both strategies are applied. Note that the
benefit of VIs is well established in the literature. To the best of our knowledge, they are
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merely used as a warm-start to the MP. We propose a cutting plane that extends the use of
the VIs throughout the whole solution process. We observed that better performance can be
achieved when these VIs are prioritized over the Benders cuts.

Lower bounding function

The first class of VIs estimates the projected terms of the objective function. We observe that,
for any OD pair, a minimum flow cost can be calculated since the corresponding demand
must be satisfied. Let PO(k)D(k) indicate the shortest path connecting the origin of commodity
k to its destination. Inequality (4.13) provides a lower estimation on the recourse cost of the
scenario ω. This inequality can be justified based on the simple argument that the routing
cost for each commodity is at least as large as that of the cheapest route satisfying it.

θω ≥
∑
k∈K

∑
a∈PO(k)D(k)

dk(ω)cka ∀ω ∈ Ω. (4.13)

Inequality (4.13) provides a weak estimation of the recourse cost, however. This is because
the considered problem is capacitated. More importantly, it gives no leading information
on the first-stage variables. To provide a stronger bound, referred to as the lower bounding
function (LBF), we make use of a deterministic Multi-Commodity Capacitated Network Flow
(MCNF) problem with minimum demands, i.e., dk = minω∈Ω{dk(ω)},∀k ∈ K ; see Appendix
A for the formulation. This problem is equivalent to the LP relaxation of the deterministic
version of the considered ND problem with the demand dk, ∀k ∈ K. Its solution provides a
valid lower bound on the cost of each SP, since the demands are replaced by the minimum
volumes.

Theorem 4.1. Let x̄ka and ȳ be the optimal solution of the MCNF problem, π̄ be the dual
values of the flow conservation constraints, then (4.14) is a VI for the MP.

θω ≥
∑
k∈K

∑
a∈A

ckax̄
k
a +

∑
k∈K

(dk(ω)− dk) (π̄kO(k) − π̄kD(k)) +
∑
a∈A

fa (ȳa − ya) ∀ω ∈ Ω. (4.14)

Proof. See Appendix A. �

Cutset inequalities

Based on the feasibility requirements of the problem at hand, there should be sufficient
capacity installed across any partition of the network to support the commodity flows. Let
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N̄ ⊂ N be any nonempty subset of the node set N and N its complement, i.e., N = N\N̄ ,
and the corresponding cutset (N̄ ,N) = {a ∈ A|a+ ∈ N̄ , a− ∈ N}. Let K(N̄ ,N) = {k ∈
K|O(k) ∈ N̄ ,D(k) ∈ N} be the associated commodity subset. We define the maximum flow
over this cutset as dmax(N̄,N) = maxω∈Ω{

∑
k∈K(N̄,N) dk(ω)}, where (N̄ ,N) is a valid cutset if

dmax(N̄,N) > 0. We can derive cover inequalities (CIs) using definition 4.1.

Definition 4.1. C ⊆ (N̄ ,N) is a cover if the total capacity of the arcs in (N̄ ,N)\C does
not support (cover) the flow of demand, i.e., ∑a∈(N̄,N)\C ua < dmax(N̄,N) ; and a cover set C is
minimal if opening any arc in C is sufficient to cover the demand, i.e., ∑a∈(N̄,N)\C ua + uq ≥
dmax(N̄,N),∀q ∈ C.

For any cover set C ⊆ (N̄ ,N), the CI takes the form ∑
a∈C ya ≥ 1, imposing the necessity of

opening at least one arc in the set C to meet the flow requirements.

Minimum cardinality inequalities (MCIs) can also be derived for the cutset (N̄ ,N), indicating
the least number of arcs, denoted l(N̄,N)), that must be opened in any feasible solution. Let
the arc capacities in (N̄ ,N) be sorted and numbered in a non-increasing order, i.e., ua ≥
ua+1, a ∈ (N̄ ,N), a = 1, ..., |(N̄ ,N)|. We define l(N̄,N) = max{h|∑t=1,...,h ut < dmax(N̄,N)} + 1.
Then, ∑a∈(N̄,N) ya ≥ l(N̄,N) is a valid MCI cut.

To separate and lift the cutset inequalities, we follow the procedure proposed by Chouman
et al. (2017). Generating good cutsets quickly is of critical importance for the effectiveness
of this family of inequalities. We have implemented the same cutset generation scheme as
Chouman et al. (2017) with cardinality of one and two because we observed that they are
responsible for most of the LB improvement in our algorithm.

Network connectivity cuts

The feasibility requirements of the ND problem requires the existence of at least one connec-
ting path with sufficient capacity between each OD pair. This implies that a sufficient number
of arcs exiting (entering) each origin (destination) node should be opened to provide the ca-
pacity required to move the demand out of (into) the respective node. Additionally, at least
one arc should enter and one should exit any node that might be a transshipment node for
a commodity. These conditions are generally enforced through constraints (4.3). Yet, after
the decomposition, the enforcing constraints at each node are eliminated and the network is
disconnected, particularly for initial iterations of the algorithm. To alleviate this issue, we
propose the following network connectivity inequalities (NCIs).

Consider node i ∈ N with dmaxi = maxω∈Ω{
∑
k∈K|i=O(k) dk(ω)} (the inner sum computed on

D(k) = i for destination nodes), and set A+(i) (A−(i)) of exiting (entering) arcs. If dmaxi > 0,
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sort (and number) the arcs in A+(i) in non-increasing order, i.e., ua ≥ ua+1, a ∈ A+(i), a =
1, ..., |A+(i)| (same for A−(i)). Then, the least number of exiting (entering) arcs that must be
opened in any feasible solution is l+i = max{h|∑t=1,...,h ut < dmaxi }+ 1, yielding the following
valid cardinality NCI, ∑a∈A+(i) ya ≥ l+i .

Let I = {i ∈ N|i 6= O(k) and i 6= D(k), ∀k ∈ K} be the set of purely intermediary nodes (i.e.,
no commodity originates or terminates at such a node). The following proposition defines a
set of NCIs addressing the connectivity issue.

Proposition 4.1. Given the set of intermediary nodes I, the following set of inequalities are
valid for the MCFNDSD and thus for the MP.

ya ≤
∑

b∈A+(i)
yb ∀i ∈ I, a ∈ A−(i), (4.15)

yb ≤
∑

a∈A−(i)
ya ∀i ∈ I, b ∈ A+(i). (4.16)

Proof. For an intermediary node, exiting arcs can exist if there is at least one entering arc,
and vice versa. This follows from the positive fixed costs and the flow conservation require-
ments. �

The inequalities (4.15) and (4.16) can be further strengthened for the first phase of the
algorithm according to the following lemma.

Lemma 4.1. If the integrality requirement is relaxed, i.e., ya ∈ [0, 1],∀a ∈ A+(i) ∪ A−(i)
and i ∈ I, then inequalities (4.15) and (4.16) can be rewritten as

∑
a∈A+(i)

uaya −
∑

a∈A−(i)
uaya = 0 ∀i ∈ I. (4.17)

Proof. The inward flow to node i ∈ I is equal to maxω∈Ω{
∑
k∈K

∑
a∈A+(i) x

k
a(ω)} which en-

tails ∑a∈A+(i) uaya ≥ maxω∈Ω{
∑
k∈K

∑
a∈A+(i) x

k
a(ω)} at any feasible solution. Since node i is

an intermediary node, the same amount of flow should exit from it, i.e.,maxω∈Ω{
∑
k∈K

∑
a∈A+(i)

xka(ω)} = maxω∈Ω{
∑
k∈K

∑
a∈A−(i) x

k
a(ω)}, which gives∑a∈A−(i) uaya ≥ maxω∈Ω{

∑
k∈K

∑
a∈A+(i)

xka(ω)}. When the binary requirement is relaxed, the flow approximates the exact amount of
the opened capacity. This completes the proof since ∑a∈A+(i) uaya = maxω∈Ω {

∑
k∈K

∑
a∈A+(i)

xka(ω)} = maxω∈Ω{
∑
k∈K

∑
a∈A−(i) x

k
a(ω)} = ∑

a∈A−(i) uaya. �
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Flow cuts

The PDS provides the possibility of generating VIs involving both flow and design variables.
Strong inequalities (SIs) are the well-known examples of such inequalities. SIs are very ef-
fective when incorporated in a cutting-plane method. They are derived from the observation
that any commodity flow on an arc cannot be larger than its corresponding demand or the arc
capacity. Let Ω̄ indicate the set of retained and created scenarios and bka(ω) = min{dk(ω), ua},
then

xka(ω) ≤ bka(ω)ya ∀ω ∈ Ω̄, a ∈ A, k ∈ K, (4.18)

is valid for the MCFNDSD and hence for the MP. SIs entail an easy separation and are
added to the MP if they violate the current solution by at least η units. We also examined
flow cover and flow pack inequalities (see Chouman et al. (2017)). We decided, however, to
exclude them from our algorithm because their contribution on the LB improvement tended
to be limited when the above inequalities were already appended.

4.4.2 Strengthening the Benders cuts

After focusing on improving the quality of the y solutions, we now turn to the cut-generation
scheme. We reinterpret Magnanti and Wong (1981)’s strategy in order to generate Pareto-
optimal cuts more efficiently, propose an alternative strategy to avoid generation of feasibility
cuts, and further improve the quality of the optimality cuts by making use of VIs.

Generating Pareto-optimal cuts

The primal SP is degenerate, thus, multiple optimal solutions can be extracted from its dual
formulation. Each alternative solution produces an optimality cut of particular strength. The
dual values thus need to be judiciously selected in order to append the strongest cuts to the
MP. Magnanti and Wong (1981) employed the notion of dominance to generate such cuts.

Definition 4.2. Let U(DSP (ȳ;ω)) be the polyhedron of DSP (ȳ;ω). An optimality cut (4.12)
corresponding to (π̂, α̂) ∈ U(DSP (ȳ;ω)), dominates or is stronger than that corresponding
to (π̄, ᾱ) ∈ U(DSP (ȳ;ω)) if ∑k∈K d

k(ω)(π̂kO(k)− π̂kD(k))−
∑
a∈A uaα̂aya ≥

∑
k∈K d

k(ω)(π̄kO(k)−
π̄kD(k)) −

∑
a∈A uaᾱaya for all y ∈ Y with strict inequality for at least one point y ∈ Y and

(π̂; α̂) ∈ U(DSP (ȳ, ω)) is called Pareto-optimal if it is not dominated by any other cut.

The authors used the core point notion to formulate an auxiliary SP to extract the Pareto-
optimal cut.
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Definition 4.3. Let y0 be a core-point laying in the relative interior of the convex hull of the
subregion defined by the MP variables and DSP (ȳ;ω) indicate the objective value of the dual
SP (4.6–4.7). Then, the optimal solution (π̂, α̂) of the following program is Pareto-optimal :

DSP(y0, ω) = max
π∈R|N||K|,α∈R|A|+ ,s∈R|A||K|+

∑
k∈K

dk(ω)
(
πkO(k) − πkD(k)

)
−
∑
a∈A

uay
0
aαa (4.19)

s.t. πka− − πka+ − αa + ska = cka ∀a ∈ A, k ∈ K (4.20)∑
k∈K

dk(ω)
(
πkO(k) − πkD(k)

)
−
∑
a∈A

uaȳaαa = DSP (ȳ;ω), (4.21)

This problem is solved after solving the regular SP (4.6)–(4.7) in order to derive the correspon-
ding Pareto-optimal cut. The dependency of this approach on the auxiliary SP (4.19)–(4.21)
can, however, overshadow algorithm’s performance. It doubles the number of the SPs and
the secondary problem is relatively more difficult to solve. We found that the latter issue is
to a very large extent due to the presence of the equality constraint (4.21), which may entail
numerical instabilities as well.

The purpose of the equality constraint (4.21) is to restrict the SP (4.6)-(4.7) to the optimal
face of the dual polyhedron where all the alternate optimal solutions exist. The objective
function (4.19) attempts to pick the one, among the available alternatives, which gives the
tightest cut as measured from an interior point of the MP. This constraint is not required,
however, to extract such solution. To remove it from formulation (4.19)-(4.21), we recall
from linear programming theory that an alternate optimal solution exists if at least one
nonbasic variable possesses a reduced cost of zero. Thus, when we identify that at least
one alternate dual optima exists, we search the best one to generate the cut by restricting
the SP to the optimal face. To do so, we acknowledge that variables with nonzero reduced
cost must maintain their current value in any alternate optimal solution. Moreover, from
the duality theory, an active constraint on the optimal face has a nonzero dual value. Thus,
each inequality constraint with nonzero dual value should be converted into an equality. This
is equivalent to fixing the slack variables with nonzero reduced cost to zero. Using these
definitions, Lemma 4.2 formally introduces an equivalent SP to extract Pareto-optimal cuts.

Lemma 4.2. Let (~α, ~π,~s) indicate the vector of variables with nonzero reduced cost, as ob-
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tained from solving the DSP (ȳ;ω) problem. Then, the solution of

DSP(yo;ω)= max
π∈R|N||K|,α∈R|A|+ ,s∈R|A||K|+

∑
k∈K

dk(ω)(πkO(k) − πkD(k))−
∑
a∈A

uay
0
aαa (4.22)

s.t. πka− − πka+ − αa + ska = cka ∀a ∈ A, k ∈ K (4.23)

(~α, ~π,~s) = 000, (4.24)

is equivalent to that obtained from the Magnanti-Wong problem.

Proof. The equivalence is evident because only variables with zero reduced cost can change
their value, which does not affect the objective value of (4.6)-(4.7). Note that, the variables
are unbounded and if they have a nonzero reduced cost, their value at the optimal solution
is necessarily zero. �

The equality (4.24) fixes a set of variables to their current value (zero), which can efficiently
be handled by the optimization solvers, e.g., CPLEX. This variable fixation also helps the
solver to further reduce the scale of the auxiliary SP (4.22)-(4.24) through inspection and
removal of the unnecessary constraints and variables.

Improving the optimality cuts

We make use of VIs to improve the quality of the optimality cuts as well as the LP relaxation.
The underlying idea is to apply a cutting-plane method on each SP to tighten its formulation
before generating the Benders cut. To do so, once the SP is solved, we extract the value of
the flow variables, denoted x̄. Given the current (x̄, ȳ) solution, violated VIs can be extracted
and added to the SP. This is equivalent to adding columns to the dual SP. We show that the
tightened SP yields stronger cuts, which also improves the LP bound.

Various VIs can be used to realize the aforementioned goal. We have experimented with two
well-known families of inequalities, namely SIs and flow pack (FP) inequalities (Chouman
et al., 2017). In the rest of this section, we present the theoretical results only for the case
when the SIs are used. These results can be easily generalized for other VIs.

To demonstrate the impact of the SIs on the optimality cuts, assume that they are added
to the SP (4.2)–(4.4) and β indicates the associated dual variables. The dual formulation,
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referred to as Strong Dual Subproblem (SDSP), is

SDSP (ȳ;ω) =max
∑
k∈K

dk(ω)(πkO(k) − πkD(k))−
∑
a∈A

ȳa(uaαa −
∑
k∈K

bka(ω)βka) (4.25)

s.t. π ∈ R|N ||K|, α ∈ R|A|+ , s, β ∈ R|A||K|+ (4.26)

πka− − πka+ − αa − βka + ska = cka ∀a ∈ A, k ∈ K. (4.27)

In comparison to problem (4.6)–(4.7), the above formulation is larger in scale and may entail a
higher degree of degeneracy. This is, however, well compensated through significant reductions
in the number of iterations. Proposition 4.2 establishes the relation among the two dual
formulations SDSP (ȳ;ω) and DSP (ȳ;ω).

Proposition 4.2. For a given first-stage solution ȳ, the relation SDSP (ȳ;ω) ≥ DSP (ȳ;ω)
among the two formulations of the SPs always holds true.

Proof. Consider the primal form of the two dual programs (4.6)-(4.7) and (4.25)-(4.27),
respectively denoted Φ(ȳ;ω) and Φ̄(ȳ;ω). The objective function terms in both problems
are equal. The solution space of the latter is, however, a subset of the former due to the
additional constraints. This implies that the latter is a relaxation of the former : Φ̄(ȳ;ω) ≥
Φ(ȳ;ω). According to the strong duality theory, we have SDSP (ȳ;ω) = Φ̄(ȳ;ω) ≥ Φ(ȳ;ω) =
DSP (ȳ;ω). �

We can now formally state the effect of the SIs on the optimality cuts.

Proposition 4.3. The cut generated from SDSP (ȳ;ω) is not dominated by the one extracted
from DSP (ȳ;ω).

Proof. To prove the claim by contradiction, assume that (π̄1, ᾱ1, β̄1) ∈ U(DSP (ȳ;ω))
dominates (π̄2, ᾱ2, β̄2) ∈ U(SDSP (ȳ;ω)), where β1 = 0. (Note, to lighten the presentation,
we present the equations using a vector representation.) Based on Definition 4.2, we have

dT π̄1 − ᾱT1 uy − bT β̄1y ≥ dT π̄2 − ᾱT2 uy − bT β̄2y ∀y ∈ Y, (4.28)

such that there is at least one ȳ ∈ Y that

dT π̄1 − ᾱT1 uȳ − bT β̄1ȳ > dT π̄2 − ᾱT2 uȳ − bT β̄2ȳ. (4.29)

On the other hand, based on inequality (4.28) we have

dT π̄1 − ᾱT1 uy0 − bT β̄1y
0 ≥ dT π̄2 − ᾱT2 uy0 − bT β̄2y

0 ∀y0 ∈ Y c, (4.30)
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where Y c is convex hull of Y . The last inequality is true because any y0 ∈ Y c can be expressed
as y0 = ∑

t∈T λtyt,
∑
t∈T λt = 1, λt ≥ 0 for some finite number of y1, ..., y|T | ∈ Y . On the other

hand, we know that for y0 the following inequality holds according to proposition 4.2

dT π̄2 − ᾱT2 uy0 − bT β̄2y
0 ≥ dT π̄1 − ᾱT1 uy0 − bT β̄1y

0. (4.31)

Note y0 ∈ ri (Y c) because it is a Magnanti-Wong point. Using (4.30) and (4.31), we have

dT π̄1 − ᾱT1 uy0 − bT β̄1y
0 = dT π̄2 − ᾱT2 uy0 − bT β̄2y

0. (4.32)

Based on Theorem 6.4 of Rockafellar (1970), it exists a scalar θ > 1 such that ŷ = θy0+(1−θ)ȳ
belongs to Y c. Multiplying equality (4.32) by θ and the strict inequality (4.29) by 1−θ (which
reverses the inequality), and adding these two, we get the following relation

dT π̄1 − ᾱT1 uŷ = dT π̄1 − ᾱT1 uŷ − bT β̄1ŷ < dT π̄2 − ᾱT2 uŷ − bT β̄2ŷ, (4.33)

which contradicts inequality (4.28) and hence our assumption. �

We will numerically verify in Section 4.5.2 that applying a cutting plane on each SP yields
considerable improvements in terms of iterations and LP bounds.

Feasibility cuts

As defined in constraints (4.11), the feasibility cuts do not improve the values of the θ

variables. They also make the solution of the MP more complicated. More importantly, we
observed that, in most iterations, the infeasibility of the ȳ solution is rather limited, meaning
that merely a small portion of the demands is left unsatisfied. In such cases, optimality cuts
can still be generated instead of feasibility cuts which, considering our preliminary results,
is a more numerically efficient strategy. To do so, one can employ the strategy proposed in
Saharidis and Ierapetritou (2010) solving an auxiliary MILP problem in order to relax a
minimum number of constraints of the SP so that an optimality cut can be generated. We
propose a different and simpler strategy, however, which avoids solving an auxiliary MILP
problem. We apply a relatively complete recourse property to model (4.2)-(4.4), consisting of
adding a dummy arc between the nodes of each OD pair to provide extra capacity at a high
premium unit price. The inclusion of these arcs in all recourse problems ω ∈ Ω defines an
outsourcing strategy enabling any arbitrary quantity of a commodity to be flowed directly
between its associated origin and destination nodes. Thus, Φ(y;ω) is always feasible.
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The optimality cuts using dummy arcs may involve big-M coefficients. To avoid the insertion
of such weak cuts and maintaining the global convergence, we make use of combinatorial
cuts. We first identify the infeasibility of a solution using property 4.1.

Property 4.1. A given solution ȳ is infeasible to the MCFNDSD, if there exists at least one
SP such that a positive amount of flow is routed on a dummy arc.

When the current solution is identified as infeasible according to Property 4.1, the optimality
cuts for those SPs that involve big coefficients are not added to the MP. Instead, the following
combinatorial cut is used :

∑
a∈A|ȳa=1

(1− ya) +
∑

a∈A|ȳa=0
ya ≥ 1. (4.34)

By adding an inequality (4.34) each time the MP solution is infeasible, one ensures that the
original feasibility requirements defined in the problem are enforced. Inequality (4.34) can be
further strengthened according to the following proposition.

Proposition 4.4. For an infeasible integer ȳ, inequality (4.35) is globally valid.

∑
a∈A|ȳa=0

ya ≥ 1. (4.35)

Proof. Let A0 and A01 indicate the set of variables fixed to 0 and the set of free variables at
the current integer node of the tree. We can easily conclude that the infeasibility is due to not
opening enough capacity, since otherwise the dummy arcs would not have been used. This
corresponds to opening at least one arc in the set of closed arcs, i.e., a ∈ A0 ∪ (A01|ȳa = 0),
to break the infeasibility, i.e., ∑a∈A0 ya + ∑

a∈A01|ȳa=0 ya = ∑
a∈A|ȳa=0 ya ≥ 1 because ȳa =

0,∀a ∈ A0 and A0 ∩ A01 = ∅. �

4.4.3 Warm-start strategy

The BD method is known for suffering from ineffective initial iterations due to the generation
of low-quality solutions and zig-zagging behavior. To overcome these drawbacks, we propose
a warm-start (WS) strategy to generate an initial set of tight cuts. Unlike the heuristic-base
WS strategies, the underlying idea of our approach is to deflect the current master solution.
Given an initial starting point yws, the current master solution ȳ, and a convex combination
weight 0 < λ < 1, we deflect the current solution according to yws = λȳ + (1− λ)yws. Then,
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yws is used to generate the cuts instead of ȳ. If the starting solution also satisfies the core
point properties, we do not need to solve the auxiliary SP (4.19-4.21) to generate pareto-
optimal cuts, since the deflected point guarantees the generation of a non-dominated cut (see
Papadakos (2008), Theorem 6). The UB generated using the deflected solution is also valid
for the LP relaxation of the problem. Therefore, as long as we are applying this strategy, no
auxiliary SP is required to be solved. This yields appreciable savings in computational time.
The current solution might be infeasible and thus render the new yws infeasible as well. In
this case, we solve an auxiliary problem to reset yws at a feasible solution at the vicinity of
ȳ. This auxiliary problem is presented in Appendix B.

This strategy is also capable of considerably alleviating the instability issue of the MP. It
dampens the initial large steps of the algorithm through taking an average with a centered
solution. Thus, the yws and the whole procedure can also be interpreted as a stabilizing point
and a stabilization strategy (Fischetti et al., 2016).

The strategy is sensitive to the initial value of yws. We thus propose to solve a MCNF
problem with maximum demand, i.e., dk = maxω∈Ω{dk(ω)},∀k ∈ K. Given the solution ỹ of
this problem, we set ywsa = ymaxa := max{0.5, ỹa},∀a ∈ A.

4.4.4 Managing the branch-and-bound tree

The search tree is one of the most important parts of the algorithm, since its size directly
determines its efficiency. To the best of our knowledge, there is no in-depth study in the
literature to address the branch-and-bound tree in the cutting plane implementation of the
BD method. We examined various cut generation strategies. The preliminary experiments
indicated that generating as many cuts as possible at the root node (i.e., first phase of the
algorithm) and then generating cuts merely for the potential incumbent solutions yields the
best performance. Generating cuts for every or the first 100 fractional solutions inside the
tree caused overly slow performance of the algorithm. The reason was due to the low impact
of the cuts, generating too many of them and spending too much time on their extraction
and handling.

Branching and node selection rules

Node and variable selection decisions are of crucial importance in our algorithm. With respect
to the branching, we perform an irregular branching at the root node while, for the rest of
the algorithm, we follow the default settings of the optimization solver. To create the first
two child nodes, we first identify two sets of variables, Ã0 and Ã1, which include the variables
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that very likely take value 0 or 1 in an optimal solution. Identifying the variables in each set
relies on the information gathered during the first phase of the algorithm. Variables which
consistently took values smaller than εbr or larger than 1− εbr are respectively added to Ã0

and Ã1, such that, for the current solution ȳ they satisfy ∑a∈Ã1
(1− ȳa) +∑

a∈Ã0
ȳa ≤ 1− εbr,

with εbr a small positive number. The left branch is then created by adding two constraints
of the form ∑

a∈Ã0
ya = 0 and ∑a∈Ã1

ya = |Ã1|, which is equivalent to fixing the variables.
The complement to this node indicates that at least one variable in the joint set Ã0 ∪ Ã1

should change its value. Therefore, the right branch is created by adding a cut of the form∑
a∈Ã1

(1−ya)+∑a∈Ã0
ya ≥ 1. The left branch has a small sub-domain, which helps to quickly

find good feasible solutions. The right branch has an improved bound since it violates the
root solution. As for the node selection strategy, we tested several strategies. At the end, we
decided to follow the default of the optimization solver which implements the state-of-the-art
strategies.

Upper bounding heuristic

Our branch-and-cut algorithm is dependent on the quality of the incumbent solution to avoid
searching inferior regions of the solution space. We thus propose a simple heuristic to generate
tight UBs on the optimal integer solution at the end of first phase. The proposed heuristic,
unlike the ones in the literature, depends on the BD method itself rather than the problem.
Algorithm 1 presents the pseudo-code of this heuristic.

Algorithm 1 : The upper bounding heuristic

1: Initialize Â0, Â1, Â01, ι, Th
2: RMP ← restricted the MP by imposing ∑a∈Â0

ya = 0 and ∑a∈Â1
ya = |Â1|

3: for all t = 0 : ι do
4: Solve RMP for the given time limit Th
5: if RMP infeasible then
6: Add strong combinatorial cut ∑a∈Â0

ya ≥ 1 and break the loop
7: end if
8: Evaluate current solution, generate cuts, and add them to the formulation
9: Update the current best UB (if possible)

10: if the solution was infeasible for at least one SP based on Property 4.1 then
11: Add strong combinatorial cut ∑a∈Â0

ya +∑
a∈Â01|ȳa=0 ya ≥ 1

12: else
13: Add combinatorial cut ∑a∈A|ȳa=1 (1− ya) +∑

a∈A|ȳa=0 ya ≥ 1
14: end if
15: end for
16: Remove ∑a∈Â0

ya = 0 and ∑a∈Â1
ya = |Â1| and go to the branching phase.
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We observed that the LP solution is fairly tight and close to an optimal integer solution.
Thus, a simple fix-and-optimize procedure can yield high quality solutions. The variables
that take values smaller than 0.1 or greater than 0.9 are respectively added to the sets Â0

and Â1. The rest of the variables are added to the set of free variables Â01. To derive the
Restricted Master Problem (RMP), variables in Â0 and Â1 are fixed to 0 and 1, respectively.
The RMP is then solved. If feasible, the produced solution is evaluated to get an UB and a set
of optimality cuts. To avoid revisiting that solution, a valid combinatorial inequality is also
added to the RMP. If the RMP became infeasible, the heuristic procedure terminates and a
strong combinatorial cut is added to the formulation. The algorithm iterates for a maximum
ι iterations. A time limit of Th is imposed on each iteration of the RMP. Finally, the imposed
bounds on the variables are removed. But, all the generated optimality and combinatorial
cuts will remain in the formulation, since they are both useful and valid.

Reduction procedures

The reduction ideas are mainly based on the well-known reduced-cost methodology. However,
we do not discuss them here to avoid burdening the article, see, e.g., Gendron et al. (2016).
Moreover, one flow conservation constraint in formulation (4.2)–(4.4) is redundant for each
commodity k. Thus, we can fix the dual variable associated to its origin (or destination) to
zero, i.e., πkO(k) = 0, ∀k ∈ K.

Many of the proposed VIs provide no further convergence advantage after a few iterations.
Likewise, a small subset of the Benders cuts are required for global convergence. Thus, a clea-
nup strategy is required to keep the scale of the MP manageable by removing the unnecessary
cuts and VIs. The proposed cleanup strategy keeps a record of the slack values for each cut
and inequality. If a cut or a VI exhibits a large slack value over some predefined number of
iterations, it will be considered as a candidate for removal from the master formulation. In
order to avoid frequent cut removal, which profoundly disturbs the optimization solver, the
candidate cuts will be removed just before the second phase of the algorithm. Note that this
strategy is not applied during the second phase because the cuts are appended to the MP as
lazy constraints and the solver eliminates them if they become slack. In addition, the cleanup
is applied to the SPs as soon the LP phase is terminated to remove the additional VIs which
will be inactive for integer y solutions.
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4.5 Numerical results and analysis

In this section, we present the numerical assessment of the proposed algorithm. We first test
different versions of the BD algorithm to evaluate the impact of the proposed enhancements
on convergence. The second part of the analysis is dedicated to a comparison between our
exact algorithm and state-of-the-art algorithms and optimization solvers. We test the robust-
ness and limitations of our method on larger instances in the third part of the experiments.

To carry out the numerical tests, we have used standard benchmark instances, referred to
as R and S in the literature (Crainic et al., 2011, 2014a,b). There are 16 instances in the S
data set. These instances are defined on fully connected graphs of 16 or 30 nodes, with 14,
40 or 80 commodities, and 10, 20, 60 or 90 scenarios. For presentation purposes, we divided
them into three classes based on the number of commodities, which determines the instance
difficulty. Eleven instance classes of R family, r04 to r14 inclusively, along with five different
cost/capacity ratios (1, 3, 5, 7, and 9) were selected. Three numbers of scenarios (16, 32, and
64) are considered for each instance of the R set. To generate these scenarios, demands were
assumed to be linearly correlated and five levels of positive correlation (0%, 20%, 40%, 60%,
and 80%) were used. In summary, 825 different instances of the R set are considered.

All programs were coded in C++, using callable libraries of the CPLEX version 12.6.1 as the
optimization solver. The code was compiled with g++ 4.8.1, executed on Intel Xeon E7-8837
CPUs running at 2.67GHz with 16GB RAM under a Linux operating system, in single-thread
mode.

4.5.1 Implementation details

A number of algorithmic components need to be specified for a complete description of
the implementations used to perform the numerical tests. First, the VIs are added to the
MP and SPs during the first phase of the algorithm only. LBF and NCI inequalities are
added to the master formulation a priori. The other inequalities are added to the MP or
SP formulation in a cutting plane method. At the MP level, our pilot experiments indicated
that superior performance can be attained through prioritizing the VIs over the Benders
cuts, mainly because their extraction is computationally less expensive and because they
significantly reduce number of the major iterations. This means that we keep solving the MP
and generating the VIs as long as a violated one can be found. This considerably reduces
number of the SPs to solve, which constitutes the major computational bottleneck of the
algorithm. At the SP level, solving several SPs to generate a single cut is computationally
costly. Moreover, in the presence of the SIs, few violated FP inequalities can be found. For
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this reason, the SIs are first added to the SP formulations and the FPs are appended in a
cutting plane fashion. The cutting plane is executed on each SP only for one iteration per
cut generation cycle.

The S instances involve arcs that start and end at the same node. These arcs can be removed
from the network, when the associated node is not both origin and destination for a specific
commodity k ∈ K. This follows from the non-negative fixed cost values. Moreover, when
several commodities share the same OD pair, they can be aggregated into a single commodity
if their flow costs are identical.

To specify the stopping criteria, a run time limit of 2 hours, maximum number of 1000
iterations, and optimality tolerance of 1% were considered. The time limit and optimality
tolerance for the first phase were fixed to 1 hour and 0.3%. To set the search parameters,
extensive computational tests on 5 chosen instances from the R family were conducted and
the following parameters have been fixed throughout the numerical tests : εgap = 10−2,
η = 10−2, y0 = 0.5, λ = 0.5, εbr = 10−1, Th = 5%"of total time", ι = 5, εh = 10−3,
TI = "total iterations of the first phase− 2”.

The following notation is used in Tables 4.1–4.8 : "Time (Sec.)" gives the CPU time in seconds,
"Gap (%)" presents the optimality gap in percentage, "Sol. (%)" indicates percentage of the
instances solved to optimality and "Ave." represents the weighted average values. Given the
UB and LB values, the optimality gap is calculated as 100(UB - LB)/UB. For the sake of
ease in the comparisons, when an algorithm fails to find any feasible solution, the reported
optimality gap is set to 100%.

4.5.2 Analysis of the algorithmic enhancements

The goal of this analysis is to assess the effectiveness of the proposed algorithmic enhance-
ments. We investigate to what degree our strategies are further enhancing the state-for-the-art
BD method which involves the two-phase approach, multi-cut reformulation, PDS, Pareto-
optimal cuts, a heuristic, single search tree and VIs (Crainic et al. (2016)). Therefore, we
activated the proposed strategies one by one and observed their cumulative additive value
with respect to the convergence of the state-of-the-art BD method for the problem at hand.

For the numerical analyses of this section, we have chosen a subset of the R and S instances :
r04 to r10 with 64 scenarios and s01 and s02. This subset covers all the instances addressed in
the literature (i.e., R set) and gives the opportunity to assess the behavior of the algorithm
on very different network structures (i.e., S set).
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Feasibility cuts

We first study the proposed strategy to avoid the generation of classical feasibility cuts. As the
numerical results in Table 4.1 indicate, adding the relatively complete recourse to the model
and using strong combinatorial cuts outperforms the use of classical feasibility cuts. This can
partially be explained by the fact that most of the master solutions are slightly infeasible,
meaning that the constructed network at the MP fails to cover only a small portion of the
demand. In this case, the generated optimality cuts seem to improve the lower bound faster
than the inclusion of feasibility cuts. Moreover, the current solutions to the MP that are
infeasible are usually so for only a small subset of the SPs. Thus, following the proposed
strategy, optimality cuts are still being added for all feasible SPs. In turn, this accelerates
the rate at which the relaxation defined by the MP can be improved.

Table 4.1 Assessing the performance of the strategy to avoid generating feasibility cuts

Benders with feasibility cuts Benders with complete recourse
Time (s) Gap (%) Sol. (%) Time (s) Gap (%) Sol. (%)

r04 160.43 0.65 100.00 86.01 0.65 100.00
r05 224.16 0.79 100.00 190.57 0.76 100.00
r06 3135.42 1.52 76.00 2655.89 1.39 72.00
r07 993.86 0.91 92.00 618.58 0.85 100.00
r08 2877.81 1.86 64.00 2494.79 1.41 76.00
r09 5989.05 1.98 24.00 5602.56 1.70 36.00
r10 5879.67 3.72 20.00 5694.71 3.84 24.00

s01 56.03 0.17 100.00 56.86 0.15 100.00
s02 7200.00 54.59 0.00 7200.00 54.40 0.00

Ave. R. 2751.49 1.63 68.00 2477.59 1.51 72.57
Ave. S. 4342.41 32.82 40.00 4342.74 32.70 40.00

Pareto-optimal cuts

Table 4.2 displays the numerical comparison between our cut generation strategy denoted
"Proposed approach (I)", and that of Magnanti and Wong (1981). We also examined a variant
of our approach in which the core point is dynamically updated according to y0 ← 1

2(ȳ+ y0),
denoted as "Proposed approach (II)".

Two key observations can be made from Table 4.2. First, the proposed cut generation scheme
outperforms the original method of Magnanti and Wong (1981). For 125 out of 175 R ins-
tances that both methods solve, our approach reduced the average CPU time by 21.23%. For
the other 50 instances, it improved the average optimality gap and CPU time by 2.32% and
9.53%, respectively. The superiority of our approach is particularly evident for the instances
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Table 4.2 Comparing cut generation schemes

Magnanti & Wong (1981) Proposed approach (I) Proposed approach (II)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 86.01 0.65 100.00 68.50 0.63 100.00 77.76 0.65 100.00
r05 190.57 0.76 100.00 136.90 0.72 100.00 158.21 0.69 100.00
r06 2655.89 1.39 72.00 2355.46 1.24 76.00 2391.80 1.26 76.00
r07 618.58 0.85 100.00 511.80 0.80 100.00 431.30 0.81 100.00
r08 2494.79 1.41 76.00 2278.20 1.36 76.00 2386.64 1.34 76.00
r09 5602.56 1.70 36.00 5376.49 1.69 36.00 5248.34 1.69 44.00
r10 5694.71 3.84 24.00 5643.28 3.38 32.00 5501.45 3.23 36.00

s01 56.86 0.15 100.00 53.07 0.12 100.00 10.68 0.03 100.00
s02 7200.00 54.40 0.00 7200.00 52.44 0.00 7200.00 51.17 0.00

Ave. R : 2477.59 1.51 72.57 2338.66 1.41 74.29 2313.64 1.38 76.00
Ave. S : 4342.74 32.70 40.00 4341.23 31.51 40.00 4324.27 30.72 40.00

for which the algorithm executes more iterations involving the dummy arcs. In this case,
the resolution of the auxiliary SP (4.19)-(4.21) is considerably slower due to the equality
constraint (4.21). Second, updating the core point yields a positive impact on the overall
performance, requiring 2.55% less iterations, on average, to converge. This is probably due to
the fact that the updated core point gives a better measure to emulate the optimal direction
at the current iteration. Note that, the core point is updated if the current solution is feasible
according to Property 4.1.

The same observations can be made for the S instances. The three methods seem to have the
same average running time. This is mainly due to the instances in the s02 class. They are
larger in scale than those in s01, and consume the whole running time. The Magnanti and
Wong Magnanti and Wong (1981)’s approach fails to find a feasible solution for 3 instances
in s02, while this value for the proposed approaches reduces to 2.

We also tested the methods in Papadakos (2008) and Sherali and Lunday (2013) to generate
Pareto-optimal cuts (results available from the first author), and observed that the former
is less efficient. This is due to the generation of non-exact cuts with respect to the current
solution, particularly when the algorithm approaches a local optima. Sherali and Lunday
(2013)’s method underperfomed that of Magnanti and Wong (1981), indicating the cuts
generated in the latter method are stronger. Our method alleviates all these shortcomings.

Warm start

The WS strategy was proposed to overcome the ineffective initial iterations. Thus, we first
illustrate its impact for the first phase of the algorithm, as it is deactivated after 15 iterations
or when this phase ends. The initial point in this experiment is set equal to the core point,
i.e., yws = y0. The comparative results are depicted in Figure 4.1. On average, the algorithm
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with the WS requires 53.32% less time to optimize the first phase for the R instances and
43.40% less for the S instances. More significant savings are obtained on the larger instances.
It is worth mentioning that the infeasibility rate of the algorithm during this phase dropped
by 75.08% and 83.10% for the R and S instances, respectively.
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Figure 4.1 CPU time to solve the first phase with warm-start activated (dark bars) or not
(light bars)

We next examine the impact of the WS strategy on the convergence of the algorithm. Two
variants of the algorithm are compared : one in which the initial point is set to the core
point (yws = y0), and a second one in which it is set to the point proposed in section 4.4.3
(yws = ymax). The numerical results are given in Table 4.3.

Table 4.3 Impact of the warm-start on the convergence given initial point setting

WS (yws = y0) WS (yws = ymax)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 63.68 0.64 100.00 72.34 0.62 100.00
r05 94.39 0.70 100.00 95.60 0.58 100.00
r06 2121.76 1.14 80.00 2124.45 1.10 80.00
r07 421.61 0.77 100.00 404.51 0.78 100.00
r08 2392.24 1.24 76.00 2395.59 1.19 76.00
r09 5195.91 1.42 44.00 4992.15 1.32 52.00
r10 5355.16 2.81 36.00 5443.17 2.85 40.00

s01 39.27 0.30 100.00 15.57 0.05 100.00
s02 7200.00 38.00 0.00 7200.00 8.12 0.00

Ave. R : 2234.96 1.24 76.57 2218.26 1.21 78.29
Ave. S : 4335.71 22.91 40.00 4326.23 4.89 40.00

Comparing the results in Tables 4.3 and 4.2 , we can confirm that the WS strategy has
a positive impact on the performance of the BD method. The largest gap reduction was
observed for the S class, an average improvement of 25.74% for the s02 family. The overall
time improvement may seem somehow limited in light of the results in Figure 4.1. This
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can be explained by two facts. The time spent on the first phase compared to the overall
time requirement is rather small, particularly for the R instances. Moreover, many of the
previously unsolved instances still remain unsolved, although with lower gaps. This does not
favorably affect the average time.

When the WS strategy is initialized with ymax, more of the R instances are solved. For the
S instances, a further optimality gap improvement of 78.63% is observed in the s02 category.
The reason we observe more significant changes for the S instances can be explained by
their fully connected network structure. For such instances, the time spent on the SPs is
noticeably larger when the solution is infeasible. Since using the WS significantly reduces
the number of infeasible iterations, the LP phase is optimized faster : 69.97% on average. In
addition to having a tighter LP relaxation, more time remains for the second phase of the
algorithm to find better incumbent solutions. Last remark, the average time requirement for
some instances, e.g., r10, has slightly increased. This indicates that although the proposed
initialization performs the best on average, it could be further improved, the algorithm being
sensitive to the initial point. Thus, further research on this subject would be worthwhile.

Valid inequalities

Next, we examine the impact of the VIs on the performance of the algorithm. We experi-
mented with three versions of the algorithm. Only the VIs at the SP level are activated in
the first version, the VIs are only added to the MP in the second and, the VIs are applied to
the both MP and SPs in the third. The numerical results are summarized in Table 4.4.

Table 4.4 Impact of the VIs on the algorithm performance
VIs for the SPs VIs for the MP VIs for both SPs and MP

Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)
r04 60.02 0.57 100.00 41.11 0.58 100.00 29.26 0.53 100.00
r05 110.34 0.39 100.00 53.34 0.57 100.00 34.40 0.38 100.00
r06 2765.27 1.29 64.00 1876.71 0.91 80.00 2687.94 0.93 80.00
r07 460.53 0.55 100.00 326.85 0.71 100.00 210.30 0.53 100.00
r08 1337.47 0.70 92.00 1220.91 0.89 96.00 551.66 0.58 100.00
r09 3174.41 1.72 64.00 4233.37 1.17 68.00 2542.66 1.49 76.00
r10 5196.56 2.40 44.00 4229.81 1.52 68.00 3967.93 1.56 64.00

s01 9.99 0.02 100.00 16.52 0.04 100.00 16.33 0.02 100.00
s02 285.93 0.11 100.00 7200.00 6.35 0.00 189.40 0.13 100.00

Ave. R : 1872.08 1.09 80.57 1711.73 0.91 87.43 1432.02 0.86 88.57
Ave. S : 175.55 0.08 100.00 4326.61 3.83 40.00 120.17 0.09 100.00

The VIs add significant value to the algorithm. In all cases, the CPU time and average
optimality gaps were reduced, while the percentage of solved instances increased. The best
results are attained when VIs are added at both MP and SP levels.
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VIs at the MP and SP level display different behaviors for the R and S instances. In the
former case, the VIs at the SP level have less impact than those at the MP level, while the
opposite appears true for the S instances. To explain these observations, Figure 4.2 compares
the versions 1 (VIs added to the SPs) and 2 (added to the MP) displaying on the left the
relative improvement (in %) of the LP relaxation at the root node, and on the right the
relative increase (in %) CPU times.
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Figure 4.2 Comparing LP relaxations (left) and CPU times (right) when VIs are added to
SP or MP

Figure 4.2 illustrates that adding VIs to the SPs is more effective, by more than 7.25% (on
average), in tightening the LP relaxation, than adding to the MP. This, however, increases the
CPU time to optimize the LP phase for the R instances by 204.97%. The LP improvement
compared to the optimal solution is small, while the increased time requirement is very large.
For the S family, both time and LP relaxation have improved, because the addition of the
stronger optimality cuts reduces the number of iterations to optimize the LP phase by an
average of 72.69%. Also, the cutting plane at the SP level has been so effective that the LB
at the root node is less than 1.92% and 0% from the final LB for the R and S instances,
respectively. The same values for the cutting plane at the MP level are 8.75% and 0.75%.
When both cutting plane methods are activated, the LP relaxation is further tightened and
the CPU time remains reasonably low. This has thus given the best results.

Note that adding VIs to the SPs deteriorates the performance over r06 instances despite of
significantly tightening the LP relaxation. We realized that this anomaly is due to the default
search mechanism of CPLEX. If we turn off the default cuts and heuristics, adding VIs to
the SPs speeds up the algorithm by nearly a factor of 2. We thus call for more researches to
study the exploration strategies for the branch-and-bound tree in context of the BD method.

In summary, examining the S and R instances, we conclude that the VIs are more effective
in dense networks. The NCIs are effective only when the number of nodes is larger than the
number of commodities. Moreover, the decomposition provides the capability to efficiently
handle an exponential number of the well-known family of VIs, such as SIs. The LBF cuts
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can significantly improve the initial LB. Figure 4.3 depicts the quality of this bound during
the initial iterations of the algorithm when these cuts are appended to the MP versus the case
when they are ignored. To conduct this experiment, all proposed enhancements are turned
off and the algorithm is run for one iteration only. On average, the initial LB is 92.44%
higher than the case where the LBFs are not added to the MP. The average time spent on
the generation of these inequalities is also less than 6.10 seconds.
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Figure 4.3 Improvement of the initial lower
bound when the LBFs are appended
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Figure 4.4 Distance of the UB obtained by
Heuristic (I) (white bars) and (II) (dark bars)
from the best known value

Heuristic

Multiple integer solutions can be extracted at each iteration of the heuristic. They are valid
to generate both cuts and UBs. We have thus tested two versions of the heuristic, using only
the best solution in Heuristic (I), while Heuristic (II) uses all the extracted solutions. Figure
4.4 depicts the relative distance (in %) of the UBs attained by each version compared to the
best known value.

Heuristics (I) and (II) are able to find solutions that are respectively 0.36% and 0.05% from
the best known UB. Heuristic (I) finds better or equal UBs for 110 instances out of 175.
This value goes up to 124 for Heuristic (II), which is, however, more time consuming by
36.29% (on average) than Heuristic (I). For the S instances, both consistently find the best
known incumbents, and Heuristic (II) for two instances finds even better bounds. We next
examine the impact of the heuristics on the performance of the algorithm. The results for
both versions are summarized in Table 4.5.

The algorithm with Heuristic (I) improves the average run time, while it solves a larger
portion of the instances with Heuristic (II). The major advantage of the heuristics is that
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Table 4.5 The impact of the heuristic on algorithm performance

Heuristic (I) Heuristic (II)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 28.77 0.59 100.00 37.12 0.59 100.00
r05 34.85 0.46 100.00 46.79 0.47 100.00
r06 2474.42 1.02 80.00 2633.02 0.98 80.00
r07 174.29 0.64 100.00 218.41 0.63 100.00
r08 490.69 0.64 100.00 791.41 0.58 100.00
r09 2390.35 1.41 76.00 2373.02 1.40 80.00
r10 3990.64 1.42 64.00 4064.08 1.41 64.00

s01 41.47 0.02 100.00 17.22 0.02 100.00
s02 201.00 0.20 100.00 242.76 0.18 100.00
Ave. R : 1369.14 0.88 88.57 1451.98 0.87 89.14
Ave. S : 137.18 0.13 100.00 152.54 0.12 100.00

they remove many candidate solutions and a massive part of the branch-and-bound tree. If
we compare the number of explored nodes with and without the heuristic, we observe an
average reduction of 23.12% when the heuristic is activated. However, the heuristic does not
always yield a net computational advantage, mainly because of its non-trivial running time.
For example, consider r10 for which using Heuristic (II) yields a better UB than the best
solution previously found without the heuristic. This did not positively affect the number
of solved instances, although the average optimality gap is reduced. The time spent on the
heuristic accounts for 20.47% of the total running time, on average. For some instances this
value goes up to 50%. Considering the time spent on the first phase, limited time remains for
the second phase which is not enough to close the optimality gap of challenging instances.
When we increase the time limit to 5 hours, we observe that the algorithm with Heuristic
(II) solves a wider range of instances and entails lower CPU time.

Value of the PDS

The initial motivation for the PDS was alleviating the weak relaxation of the MP. In this
paper, this drawback has also been tackled by means of VIs and a WS strategy. In order to
verify whether or not it is still beneficial to use the PDS in our algorithm, we have turned off
the PDS feature and ran our algorithm once again. The results are presented in Table 4.6.

We observe that for small and medium instances, the PDS tends to increase the cost of
the iterations. This is clearly due to the additional complexity it inserts into the MP. This
observation relates to the instances with very tight or very loose capacity ratio. However,
if the cut generation cycle is much more time consuming than the MP, the PDS usually
improves the performance. This is certainly true for the S instances since the cut generation
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Table 4.6 Impact of the PDS on convergence

Without PDS With PDS
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r04 25.95 0.59 100.00 37.12 0.59 100.00
r05 48.43 0.51 100.00 46.79 0.47 100.00
r06 2451.07 1.01 76.00 2633.02 0.98 80.00
r07 218.84 0.68 100.00 218.41 0.63 100.00
r08 393.53 0.64 100.00 791.41 0.58 100.00
r09 2197.37 1.71 80.00 2373.02 1.40 80.00
r10 4326.32 1.84 56.00 4064.08 1.41 64.00

s01 18.63 0.14 100.00 17.22 0.02 100.00
s02 1759.21 0.20 100.00 242.76 0.18 100.00

Ave. R : 1380.21 0.99 87.43 1451.98 0.87 89.14
Ave. S : 1062.98 0.17 100.00 152.54 0.12 100.00

cycle is the most time consuming part of the algorithm. Nonetheless, the algorithm with the
PDS solves a wider range of instances. The PDS thus appears a valid and efficient acceleration
technique.

Marginal impact of the acceleration strategies

To complete the computational experiments of this section, we study the marginal impact
of each strategy on the algorithm’s running time if we turn off that specific acceleration. We
observed that the average running time increases by factors of 1.31, 2.49. 7.16, 8.89, 2.68,
2.18 and 1.71 if we deactivate the heuristic, VIs for the MP, VIs for the SP, VIs for both MP
and SP, WS, PDS and our Pareto-optimal cut generation strategy, respectively. Thus, all
the accelerations have a positive marginal impact on the performance. The Pareto-optimal
cut generation strategy and the heuristic have the least marginal impact, while VIs have the
greatest impact on accelerating the BD method, particularly the VIs for SPs.

4.5.3 Comparison with other approaches

We assess the performance of our algorithm versus alternate exact approaches, i.e., BD me-
thod without the acceleration techniques, CPLEX and the algorithm of Crainic et al. Crainic
et al. (2016). The best strategy for each enhancement, as introduced in the previous sec-
tion, is included in our algorithm. In order to examine the efficiency and robustness of the
algorithms, a wider range of instances was considered : 525 R (r04–r10) and 12 S (s01-s02)
instances. The results are summarized in Table 4.7, where "TR" and "GR" indicate the time
and gap ratios calculated by dividing the results of each approach by those of our algorithm.
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The column labeled "SD (%)" gives the number of solved instances by our approach minus
the alternate approaches in %. Consequently, the bigger the value for these measures, the
higher the efficiency of our algorithm.

Table 4.7 Comparing the proposed BD algorithm to alternate exact methods

Naive BD Cplex 12.6 Crainic et al. [2016]
TR GR SD (%) TR GR SD (%) TR GR SD (%)

r04 68.55 4.35 0.00 6.17 1.10 0.00 3.78 1.61 0.00
r05 303.17 53.58 60.00 18.74 1.01 0.00 4.17 6.01 0.00
r06 63.14 18.96 48.00 10.56 3.68 0.00 6.00 2.89 18.67
r07 301.97 3.86 8.00 3.94 1.43 0.00 4.98 2.99 2.67
r08 370.71 170.38 84.00 21.80 2.19 20.00 18.88 9.22 13.33
r09 59.55 14.49 48.00 8.11 3.98 10.67 20.11 1.43 26.67
r10 37.64 369.73 64.00 2.92 8.48 25.33 2.55 5.39 38.67

s01 395.87 252.73 50.00 8.03 3.96 0.00 7.11 8.51 0.00
s02 61.29 284.22 66.67 10.30 6.15 100.00 88.52 298.46 50.00

Ave. R. 172.10 90.76 44.57 10.32 3.12 8.00 8.64 4.22 14.29
Ave. S. 228.58 268.47 58.33 9.39 5.28 60.00 55.95 182.48 30.00

The figures displayed in Table 4.7 illustrate that the proposed algorithm outperforms other
methods for all criteria. The naive BD method is the less efficient. Compared to the method
proposed in Crainic et al. (2016), our algorithm is 2.55 to 88.52 times faster. Compared
to the CPLEX, these values range from 2.92 to 21.80. The average optimality gaps of our
approach are also 1.01 to 8.48 and 1.43 to 298.46 times lower than those of CPLEX and
Crainic et al. (2016), respectively. For R (S) instances, the maximum optimality gap for
CPLEX, Crainic et al. (2016) and our algorithm are respectively 57.56% (11.87%), 8.88%
(100%) and 4.51% (0.49%). Our algorithm is then able to solve more instances, e.g., 48 and
78 challenging instances in comparison to CPLEX and Crainic et al. (2016), which cannot
find feasible solutions for half of the s02 instances.

The convergence behavior of the exact algorithms over time is illustrated in Table 4.5 for ins-
tance 49 from class r10 (stopping criteria were fixed at 10 hours run time and optimality gap
of 0.03%). We see that, while CPLEX starts off with tighter bounds than Crainic et al. (2016),
it terminates with the largest optimality gap. Our algorithm quickly finds tight bounds. The
initial bounds are much tighter than alternate approaches and it quickly converges to an
optimal solution. It is interesting to observe that the alternate methods also find the optimal
solution, although at much slower pace. However, they cannot prove its optimality due to
slow progression of the LB.
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Figure 4.5 Convergence behavior of the exact algorithms over time

Large instances

We conclude the experimental study by focusing on larger instances. We present the results
for a time limit of 10 hours, for the largest instance classes in our sets, r11 - r14 and s03.
For a more comprehensive view of the topic, we also included the instances that remained
unsolved in previous sections. The numerical results for our BD method, CPLEX and Crainic
et al. (2016) are summarized in Table 4.8.

Table 4.8 Computational experiments on larger instances

Proposed BD algorithm CPLEX 12.6 Crainic et al. (2016)
Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%) Time (Sec.) Gap (%) Sol. (%)

r06 2366.40 0.67 100.00 9436.76 0.57 85.33 3494.55 0.80 98.67
r09 4888.16 0.86 94.67 13983.34 1.64 78.67 6238.04 0.98 97.33
r10 10074.77 0.92 88.00 24408.12 4.65 45.33 16021.18 1.35 70.67
r11 14155.99 1.96 62.67 20576.50 11.24 60.00 17436.35 2.86 54.67
r12 13844.30 2.31 74.67 21792.24 11.95 52.00 21124.33 3.80 46.67
r13 28814.03 4.09 20.00 29440.17 19.29 20.00 28155.89 5.38 28.00
r14 28907.46 5.63 21.33 34487.90 31.54 12.00 29487.41 10.45 20.00

s03 4958.44 0.69 100.00 29682.71 5.51 33.33 36000 54.211915 0.00

We observe that our algorithm performs better than other methods. The average optimality
gap for the R instances for the three methods are 2.35%, 11.55% and 3.66%, respectively,
while the average time requirements are 14721.59, 22017.86 and 17422.54 CPU seconds. Our
algorithm is capable of solving 65.90% of the instances, more than the 50.48% of CPLEX
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and 59.43% by the method of Crainic et al. (2016). It is noticeable that our method is the
only one able to solve all the s03 instances, and to do it in short times, which emphasizes its
robustness in handling different instances.

Looking closely to the convergence behavior of the proposed algorithm on large instances, we
observed difficulties for some instances, mainly due to the a less-well-performing second phase
inducing long plateaus without any improvement in the bounds. We examined, in particular,
the 187 R instances (out of 525) for which the algorithm failed to reach optimality. We
observed, on average for these unsolved instances, an LB value at the root node of 1108493.01
at time 2043.91, and a final lower bound of 1116109.30 at time 36099.04. The very low
improvement rate corresponding to these figures indicates the need for more research into
improving the second phase of the proposed BD algorithm.

4.6 Conclusions and remarks

We presented various acceleration strategies to boost the convergence of the Benders de-
composition method. The strategies include those already certified in the literature for their
positive impact on the algorithm as well as new techniques. We added two cutting-plane
methods to the Benders framework to overcome three main drawbacks which make its appli-
cation less effective than alternative approaches, i.e., weak linear relaxation of the problem
at hand, weak optimality cuts, and weak relaxation of the master problem. To overcome the
ineffective initial iterations, a warm-start strategy was used, which allows generating a set of
tight cuts quickly. We also proposed to generate Pareto-optimal cuts through fixing variables
in the auxiliary problem of Magnanti and Wong (1981) by exploiting the dual information of
the primary SP. A simple heuristic was also developed to find high-quality incumbent solu-
tions. To avoid extraction and inclusion of feasibility cuts, we developed relatively complete
recourse property for the problem, and proposed strengthened alternate cuts to the classical
feasibility ones to avoid generating optimality cuts with big coefficients.

The proposed algorithm was successfully tested on a wide range of stochastic network design
instances. However, we believe our theoretical/numerical results are general in nature and will
remain valid independently of the problem chosen. We observed that the proposed algorithm
is at least 10 times faster than the state-of-the-art algorithms and commercial solvers. We also
realized that valid inequalities at both master and subproblem level are very important. The
results indicated that VIs for the SP are even more important when tight ones are present.
Moreover, we noticed that carefully updating the core point at each iteration can improve
the performance of the BD algorithm through better selection of the cuts.
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There are several directions to be explored to further enhance the proposed algorithm. We
observed that the algorithm is sensitive to the core point in terms of both initialization and
updating. Despite the importance of this subject, there is still no theoretical guiding on
how to initiate and update this point. The second phase of the algorithm takes the largest
portion of the running time. Although it starts with a fairly tight UB, it hardly improves
this bound. The lower bound also progresses very slowly. Thus, developing advanced acce-
leration strategies specialized for the second phase of the algorithm appears an important
subject for future research. Another line of research revolves around improving the propo-
sed heuristic so as to make it more rapid while keeping the same level of accuracy. In the
same line of research, studies on selection criteria for carefully choosing solutions from a pool
appear promising, in order to avoid using many useless solutions to generate bounds and
cuts. With respect to the feasibility cuts, there are other proposals in the literature which
would be worthwhile to examine and compare to the strategy proposed in this article, see
e.g., Ruszczyński (1997). Furthermore, we call for experimental studies to compare the pro-
posed warm-start/stabilization method to other stabilization techniques. In the same spirit,
it is worthwhile to conduct a numerical comparison of the proposed method to the scenario
decomposition approach (Ahmed, 2013). Last but no least, we found great opportunities in
improving the proposed algorithm by using parallelization techniques.
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Abstract. Many methods that have been proposed to solve large-scale MILP problems rely
on decomposition techniques. These methods exploit either the primal or the dual structure
of the problem, yielding the Benders decomposition or Lagrangian dual decomposition me-
thods. We propose a new and high performance approach, called Benders dual decomposition
(BDD), which combines the complementary advantages of both methods. The development
of BDD is based on a specific reformulation of the Benders subproblem, where local copies of
the master variables are introduced in the proposed subproblem formulation and then priced
out into the objective function. We show that this method : (i) generates stronger feasibility
and optimality cuts compared to the classical Benders method, (ii) can converge to the op-
timal integer solution at the root node of the Benders master problem, and (iii) is capable
of generating high quality incumbent solutions at the early iterations of the algorithm. We
report encouraging numerical results on various benchmark MILP problems.

Keywords. Benders decomposition, Lagrangian duality, Mixed-integer programming.
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5.1 Introduction

Mixed-integer linear programing (MILP) is used to model a wide range of engineering and
financial problems (Nemhauser and Wolsey, 1988). Owing to the importance and inherent
complexities of MILP models, it has been the subject of intense research since the early 1950s
(Beale, 1965; Jünger et al., 2009; Newman and Weiss, 2013). In this article, we consider MILP
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problems of the following generic form

min
y,x
{f>y + c>x : By ≥ b, Wx+ Ty ≥ h, y ∈ Zn+, x ∈ Rm

+} (5.1)

where f ∈ Rn, B ∈ Rk×n, b ∈ Rk, c ∈ Rm,W ∈ Rl×m, h ∈ Rl, T ∈ Rl×n. We assume that the
above problem is feasible and bounded. A prominent general approach to solve problem (5.1)
relies on partitioning techniques such as the Benders decomposition method (Benders, 1962),
especially when part of the input data defined in the program are stochastic (Ruszczyński and
Świȩtanowski, 1997; Costa, 2005; Birge and Louveaux, 1997; Rahmaniani et al., 2017a). To
solve problem (5.1) with the Benders decomposition (BD) method , we introduce an auxiliary
variable θ and the following master problem (MP)

MP = min
y,θ
{f>y + θ : By ≥ b, θ ≥ θ̄, y ∈ Zn+} (5.2)

where θ̄ is a lower bound on θ to avoid unboundedness of the problem. The MP, the objective
value of which defines lower bounds for (5.1), is solved in a branch-and-cut method. At each
integer node of the branch-and-bound tree, the solution y∗ is fixed in the following dual
subproblem (DSP)

DSP = max
α
{(h− Ty∗)>α : W>α ≤ c, α ∈ Rl

+} (5.3)

If the above problem is unbounded, a direction of unboundedness r is chosen and the feasi-
bility cut (h− Ty)>r ≤ 0 is added to the MP to exclude all infeasible y solutions satisfying
(h− Ty)>r > 0. Otherwise, a feasible solution to (5.1) is identified (thus allowing the upper
bound of the algorithm to be updated), and the optimality cut (h− Ty)>ᾱ ≤ θ is added to
the MP. This procedure is repeated until the algorithm converges to an optimal solution. Due
to the impact that the quality of the starting lower bound has on the size of the branch-and-
bound tree generated by the algorithm, optimality and feasibility cuts can also be generated
at fractional nodes of the tree at the beginning of the solution process to rapidly improve
the quality of the lower bound. Such a strategy has mainly been applied at the root node,
see (McDaniel and Devine, 1977; Naoum-Sawaya and Elhedhli, 2013; Adulyasak et al., 2015;
Gendron et al., 2016; Bodur et al., 2017).

The BD method has been the subject of intense research due to its practical importance in
handling various MILP problems, e.g., production routing (Adulyasak et al., 2015), power
generation (Cerisola et al., 2009), healthcare (Lin et al., 2016), logistics (Cordeau et al.,
2006), green wireless network design (Gendron et al., 2016), map labeling (Codato and Fi-
schetti, 2006), supply chain management (Santoso et al., 2005), investment planning (Mitra
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et al., 2016), network design (Costa, 2005), and so on. It may however perform disappointin-
gly without the inclusion of some (problem-specific) acceleration techniques, see the recent
literature reviews by Rahmaniani et al. (2017a); Fragkogios and Saharidis (2018) and refe-
rences therein for a complete information. Generally speaking, as highlighted in these reviews,
the poor performance of the BD method is due to its shortfalls from both dual and primal
perspectives.

The performance of the BD method, from a dual perspective, depends on the quality of the
cuts chosen to bound the projected term (Holmberg (1990); Crainic et al. (2016); Fischetti
et al. (2016)). In particular, if the underlying LP relaxation of the problem is weak and/or
the subproblems are degenerated, the algorithm performs poorly because the cuts and the
root node bound are very weak (Magnanti et al., 1986; Van Roy, 1983; Sahinidis and Gross-
mann, 1991; Geoffrion and Graves, 1974; Cordeau et al., 2006; Rahmaniani et al., 2017b).
Thus, effective selection of the Benders cuts has been the main focus of several studies, e.g.,
Magnanti et al. (1986), Wentges (1996), Codato and Fischetti (2006), Papadakos (2009),
Fischetti et al. (2010), Contreras et al. (2011), Sherali and Lunday (2013), among others. In
more recent studies, strengthening the Benders cuts has been performed by making use of va-
lid inequalities (VIs), see e.g., Bodur et al. (2017) and Rahmaniani et al. (2017b). Lagrangian
techniques have also been used to generate alternative optimality cuts, particularly when the
subproblem includes integrality requirements (Cerisola et al., 2009; Zou et al., 2016). In fact,
it has been shown that the cuts obtained from the Lagrangian dual subproblems are not only
valid for the Benders master problem, they are also generally tighter than the classical ones
(Van Roy, 1983; Santoso et al., 2005; Mitra et al., 2016).

From a primal point of view, the BD method has no systematic mechanism to generate high
quality upper bounds. Indeed, it has oftentimes been observed that the evolution of the upper
bound throughout the BD search process stagnates and finding good quality solutions can be
quite a challenge, see (Boland et al., 2015). Thus, problem-specific heuristics have been used
to generate a pool of high-quality solutions or to improve the quality of the master solutions
obtained, see e.g. Poojari and Beasley (2009); Rei et al. (2009); Costa et al. (2012); Pacqueau
et al. (2012) and section 6.3 in Rahmaniani et al. (2017a).

Motivated by the important role that the cuts, the root node bound and the incumbent so-
lution play on the performance of the BD method, we propose a new and high performance
decomposition strategy, referred to as Benders dual decomposition (BDD), to overcome the
aforementioned primal and dual shortfalls. The development of BDD is based on a specific
reformulation of the subproblems where local copies of the master variables are introduced.
This reformulation of the subproblems has been used in previous studies to generate gene-
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ralized Benders cuts (Geoffrion, 1972; Flippo and Rinnooy Kan, 1993; Grothey et al., 1999;
Zaourar and Malick, 2014; Fischetti et al., 2016; Zou et al., 2016). In the present case, we
apply Lagrangian duality to the proposed subproblem reformulation to price out the coupling
constraints that link the local copies to the master variables. This allows us to impose the
integrality requirements on the copied variables to obtain MILP subproblems, which are com-
parable to those defined in Lagrangian dual decomposition (LDD) (Ruszczyński, 1997; Rush
and Collins, 2012; Ahmed, 2013). As a consequence of obtaining these MILP subproblems, we
will show that our proposed strategy efficiently mitigates the primal and dual inefficiencies of
the BD method. Also, in contrast to the LDD method, BDD does not require an enumeration
scheme (e.g., branch-and-bound) to close the duality gap. Furthermore, our strategy enables
a faster convergence for the overall solution process. In summary, the main contributions of
this article are the following :

- proposing a family of strengthened optimality and feasibility cuts that dominate the
classical Benders cuts at fractional points of the MP,

- showing that the proposed feasibility and optimality cuts can give the convex hull
representation of the MP at the root node, i.e., no branching effort being required,

- producing high quality incumbent values while extracting the optimality cuts,
- developing numerically efficient implementation methodologies for the proposed de-
composition strategy and presenting encouraging results on a wide range of hard
combinatorial optimization problems.

The remainder of this article is organized as follows. In Section 5.2 we present the proposed
decomposition strategy and in Section 5.3 we present a toy example to illustrate its benefits.
In Section 5.4, the developed implementation methodologies are presented and discussed.
The experimental design and computational results are, respectively, provided in Sections
5.5 and 5.6. The last Section includes our conclusions and a discussion of future research
directions.

5.2 The proposed BDD method

The primal Benders subproblem, i.e., the primal form of (5.3), is minx{c>x : Wx ≥ h −
Ty∗, x ∈ Rm

+}. By defining y∗ as the current MP solution, without loss of generality, it can
be rewritten as

min
x,z
{c>x : Bz ≥ b, Wx+ Tz ≥ h, z = y∗, x ∈ Rm

+ , z ∈ Rn
+}. (5.4)

It should be noted that the constraints Bz ≥ b are redundant due to the presence of z = y∗.
For a given feasible solution y∗, by solving problem (5.4), the following optimality cut can
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be derived
θ ≥ c>x̄+ (y − z̄)>λ∗ (5.5)

where x̄ and z̄, represent the optimal solution of the subproblem (5.4) and λ∗ are the dual
multipliers associated to the constraints z = y∗. If problem (5.4) for y∗ is infeasible, then the
following feasibility subproblem needs to be solved

min
x,z,v
{1>v : Bz ≥ b, Wx+ Tz + v ≥ h, z = y∗, x ∈ Rm

+ , z ∈ Rn
+, v ∈ Rl

+} (5.6)

to generate a feasibility cut of the form

0 ≥ 1>v̄ + (y − z̄)>β∗ (5.7)

where v̄ define the optimal values of the v variables, β∗ are the dual multipliers associated
to the constraints z = y∗ and 1 is a vector of ones of size l. The optimality and feasibility
cuts (5.5) and (5.7) are often referred to as generalized Benders cuts (GBC) (Geoffrion,
1972; Sahinidis and Grossmann, 1991; Grothey et al., 1999; Fischetti et al., 2016). It should
be noted that the dual multipliers associated to the equality constraints z = y∗ define a
subgradient of the objective function.

5.2.1 Strengthening the optimality and feasibility cuts

To strengthen the optimality cut (5.5), we price out the constraints z = y∗ into the objective
function using the dual multipliers λ. By doing so, the following Lagrangian dual problem of
(5.4) is obtained

max
λ∈Rn

min
x∈Rm

+ ,z∈R
n
+
{c>x− λ>(z − y∗) : Bz ≥ b, Wx+ Tz ≥ h} (5.8)

In the interest of brevity, we henceforth use X := {(x, z) ∈ Rm
+×Rn

+ | Bz ≥ b, Wx+Tz ≥ h}
and F :=

{
y ∈ Rn

+|{By ≥ b}⋂{Wx ≥ h− Ty : for some x ∈ Rn
+}
}
to represent the compact

form of the feasible region of subproblem (5.4) and the set of all feasible solutions y to the
LP relaxation of problem (5.1). By applying this relaxation step, integrality requirements
can be imposed on any subset of the variables z, given that they are no longer set equal to
y∗ (i.e., a master solution that is not guaranteed to be feasible).

In the following proposition, it is shown that problem (5.8) with z ∈ Zn+ can be used to
produce a valid optimality cut :

Proposition 5.1. For any solution y∗ ∈ F , let λ∗, x̄ and z̄ be optimal solutions obtained by
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solving the following max-min MILP problem

max
λ∈Rn

min
(x,z)∈X

{c>x− λ>(z − y∗) : z ∈ Zn+}, (5.9)

then
θ ≥ c>x̄+ (y − z̄)>λ∗ (5.10)

is a valid optimality cut for the Benders master problem.

Proof. See Appendix D. �

We observe from the previous proof that, when considering an integer solution y∗ ∈ F ⋂Zn+,
the optimality cut (5.10) is at most as strong as the classical Benders optimality cut. However,
when applied using a fractional solution to the master problem, the cut (5.10) provides an
added advantage which is studied in the following Theorem. This is an important observation
to make, given that the LP relaxation of the MP is often solved first to quickly obtain valid
cuts which enable the Benders method to perform more efficiently (McDaniel and Devine,
1977; Naoum-Sawaya and Elhedhli, 2013). The next result reports the improvement that is
obtained regarding the lower bound provided through the use of the optimality cuts (5.10)
when compared to the lower bound provided by (5.5).

Theorem 5.1. Given the dual multiplier λ̂ ∈ Rn obtained from problem (5.4), the optimality
cut (5.10) is parallel to optimality cut (5.5) and at least σ ≥ 0 units tighter, where

σ = min
(x,z)∈X: z∈Zn

+

{c>x− λ̂>z} − min
(x,z)∈X

{c>x− λ̂>z} (5.11)

Proof. See Appendix E. �

As a direct implication of Theorem 5.1, the optimality cuts (5.10) are at least as strong than
(5.5). If we use the dual multipliers obtained from solving subproblem (5.4), then according
to Theorem 5.1 we can lift the optimality cut by an amount equal to the duality gap of
the inner minimization problem. We refer to such cuts as strengthened Benders cut. If we
optimize the Lagrangian problem (5.9) to generate an optimality cut, then we refer to such
cut as Lagrangian cut (Zou et al., 2016).

The same strategy can also be used to strengthen the Benders feasibility cuts (5.7). In this
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case, the following Lagrangian dual for problem (5.6) is used to evaluate z = y∗

max
β∈Rn

min
(x,z,v)∈Rm

+×R
n
+×R

l
+

{1>v − β>(z − y∗) : Bz ≥ b, Wx+ Tz + v ≥ h} (5.12)

Following Proposition 5.1, it might appear natural to impose integrality requirements on the
z variables. However, given that the constraint set Bz ≥ b may not be satisfied, this approach
does not guarantee that a valid feasibility cut will be obtained. Therefore, in the following
proposition, a modified Lagrangian dual problem is proposed to generate a valid and lifted
feasibility cut for the MP.

Proposition 5.2. For an arbitrary y∗ /∈ F , let β∗, v̄, ū, x̄ and z̄ be the optimal solution of

max
β∈Rn

min
(x,z,v,u)∈Rm

+×Z
n
+×R

l
+×R

k
+

{1>v + 1>u− β>(z − y∗) : Bz + u ≥ b, Wx+ Tz + v ≥ h}

(5.13)

then,
0 ≥ 1>v̄ + 1>ū+ (y − z̄)>β∗ (5.14)

is a violated valid feasibility cut to the master problem.

Proof. See Appendix F. �

From the last part in the proof of Proposition 5.2, it is clear that the proposed feasibility cut
dominates the classical one if the duality gap of the minimization problem is non-zero. Thus,
the results of Theorem 5.1 directly apply to this case as well.

To conclude this section, we study in Theorem 5.2 the root node bound of the BD method
when the proposed optimality and feasibility cuts are used. To ease the exposition of the
result, we henceforth use H := {(x, z, v, u) ∈ Rm

+×Rn
+×Rl

+×Rk
+| Bz+u ≥ b, Wx+Tz+v ≥

h} to represent the feasible region of problem (5.13) and Y := {y ∈ Rn
+| By ≥ b} to indicate

the domain of the relaxed y variables.

Theorem 5.2. Let ZIP and ZLP
BD be, respectively, the optimal objective value of problem

(5.1) and the root node bound of the Benders MP with the proposed Lagrangian optimality
and feasibility cuts, then ZIP = ZLP

BD.

Proof. See Appendix G. �

From the proof of Theorem 5.2, one observes that our method is closely related to the LDD
method (see Appendix J for more details on this method). This decomposition approach
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has been successfully applied in the context of solving stochastic programs (Ahmed, 2013),
where it is referred to as scenario decomposition. As shown in Ahmed (2013), Lagrangian
dual decomposition enables a stochastic program to be separated via the scenarios, allowing
lower bounds to be computed more efficiently within a general search process. In the present
case, as demonstrated in Theorem 5.2, when applied in the context of the Benders algorithm,
this decomposition strategy strengthens the cuts generated while solving the LP in such
a way as to close the gap at the root node. While solving (5.9) and (5.13) each time to
optimality to generate the associated cuts may not be computationally efficient, the previous
theoretical results nevertheless provide clear guidelines defining how Benders cuts can be
lifted to improve the quality of the lower bound generated at each iteration of the algorithm.
Furthermore, it should be noted that the proposed cut generation strategy is applicable to
a wider range of problems. Specifically, from the definitions of problems (5.9) and (5.13), it
is clear that the generation of optimality and feasibility cuts is independent of the specific
structure of set X. Thus, set X could include nonlinear constraints and integer requirements
on the variables.

5.3 Example

To illustrate the benefits of the proposed method, consider following toy problem :

min
y∈{0,1}, x≥0

{x : x+15y ≥ 8, 3x+10y ≥ 13, x+10y ≥ 7, 2x−10y ≥ −1, 2x−70y ≥ −49} (5.15)

The optimal solution to this problem is y = 0, which has a cost of 8 units. We solve the LP
relaxation of this problem using the (i) classical, (ii) strengthened and (iii) Lagrangian cuts.
The detailed results of each iterative procedure can be found in Appendix K. In Figure 5.1,
we have graphically depicted the cuts generated at each iteration of these methods in the
(y, θ)-space.

In solving the LP relaxation of the master problem with the classical Benders cuts, after
5 iterations the method converges to the optimal LP solution y = 0.58 and its objective
value of 2.4 units. If the strengthened Benders cuts are used, then the first two iterations of
the algorithm generate the same cuts as the classical ones. The reason for this is that the y
solutions for these two iterations are integer and as a result the Benders cuts are the strongest.
At the third iteration, solving the MP produces the solution y = 0.65. For this solution the
associated strengthened Benders cut is parallel to the classical Benders cuts but tighter by
6.125 units. At this point, the proposed method with the strengthened cuts converges. For
the master solution y = 0.65, the Lagrangian cut provides the convex hull representation
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Figure 5.1 Performance of different cuts in cutting the solution space of LP master problem

of the MP and, consequently, the algorithm converges to the optimal integer solution. As
demonstrated in the previous section, in this case, while solving the LP relaxation of the MP,
the optimal integer solution to the problem (5.15) is obtained.

5.4 Implementation details

As clearly shown in section 5.2 and numerically illustrated on a simple example in section 5.3,
the proposed method reduces the number of required cuts for convergence and significantly
tightens the root node bound. However, this is achieved at the cost of solving one (or several)
MILP subproblem(s), which may create a numerical bottleneck for the Benders algorithm
(especially when solving large-scale optimization problems). Therefore, in this section, we
develop a series of strategies that aim to apply the proposed method in a computationally
efficient manner.

5.4.1 Multi phase implementation

To alleviate the computational burden of optimizing the Lagrangian dual problem (5.9) for
numerous iterations, we propose to implement a three-phase strategy to generate the Benders
cuts. This is motivated by the fact that, at the initial iterations of the Benders algorithm,
the master solutions are usually of very low quality. At this point, the derived cuts provide
a poor approximation of the value function at the optimal region of the problem. In turn,
it may not be worthwhile to invest the effort of lifting these cuts. However, as the Benders
algorithm progresses and more and more cuts are added to the MP (thus improving the
quality of the lower bound provided by the MP and guiding the search process towards more
promising areas of the feasible region), then a lifting strategy may be applied to accelerate
the convergence of the algorithm. The proposed multi phase implementation works as follows.
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Phase 1. To quickly derive valid cuts, we first solve the LP relaxation of the MP with the
classical cuts (5.5) and (5.7), which is a strategy that was originally proposed by McDaniel
and Devine (1977). Given that this strategy has become one of the main methods used to
efficiently apply the Benders algorithm on numerous applications, see (Rahmaniani et al.,
2017a), we thus apply it in this phase of our implementation.

Phase 2. We then generate the strengthened optimality Benders cuts by first fixing the dual
multipliers λ to the optimal values obtained by solving the problem (5.4). Using the obtained
λ values, the inner minimization problem in (5.9) (i.e., the Lagrangean dual subproblem) is
then solved to find the values of x̄ and z̄, which are then used to generate a strengthened op-
timality Benders cuts. Similarly, if the MP solution is infeasible at this point, a strengthened
feasibility cut is generated by first fixing the dual multipliers β to the optimal values obtained
by solving the problem (5.6). Using values β, the inner minimization problem in (5.13) is
then solved to find the values of v̄, ū and z̄, which are then applied to produce a strengthe-
ned feasibility cut. Overall, this second phase starts the lifting process of the proposed cut
generation strategy.

Phase 3. In this last phase, Lagrangian cuts are generated. To do so, we heuristically solve
the Lagrangian dual problem (5.9). Therefore, to generate an optimality cut and assuming
that a series of values x̄v and z̄v, for v = 1, 2, . . . , t − 1, have been obtained via the process
by which a strengthened cut is generated (i.e., solving the inner minimization problem (5.9)
for a series of values λv, for v = 1, 2, . . . , t − 1), the following regularized problem is solved
to update the dual multipliers λ :

max
λ∈Rn,η∈R1

η − δ

2 ||λ
t−1 − λ||22 (5.16)

η ≤ c>x̄v + (y − z̄v)>λ ∀v = 1, 2, . . . , t− 1. (5.17)

The objective function (5.16) seeks to maximize the value by which the cut is lifted (i.e.,
value η) minus the distance value δ

2 ||λ
t−1 − λ||22. The latter component of the objective

function, which defines a trust-region for the Lagrangean multipliers, is included to stabilize
the updating process for a given prefixed value δ ∈ R1

+ that represents the stabilization
parameter. It thus enables a new vector λt of values to be found that is close to the one
obtained in the previous iteration (i.e., λt−1). As for the constraints (5.17), they provide an
inner approximation of the Lagrangian dual subproblem. Given the new Lagrangian multiplier
values λt, the inner minimization problem in (5.9) is instantiated and then solved to obtain x̄t

and z̄t. At this point, the constraint η ≤ c>x̄t+(y− z̄t)>λ is added to (5.17) and the updated
regularized program is solved. This process is repeated until either the new multiplier values
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fail to lift the cut by at least γ% when compared to the previous iteration, or, a maximum
number of iterations (i.e., defined as parameter κ) is reached. Finally, it should be noted that
the same procedure is applied to generate Lagrangian feasibility cuts by simply interchanging
the appropriate programs.

5.4.2 Partially relaxed subproblems

To further reduce the computational burden of solving one or several MILP subproblems to
generate a single cut, we suggest in this section two relaxation strategies that can be applied.
The first strategy applies the integrality requirements only on a subset of the z variables
following the relaxation of the constraint set z = y∗. We thus partition the variables as
follows : z> = [zI , zJ ]> using two sets I and J such that I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n},
I ∩ J = ∅ and I ∪ J = {1, . . . , n}, where zI and zJ represent the subvectors of z that include
the variables whose indexes are included in the subsets I and J , respectively. The integrality
requirements are then imposed solely on the variables of the subvector zI . Therefore, the
formulation of the cut generation problem becomes : maxλ∈Rn

{
λ>y∗ + min(x,z)∈X{c>x −

λ>I zI − λ>J zJ : zI ∈ Z|I|+ }
}
. Given that the integrality constraints on the variables zJ are

relaxed, this problem provides an optimality cut that is weaker than the Lagrangian cut.
However, it remains stronger when compared to the Benders cut. At each iteration of the
Benders algorithm, to define the subsets I and J we apply the following procedure : we
initially set I = ∅ and J = {1, . . . , n} ; then if a master variable ya (where a ∈ {1, . . . , n}
is the index associated with a variable in the y vector) takes a fractional value such that
ε0 + by∗ac ≤ y∗a ≤ dy∗ae − ε1, where y∗ is the current master solution and the non-negative
values ε0 and ε1 are two preset parameters such that ε0 +ε1 < 1, then a is removed from J and
added to I. Therefore, parameters ε0 and ε1 are used to adjust the width of the fractional
interval that is used to identify the variables on which the integrality restrictions will be
imposed.

As a follow-up to the previous approach, a second relaxation strategy is proposed. This
strategy, which is problem specific, is based on the idea of fixing variables in the Lagrangian
subproblems. To apply it, we need to assume that fixing a z variable to its upper limit in
the inner minimization problem of (5.9) widens the solution space, i.e., min(x,z)∈X{c>x : z =
y∗} ≥ min(x,z)∈X{c>x : z ≥ y+}, where the elements of y+ are equal or strictly greater than
those in y∗. Such an assumption can be made in a wide gamut of applications, particularly
in cases where capacity constraints are imposed. When this assumption is observed, then the
following result can be applied :

Proposition 5.3. Let y∗ be the current master solution and λ̂ be the corresponding dual
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multiplier obtained from linear program (5.4). Furthermore, let I ′ be a subset of I such that
y∗a ≥ uba − ε̃ and λ̂a ≥ υ for every a ∈ I ′ and for given values ε̃ ≥ 0 and υ ≥ 0, where uba is
the upper bound on variable ya. Then, the following restricted Lagrangian dual problem

max
λ∈Rn

{
min

(x,z)∈X:zI∈Z
|I|
+

{c>x− λ>(z − y∗) : zI′ = ubI′} : λI′ = λ̂I′
}
, (5.18)

can be used in replacement of (5.9) to generate approximate Lagrangian cuts, where ubI′ is
the vector of upper bounds associated with the variables whose indexes are in I ′.

Proof. See Appendix H �

Given that the Lagrangian dual problem needs to be solved several times per iteration, we
expect that these strategies will noticeably enhance the overall numerical performance of
the Benders algorithm. However, relaxing the subproblems will weaken the optimality cuts
derived. Therefore, careful consideration must be given to the specific values to which the
different parameters defining the strategies will be fixed. In the case of the second strategy,
it should be noted that the parameters ε and υ define the conditions by which the variables
whose indexes will be included in subset I ′ are chosen. Subset I ′ is then used to instantiate
the restricted Lagrangian dual problem (5.18), which is solved to generate the approximate
Lagrangian cuts. The more y variable indexes are added to subset I ′ and the more problem
(5.18) is restricted, thus reducing the numerical burden to produce a cut. However, the
larger the restriction that is applied and the weaker the cut that is derived. Clearly, a trade-
off between numerical efficiency and cut strength needs to be established when applying the
strategy on a specific application.

5.4.3 ε-optimal cuts

In many applications finding optimal solutions for the Lagrangian dual subproblems, even
when applying the aforementioned strategies, may not be easy. In our pilot numerical experi-
ments, we observed that closing the optimality gap from, for example, 1% to 0% is often the
most time consuming part of solving a subproblem. Therefore, in this section, we propose to
use ε-optimal solutions of the Lagrangian dual subproblems to generate approximate cuts.
The following results shows the validity of this approach :

Proposition 5.4. Let y ∈ Y and (x̄(ε), z̄(ε)) ∈ X be an ε-optimal solution of the minimiza-
tion problem of the Lagrangian dual. Then, the following cut can be derived :

θ ≥ c>x̄(ε) + (y − z̄(ε))>λ∗ − ε ∀y ∈ Y (5.19)
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Proof. See Appendix I. �

5.4.4 Upper bounding

In this last section, we detail how the cut generation strategy can also be used to improve the
upper bound that is generated throughout the Benders solution process. We first highlight
the fact that solving the inner minimization problem in (5.9) provides an integer z̄ solution,
which is feasible for the original problem (5.1) given the copied constraints in the proposed
reformulation (5.8). Therefore, the cut generation process produces solutions that can be
used as incumbents for the overall problem. Thus, the upper bound can be easily updated by
evaluating the objective value of these solutions, i.e., f>z̄ + c>x̄. If this value is lower than
the current incumbent, then the associated solution is used to generate a classical optimality
cut as well.

It should be noted that for cases where there are multiple subproblems (i.e., stochastic mo-
dels), then the solution from one subproblem may be infeasible for the overall problem given
that it may not satisfy all the constraints in the other subproblems. Moreover, to obtain
the objective value of a solution in this case, all subproblems associated with the solution
need to be evaluated. We thus first propose to record the extracted z̄ solutions in a pool.
From this pool we then merely evaluate those solutions which are generated at least τ times.
This is motivated by the heuristic notion that a solution with a higher level of saturation
might correspond to an optimal one. Finally, if the objective value of the solution is already
higher than the current incumbent value, then it can be simply discarded considering that
no improvement is possible.

5.5 Experimental design

To study whether our method is numerically beneficial, we complement the theoretical ana-
lysis presented in previous sections with an extensive computational study. In this section,
we describe the MILP problems used to conduct our numerical analyses, the general charac-
teristics of the test instances and how the algorithms were implemented.

5.5.1 Problems studied and test instances

We test our method on benchmark instances of three different optimization problems from
the scientific literature. Detailed descriptions of these problems can be found in Appendix L.
Here, we provide a high level summary of these problems and instances.
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Our first test instances are related to the fixed-charge multicommodity capacitated network
design (FMCND) problem with stochastic demands. This problem naturally appears in many
practical applications (Klibi et al., 2010) and it has been numerically shown to be notoriously
hard to solve (Crainic et al., 2011). In addition, it lacks the complete recourse property, which
entails that the generation of feasibility cuts is necessary to ensure the convergence of the BD
method. We have considered 7 classes of instances (r04 to r10) from the R set, as developed
in Crainic et al. (2001). Each class includes 5 instances with varying cost and capacity ratios.

Our second test instances are related to the capacitatied facility location (CFL) problem,
which was introduced by Louveaux (1986) and addressed in Bodur et al. (2017); Fischetti
et al. (2016) and Boland et al. (2015) among others. To avoid the generation of feasibility
cuts, which do not contribute towards the improvement of the lower bound generated by the
BD method, the complete recourse property can be enforced via the inclusion of a constraint
in the MP. As for the instances, we use the deterministic CAP instances (101 to 134), which
are part of the OR-Library. These instances include 50 customers with 25 to 50 potential
facilities. For the stochastic variant, we have used the scenarios generated by Bodur et al.
(2017) where each scenario includes 250 scenarios. It should be noted that the deterministic
instances of this problem are referred to as “CFL" and the stochastic ones as “CFL-S".

Finally, our third set of benchmark instances are associated to the stochastic network inter-
diction (SNI) problem proposed by Pan and Morton (2008). It is important to note that this
problem is structurally different from the previous ones, in the sense that there are no fixed
costs associated to the master variables in the objective function. Moreover, due to the pre-
sence of a budget constraint, the variable fixing strategy as detailed in Section 5.4.2 cannot
be applied. Regarding the instances, we have considered those which have been described and
used by Pan and Morton (2008), Bodur et al. (2017) and Boland et al. (2015). All instances
have 456 scenarios and 320 binary master variables associated to the same network of 783
nodes and 2586 arcs. We specifically consider those instances which are part of the classes
referred to as “snipno" 3 and 4 (see Pan and Morton (2008) Tables 3 and 4). Each class
includes 5 different instances and for each instance we have considered varying budget limits
(i.e., 30, 40, 50, 60, 70, 80 and 90 units).

5.5.2 Parameter settings and implementation details

All algorithms (both the BDD and Benders methods) are implemented in a branch-and-cut
framework, i.e., a branch-and-bound tree is built and Benders cuts are generated only at the
root node and whenever a potential incumbent solution is found. We apply our proposed
strategy exclusively at the root node of the branch-and-bound tree. To optimize the Lagran-
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gian dual in the LDD method, we use the same technique as the one previously discussed in
section 5.4.1.

In order to make the implementations simple and easily replicable, we do not employ any
specialized codes or algorithms. Thus, we solve all the derived problems with a general-
purpose solver. Accordingly, we also avoid incorporating any acceleration technique in our
algorithm in order to perform a fair assessment of our proposed decomposition method versus
the classical one.

In all methods, cuts (both feasibility and optimality) are generated by solving each subpro-
blem within an optimality gap of 0.5% (i.e., ε = 0.5%). Moreover, to generate the Lagrangian
cuts for the FMCND and CFL instances, we apply the variable fixing strategies defined in
section 5.4.2. To provide a thorough numerical assessment of our proposed decomposition
method, we have implemented the following four variants of the strategy :

- BDD1 : uses the strengthened Benders cuts by imposing the integrality requirements
on all the copied variables in the subproblem, i.e., J = ∅ and I = {1, .., n},

- BDD2 : uses the strengthened Benders cuts by imposing the integrality requirements
on a subset of the copied variables in the subproblem according to the strategy detailed
in section 5.4.2

- BDD3 : similar to BDD1 but also generates Lagrangian cuts,
- BDD4 : similar to BDD2 but also generates Lagrangian cuts.

To set the values for the different search parameters described in section 5.4, we conducted
a series of preliminary experiments over a small subset of the instances and we have chosen
the following values for the parameters in our algorithms : δ = 1

t+110−2, κ = 10, γ = 10−1,
ε0 = 10−2, ε1 = 10−1, ε̃ = 10−2, τ = 3, υ = 102, where t is the iteration counter. As for the
stopping criteria, an amount of 10 hours was allotted for the overall solution of the considered
problems. It should be noted that this amount included a time limit of 1 hour to optimize
and lift the root node bound. The overall optimality gap to terminate the algorithms was
fixed at 1%.

Finally, all programs were coded in C++, using the CPLEX version 12.7 as the optimization
solver. The codes were compiled with g++ 4.8.1 and executed on Intel Xeon E7-8837 CPUs
running at 2.67GHz. with 32GB RAM under a Linux operating system and in a single-
thread mode. The branch-and-cut algorithm was also implemented using the CPLEX callable
libraries.
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5.6 Computational results

In this section, we quantify the computational benefits of the proposed decomposition metho-
dology when solving the instances considered. We first analyze the performance and behavior
of the various variants of our method (i.e., BDD1, BDD2, BDD3 and BDD4). To do so,
we assess the quality of the lower and upper bounds obtained by our variants at the root
node when compared with the classical decomposition methods. We will then evaluate the
convergence behavior of our approach and compare its performance with the state-of-the-art
optimization solver CPLEX.

5.6.1 Computational results at the root node

In Table 5.1, both the time requirements and the percentages of the root gap with respect
to the optimal solutions are reported for the BD, LDD and the four variants of our method
when these strategies are used to solve all considered benchmark instances. Recall that these
experiments were obtained by allotting a maximum of 1 hour of running time.

Table 5.1 Average percentage gap of the lower bound at the root node from the optimal
solution in different methods

Prob. Inst.
Benders

decomposition
Dual

decomposition
The proposed BDD method

BDD1 BDD2 BDD3 BDD4
Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.)

F
M
C
N
D

r04 22.48 6.27 5.89 2479.79 19.52 49.46 19.89 43.95 1.64 900.98 2.25 773.49
r05 17.95 46.68 9.82 2859.31 13.17 239.90 13.78 232.09 1.14 2160.62 1.26 2105.21
r06 20.96 336.02 10.73 3349.31 14.63 1026.42 14.86 960.73 9.72 2977.36 8.86 2965.59
r07 18.56 16.19 5.39 3146.00 16.50 70.10 16.82 61.48 3.58 1048.47 4.62 922.98
r08 20.57 87.14 9.38 3067.86 17.35 376.39 17.44 331.62 7.12 2673.75 6.22 2051.87
r09 23.43 596.56 12.85 3876.46 16.99 1683.00 16.93 1832.72 12.81 3681.55 11.80 3571.77
r10 (45.22) (3600.56) (19.37) (3759.72) - - - - - - - -

Mean 20.66 181.48 9.01 3129.79 16.36 574.21 16.62 577.10 6.00 2240.46 5.83 2065.15

C
F
L-
S 101-104 22.63 16.31 5.17 3588.80 21.38 63.49 21.44 53.15 1.03 696.72 0.76 475.54

111-114 8.45 77.79 5.74 3806.09 7.73 310.84 7.73 283.79 1.05 1582.18 0.97 1955.86
121-124 19.23 77.69 12.50 3650.62 18.38 276.00 18.36 231.65 1.51 3003.90 1.38 2762.77
131-134 24.14 69.67 17.77 3674.22 23.76 172.27 23.75 173.34 2.32 2229.10 1.83 3342.80
Mean 18.61 60.37 10.30 3679.93 17.81 205.65 17.82 185.48 1.47 1877.97 1.23 2134.24

C
F
L

101-104 23.80 0.44 0.00 0.03 23.10 0.98 23.49 0.83 2.89 16.48 9.80 14.73
111-114 11.22 3.11 0.35 0.16 10.57 6.15 10.55 4.83 2.20 174.14 2.20 226.24
121-124 21.29 2.35 0.00 0.07 21.29 1.18 21.07 1.57 3.41 146.26 2.99 154.51
131-134 24.36 1.29 0.00 0.04 24.36 0.83 24.15 1.24 4.31 112.69 6.12 199.56
Mean 20.17 1.80 0.09 0.08 19.83 2.28 19.82 2.12 3.20 112.39 5.28 148.76

SN
I

3-30 22.47 128.20 19.59 3751.47 22.42 162.82 22.42 149.65 14.37 1065.85 14.35 1221.82
3-40 26.21 143.18 23.10 3837.34 26.21 182.12 26.21 170.39 17.35 1362.20 17.35 1377.63
3-50 27.53 155.60 23.46 3827.19 27.53 193.94 27.53 177.32 19.20 1303.32 19.30 1367.68
3-60 28.17 164.83 24.42 3890.09 28.17 204.55 28.17 177.51 22.14 1095.66 22.18 1100.10
3-70 28.88 167.15 25.30 3877.71 28.88 204.70 28.88 173.34 21.90 979.65 22.15 964.42
3-80 30.87 179.76 26.95 3786.87 30.85 212.44 30.85 178.77 20.53 1316.73 20.81 1294.92
3-90 33.13 198.12 28.66 3841.09 33.13 226.75 33.13 173.33 23.95 1056.19 24.24 1100.43
4-30 25.15 82.10 21.80 3815.90 25.14 130.79 25.14 129.57 14.49 1089.79 14.88 1047.74
4-40 28.45 90.05 26.99 4015.53 28.45 144.97 28.45 143.55 18.47 1254.47 18.46 1274.26
4-50 30.54 98.57 27.47 3730.99 30.54 161.58 30.54 147.27 21.29 1195.25 22.11 1054.68
4-60 32.07 97.85 30.44 3790.82 32.07 160.11 32.07 152.50 25.30 1007.63 25.06 979.38
4-70 32.61 102.49 32.50 3808.80 32.61 158.54 32.61 142.50 25.24 830.67 24.94 919.71
4-80 33.27 105.02 33.03 3846.78 33.27 169.71 33.27 143.75 22.76 916.80 22.50 916.77
4-90 36.17 108.51 35.90 3832.19 36.16 163.54 36.16 133.21 22.77 1082.82 21.53 1268.45
Mean 29.68 130.10 27.12 3832.34 29.67 176.90 29.67 156.62 20.70 1111.22 20.70 1134.86
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We observe thatBDD1 andBDD2 tighten the root node bound by more than 4% for FMCND
and less than 1% for the CFL-S and CFL instances. However, they fail to improve this bound
for the SNI instances. This observation can be explained by the fact that, in SNI the duality
gap of the subproblems is very small. Thus, according to Theorem 5.1, the strengthened
optimality cuts are close to the classical Benders cuts.

This being said, we observe that the Lagrangian cuts are very effective in tightening the root
node bound. The most significant improvements are attained for the CFL-S instances, where
the average gap at the root node is reduced to less than 1.5% from 17.81% by using the
Lagrangian cuts (see the results of BDD3 and BDD4 methods). The same type of significant
improvements are also observed for the CFL and FMCND instances. Even in the case of the
SNI instances, where the obtained improvements are less significant, the root node bound
is still tightened by approximately 9%. It should be noted that these stronger root node
bounds are achieved at the cost of higher running times. For example, on average, the time
requirement of BDD3 is more than 30 times higher than the BD method for the CFL-S
instances. We thus investigate in section 5.6.2 if this additional effort at the root node pays
off in the overall performance of the algorithm.

Our method, when applied using the Lagrangian cuts, also outperforms the LDD algorithm
considering that it generates much tighter root node bounds in shorter times. These results
can be explained by the fact that our approach effectively integrates the complementary
advantages of both the BD and LDD methods, i.e., an effective search mechanism coupled
with the generation of strong cuts. Regarding these results, it should be noted that the
LDD method solves the deterministic variants of the facility location problem (i.e., CFL)
very quickly. This is explained by the fact that this specific decomposition strategy when
applied on deterministic problems is equivalent to solving the original problem with CPLEX.
Considering that the CFL instances are of small size, they can be solved in a few seconds.
Thus, we exclude the CFL instances from the numerical analyses conducted in the next
sections so as to focus on more challenging problems.

Finally, considering the results obtained on the r10 instances, the LDD method reaches
an optimality gap of 19.37% which is much tighter than that obtained by the BD method
(45.22%) or our algorithms (that fail to produce an optimality gap). For these instances, the
four proposed BDD variants require more that 1 hour of computation time to solve the LP
relaxation. Thus, our algorithm terminates before generating any strengthened or Lagrangian
cuts. However, if the time limit to solve the root node is increased, then we observe that the
proposed BDD3 and BDD4 variants reach a much tighter bound than the LDD method, as
reported in Table 5.4. We next specifically analyze the impact of generating strengthened



115

and Lagrangian feasibility cuts and consider how the upper bound obtained at the root node
is affected by the use of the proposed BDD method.

Impact of the proposed feasibility cuts

The results reported for FMCND in Table 5.1 were obtained using the classical feasibility
cuts. We now assess how the performance of our method is affected when the proposed
strengthened and Lagrangian feasibility cuts are generated in the second and third phase of
the algorithm. These numerical results are presented in Table 5.2. It should be noted that
we have only presented the results for the BDD1 and BDD3 variants (the results obtained
for BDD2 and BDD4 being very similar to them, respectively).

When analyzing the results in Table 5.2, it is clear that generating strengthened and Lagran-
gian feasibility cuts has less impact on tightening the root node bound, when compared to
the inclusion of the proposed optimality cuts. This was to be expected given that feasibility
cuts do not bound the θ variables in the master problem. Moreover, the generation of the
proposed feasibility cuts increases the time requirements. For these reasons, a deterioration
of the obtained root node gaps is observed. One can thus anticipate that the proposed feasi-
bility cuts will be most beneficial for problems where finding feasible solutions is a challenge.
However, given the marginal impact of these cuts in the present case, we henceforth only use
the classical feasibility cuts to solve the FMCND instances.

Quality of the upper bound

We now assess the quality of the upper bounds obtained from solving MIP subproblems at
the root node when the different BDD variants or the LDD method are used. The percentage
gaps of the obtained upper bounds with respect to the optimal solutions are summarized
in Table 5.3. It should be noted that the computation times required to obtain these upper

Table 5.2 Performance of the proposed feasibility cuts versus the classical ones
Classical Feasibility Cuts Proposed Feasibility Cuts

BDD1 BDD3 BDD1 BDD3
Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.)

r04 19.52 49.46 1.64 900.98 19.36 43.84 1.50 892.88
r05 13.17 239.90 1.14 2160.62 13.87 228.36 1.00 2281.52
r06 14.63 1026.42 9.72 2977.36 14.45 1004.79 10.18 3055.83
r07 16.50 70.10 3.58 1048.47 16.21 74.50 4.18 1034.03
r08 17.35 376.39 7.12 2673.75 17.45 303.84 7.55 2667.76
r09 16.99 1683.00 12.81 3681.55 16.74 1567.31 12.90 3842.33
r10 - - - - - - - -

Mean 16.36 574.21 6.00 2240.46 16.35 537.11 6.22 2295.72
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bounds were reported in Table 5.1. Also, we again recall that, in the case of the r10 instances,
no results are reported for the different BDD variants given that the methods were unable
to solve the LP relaxations in the maximum allotted time of 1 hour.

Table 5.3 Average percentage gap of the upper bound obtained by different method from the
optimal value

Prob. Inst. Dual
decomposition

The proposed BDD method
BDD1 BDD2 BDD3 BDD4

FMCND

r04 2.03 24.86 27.70 0.77 3.09
r05 1.74 18.86 22.41 0.36 5.08
r06 2.00 15.13 15.80 3.61 13.58
r07 3.06 29.16 29.99 2.06 5.65
r08 3.29 35.48 35.29 2.59 2.93
r09 5.32 26.01 23.89 4.84 20.79
r10 (22.44) - - - -

Mean 2.91 24.92 25.85 2.37 8.52

CFL-S

101-104 1.34 6.69 6.69 0.07 0.23
111-114 5.37 15.66 15.66 0.06 0.18
121-124 8.61 14.27 14.27 0.08 0.15
131-134 19.00 15.36 15.36 1.41 0.28
Mean 8.58 13.00 13.00 0.40 0.21

SNI

3-30 15.82 24.47 22.71 2.94 3.72
3-40 20.54 28.78 34.13 6.44 6.44
3-50 27.61 40.92 39.50 8.90 7.93
3-60 36.22 46.61 47.13 11.36 11.36
3-70 43.92 44.63 44.41 16.89 16.89
3-80 54.33 46.88 46.43 12.59 12.78
3-90 57.66 47.25 42.23 15.22 19.93
4-30 18.71 37.05 37.05 3.58 5.92
4-40 26.89 51.27 51.27 6.46 6.88
4-50 34.27 61.00 56.89 11.65 11.99
4-60 44.03 78.67 78.67 13.55 13.55
4-70 57.01 78.01 78.01 13.75 14.12
4-80 75.08 82.48 82.48 16.87 17.16
4-90 88.26 76.89 76.89 15.61 16.19
Mean 42.88 53.21 52.70 11.13 11.78

From Table 5.3, we observe that the obtained upper bounds by the BDD3 variant are very
close to the optimal solutions. When compared to BDD4, BDD3 finds better upper bounds,
which can be explained by the fact that, in this variant, the integer requirements are imposed
on all the copied variables in the subproblems. It thus generates more integer solutions.
Similarly, given their respective definition, BDD3 and BDD4 yield a much larger pool of
integer solutions when compared to the BDD1 and BDD2 variants. Consequently, these
variants greatly improve the quality of the upper bounds generated. Moreover, the upper
bounds obtained by BDD3 and BDD4 (with the exception of the FMCND instances) are
much better than those generated by the LDD method, which clearly indicates that our
method provides an improved search mechanism. Last but not least, the quality of the primal
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bounds reported in Table 5.3 shows that the proposed enhancements significantly alleviate
the primal inefficiencies of the BD method.

5.6.2 Computational results with branch-and-cut

As previously observed, our method increases the time that is spent at the root node of the
branch-and-bound tree. Thus, to resolve the issue of whether or not it is computationally
beneficial to apply the proposed method, we now compare the variants BDD3 and BDD4

to both the BD and LDD methods by running the algorithms for a time limit of 10 hours
(where at most 5 hours are dedicated to solve the LP at the root node). These numerical
results are summarized in Table 5.4 where, in addition to the average total running times
and gaps obtained upon completion, the number of solved instances within an optimality gap
of 1% (i.e., column #Sol.) are also reported.

From Table 5.4, we observe that our algorithms reach much better optimality gaps and
solve more instances in noticeably shorter CPU times. Superiority of the proposed method
compared to the classical BD algorithm is without exception. These results are explained by
the fact that our method generates considerably smaller branch-and-bound trees even though
a larger amount of time is spent at the root node. Moreover, the LDD method (due to its
slow progression) fails to reach to the same solution quality than both BDD3 and BDD4

obtain at the root node (see Tables 5.1 and 5.3).

When comparing the two proposed variants, one observes that BDD3 performs better than
BDD4 when solving the ND and FL instances. These results can be explained by two main
reasons. First, when the BDD3 variant is applied, stronger cuts are generated and, due to the
integrality requirements being imposed on all the copied variables in the subproblems, a more
extensive pool of integer solutions is obtained. Therefore, tighter lower and upper bounds are
generated at the root node (see Tables 5.1 and 5.3). The second reason explaining these
results is that, due to the proposed variable fixing strategy, the time requirements to solve a
subproblem in both BDD3 and BDD4 are quite comparable as a consequence of fixing the
indicator variables. Finally, we observe that BDD4 outperforms BDD3 on the SNI instances.
However, the explanation for this is that the variable fixing strategy, in this case, cannot be
applied due to the presence of a budget constraint. Therefore, when solving the SNI instances,
there is an added time requirement that is needed to solve the subproblems when applying
the BDD3 variant, when compared to BDD4.
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Table 5.4 Comparing the proposed decomposition method to the classical primal and dual
decomposition methods

Prob. Inst. Benders decomposition Dual decomposition BDD3 BDD4
Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol.

F
M
C
N
D

r04 6045.47 1.08 5/5 10946.13 2.84 4/5 1233.76 0.88 5/5 952.08 1.06 5/5
r05 21836.23 8.40 2/5 22376.22 1.90 2/5 1994.71 0.81 5/5 2145.48 0.58 5/5
r06 29114.44 11.27 1/5 24045.43 8.30 2/5 17156.79 4.04 3/5 16498.10 3.03 3/5
r07 25743.46 6.03 2/5 22853.89 5.54 3/5 4956.88 0.96 5/5 5350.06 0.98 5/5
r08 36315.18 12.20 1/5 23755.06 7.59 2/5 9188.43 1.57 4/5 8840.45 1.33 4/5
r09 30972.97 14.54 2/5 30686.53 13.81 1/5 23780.16 6.69 3/5 21000.60 5.59 3/5
r10 31445.58 15.73 1/5 33104.18 16.96 1/5 33175.08 11.23 2/5 34025.04 11.10 1/5

Mean 25924.76 9.89 14/35 23966.78 8.14 15/35 13069.40 3.74 27/35 12687.40 3.38 26/35

C
F
L-
S

101-104 36796.25 14.62 0/4 5292.66 1.05 4/4 1100.41 0.75 4/4 645.68 0.64 4/4
111-114 36254.33 8.20 0/4 28951.78 2.27 1/4 2489.96 0.94 4/4 2739.68 0.99 4/4
121-124 36227.73 17.66 0/4 18430.40 1.08 4/4 4278.08 1.04 4/4 4799.71 1.04 4/4
131-134 36294.90 19.87 0/4 31224.45 1.19 2/4 18803.08 1.10 3/4 14031.66 1.26 3/4
Mean 36393.30 15.09 0/16 20974.82 1.40 11/16 6667.88 0.96 15/16 5554.18 0.98 15/16

SN
I

3-30 2762.35 1.10 4/5 36471.92 14.67 0/5 2121.51 0.97 5/5 1936.05 1.07 5/5
3-40 30982.14 1.80 0/5 36534.46 18.95 0/5 8639.26 1.10 4/5 9424.96 1.10 4/5
3-50 27298.87 2.47 2/5 36381.64 23.25 0/5 6535.48 1.10 4/5 7963.64 1.06 4/5
3-60 29300.58 2.66 0/5 36466.10 24.93 0/5 4693.26 1.10 4/5 4795.40 1.03 5/5
3-70 32136.92 4.54 0/5 36460.78 29.92 0/5 3896.33 1.06 4/5 4493.22 1.04 5/5
3-80 33614.04 5.32 1/5 36620.18 34.55 0/5 8982.22 1.10 2/5 19887.93 1.14 2/5
3-90 36669.58 8.06 0/5 36496.58 39.25 0/5 16600.52 1.52 3/5 18786.01 1.54 3/5
4-30 2253.55 1.10 3/5 36389.18 15.82 0/5 3060.10 1.10 4/5 2219.62 1.06 5/5
4-40 12231.08 1.10 1/5 36441.30 18.89 0/5 6582.58 1.10 2/5 6281.24 1.10 4/5
4-50 20818.73 2.16 2/5 36291.34 24.05 0/5 7417.27 0.69 5/5 7212.67 1.10 4/5
4-60 21378.10 2.40 1/5 36459.86 28.04 0/5 10257.96 1.10 2/5 9263.12 0.90 4/5
4-70 22587.84 1.72 3/5 36493.82 32.99 0/5 10466.20 0.89 3/5 6048.30 1.10 5/5
4-80 25946.64 1.28 2/5 36648.72 38.75 0/5 4081.00 1.06 5/5 4607.59 0.77 4/5
4-90 21177.38 1.74 1/5 36321.86 41.89 0/5 7831.69 1.10 5/5 14077.00 2.06 3/5
Mean 22796.98 2.67 20/70 36462.70 27.57 0/70 7226.10 1.07 52/70 8356.91 1.15 57/70

5.6.3 Comparison with a state-of-the-art optimization solver

In this last section, we will assess how our proposed method (i.e., specifically the BDD3 and
BDD4 variants) compares with a state-of-the-art optimization solver (i.e., CPLEX 12.7). To
do so, we add a family of classical inequalities to the subproblems of the FMCND and CFL-S
instances to provide comparable results to CPLEX which extensively exploits the special
structures of these classical problems. These inequalities, which are redundant in the original
models but may help to strengthen the relaxations, take the form of xka ≤ min{dk, ua}ya,
for the arcs a in the network. They state that the amount of flow on each connecting arc a
for each customer k has to be lower than the minimum between the customer’s demand dk
and the arc’s capacity ua. It should be noticed that the use of these inequalities does not
yield any complication in our implementations given the presence of both the integer and
continuous variables in the subproblems. Moreover, they do not require a separation and
lifting procedure. However, these inequalities are not added to the extensive formulation,
there is an exponential number of them and their inclusion noticeably slows down the CPLEX
solver. The results for this numerical comparison are provided in Table 5.5. We again report
the average running times, optimality gaps and the number of solved instances by each
method.
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Table 5.5 Comparing the proposed method to the state-of-the-art optimization solver

Prob. Inst. CPLEX BDD3 BDD4
Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol.

F
M
C
N
D

r04 258.10 0.57 5/5 410.57 0.44 5/5 385.64 0.71 5/5
r05 1718.28 0.72 5/5 1485.92 0.56 5/5 1168.67 0.56 5/5
r06 16076.07 2.92 3/5 12803.33 0.90 5/5 4897.01 0.61 5/5
r07 699.17 0.89 5/5 1384.93 0.69 5/5 1231.60 0.76 5/5
r08 8529.26 1.72 4/5 7430.11 0.65 5/5 7392.03 0.66 5/5
r09 21741.47 8.28 3/5 17370.16 1.67 4/5 11961.41 1.57 4/5
r10 28973.48 11.52 1/5 28950.08 8.65 1/5 28908.78 6.72 1/5

Mean 11142.26 3.80 26/35 9976.44 1.94 30/35 7992.16 1.66 30/35

C
F
L-
S

101-104 50.09 0.00 4/4 25.14 0.00 4/4 24.15 0.00 4/4
111-114 1252.44 0.05 4/4 647.24 0.01 4/4 421.70 0.01 4/4
121-124 2345.20 0.15 4/4 640.15 0.00 4/4 267.45 0.00 4/4
131-134 1399.11 0.08 4/4 196.53 0.00 4/4 130.22 0.00 4/4
Mean 1261.71 0.07 16/16 377.27 0.00 16/16 210.88 0.00 16/16

SN
I

30 36225.72 7.81 0/5 2121.51 0.97 5/5 1936.05 1.07 5/5
40 36168.22 15.60 0/5 8639.26 1.10 4/5 9424.96 1.10 4/5
50 36163.76 19.33 0/5 6535.48 1.10 4/5 7963.64 1.06 4/5
60 36166.40 19.22 0/5 4693.26 1.10 4/5 4795.40 1.03 5/5
70 36155.20 17.61 0/5 3896.33 1.06 4/5 4493.22 1.04 5/5
80 36155.84 20.14 0/5 8982.22 1.10 2/5 19887.93 1.14 2/5
90 36150.18 24.25 0/5 16600.52 1.52 3/5 18786.01 1.54 3/5
30 36183.46 12.00 0/5 3060.10 1.10 4/5 2219.62 1.06 5/5
40 36147.56 17.94 0/5 6582.58 1.10 2/5 6281.24 1.10 4/5
50 36141.76 22.39 0/5 7417.27 0.69 5/5 7212.67 1.10 4/5
60 36136.64 24.92 0/5 10257.96 1.10 2/5 9263.12 0.90 4/5
70 36138.64 42.29 0/5 10466.20 0.89 3/5 6048.30 1.10 5/5
80 36129.26 29.25 0/5 4081.00 1.06 5/5 4607.59 0.77 4/5
90 36133.82 60.29 0/5 7831.69 1.10 5/5 14077.00 2.06 3/5

Mean 36156.89 23.79 0/70 7226.10 1.07 52/70 8356.91 1.15 57/70

Before analyzing the results reported in Table 5.5, a general comparison between these results
and those provided in Table 5.4 shows that a simple and straightforward use of classical valid
inequalities noticeably improves the performance of our method. The overall insight that can
be gained from this comparison is that the bulk of the literature on the acceleration techniques
that have been developed for the BD method (Rahmaniani et al., 2017a) can be applied here
also and one can expect that this would noticeably enhance the numerical performance of
the proposed method.

As for the specific results provided in Table 5.5, one first observes that the only cases where
CPLEX performs better are when it is used to solve the r04 and r07 instances (i.e., CPLEX
solves these instances in less than 10 minutes). For the rest of the instances, CPLEX is not
competitive with either the BDD3 and BDD4 variants, both of which optimally solve a
larger subset of the instances and in much shorter computation times. Moreover, CPLEX
fails to solve any of the SNI instances after 10 hours of computational effort, while the two
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variants of our proposed method solve more that 74% of these instances in approximately 2
hours. Finally, when directly comparing the two developed variants, one finds that BDD4

generally outperforms BDD3 (in terms of the average computation times, gaps obtained and
number of instances solved). Overall, this is explained by the fact that the BDD4 variant
is able to solve the root node faster, albeit while generating weaker cuts when compared to
BDD3. However, the inclusion of the valid inequalities mitigates the latter disadvantage of
BDD4 by reducing the overall differences observed between the lower bounds provided at the
root node by the two variants. In turn, when the branch-and-bound process begins, the time
reductions at the root node obtained via BDD4 become the determining factor in providing
a more efficient solution process for our proposed method.

5.7 Conclusions

In this paper, we have proposed a decomposition method that combines the complementary
advantages of the classical Benders and Lagrangian dual decomposition approaches. It gene-
rates cuts that dominate the classical optimality and feasibility cuts at fractional points of the
master problem. The proposed method also tightens the LP relaxation of the MP problem,
which we have shown to be at least as tight as the best bound obtained by the Lagran-
gian decomposition method. Another important feature of our method lies in its enhanced
capabilities to find high quality incumbent solutions at early iterations of the algorithm.

We have applied the proposed method to solve a wide range of hard combinatorial opti-
mization instances. It was observed that, for a reasonable time limit, the proposed method
was able to reach much tighter root node bounds when compared to the Lagrangian dual
decomposition approach. Our algorithm was also capable of finding incumbent solutions very
close to the optimal values at the early iterations of the search process. Furthermore, it was
numerically shown that the developed method increases the time spent on the root nodes
when compared to the classical Benders decomposition method. However, this added effort,
which produces significantly tighter bounds at the root nodes, is largely compensated by the
fact that the improved bounds then enable the algorithm to generate smaller branch-and-
bound trees to solve the instances. Finally, we observed that our method also outperforms a
state-of-the-art optimization solvers.

Going forward, there are many avenues of research to further improve the proposed algorithm.
When applied on stochastic models, one could first take advantage of parallel computing to
solve the subproblems. Furthermore, as originally presented, when our algorithm is used to
solve a stochastic model, each subproblem is defined using a single scenario. However, it has
been previously shown that having subproblems defined on clusters of scenarios yields both
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tighter lower bounds and better incumbent solutions. Thus, exploring how different clustering
strategies applied on scenarios would impact the overall performance of our proposed method
is definitely an interesting line of inquiry. In addition, there have been numerous studies
dedicated to the improvement of both the Benders and Lagrangian decomposition methods.
Investigating which of these strategies could be incorporated in our method to further enhance
its numerical performance would be of interest. For example, we made use of a simple cutting
plane method to update the Lagrangian multipliers. In this regard, more effective strategies
could be employed to significantly improve the proposed algorithm. Last but not least, the
proposed method guarantees convergence even when the Benders subproblems are nonlinear
mixed-integer problems. Thus, numerically assessing how the proposed method would fare
against classical algorithms, such as the integer L-shaped and outer approximation methods,
is certainly worthwhile.
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Abstract. The Benders decomposition method is a widely used approach in addressing
stochastic integer programs with recourse. The available parallel variants of this method are
based on a synchronized master-slave implementation in which the slave processors wait until
the master problem is solved, and vice versa. This parallelization may, however, suffer from
significant load imbalance, particularly when an iteration of the master problem can take
hours. We thus propose parallelization strategies for the Benders decomposition algorithm
in a branch-and-cut framework. To further reduce the idle times, we relax the synchroniza-
tion requirements among the master and slave processors. However, the combination of the
asynchronous communications and branch-and-cut implementation results in an algorithm
for which we are unable to prove its global convergence and it may even underperform the
sequential algorithm. Therefore, we study the convergence of the algorithm and propose va-
rious acceleration strategies to obtain an effective parallel method. We conduct an extensive
numerical study on benchmark instances from stochastic network design problems. The re-
sults indicate that our asynchronous algorithm reaches higher speedup rates compared to
the conventional parallel methods. We also show that it is several orders of magnitude faster
than the state-of-the-art solvers.

Keywords. Benders decomposition, Branch-and-cut, Stochastic integer programming, Paral-
lel computing.

History. Submitted to INFORMS Journal on Computing.

6.1 Introduction

Stochastic integer programming (SIP) offers a powerful tool to deal with uncertainties in
planning problems where the distribution of the uncertain parameters is assumed to be
known and often characterized with a finite set of discrete scenarios (Birge and Louveaux,
1997). We consider here the special two-stage case of SIPs where decisions are made in two
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stages. In the first-stage the decision maker must make a decision now, while not knowing
the exact outcome of the uncertain parameters. In the second-stage when the parameters
have become known, the decision maker can take recourse actions to adjust his/her plan
accordingly.

SIP models are usually very large in size and very difficult to solve due to the data uncertainty
and their combinatorial nature (Ahmed, 2010). However, they exhibit special structures ame-
nable to decomposition methods (Ruszczyński, 1997). Therefore, efforts have been made to
design various decomposition-based algorithms for these problems, e.g., Benders decomposi-
tion (BD) (Benders, 1962) also known as L-shaped method (Van Slyke and Wets, 1969), sto-
chastic decomposition (Higle and Sen, 1991), nested decomposition (Archibald et al., 1999),
subgradient decomposition (Sen, 1993), scenario decomposition (Rockafellar and Wets, 1991),
disjunctive decomposition (Ntaimo, 2010), etc. Among these methods, the BD has become
a prominent methodology to address stochastic programs with recourse (Ruszczyński, 1997;
Uryasev and Pardalos, 2013).

In the BD method the model is projected onto the subspace defined by the first-stage va-
riables. The projected term is then replaced by its dual counterpart. Accordingly, an equi-
valent model is built by iteratively enumerating the extreme points and rays of the dual
program, referred to as the subproblem (SP). At each iteration, one solves a master pro-
blem (MP), which initially includes no constraints except for those imposed on the first-stage
variables. The obtained solution is fixed in the SP. If the resulting SP is feasible, the corres-
ponding optimal extreme point is used to generate an optimality cut. Otherwise, an extreme
ray is extracted to generate a feasibility cut. The generated cut is then added to the MP and
this process repeats until an optimal solution is found. If the MP is a mixed-integer program,
the algorithm is commonly cast into a branch-and-cut (B&C) framework in order to avoid
solving an integer problem from scratch at each iteration. Thus, a single branch-and-bound
tree is built and the cuts are generated at the integer (and possibly some fractional) nodes
(Rahmaniani et al., 2017a).

The SP decomposes by scenario. Solving these scenario SPs at each iteration usually corres-
ponds to the most time-consuming part of the algorithm, because a large number of scenarios
are often required to properly set the value of uncertain parameters. These SPs are disjoint
and can be solved in parallel. Thus, parallel computing appears very promising to effectively
accelerate solution of SIP problems when the BD method is used (Linderoth and Wright,
2003; Li, 2013).

Although parallel processing saves time, the processors at some point require to exchange
information and consolidate the results to create work units for next iteration. In the parallel
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BD methods of the literature, these points are implemented using synchronized communica-
tions among the processor that solves the MP and the processors that solve the SPs. This,
however, causes having one or several idle processors at any given time, particularly when
an iteration of the MP can take hours (Yang et al., 2016). In this case, the efficiency of the
parallel execution may decrease as the number of the processors increases. It is thus impor-
tant to design new parallelization schemes for the BD method to obtain a high-performing
algorithm for the SIPs.

In this article we aim at developing effective parallelization strategies for the B&C implemen-
tation of the BD method. To the best of our knowledge, this is the first article to consider
parallelization of the BD method in a B&C framework. It is important to note that in this
case, the resulting parallel algorithm is different from the existing parallel B&C algorithms.
In the parallel B&C methods the main emphasis is on parallelizing the branch-and-bound
tree and the cuts are only to accelerate the convergence (Ralphs et al., 2003; Crainic et al.,
2006b). While in the parallel BD methods the main emphasis is on parallelizing the SPs
and the cuts are necessary for the convergence. Thus, the parallelization strategies of the
B&C algorithms cannot easily be translated into parallel BD methods and, we focus on the
strategies in which the SPs are optimized in parallel on various slave processors and the MP
is solved sequentially on a single master processor.

To realize our goal, we relax the synchronization requirements among the master and slave
processors. This means that the algorithm waits only for a small portion of the cuts at each
(integer) node of the branch-and-bound tree. Although this significantly reduces the idle
times, it results in an algorithm for which we are unable to prove its global convergence. This
happens because, in absence of a rigid synchronization, the necessary cuts at the integer nodes
may not be generated at the right moment. We thus study this issue and show that with an
appropriate B&C design the algorithm can converge. On the other hand, the asynchronous
algorithm may execute a large amount of redundant work since the MP executes its next
iteration with a partial feedback from the SPs. This can cause serious efficiency issues such
that the algorithm may even underperform the sequential variant. Therefore, we propose
various acceleration techniques to obtain an efficient asynchronous BD algorithm. The main
contributions of this article are thus severalfold :

— Proposing an effective Benders-based asynchronous parallel B&C algorithm for two-
stage SIP problems. We also present the synchronized algorithm and an hybrid of the
two algorithms ;

— Studying the convergence of these algorithms and proposing strategies to accelerate
their numerical performance. In this regard, we revisit some of the classical acceleration
techniques to properly fit into our parallel frameworks and we propose novel ones ;
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— Presenting extensive numerical results on benchmark instances to assess the proposed
strategies and algorithms. We provide guidelines on how to properly use the paralle-
lization techniques and discuss various fruitful research directions.

The remainder of this article is organized as follows. In section 6.2, the problem of interest
and the sequential BD algorithm are presented. In section 6.3, we classify and review parallel
BD methods. We present our synchronized, asynchronous, and hybrid parallel algorithms in
sections 6.4, 6.5, and 6.6, respectively. We discuss the implementation details and numerical
results in sections 6.7 and 6.8. Finally, conclusions and future remarks are summarized in the
last section.

6.2 The Benders decomposition method

In this section, we first recall the two-stage stochastic problem of interest. Then, we present
a sequential BD algorithm to solve it.

6.2.1 Two-stage stochastic integer programming

In two-stage stochastic programming, the uncertainty is observed only once and decisions are
made before and after observing the uncertainties. The common practice is to approximate
the probability distribution of random variables by a discrete probability distribution with
a finite support. This gives a finite set of scenarios, each representing a possible realization
of the random events. Given the scenario set S and occurrence probability ρs > 0 for each
s ∈ S such that ∑s∈S ρs = 1, a canonical representation of a two-stage stochastic program
is :

z∗ := min
y
{f>y +

∑
s∈S

ρsQ(y, s) : By ≥ b, y ∈ Y} (6.1)

where for each scenario s ∈ S

Q(y, s) = min
x
{c>s x : Wsx ≥ hs − Tsy, x ∈ X} (6.2)

with f ∈ Rn, B ∈ Rk×n, b ∈ Rk, cs ∈ Rm, Ws ∈ Rl×m, hs ∈ Rl, Ts ∈ Rl×n. Here, X ⊆ Rm

and Y ⊆ Rn are nonempty closed subsets which define the nature of the x and y decision
variables in terms of sign and integrality restrictions. In this article we assume that Y= Zn+

and X= Rm
+ . In this program, y represents the first-stage decisions and x represents the

second-stage decisions. We thus seek a feasible solution that minimizes the first-stage cost
f>y plus the expected cost of the second-stage decisions.
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6.2.2 Sequential Benders decomposition method

For a tentative value of the first-stage variables ȳ, the recourse problem Q(ȳ, s) is a continuous
linear program. Given a dual variable α associated with constraint Wsx ≥ hs−Tsȳ, the dual
of Q(ȳ, s) is

(SP (ȳ, s)) Q(ȳ, s) = max
α
{(hs − Tsȳ)>α : Ws

>α ≤ cs, α ∈ Rl
+} (6.3)

The above program is either unbounded or feasible and bounded. In the former case, the
ȳ solution is infeasible and thus there exists a direction of unboundedness rq,s, q ∈ Fs that
satisfies (hs − Tsy)>rq,s > 0, where Fs is the set of extreme rays of (6.3). To assure the
feasibility of the y solutions, we need to forbid the directions of unboundedness through
imposing (hs − Tsy)>rq,s ≤ 0, q ∈ Fs, on the y variables, which gives

z∗ = min
y∈Zn

+
{f>y +

∑
s∈S

ρsQ(y, s) : By ≥ b, (hs − Tsy)>rq,s ≤ 0 ∀s ∈ S, q ∈ Fs} (6.4)

In the latter case, the optimal solution of the SP is one of its extreme points αe,s, e ∈ Es,
where Es is the set of extreme points of (6.3). We can thus rewrite program (6.4) in an
extensive form by interchanging Q(y, s) with its dual, i.e., SP (y, s)

min
y∈Y

{
f>y +

∑
s∈S

ρs max
e∈Es

{(hs − Tsy)>αe,s} : (hs − Tsy)>rq,s ≤ 0 s ∈ S, q ∈ Fs
}

(6.5)

where Y = {y : By ≥ b, y ∈ Zn+}. If we capture value of the inner maximization in a single
variable θs for every s ∈ S, we can obtain the following equivalent reformulation of (6.1),
called Benders master problem (MP) :

MP (E1, ..., E|S|;F1, ..., F|S|) := min
y∈Y

f>y +
∑
s∈S

ρsθs (6.6)

(hs − Tsy)>αe,s ≤ θs s ∈ S, e ∈ Es (6.7)

(hs − Tsy)>rq,s ≤ 0 s ∈ S, q ∈ Fs (6.8)

Enumerating all the extreme points Es and extreme rays Fs for each SP s ∈ S is computa-
tionally burdensome and unnecessary. Thus, Benders (1962) suggested a delayed constraint
generation strategy to generate the optimality (6.7) and feasibility (6.8) cuts on the fly. In the
classical BD method, the MP is solved from scratch at each iteration. However, nowadays,
this method is commonly implemented in a B&C framework in order to avoid solving a MILP
MP at each iteration (Naoum-Sawaya and Elhedhli, 2013; Rahmaniani et al., 2017b). Moreo-
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ver, the LP relaxation of the MP is often solved first to quickly obtain valid cuts and tighten
the root node which enables the Benders method to perform more efficiently (McDaniel and
Devine, 1977). Algorithm 2 presents the pseudo-code of this algorithm.

Algorithm 2 : The sequential Benders decomposition algorithm

1: Create the MP which is the LP relaxation of program (6.6)-(6.8) with Es = ∅ and Fs = ∅,
∀s ∈ S

2: Iteratively solve the MP and add cuts
3: Add the obtained MP into tree L, set UB = ∞, LB = −∞, and εopt to the optimality

tolerance
4: while UB − LB > εopt and L 6= ∅ do
5: Select a node from L
6: Solve this node to get an optimal solution ȳ with objective value of ϑ∗
7: if node was infeasible or ϑ∗ ≥ UB then
8: Prune the node and go to line 5
9: end if

10: if ȳ is integer then
11: while a violating cut can be found and the ȳ is integer do
12: for all s ∈ S do
13: Solve SP (ȳ, s)
14: if SP (ȳ, s) was infeasible then
15: Add a feasibility cut and go to line 20
16: else
17: Extract the optimal extreme point es
18: end if
19: end for
20: Add new optimality cut(s) using the extreme points obtained in line 17
21: Solve this node again to get an optimal solution ȳ with objective value of ϑ∗
22: if node was infeasible or ϑ∗ ≥ UB then
23: Prune the node and go to line 5
24: end if
25: end while
26: if ȳ is integer then
27: Set UB = min{UB, ϑ∗}, prune the node, and go to line 5
28: end if
29: end if
30: Set LB as the minimum objective values of the nodes in L
31: Choose a fractional variable from ȳ to branch
32: Create two nodes and add them to L.
33: end while

The algorithm is applied in two phases. It first starts with solving the LP relaxation of the
MP which initially includes no optimality and feasibility cuts (lines 1 and 2). Thus, for a
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certain number of iterations, it sequentially solves the MP and SPs to generate optimality
and feasibility cuts. In the second phase, a branch-and-bound tree is created (line 3), where
the root node is the MP with the generated cuts at the first phase. At each iteration, the
algorithm selects and solves a node from the pool L (lines 5 and 6). If the obtained solution
is fractional and the node cannot be pruned (line 7), a branching occurs to create and add
two new nodes to the pool (lines 24 and 25). If the node cannot be pruned (line 7) and its
solution is integer (line 9), the algorithm iteratively adds cuts until it can either prune that
node, the solution becomes fractional, or no more violated cut can be found (lines 10 to 20).
This process (lines 5 to 25) repeats until the bounds collide or the node pool becomes empty.
Note that in line 22 the upper bound is updated, i.e., the potential incumbent is accepted, if
the ȳ is an integer solution that satisfies all the Benders cuts.

Our developments in this article are based on Algorithm 2, which we refer to as the Branch-
and-Benders-cut (B&BC) method. Various studies have been developed to accelerate the BD
algorithm. To avoid burdening this article, we refer the reader to Rahmaniani et al. (2017a)
for a complete treatment of this topic.

6.3 Parallelization strategies and previous work

The BD method lends itself readily to parallelization as it creates a MP and many disjoint
SPs. Thus, efforts have been made to take advantage of parallel computing in accelerating
this method. To the best of our knowledge, all the existing parallel variants of this method
follow the master-slave parallel programming model. We classify and review such methods in
this part.

6.3.1 Master-slave parallelization strategies

The existing parallel BD method can be summarized as follows : The MP is assigned to a
processor, the “master", which also coordinates other processors, the “slaves", which solve the
SPs. At each iteration, the solution obtained from solving the MP is broadcast to the slave
processors. They then return the objective values and the cuts obtained from solving the SPs
to the master and the same procedure repeats. Such master-slave parallelization schemes are
known as low-level parallelism as they do not modify the algorithmic logic or the search space
(Crainic and Toulouse, 1998).

In many cases, the number of the processors is less than the number of the SPs and some SPs
may be more time consuming than others. Therefore, it is important to take into account
how work units are allocated to the processors to avoid having idle processors. To create work
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units for next iteration, information must be exchanged among the processors. In a parallel
environment, this necessitates having some sort of communication to share information. The
type of communications strongly influences the design of parallel BD algorithms. For example,
if communications are synchronized, the only difference between the parallel algorithm and
the sequential one lies in solving the SPs in parallel. When communications are asynchronous,
the processors are less interdependent. After broadcasting each MP solution, the master
processor waits only for a subset of the cuts before re-optimizing the MP. For this reason,
some SPs may remain unsolved which results in having a pool of unevaluated SPs. On the
other hand, the slave processors continuously evaluate SPs. As a result, many cuts might be
available when the master processor requests cuts. Therefore, it is important to decide : when
to solve the MP, which solution to use in generating cuts, which SP to solve now, which cut
to apply to the MP? We thus define a three-dimension taxonomy, depicted in Figure 6.1,
that captures all these factors.

Figure 6.1 Taxonomy of the master-slave parallel Benders decomposition methods

— Communication : defines whether the processors at each iteration stop to commu-
nicate (synchronous) or not (asynchronous) ;

— Allocation/Scheduling : determines how the SPs and the MP are assigned to the
processors and when they are solved. These decisions can be made either in a dynamic
(D) or static (S) fashion. In the former, the decisions regarding when and where to
solve each problem are taken during the course of the algorithm. In the latter, the
decisions are made beforehand. Thus, S/D, for example, means static allocation and
dynamic scheduling ;

— Pool Management implies the strategies used to manage the pool of solutions
(denoted by S1, ..., SI) and the pool of cuts (denoted by C1, ..., CJ), where I and J are
the number of possible strategies to manage each pool, respectively.



130

A combination of various alternatives for these components yields a parallel BD algorithm.
Proper strategies in each dimension need to be defined such that the overall idle times and
amount of redundant work is minimized.

6.3.2 Previous work

Although parallelization of the BD method seems natural, the number of existing parallel
variants of this method are very limited. This is due to the interdependency of MP and SPs,
i.e., MP needs feedback from SPs before being able to execute its next iteration and vice
versa. Moreover, due to the dependency of this framework on having multiple SPs, most
of the parallel BD algorithms are developed for stochastic problems. However, since solving
SPs is significantly time consuming, it has proven effective in various cases (Ariyawansa and
Hudson, 1991; Wolf and Koberstein, 2013; Tarvin et al., 2016). The literature discusses some
of the strategies and algorithmic challenges arising from this parallelization approach.

Dantzig et al. (1991) considered a dynamic work allocation strategy in which the next idle
processor gets the next SP based on a first-in-first-out strategy until all the SPs are solved
and the MP can be recomputed with the new cuts. The efficiency of this parallel algorithm
did not exceed 60% even on machines with 64 processors. Similarly, Li (2013) observed that
dynamic work allocation is superior to static work allocation, because it reduces idle times
and also it saves executing extra work. For example, if an SP is infeasible, the evaluation of
the SPs remaining in the queue will be terminated and the feasibility cut generation scheme
will be launched.

Nielsen and Zenios (1997) exploited the structural similarities of the SPs by applying an
interior point algorithm on a fine-grained parallel machine. They decided to sequentially
solve the MP to optimality from scratch at each iteration because it can easily be handled by
means of an interior point method. Vladimirou (1998) implemented a partial-cut aggregation
strategy to reduce the communication overheads.

In some studies the decomposition has been modified to better suit the parallelization scheme.
Dempster and Thompson (1998) proposed a parallel nested algorithm for multi-stage stochas-
tic programs. The authors used stage aggregation techniques to increase the size of the nodes
and therefore the time spent on calculations relative to the time spent communicating bet-
ween processors. In a similar spirit, Chermakani (2015) observed that when the number of
SPs is considerably larger than the number of available processors, so that some SPs must be
solved sequentially, it may be better to aggregate some of them. Latorre et al. (2009) modified
the decomposition scheme for multi-stage stochastic programs such that the subsets of nodes
assigned to each SP may overlap. This, unlike former studies, allows to noticeably reduce the
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dependency among SPs at each iteration, because they can be solved at the same time.

All the reviewed studies implement a synchronized parallelism. Moritsch et al. (2001) pro-
posed a prototype for an asynchronous nested optimization algorithm. However, no specific
strategy or numerical results were presented. Linderoth and Wright (2003) implemented an
asynchronous communication scheme in which the MP is re-optimized as soon as a portion of
the cuts are generated. Testing this algorithm on LP stochastic programs with up to 107 sce-
narios, the authors observed a time reduction up to 83.5% on a computational grid compared
to the sequential variant.

The speedup rates of the low-level parallelizations are often limited. Pacqueau et al. (2012)
observed that solving SPs accounts for more than 70% of the total time requirement, while
they merely observed an speedup ratio up to 45% with 4 processors. Furthermore, low-level
parallelism improves the efficiency if the MP solving does not dominate the solution process.
Yang et al. (2016) observed that the benefit of parallelism fades away with the scale of the
problem because the computational effort is dominated by solving the MP.

Some of the common knowledge for the sequential algorithm may not apply to its parallel
variants. For example, Wolf and Koberstein (2013) pointed out that the single-cut version
benefits from parallelization more than the multi-cut version because more SPs need to be
solved in the former case. They also observed that the single-cut method may outperform
the multi-cut variant because it requires less cuts in general although it executes a larger
number of iterations.

To conclude this part, we summarize the literature in Table 6.1. We observe that the literature

Table 6.1 Summary of the Benders-based parallel algorithms

Reference Problem class Implementation Communication Work allocation Scheduling Pool management
LP MIP classic B&C Syn. Asyn. dynamic static dynamic static Solution Cut

Chermakani (2015) + + + + +
Dantzig et al. (1991) + + + + +

Dempster and Thompson (1998) + + + + +
Latorre et al. (2009) + + + + +

Li (2013) + + + + +
Linderoth and Wright (2003) + + + + + + +

Moritsch et al. (2001) + + + + + +
Nielsen and Zenios (1997) + + + + +
Pacqueau et al. (2012) + + + +
Vladimirou (1998) + + + + +

Wolf and Koberstein (2013) + + + + + +
Yang et al. (2016) + + + + +

on parallel BD algorithms is sparse. Few studies consider integer programs and no one has
implemented the parallel algorithm in the B&C format. Note that here “classic” refers to
solving the MP from scratch at each iteration as in the classical version of the algorithm.
Moreover, only two studies consider asynchronous communications and these are developed
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for linear continuous problems. Also, we realized that synchronized parallelism is suitable if
the MP can be solved quickly and the SPs constitute the major computational bottleneck of
the algorithm. Thus, the reviewed strategies are not directly applicable to develop an efficient
parallelization of the BD method when an iteration of the MP can take hours.

6.4 Synchronized parallel Benders decomposition algorithm

In the parallel synchronous version of Algorithm 2, each time the MP finds a new solution
to generate cuts, it is broadcast to all other processors. The master processor waits for the
slave processors to solve their assigned SPs. When the current solution is evaluated, the cuts
are added to the MP. Then, the master processor continues with the next iteration until it
finds another appropriate solution to generate cuts for which the same process is repeated.
Thus, the only difference of this parallel algorithm with the sequential one lies in solving the
SPs in parallel, i.e., the for-loop in line 11 of Algorithm 1.

To assign the SPs to the processors, given |P| slave processors and |S| scenario SPs, we group
SPs and assign each group to a processor such that each processors receives a roughly equal
number of SPs. This follows from the fact that in two-stage stochastic programming, the
SPs have usually the same level of resolution difficulty. Thus by equally distributing them
among the slave processors, load-balancing strategies are not required. In addition, we try to
assign similar SPs to a processor, because this helps to more effectively take advantage of the
re-optimization tools of our LP solver. The similarity is measured as the Euclidean distance
of random parameters.

6.4.1 Cut aggregation

When the number of SPs is larger than number of the first-stage variables, it is not numerically
the best strategy to add to the MP a cut per SP as in line 17 of Algorithm 2 (Trukhanov
et al., 2010). Thus, we group the SPs into |D| clusters using the k-mean++ algorithm (Arthur
and Vassilvitskii, 2007), where D is the set of clusters with cardinality |D|. Note that the
number of SPs in each cluster may not be equal. Then, for each cluster we define a single
recourse variable and aggregate the generated cuts in that cluster into a single cut.

6.4.2 Upper bound from fractional points

The upper bounds obtained from fractional master solutions (e.g., line 2 of Algorithm 2) are
not valid for the original problem. Due to the high importance of the upper bound value in
pruning nodes of the branch-and-bound tree, we suggest a practical strategy to extract valid
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incumbent values from fractional solutions. This strategy requires the following assumptions :
(i) fi ≥ 0, (ii) for a given feasible ȳ, ŷ is also feasible if ŷi ≥ ȳi for all i ∈ {1, ..., n}, and (iii)
Q(ȳ, s) ≥ Q(ŷ, s), s ∈ S.

Proposition 6.1. Given a feasible fractional master solution ȳ, i.e., ȳ ∈ Y
⋂
s∈S{Wsx ≥

hs − Tsȳ, for some x ∈ Rm
+} and the associated recourse costs ν∗s for every s ∈ S, a global

upper bound can be obtained from f>dȳe+∑
s∈S ρsν

∗
s , where de is a roundup function.

Proof. See Appendix M. �

6.4.3 Cut generation

Conventionally, generating cuts at fractional nodes of the B&BC algorithms, except for the
root node, is ignored. This is, to a very large extent, due to the excessive time required
to generate them (Botton et al., 2013). However, in parallel B&BC methods we have more
computational power at disposal. Thus, we study some strategies to generate cuts at fractional
nodes of the branch-and-bound tree that we refer to as cut generation strategies.

The first strategy is to generate Benders cuts at the fractional nodes. Accordingly, we generate
cuts for the first Γ fractional nodes, where 0 < Γ ≤ ∞ and 0 being the root node for which
we always generate cuts. There are two possibilities at each fractional node : (i) generate at
most one round of cuts per node or (ii) call upon the cut generation module as long as the
local bound at the current node improves by more than τ%.

The second class of strategies rounds the fractional solutions to derive integer ones which can
be used to obtain valid upper bounds and cuts. Specifically : (i) round the fractional values
to the closest integer point ; (ii) round upward any value greater than λ and downward
otherwise, where λ is a positive digit in [0, 0.5) ; (iii) solve a restricted MILP program to
round the fractional values. This problem is derived by considering the extensive formulation
for a small subset of scenarios and fixing variables to 1 if their current value is greater than
1− λ and to 0 if it is less than λ̂.

Many of the dispatched solutions to the slave processors are infeasible. Thus, the last strategy
revolves around a repair heuristic to restore the feasibility of such solutions. In many applica-
tions feasibility of the solutions satisfies the following monotonicity property : given a feasible
solution ȳ, ŷ is as well feasible if ŷi ≥ ȳi for i ∈ {1, ..., n}. The repair heuristic thus solves
a restricted version of the problem with objective function of 4(ȳ) := ∑

i∈{1,...,n}(1 − ȳi)yi,
where variables are bounded from below by their current value, i.e., y ≥ ȳ, to maintain the
structure of current solution and solve this problem faster.
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6.4.4 Cut management

The B&BC method, particularly with the cut generation strategies, may generate many cuts
which are not all worth adding to or keeping in the master formulation. Thus, a cut corres-
ponding to a fractional solution is added to the master formulation if its relative violation
(the absolute violation of the cut divided by the 2-norm of the cut coefficients) is at least
10−3, otherwise it is discarded.

Cut removal can computationally be expensive as it disturbs our LP solver, i.e., CPLEX.
Thus, we execute the following routine only following the termination of the first phase
to identify the dominated cuts. At iteration t, cut (hs − Tsy)>αts is generated to primarily
bound the recourse problem s at solution ȳt. Following a heuristic notion, if there is another
generated cut (hs− Tsy)>αjs, such that j 6= t, that bounds the recourse variable θs tighter at
ȳt, i.e., h>s (αjs−αts)+(αts−αjs)>Tsȳt ≥ 0 , it flags the possibility of removing cut (hs−Tsy)>αts
without deteriorating the approximated value function. We apply the same procedure for the
feasibility cuts. Note that executing this test for all y ∈ Y would yield an exact method to
identify dominated cuts (Pfeiffer et al., 2012). In the second phase, our solver shall remove
any cut that might become a slack.

6.5 Asynchronous parallel Benders decomposition algorithm

The synchronization requirement between master and slave processors increases the overheads
due to the excessive idle times. This is particularly evident when solving any of the problems
is noticeably more time consuming than others. A natural way to overcome this issue is to
loosen the synchronization requirement among the master and slave processors. To achieve
this, the master processor is required to wait only for γ|S|% of the cuts from slave processors
before executing its next iteration (i.e., resolving the MP in the first phase or exploring the
tree in the second phase), where 0 ≤ γ ≤ 1. However, for any γ < 1, the B&BC method
may fail to converge and also, it may increase the amount of redundant work such that the
parallel algorithm might underperform the sequential algorithm. These are the main issues
in developing an effective asynchronous parallel Benders algorithm which we address them
in this section.

6.5.1 Convergence

To ensure convergence of the B&C implementation of the B&BC method, the inner while-
loop in Algorithm 2 cannot be stopped prematurely. Otherwise, an incumbent solution might
be accepted in line 22 which does not necessarily satisfy all the Benders cuts. For this reason,
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the asynchronism may compromise the convergence of the B&BC method as it applies only
a subset of the cuts at each iteration of the while-loop. In fact, the applied cuts (which can
be zero cuts based on the γ value) may not affect the current integer solution and thus,
resolving the associated node in line 18 can cause the algorithm to break the loop. While the
cuts which are not yet generated may override the current node solution by changing it to
a fractional solution, rendering it infeasible, generating another integer solution or changing
its cost. Therefore, these uncertainties regarding the potential incumbent solutions need to
be taken into account in order to maintain the global convergence.

To cope with this, we use two techniques. First, we make sure that the global upper bound
is updated only when a reliable value is obtained, e.g., all SPs associated to a potential
incumbent solution have been evaluated. Second, to overcome the uncertainties associated
with the integer nodes for binary master variables, we make use of combinatorial cuts with
the following form : ∑i∈{1,..,n}:ȳi=0 yi +

∑
i∈{1,..,n}:ȳi=1(1− yi) ≥ 1, to forbid regeneration of the

current integer solution ȳ. This cut eliminates the current solution by (1) making the current
node infeasible, (2) generate another integer solution, or (3) leading to the generation of a
new fractional solution. In the first case, the node can be pruned by the infeasibility rule.
This does not affect the convergence because no other feasible solution can be extracted from
that node. The second case is in fact a desirable situation as it may yield a better upper
bound value. In the third case, the node will be added to the pool of active nodes.

Finally, for general integer master variables, the node uncertainty must be handled through
synchronization. Thus, if the applied cuts do not affect the current integer solution, we need
to wait until a violating cut associated with that solution is generated or all cuts have been
applied.

6.5.2 Search techniques

In this part we propose some strategies to specify the scheduling and pool management
decisions.

Solution and cut pool management

Considering the previously partially evaluated solutions and the new one at the current
iteration, we need to decide which solution to choose and evaluate its associated (unevaluated)
SPs. At each iteration, the master process broadcasts its solution to all slave processors. Each
slave processor stores this solution in a pool and follows one of the following strategies to
pick the appropriate one :
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S1 : chooses solutions based on the first-in-first-out (FIFO) rule ;
S2 : chooses solutions based on the last-in-first-out (LIFO) rule ;
S3 : chooses solutions in the pool randomly. We experiment with two selection rules :

(1) each solution in the pool has an equal chance to be selected, (2) each solution is
assigned a weight of 1

1+t , where t is number of the iterations since that specific solution
has been generated, so that more recent solutions have higher chance to be selected.

Moreover, we use the cut improvement notion to identify the solutions which are no longer
required to be evaluated, see Rei et al. (2009) for more information. Finally, we make use of
the same techniques outlined in subsection 6.4.4 to manage the cut pool.

Solving SPs

We have implemented static work allocation because by equally distributing the scenario
SPs, every process is almost equally loaded. Once the solution is chosen, we need to decide
the order by which the associated SPs will be evaluated, because we may not evaluate all of
them and it is important to give higher priority to those which tighten the MP formulation
the most. The following strategies are considered :

SP1 : randomly choose the SPs ;
SP2 : assign a weight to each SP and then randomly select one based on the roulette

wheel rule. The weights are set equal to the normalized demands for each SP.
SP3 : we observe that if a solution is infeasible, we may not need to solve all its SPs.

This strategy first orders the SPs based on their demand sum and then assigns to each
SP a criticality counter which increases by one each time that the SP is infeasible.
Then, a SP with the highest criticality value is selected.

Solving the MP

This dimension specifies the waiting portion of the master processor before it re-optimizes
the MP. We have proposed the following strategies :

MP1 : the master processor waits for at least γ|S|% new cuts at each iteration ;
MP2 : the master processor waits for γ|S|% of the cuts associated with the current

solution ;
MP3 : this strategy is the same as the MP2 strategy, but with a mechanism to synchro-

nize the processors according to the current state of the algorithm. In this regard,
if the cuts added to the MP fail to affect the lower bound and/or regenerate the
same solution, the MP waits until all the cuts associated with the current solution are
delivered.
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6.5.3 Cut aggregation

The asynchronous algorithm may only solve a subset of the SPs in each cluster. For this
reason, cut aggregation as introduced in section 6.4.1 is not applicable in the context of our
asynchronous parallel algorithm. To alleviate this issue, we define a recourse variable for
each SP. Then, we add a cut of the form : ∑s∈Ŝd

ρsθs ≥
∑
s∈Ŝd

ρs
(
hs − Tsy

)>
αs for cluster

d ∈ D, where Ŝd indicates the set of evaluated SPs in this cluster at the present iteration.
Note that we could update this inequality in the following iterations when the remaining
SPs in cluster d are evaluated. However, this process requires modifying the MP, which is
not computationally efficient. We thus aggregate the cuts for the current solution separately
from those associated with the previous iterations.

6.5.4 Partial information

The B&BC method is very sensitive to the feedback on its current solution. The asynchronous
variant thus entails a larger number of iterations and a considerable amount of redundant
work as it executes the next iteration with partial information on its current solution. In
fact, the asynchronism may increase the computational cost of each iteration since the MP
grows large at a faster pace. Moreover, the lower bound may progress slower since merely a
subset of the cuts are applied to the MP at each iteration. The proof of convergence may as
well be delayed due to the unavailability of the upper bound, especially when one wishes to
solve the problem to a certain optimality gap. To overcome these drawbacks, we propose two
classes of strategies acknowledging the fact that we solve a SP in order to : (i) calculate an
upper bound and (ii) generate a cut.

The upper bound is used to assess the convergence and prune nodes. In our asynchronous
method the delay in calculating the upper bound is usually due to long intervals between
visiting two integer nodes, where we conventionally collect the feedbacks from the slave
processors. Thus, by designing a module that can receive information from slave processors
at every node of the search tree, we can overcome this issue and update the upper bound
with minimal delay.

The generated Benders cuts are used to cutoff the subregion of the MP defined by the set
of complicating variables. To address the issue related to having cuts merely for a subset of
the recourse variables at each iteration, we have designed the following two strategies : (i)
creating artificial SPs and (ii) propagating the generated cuts.
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Creating artificial SPs

The MP does not wait for all SPs to be solved. Thus, having good cuts that can represent
the unevaluated SPs is important to improve the efficiency of our asynchronous algorithm.
To this end, we propose to create a set of artificial scenarios. The SP associated with each
artificial scenario will then be solved to generate a valid cut to bound the recourse cost of
the scenarios that remain unevaluated at the current iteration.

We assume that the recourse matrix and the costs are deterministic, i.e., cs = c andWs = W ,
∀s ∈ S. We cluster the SPs into |G| groups according to the similarity measure. Note that
the cardinality of clusters may not be equal. Then, to generate the artificial SP, g ∈ G, we set
hg = ∑

s∈Sg
βshs and Tg = ∑

s∈Sg
βsTs, where Sg is the set of scenarios in cluster g ∈ G with

S = ∪g∈GSg, and βs is the weight associated with scenario s ∈ Sg such that ∑s∈Sg
βs = 1.

Proposition 6.2. Any extreme point αg and extreme ray rg of the artificial subproblem g ∈ G
gives a valid optimality cut ∑s∈Sg

βsθs ≥ (hg−Tgy)>αg or a feasibility cut 0 ≥ (hg−Tgy)>rg.

Proof. See Appendix N. �

An important issue in deriving the artificial cuts lies in setting the β weights. The following
theorem suggests an optimal way to set these weights.

Theorem 6.1. Maximum bound improvement by the artificial scenario g ∈ G is attained
when the convex combination weight βs for scenario s ∈ Sg is ρs∑

s∈Sg
ρs
.

Proof. See Appendix O. �

Note that we make use of the artificial scenarios to bound the recourse variable of those
SPs which remain unevaluated at the present iteration. The following corollary suggests a
strategy to further tighten the associated cuts.

Corollary 6.1. Let S̄g be the set of evaluated SPs in cluster g ∈ G at the current iteration.
Then solving the artificial SP using a smaller set Sg\S̄g yields a tighter cut for the remaining
SPs. This follows the aggregation step in the proof of Proposition 6.2.

From corollary 6.1, we observe that there is no need to apply the scenario creation strategy
in the synchronized and sequential algorithms.
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Cut propagation

In this part, we propose to propagate the generated cuts in order to derive additional approxi-
mate cuts for the set of unevaluated SPs. We make the same assumption on the problem’s
structure as in section 6.5.4.

Proposition 6.3. Given an optimality cut θs ≥ (hs−Tsy)>αs associated with the SP s ∈ S,
we can generate a valid optimality cut θs′ ≥ (hs′ − Ts′y)>αs for SP s′ ∈ S : s′ 6= s without
solving the SP for scenario s′.

Proof. Based on our assumption, the dual SP (6.3) becomes maxα∈Rl
+
{(hs−Tsȳ)>α : W>α ≤

c} for every s ∈ S. Thus, all SPs have the same dual polyhedron for which each of its extreme
points and rays gives a valid cut. �

It is not computationally viable to propagate any dual solution due to time consuming calcu-
lations and handling requirements. We thus generate propagated cuts only for those recourse
variables whose associated SP remains unevaluated at current iteration. Also, if a dual value
yields a cut which is not violated by the current solution, it will not be used for propagation.
Finally, for SP s′ we generate a propagated cut using the solution from SP s if the latter
has the greatest dominance value over the former in the set of evaluated SPs at the current
iteration. Note that the dominance value of SP s over SP s′ is calculated as the total number
of the elements j ∈ {1, ..., l} for which hjs ≥ hjs′ and T js

>
y ≥ T js′

>
y for every y ∈ Y (Crainic

et al., 2016).

6.5.5 The overall framework

The overall framework of the proposed asynchronous algorithm with its various components
is depicted in Figure 6.2.

Each processor starts with an initialization step where a series of tasks are executed. At
the master processor, the MP is created, scenarios are grouped (based on similarity criteria)
and assigned to each slave processor, and the recourse variables are clustered for the cut
aggregation purpose. Each slave processor waits to receive the assigned scenarios and then
creates their actual mathematical formulation.

In the first phase, each time that the LP relaxation of MP is solved, the solution is broadcast
to all slave processors. Then, the master processor waits to receive the feedback from these
processors based on the chosen scheme from the solving MP strategies. In the next step, cuts
from the pool are selected and aggregated using the appropriate strategy for cut management.
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Figure 6.2 Flowchart of the asynchronous parallel method

If the first phase is not yet optimized, we repeat the same steps. Otherwise, we proceed with
the branching phase.

In the second phase, we check if the incumbent solution can be updated before choosing
and evaluating an open node. If the selected node is integer, we broadcast the solution to
all processors. However, if the node solution is fractional, we need to decide if we want to
generate cuts associated with that solution based on the cut generation strategies of section
6.8.1. Before evaluating the selected node, we check the cut pool to see if new cuts exist or
not. If the selected node is fractional, we do not wait for cuts to be generated. For the integer
nodes, however, we wait for feedback from slave processors depending on the solving MP
strategy that we are using. Finally, if one of the stopping criteria is satisfied, we broadcast
the termination signal to stop the algorithm.

All slave processors execute the same process but independently. At each step, they check
if a new master solution is broadcast. If so, they receive the solution and store it in a pool.
However, if there is no solution in the queue, they do not wait and proceed by choosing a
solution from the pool based on the appropriate solution management strategy. If the solution
pool is empty for any slave processor, it waits until a new one or the termination signal is
broadcast. At next step, they select one of their local SPs based on the solving SPs strategy
and evaluate it. Finally, each processor sends back to the master processors the generated
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information (i.e., cut and bound). If no termination signal has been received, the process
repeats.

6.6 Hybrid parallel Benders decomposition algorithm

We observed that when solving the MP and SPs is quick, re-optimizing the MP with partial
feedback from the slave processors can yield efficiency drawbacks. This is particularly the
case during the first phase of our asynchronous algorithm. For this reason, we hybridize
the two previous parallelization strategies by solving the first phase with the synchronized
and the second phase with the asynchronous strategies. We refer to this strategy as hybrid
parallelism.

6.7 Implementation details

We solve all LP and MILP problems using IBM ILOG CPLEX 12.7. All programs are coded
in C++ environment. The code is compiled with g++ 4.8.1 performed on Intel Xeon E7-8837
CPUs running at 2.67GHz with 64GB memory under a Linux operating system. The B&C
algorithm was also implemented using CPLEX’s callable libraries. We solve the extensive
formulation with CPLEX’s default setting, and turn off presolve features for our Benders-
based algorithms.

To further accelerate the presented B&BC algorithms, we also incorporate some classical
acceleration strategies. We have thus implemented the following techniques in all of our
algorithms : (i) warm start strategy, (ii) valid inequalities for the MP, (iii) valid inequalities
for each SP, and (iv) Pareto-optimal cuts. The complete details of these strategies can be
found in Rahmaniani et al. (2017b). Finally, as local branching was shown to effectively
accelerate the B&BC method (Rei et al., 2009), we turn on the local branching feature of
CPLEX in the second phase of our B&BC algorithms.

6.7.1 Test instances

To test our method, we address the well-known Multi-Commodity Capacitated Fixed-charge
Network Design Problem with Stochastic Demand (MCFNDSD). This problem naturally
appears in many applications (Klibi et al., 2010) and it is notoriously hard to solve (Costa,
2005; Crainic et al., 2011). The complete detail of this problem is given in Appendix P.
To conduct the numerical tests, we have used the R instances which are widely used in the
literature, e.g., Chouman et al. (2017); Rahmaniani et al. (2017b); Crainic et al. (2016, 2011);



142

Boland et al. (2015). These instances have up to 64 scenarios. To generate a larger number
of scenarios, we have followed a procedure similar to the one used by Boland et al. (2015).
For the numerical assessment of the strategies, we have considered a subset of the instances :
r04-r10 with correlation of 0.2 and cost/capacity ratio of 1, 3, or 9 which accounts for 21
instances. This subset of the R family corresponds to the instances most commonly tackled
in the literature (Rahmaniani et al., 2017b; Crainic et al., 2016). In the following part of the
computational experiments, where we study the performance of our method versus alternative
methods, we have considered a larger number of instances, i.e., r04-r11 accounting for 200
instances. The description of these instances is given in Appendix Q.

6.7.2 Implementation of the asynchronous algorithm

We discussed various search strategies whose combination gives a very large number of algo-
rithms to test. Presenting the numerical results for all of them is clearly beyond the length
of this article. For this reason, we provide some insights for those strategies which we do not
intent to present numerical results for.

With respect to solution management strategies, we observed that LIFO outperforms both
FIFO and random strategies. The main reason is that Benders method, as “a dual algorithm",
is very sensitive to the feedback on its current solution. In the both FIFO and random
selection strategies, “older" solutions are usually selected. As a result, the generated cuts are
dominated or they have a very limited impact on the MP. Thus, the MP generates a solution
which is not very different (in terms of quality) from the previous iteration(s) and the lower
bound progresses very slowly. Furthermore, in both strategies the upper bound improves
at a slower pace compared to LIFO, although they might update the upper bound more
frequently in the initial iterations. This is because the FIFO and random selection strategies
need a much larger number of iterations to actually find a high quality feasible solution that
gives a tight bound. As a result, we henceforth only consider the LIFO as solution selection
strategy.

With respect to solving SPs, we realized that, on average, the random selection of the SPs
performs better than other strategies. This is because the random selection of the SPs ensures
the diversity of the cuts applied to the MP. In ordering based strategies, after a certain
number of iterations, a specific set of the recourse variables is bounded at each iteration.
Hence, the lower bound progresses slowly and the algorithm performs poorly. Finally, the
random selection based on the criticality weights tends to perform better than pure random
selection. This is because higher priority is given to the indicator SPs and the diversity of
the cuts applied to the MP is maintained. Therefore, we consider this strategy to select SPs
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for evaluation.

Finally, we consider the proposed strategies in the solving MP dimension. We have decided to
use both MP2 and MP3. This is because of two reasons. First, we observed that applying cuts
associated with the current solution is necessary. Otherwise, the algorithm performs poorly
due to the same reasons pertinent to the FIFO strategy. Second, with adoptive synchroniza-
tion points the late convergence proof in the first phase of the algorithm will be alleviated
significantly. On the contrary, synchronization causes overheads during the second phase of
the algorithm because master processor can proceed with evaluating the open nodes of the
branch-and-bound tree while the cuts are being generated. Therefore, we use MP3 in the first
and MP2 in the second phase of our algorithm.

6.7.3 Stopping criteria and search parameters

In solving each stochastic instance, we have set the stopping optimality gap at 1%. The total
time limit is set at 2 hours. To solve the LP relaxation of the problem at the root node, we
have considered half of the maximum running time limit. The parallel variants are run on 5
processors unless otherwise specified. In the cut generation strategy, τ , λ, and λ̂ values are
set to 0.5%, 10−1, and 10−2 . The set of scenarios in the feasibility repair problem are chosen
based on their demand sum. We have sorted the scenarios based on their total demand and
chosen the first 5 scenarios.

6.8 Computational results

In this section, we present the numerical assessments of the proposed parallelization strate-
gies. We first study different versions of our parallel B&BC algorithms to evaluate the limi-
tations and impact of the proposed acceleration techniques. The second part of the analysis
is devoted to test the speedup and scalability of our parallel algorithms. Finally, we conduct
a comparison between our exact algorithms and CPLEX to benchmark their performance.

6.8.1 Synchronized parallel algorithm

In this section, we investigate the impact of the proposed acceleration strategies, namely the
cut management, cut aggregation and cut generation in context of the synchronous parallel
B&BC algorithm. Note that we have activated the proposed strategies one by one to observe
their cumulative additive impact over the performance. Thus, the basic algorithm in each
subsection is the best variant obtained from the previous subsection.
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Cut management

We first study the impact of the cut management strategy. We compare the method proposed
in section 6.4.4 to that commonly used in the literature, where cuts with high slack value are
removed, see, e.g., Pacqueau et al. (2012). In Table 6.2, the average running time in seconds,
optimality gap in percentages, and number of removed cuts, shown with #Cut, are reported
for each cut management strategy.

Table 6.2 Numerical results for various cut management strategies

NoCutManagement SlackCutManagement DominanceCutManagement
Time(ss) Gap(%) Time(ss) Gap(%) #Cut Time(ss) Gap(%) #Cut

r04 2422.60 1.00 2424.57 1.26 151.00 1802.97 0.36 1616.00
r05 1133.64 0.47 517.22 0.47 164.33 500.64 0.47 942.67
r06 3270.45 1.76 2656.59 2.06 602.33 2601.43 2.12 22.00
r07 2437.16 3.32 2439.03 2.37 13.67 2141.70 2.06 1599.33
r08 2534.89 3.36 2513.26 3.56 50.67 2315.18 2.40 292.00
r09 4898.53 4.01 4737.94 4.24 163.67 4780.70 4.25 868.67
r10 4977.60 7.77 4927.27 5.25 645.00 4931.94 6.23 108.00
Ave. 3096.41 3.10 2887.98 2.75 255.81 2724.94 2.56 778.38

It is important to note that none of the methods deteriorates the LP bound at the root
node. We observe from Table 6.2 that cleaning up the useless cuts yields positive impact on
the performance. The slack based notion keeps many of the useless cuts in the MP while
the proposed method removes a much larger number of them. Thus, for small and medium
instances, we observe a clear advantage of the proposed method. However, for larger instances,
the impact of removing cuts on running is less significant because the algorithm reaches the
time limit. We here note that most of the removed cuts are associated with early iterations.
Finally, we observe that there is no direct relation between the number of the cuts removed
and the performance of the B&BC method. This is because of the heuristic nature of both
strategies.

Cut aggregation

We ran the algorithm with 11 different cluster sizes in order to study the impact of various cut
aggregation levels on the performance. The comparative results in terms of total running time
are depicted in Figure 6.3. Note that the value on each column gives the average optimality
gap in percentages.

We observe from Figure 6.3 that neither of the two conventional strategies, i.e., single cut
(column labeled “1") and multi-cut (column labeled “1000"), gives the best results. Although
the latter performs noticeably better than the former. The best aggregation level is associated
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Figure 6.3 Comparison of various cut aggregation levels for the synchronized parallel algo-
rithm

with a cluster size of 300. All aggregation levels are able to solve 66.67% of the instances
within the 2 hours time limit, except for the single cut method which could only solve
61.90% of the instances. In addition, we observe that the difference in running time among
some aggregation levels is small. This is because the algorithm reaches the maximum run
time limit for 33.33% of the instances. Thus, if we only consider the instances that are solved
by all aggregation levels, we observe more significant differences in the running times. These
results are presented by the empty half bars in Figure 6.3.

Comparing the results to those of the sequential algorithm, see Figure R.1 in Appendix R,
we observe that a larger cluster size gives the best results for the sequential algorithm. This
is because the sequential algorithm performs less iterations in the same amount of time and
thus, it is more sensitive to the loss of information in the aggregation step.

Cut generation strategy

We next study the cut generation strategies of section 6.4.3. For computational purposes, we
have set Γ to 10, 100 and ∞ and compare the results to the case for which we generate cuts
merely at the root node, i.e., Γ = 0. For each Γ value, we have reported numerical results for
two cut generation strategies : “Single" indicates generating cuts once per node and “Multi"
indicates generating cuts for each node as long as the lower bound improves by more than
0.5%. Also, we have studied two cases for each strategy : (i) the fractional solutions are
directly used and (ii) the feasibility of the infeasible ones is restored. The numerical results
are summarized in Table 6.3.
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Table 6.3 Numerical results for various cut generation strategies

Γ Strategy NoFeasibilityRestoration FeasibilityRestoration
Time(ss) Gap(%) Sol.(%) Time(ss) Gap(%) Sol.(%)

∞ Single 2737.66 20.19 57.14 2694.15 10.95 66.67
∞ Multi 3045.31 29.38 57.14 3164.12 24.80 61.90
100 Single 2538.98 16.27 52.38 2611.14 10.58 66.67
100 Multi 2999.89 25.00 57.14 3050.19 24.84 66.67
10 Single 2398.36 2.16 71.43 2405.82 2.41 71.43
10 Multi 2612.17 2.48 71.43 2583.14 2.40 71.43
0 - 2549.10 2.26 66.67 - - -

Here “Sol.(%)" gives percentage of the solved instances. From Table 6.3 we observe that gene-
rating cuts for many fractional nodes considerably increases the optimality gap. This happens
because of two main reasons. First, generating cuts for many nodes is computationally ex-
pensive and second, it causes considerable handling costs. For the same reasons, the “Multi"
strategy underperforms the one with the “Single" module. On the contrary, generating cuts
merely for the first 10 nodes performs better or equal to generating cuts only at the root
node, such that the average running time and optimality gap reduce by 150.74 seconds and
0.1%, while the percentage of solved instances increases by 4.76%.

We next examine the strategies proposed to round the fractional solutions. The first strategy,
denoted Round, rounds each fractional value to its closest integer value. The second strategy,
denoted Upward, rounds each fractional value greater and equal than 0.1 to 1 and 0 otherwise.
The third strategy employs a restricted MIP to find a close integer feasible solution to the
current fractional solution. The numerical results are summarized in Table 6.4.

Table 6.4 Numerical results for the rounding based cut generation strategies

Strategy NoFeasibilityRestoration FeasibilityRestoration
Time(ss) Gap(%) Sol.(%) Time(ss) Gap(%) Sol.(%)

MIP - - - 2486.78 2.31 71.43
Round 2629.98 2.20 61.90 2591.03 2.25 61.90
Upward 2579.79 2.35 66.67 2606.85 2.44 71.43
Γ = 0 2549.10 2.26 66.67 - - -

Note that, following the observations in Table 6.3, we have applied these strategies only at the
first 10 fractional nodes. Comparing Tables 6.3 and 6.4, we observe that the rounding stra-
tegies do not perform better than directly using the fractional solutions. The main reason is
that the cuts associated to the rounded solutions do not, in general, affect the local bounds. In
addition, CPLEX’s default heuristics and local branching are active in our implementations.
This makes the marginal impact of the rounding strategies negligible.
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6.8.2 Asynchronous parallel algorithm

In this part, we study the proposed strategies for the asynchronous parallel algorithm. We
first study different synchronization levels as controlled by the γ parameter. Then, we analyze
the proposed acceleration techniques.

The synchronization level

Figure 6.4 depicts the impact of the γ value on the running time. The values on this figure
represent the average optimality gaps in percentage.

Figure 6.4 Effect of waiting portion of the master processor (gamma value) on the performance

We observe that the best performance lies neither at 100% nor at 1%. It is always numerically
better to wait for some percentage in between. Moreover, comparing Figures 6.4 and R.1, we
observe that full asynchronism (i.e., γ = 0) underperforms even the sequential algorithm. The
best result is attained when the master processor waits until 40% of the SPs associated with
the current solution are solved. This synchronization level solves 66.67% of the instances
with the average optimality gap of 2.15% in 2465.26 seconds. This is comparable to the
synchronous algorithm without the cut generation strategies, see Figure 6.3.

We observe that waiting for a larger portion of the SPs is more desirable when solving the LP
relaxation of the MP, while the contrary is true in the second phase of the algorithm. In the
former case, we gain nothing from quickly resolving the MP since no other useful task can
be executed. In the latter case, however, we can perform useful work (i.e., evaluating open
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nodes of the search tree) while the cuts are being generated. We thus consider γ = 100% and
0% in the first and second phase of our hybrid algorithm.

Scenario creation

In Table 6.5 we investigate the impact of the artificial SPs on the convergence of our asyn-
chronous algorithm.

Table 6.5 Impact of the artificial subproblems on performance of the asynchronous algorithm

NoArtificialSP NumberOfArtificialSPs=|P|
Time(ss.) Gap(%) Sol.(%) Time(ss.) Gap(%) Sol.(%)

r04 689.50 0.75 100.00 759.39 0.73 100.00
r05 274.84 0.51 100.00 286.64 0.42 100.00
r06 2518.45 1.86 66.67 2546.88 1.48 66.67
r07 1442.27 0.84 66.67 1412.31 0.90 66.67
r08 2521.60 2.65 66.67 2466.25 2.02 66.67
r09 4898.42 3.98 33.33 4859.83 3.46 66.67
r10 4911.77 5.07 33.33 4880.33 4.53 33.33
Ave. 2465.26 2.25 66.67 2458.80 1.93 71.43

We observe in Table 6.5 that the creation of artificial scenarios increases the percentage of
the solved instances by 4.76% while the average time is almost unchanged. The running time
with artificial SPs increases for small instances and for larger instances the time improvement
is not very much noticeable. In small problems additional time is spent on generating cuts
while they could have been solved quicker. For larger instances, in many cases the algorithm
reaches the time limit and thus the improvement on the average time does not show. We
observe, however, that the average optimality gap has been reduced. Thus, the artificial SPs
are a valid strategy to accelerate the asynchronous algorithm.

Cut aggregation

Figure 6.5 reports the impact of the proposed cut aggregation scheme for different cluster
sizes. The value on each bar shows the average optimality gap in percentages.

We observe that clustering improves the convergence of the algorithm. The best aggregation
level is reached at the size of 500, which is larger than the best value found for the synchronized
algorithm, i.e., a cluster size of 300. With this aggregation level, our asynchronous algorithm
solves 76.19% of the instances with an optimality gap of 1.46% in 2219.42 seconds, which
outperforms the synchronized algorithm. Moreover, the single cut method does not perform
much differently from other aggregation levels. This is because of introducing a recourse
variable for each SP in the aggregated cuts.
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Figure 6.5 Comparison of different cut aggregation levels in context of the asynchronous
method

Cut propagation

To assess the usefulness of the proposed cut propagation strategy, we compare our algorithm
with and without the cut propagation module. Table 6.6 summarizes the results in terms
of average time requirement and number of iterations. Note that the cut propagation is
performed merely at the first phase of the algorithm. We have thus reported the time required
and number of iterations to find the optimal LP solution.

Table 6.6 Impact of the cut propagation on the LP phase of the asynchronous algorithm

WithoutPropagation WithPropagation
Time(ss.) #Iter. Time(ss.) #Iter.

r04 29.62 17.00 111.24 13.67
r05 50.88 21.33 213.86 14.00
r06 307.41 32.67 1377.90 18.67
r07 19.98 15.67 286.50 14.00
r08 59.61 21.00 415.22 15.33
r09 546.43 30.67 1085.35 16.00
r10 1158.31 41.67 1591.48 23.00
Ave. 310.32 25.71 725.94 16.38

We observe from Table 6.6 that the cut propagation reduces number of the major iterations.
However, it increases the time requirement to optimize the LP relaxation of the problem. This
is partially due to the additional time we need to spend on handling the propagated cuts
and checking their violation. In addition, we can solve the LP relaxation of the considered
instances within the considered time limit and the cut propagation does not further tighten
this bound. We thus believe that the proposed cut propagation strategy can be very useful for
problems with a fairly small number of hard-to-solve SPs rather than many of easy-to-solve
SPs. Since this is not the case in our problem, we do not include this strategy in our method.
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6.8.3 Speedup of the parallel algorithms

In Figure 6.6, we compare our parallel algorithms on 2, 3, 5, 10, 15 and 20 processors. In
this experiment, we have considered only those instances that the sequential algorithm could
solve within a 10-hour limit in order to have a clear sense of the speedups. Note that the
value on each bar indicates the speedup ratio calculated as Sequential time/Parallel time.

Figure 6.6 Speedup rates of our parallel Benders decomposition algorithms

The first interesting observation is related to the use of 2 processors, i.e., 1 slave and 1
master processor. In this case, the synchronized algorithm performs worse than the sequential
algorithm because of the cut generation which slows down the algorithm. Our asynchronous
algorithm, on the contrary, performs much better. This is clearly due to the better use of the
processors in our asynchronous method since the two processors are less dependent. Also,
we observe that the hybrid algorithm is better than the synchronized one, although they
are roughly the same during the first phase of the algorithm. Thus, the speedup rate in our
hybrid algorithm must be due to its asynchronous part. This indicates that our asynchronous
method has noticeably reduced the computational bottleneck at the master level.

The speedups do not increase monotonically with the number of the processors. This is
because increasing the number of slave processors does not alleviate the bottleneck at the
master processor, although it significantly accelerates the cut generation cycle. We observe
that the synchronous algorithm reaches super linear speedup during the LP phase of the
algorithm, while it fails to reach even linear speedup overall. This is due to the second
phase of the algorithm where the slave processors are not efficiently used and the heavy
work is carried out by a single processor, i.e., master. The same situation also applies to the
asynchronous and hybrid algorithms.

Our third observation concerns the hybrid method. It outperforms the synchronized method
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because of using non-blocking communications in the branching phase, which is the most
time consuming part of the algorithm ; see Figure 6.4. The advantage of the hybrid algorithm
over the asynchronous method becomes more evident for larger instances in which solving the
LP relaxation is noticeably time consuming. Moreover, we observe that its efficiency exceeds
or becomes closer to the asynchronous method as the number of processors increases. This
justifies the development of the hybrid algorithm.

6.8.4 Comparison with CPLEX

In this part, we compare our asynchronous and hybrid algorithms versus the latest version of
CPLEX for all instances, see Table Q.1 in Appendix Q. In doing so, we ran our algorithms
until reaching the same optimality gap which is obtained by CPLEX after 10 hours. Note that
all algorithms are run on 15 processors. The average speedup rates are reported in Figure 6.7.
These values are rounded to the closest integer point and they are obtained from dividing
CPLEX’s time requirement to that of our methods.

Figure 6.7 The speedup rate of our asynchronous and hybrid parallel algorithm compared to
CPLEX

The asynchronous and hybrid parallel algorithms are, on average, 286.48 and 325.69 times
faster than CPLEX in finding a solution of equal or better quality. We observe that the
speedup for larger instances is smaller because solving their LP relaxation takes up to one
hour. This makes the speedup rates in scale of 10. Moreover, the hybrid parallelization reaches
a better speedup rates since it solves the LP relaxation faster.

To complete the comparative study in this section, we compare the optimality gaps obtained
by our parallel algorithms to that of CPLEX for a run time limit of 2 hours. Note that if
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CPLEX fails to find a feasible solution, we have set the optimality gap at 100%. The average
optimality gap for each instance class is summarized in Table 6.7.

Table 6.7 The average optimality gap obtained by each method after 2 hours

CPLEX Asynchronous Hybrid
r04 14.49 0.33 0.34
r05 31.84 0.48 0.46
r06 56.11 2.00 2.75
r07 33.73 0.34 0.50
r08 43.90 2.18 2.48
r09 58.07 3.25 2.72
r10 56.15 3.58 2.28
r11 86.86 7.65 6.82
Ave. 47.64 2.48 2.29

We observe from Table 6.7 that CPLEX fails to handle even small instances of the considered
stochastic problem. Furthermore, the hybrid algorithm reaches better optimality gaps than
the asynchronous method for larger instances.

6.9 Conclusions and remarks

We studied parallelization strategies for the Benders decomposition method in which the sub-
problems are concurrently solved on different processors and the master problem on a single
processor. We implemented the algorithm in a B&C framework and presented synchronous,
asynchronous and hybrid parallelization frameworks along with various acceleration strate-
gies.

Reporting numerical results on hard benchmark instances from stochastic network design
problems with 1000 scenarios, we observed (super-)linear speedups when the master problem
does not computationally dominate the algorithm. This is particularly true when solving the
LP relaxation of the master problem. In similar cases, the synchronized method performed
generally better than the asynchronous algorithm. On the larger instances, our parallel algo-
rithms did not reach a linear speedup. Moreover, we observed that our parallelizations did
not scale with the number of the processors. The main reason for this is the fact that the most
significant computational bottleneck of the parallel algorithm is solving the master problem
sequentially on a single processor. Also, the proposed asynchronous and hybrid algorithms
displayed a better performance compared to the synchronous method. Compared to CPLEX,
they were more than 286 times faster to obtain the same optimality gap. In addition, for the
same time limit, they could also obtain optimality gaps that were more than 19 times lower
than CPLEX.
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This research opens the way for a number of interesting issues to be considered in future
works. First and foremost, the master problem needs to be solved in parallel in order to reach a
scalable algorithm. Second, it is worthwhile to study the proposed cut propagation strategy
for problems in which generating a single optimality cut is significantly time consuming.
Third, some of the well-known acceleration strategies for the Benders method need to be
revisited in order to be properly applied in the parallel environment. An example would be
the partial decomposition strategy of Crainic et al. (2016). Last but not least, heuristics are
widely used to accelerate the BD method, but we are not aware of any integration of these
methods in a parallel (cooperative) framework.
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CHAPTER 7 GENERAL DISCUSSION

In this dissertation, we studied decomposition-based solution methods for combinatorial op-
timization problems with particular interest in stochastic integer programming. We strove
to improve the efficiency of the Benders decomposition algorithm and also, proposed a novel
decomposition method. We tested our developments on benchmark instances from multi-
commodity capacitated network design, capacitated facility location, and network interdiction
problems.

In the first essay of this dissertation, we reviewed and synthesized decades of research on the
Benders decomposition method for the first time in the literature. We discussed the classical
algorithm, the impact of the problem formulation on its convergence, and its relationship
to other decomposition methods. We introduced a taxonomy of algorithmic enhancements
and acceleration strategies based on the main components of the algorithm. The taxonomy
provided a framework to synthesize the literature and to identify shortcomings, trends, and
potential research directions. We also discussed the use of the Benders decomposition to
develop efficient (meta-)heuristics, described the limitations of the classical algorithm, and
presented extensions enabling its application to a broader range of problems.

Following our extensive literature review, in the second essay of this dissertation, we ad-
dressed some of the most important drawbacks of the Benders decomposition algorithm. We
proposed various acceleration techniques, including the use of cutting planes (one for the mas-
ter problem and one for each subproblem), partial decomposition, heuristics, stronger cuts,
reduction and warm-start strategies. This yielded an effective Benders decomposition algo-
rithm capable of efficiently solving challenging instances of the well-known multi-commodity
capacitated network design problem with demand uncertainty. The numerical results confir-
med the clear advantage of the proposed accelerations strategies and the resulting algorithm
over the existing ones.

In the third essay, we developed a new decomposition method which combines the comple-
mentary advantages of the classical decomposition approaches, i.e., Benders and Lagrangian
dual decomposition methods. The development of our method was based on a specific refor-
mulation of the Benders subproblem, where local copies of the master variables are introduced
and then priced out into the objective function. By imposing the integrality requirement on
the copied variables, we showed that at the fractional points of the master problem, this
method generates stronger optimality and feasibility cuts than those of the Benders decom-
position method. In fact, one can obtain an optimal integer solution at the root node of the
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Benders master problem by using these cuts. In addition, we observed that this method is
capable of producing high-quality primal bounds at the initial iterations of the algorithm and
it can be applied to a wider range of the optimization problems than the classical Benders
decomposition method. We used our method to solve various combinatorial optimization pro-
blems and compared the results to those obtained by the classical decomposition methods as
well as CPLEX 12.7. The obtained results were highly encouraging.

Finally, we studied parallelization strategies for the Benders decomposition method in the
fourth essay. We focused on the strategies where the subproblems are solved in parallel
and the master problem is solved sequentially. Unlike the existing works, we developed our
parallel algorithms in a branch-and-cut framework. We argued that this method is different
from the existing parallel branch-and-cut methods. Moreover, we designed a framework that
allows relaxing the synchronization requirements among the master and slave processors.
To increase the efficiency of the algorithms, we proposed various acceleration strategies. We
conducted an extensive numerical study on benchmark instances from stochastic network
design problems. The results indicated that our asynchronous algorithm can reach higher
speedup rates compared to the conventional parallel methods. We also observed that it is
several orders of magnitude faster than the state-of-the-art solvers.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In short, this dissertation provided various numerical and theoretical contributions to two
main branches of mathematical optimization, i.e., mixed-integer programming and stochastic
programming, by developing new algorithms, proposing various techniques to accelerate the
classical algorithms, and solving many challenging benchmark instances. In addition, this
doctoral research opens the way for a number of interesting issues to be considered in future
works. This constitutes the main subject of the this Chapter.

In the first essay, we reviewed the vast literature associated with the Benders decomposition
algorithm. However, our main focus was on the acceleration techniques proposed for the
classical algorithm. In particular, there are various extensions of this algorithm and it has
inspired the development of some new algorithms, see, e.g., sections 2.8 and 2.9 of this
dissertation. Furthermore, the associated literature is growing very fast. For instance, since
the publication of our literature review more than 1940 scientific works have mentioned
"Benders Decomposition" according to GoogleScholar. Therefore, this work can be extended
by presenting complementary literature reviews and updating our survey.

In the second and fourth essays, we observed that solving the master problem is a major hurdle
in handling large-scale mixed-integer (stochastic) problems. For instance, it prevented us from
having a scalable parallel Benders decompositions algorithm. Also, although it starts with a
fairly tight upper bound at the root node, it rarely improves this bound. Thus, developing
advanced acceleration strategies to parallelize and better manage the branch-and-bound tree
appear important subjects for the future research. In the same line of research, we encourage
the development of a parallel algorithm in which our asynchronous Benders decomposition
method and a primal heuristic are integrated into a cooperative framework.

The algorithm presented in the third essay was in its general form and there are many
possibilities to further improve it. In the proposed algorithm each subproblem is associated
with a single scenario while having subproblems consisting of multiple scenarios can yield
tighter lower bounds and better incumbent solutions. We thus encourage the development of
clustering strategies in the context of the proposed method. In addition, many researchers
have focused on improving both Benders and Lagrangian decomposition methods. These
strategies can be adopted and incorporated into our method to further enhance its numerical
performance. Last but not least, the proposed method guarantees convergence even when
the Benders subproblems are nonlinear and/or mixed-integer programs. Thus, the numerical
assessment of this method versus the classical algorithms, such as integer L-shaped and outer
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approximation methods, is certainly worthwhile.
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APPENDIX A LOWER BOUND LIFTING INEQUALITY

Consider LP relaxation of the deterministic multicommodity capacitated fixed-charged net-
work design (MCFND) problem associated to scenario ω ∈ Ω, denoted MCNF (ω), which
has the following form :

(MCNF (ω)) v(d(ω)) := min
x(ω)∈R|A||K|+

∑
k∈K

∑
a∈A

(
cka + fa

ua

)
xka(ω)

s.t. (B.2) and ∑
k∈K x

k
a(ω) ≤ ua ∀a ∈ A,

let x̄(ω) be the optimal solution of this program. We can derive the design values according
to the relation ∑

k∈K x
k
a(ω) = uaya,∀a ∈ A which is alway satisfied for y ∈ [0, 1]. At any

optimal solution, according to the property of "wait and see" and "here and now" solutions in
stochastic programming (Birge and Louveaux (1997)), following relation among the Benders
reformulation of the extensive form andMCNF (ω) for scenario ω holds :∑a∈A faya+θ(ω) ≥∑
k∈K

∑
a∈A(cka + fa

ua
)x̄ka(ω). Accordingly to the variable transformation ȳa =

∑
k∈K x

k
a(ω)

ua
,∀a ∈

A, we have∑a∈A faya+θ(ω) ≥ ∑k∈K
∑
a∈A c

k
ax̄

k
a(ω)+∑a∈A fa

∑
k∈K x̄

k
a(ω)

ua
= ∑

k∈K
∑
a∈A

ckax̄
k
a(ω)+∑

a∈A faȳa which gives θ(ω) ≥ ∑k∈K
∑
a∈A

ckax̄
k
a(ω)+∑a∈A faȳa−

∑
a∈A faya = ∑

k∈K
∑
a∈A c

k
ax̄

k
a(ω)+∑

a∈A fa (ȳa − ya).

Solving a MCNF problem for each scenario may not computationally be interesting. Thus, we
propose to solve only a single MCNF with minimum demand, i.e., dmink = minω∈Ω {dωk} ,∀k ∈
K. The benefit of this auxiliary problem is that its solution gives a valid lower bound for all
the SPs. The obtained bound can be further improved for each SP according to 4.1. To do
so, we use the sensitivity analysis theory. Let π̄ be the dual variables associated to the flow
conservation constraints and ∆ indicate the set of alternative optimal dual solutions. The
function v(d(ω)) is piece-wise linear in d(ω). Thus, v(dmin + d̃) ≥ v(dmin) + maxπ∈∆ π

T d̃ ≥
v(dmin) + π̄T d̃. If we set d̃ = d(ω)− dmin for each SP, we get inequality (4.14).
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APPENDIX B FEASIBILITY RESTORATION STRATEGY

The convex combination yws = λȳ+(1−λ)yws may yield an infeasible yws solution. To restore
yws to a feasible solution, we solve following linear program :

min
ŷ∈R|A|+

∑
a∈A faŷa

s.t. (B.2) and ∑
k∈K x

k
a(ω) ≤ ua (ȳa + ŷa) ∀a ∈ A

ŷa ≤ 1− ȳa ∀a ∈ A,

where ω is the SP for which yws has been infeasible. After solving this problem, yws is set
equal to ȳa + ŷa.
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APPENDIX C LIST OF ACRONYMS

Table C.1 List of acronyms
Acronym Definition Acronym Definition
BD Benders Decomposition NCI Network Connectivity Inequality
CI Cover Inequality ND Network Design
DSP Dual Sub-Problem OD Origin-Destination
FP Flow Pack PDS Partial Decomposition Strategy
LB Lower Bound RMP Restricted Master Problem
LBF Lower Bounding Function SDSP Strong Dual Subproblem
LP Linear Programming SI Strong Inequalities
MCFNDSD Multi-Commodity Capacitated Fixed-charge Network Design Problem with Stochastic Demands SND Stochastic Network Design
MCI Minimum Cardinality Inequality SP Sub-Problem
MCNF Multi-Commodity Capacitated Network Flow UB Upper Bound
MILP Mixed-Integer Linear Program VI Valid Inequality
MP Master Problem WS Warm Start
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APPENDIX D PROOF OF PROPOSITION 5.1

To show the validity of the cut we need to demonstrate that the above inequality holds true
for any y ∈ F ⋂Zn+, i.e., it does not cut off any feasible integer solution. We first assume that
y∗ is an integer feasible solution, i.e., y∗ ∈ F ⋂Zn+. Accordingly, θ ≥ min(x,z)∈X{c>x : z =
y∗} = min(x,z)∈X{c>x : z = y∗, z ∈ Zn+} ≥ maxλ∈Rn

{
λ>y∗+min(x,z)∈X{c>x−λ>z : z ∈ Zn+}

}
for any y∗ ∈ F ⋂Zn+ ⊆ F . We thus deduce that θ ≥ λ>y + Q(λ) for any λ ∈ Rn is a valid
optimality cut at any feasible integer solution, where Q(λ) = min(x,z)∈X{c>x−λ>z : z ∈ Zn+}.
Thus, if y∗ is fractional and y∗ ∈ F , the validity of (5.10) follows from setting λ to an arbitrary
maximizer of maxλ∈Rn

{
λ>y∗ +Q(λ)

}
.
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APPENDIX E PROOF OF THEOREM 5.1

For a given y∗ ∈ F and λ̂, we have θ ≥ max
λ∈Rn

{
λ>y∗ + min

(x,z)∈X:z∈Zn
+

{c>x − λ>z}
}
≥ λ̂>y∗ +

min
(x,z)∈X:z∈Zn

+

{c>x − λ̂>z} ≥ λ̂>y∗ + min
(x,z)∈X

{c>x − λ̂>z}. This gives following two optimality

cuts : (i) θ ≥ λ̂>y + min
(x,z)∈X:z∈Zn

+

{c>x − λ̂>z} and (ii) θ ≥ λ̂>y + min
(x,z)∈X

{c>x − λ̂>z}. We

observe that the optimality cut (i) is equal to fixing λ to λ̂ in (5.9) to generate cut (5.10).
While the optimality cut (ii) is equal to the cut that we extract from (5.8) by setting λ = λ̂.
The cuts (i) and (ii) are in parallel since they have the same slope λ. However, the constant
part in the former is larger by an amount equal to the LP gap of the minimization problem
which is equal to σ in (5.11).
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APPENDIX F PROOF OF PROPOSITION 5.2

We first recall that following two formulations are equal

min
(x,z,v)∈Rm

+×R
n
+×R

l
+

{1>v : Bz ≥ b, Wx+ Tz + v ≥ h, z = y∗} = (F.1)

min
(x,z,v,u)∈Rm

+×R
n
+×R

l
+×R

k
+

{1>v + 1>u : Bz + u ≥ b, Wx+ Tz + v ≥ h, z = y∗} (F.2)

given that u = 0 since Bz ≥ b is satisfied through z = y∗ and y∗ is the master solution. Thus,
following the same steps as in Proposition (5.1), we directly conclude that (5.13) provides a
valid cut for any β ∈ Rn. To show that the cut is violated, notice that 1>v̄ > 0 in (F.1) given
that y∗ is an infeasible solution for which there is no x ∈ Rn

+ such that Wx ≥ h−Ty∗. Thus,

0 < min
(x,z,v,u)∈Rm

+×R
n
+×R

l
+×R

k
+

{1>v + 1>u : Bz + u ≥ b, Wx+ Tz + v ≥ h, z = y∗} =

max
β∈Rn

min
(x,z,v,u)∈Rm

+×R
n
+×R

l
+×R

k
+

{1>v + 1>u− β>(z − y∗) :

Bz + u ≥ b, Wx+ Tz + v ≥ h, z = y∗} ≤

max
β∈Rn

min
(x,z,v,u)∈Rm

+×Z
n
+×R

l
+×R

k
+

{1>v + 1>u− β>(z − y∗) :

Bz + u ≥ b, Wx+ Tz + v ≥ h, z = y∗}
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APPENDIX G PROOF OF THEOREM 5.2

First, recall that due to the Theorem 6.2 in Nemhauser and Wolsey (1988)

max
λ∈Rn

{
λ>y∗ + min

(x,z)∈X
{c>x− λ>z : z ∈ Zn+}

}
≡ max

λ∈Rn

{
λ>y∗ + min

(x,z)∈conv(X̃)
{c>x− λ>z}

}

and

max
β∈Rn

{
β>y∗ + min

(x,z′,v,u)∈H
{1>v + 1>u− β>z′ : z′ ∈ Zn+ : z′ ∈ Zn+}

}
≡ max

β∈Rn

{
β>y∗+

min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′}
}

where X̃ = X ∩ {z ∈ Zn+}, H̃ = H ∩ {z′ ∈ Zn+} and conv(Θ) represents the convex hull of a
given set Θ. Notice that we use z′ to represent the copied variables in the feasibility problem
in order to distinguish them from the copied variables that are included in the optimality
problem. We thus have the following reformulation of the LP relaxation of the MP,

min
θ,y∈Y

{
f>y + θ : θ ≥ max

λ∈Rn

{
λ>y + min

(x,z)∈conv(X̃)
{c>x− λ>z}

}
,

0 ≥ max
β∈Rn

{
β>y + min

(x,z′,v,u)∈conv(H̃)
{1>v + 1>u− β>z′}

}}
=

min
θ,y∈Y

{
f>y + θ : θ ≥ λ>y + min

(x,z)∈conv(X̃)
{c>x− λ>z} ∀λ ∈ Eo,

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

where Eo and Er are the sets of extreme points of the Lagrangian dual programs associated
to the optimality and feasibility cuts, respectively. Accordingly, we have the following master
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formulation

min
θ,y∈Y

{
f>y + θ : θ ≥ λ>y + min

(x,z)∈conv(X̃)
{c>x− λ>z} ∀λ ∈ Eo,

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

=

min
y∈Y

{
f>y + max

λ∈Eo

{
λ>y + min

(x,z)∈conv(X̃)
{c>x− λ>z}

}
:

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

=

min
y∈Y

{
max
λ∈Eo

min
(x,z)∈conv(X̃)

{f>y + c>x+ λ>(y − z)} :

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

It should be noted that for any function g : U×V → R, the following inequality between max-
min and min-max operators is always satisfied supu∈U infv∈V g(u; v) ≤ infv∈V supu∈U g(z; v).
Thus,

min
y∈Y

{
max
λ∈Eo

min
(x,z)∈conv(X̃)

{f>y + c>x+ λ>(y − z)} :

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

≥

max
λ∈Eo

min
y∈Y

{
min

(x,z)∈conv(X̃)
{f>y + c>x+ λ>(y − z)} :

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

=

max
λ∈Eo

min
y∈Y,(x,z)∈conv(X̃)

{
f>y + c>x+ λ>(y − z) :

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

≥

max
λ∈Eo

min
y∈Rn

+,(x,z)∈conv(X̃)

{
f>y + c>x+ λ>(y − z) :

0 ≥ β>y + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}

The last inequality is true given that we have removed the constraint set By ≥ b. One should
notice that the last max-min problem is the Lagrangian dual associated with

min
y∈Rn

+,(x,z)∈conv(X̃)
{f>y + c>x : y = z, 0 ≥ β>y + min

(x,z′,v,u)∈conv(H̃)
{1>v + 1>u− β>z′} ∀β ∈ Er},
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where y = z is priced into the objective function. This problem is equivalent to

min
(x,z)∈conv(X̃)

{f>z + c>x : 0 ≥ β>z + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er}.

Recalling that conv(X̃) = X ∩ {z ∈ Zn+}, by expanding conv(X̃), we rewrite the previous
minimization problem as

min
(x,z)∈Rm

+×Z
n
+

{
f>z + c>x : Bz ≥ b, Wx+ Tz ≥ h,

0 ≥ β>z + min
(x,z′,v,u)∈conv(H̃)

{1>v + 1>u− β>z′} ∀β ∈ Er
}
.

In the above formulation the feasibility cuts become redundant since any z is guaranteed to
satisfy Wx+ Tz ≥ h. We thus obtain

min
(x,z)∈Rm

+×Z
n
+

{f>z + c>x : Bz ≥ b, Wx+ Tz ≥ h}

which is equivalent to the original problem (5.1).
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APPENDIX H PROOF OF PROPOSITION 5.3

We have θ ≥ max
λ∈Rn

min
(x,z)∈X

{c>x− λ>(z− y∗) : z ∈ Zn+} ≥ max
λ∈Rn

min
(x,z)∈X

{c>x− λ>(z− y∗) : zI ∈

Z
|I|
+ } ≥ max

λ∈Rn

{
min

(x,z)∈X
{c>x−λ>(z− y∗) : zI ∈ Z|I|+ } : λI′ = λ̂I′

}
= max

λ∈Rn

{
min

(x,z)∈X:zI∈Z
|I|
+

{c>x−

λ>(z − y∗)} : λI′ = λ̂I′
}
≥ max

λ∈Rn

{
min

(x,z)∈X:zI∈Z
|I|
+

{c>x − λ>(z − y∗) : zI′ = ubI′} : λI′ = λ̂I′
}
.

Note that the last inequality is true due to our assumption and the condition imposed on
λ̂I′ .
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APPENDIX I PROOF OF PROPOSITION 5.4

Let us assume that (x̄, z̄) is the actual optimal solution of the subproblem and let Q(x̄, z̄) and
Q(x̂(ε), ẑ(ε)) be the objective value of the minimization problem for the optimal and ε-optimal
solutions, respectively. Since the solution (x̄(ε), z̄(ε)) is ε-optimal, we have Q(x̂(ε), ẑ(ε)) −
Q(x̄, z̄) ≤ ε or equivalently Q(x̄, z̄) ≥ Q(x̂(ε), ẑ(ε))− ε. We know that θ ≥ Q(x̄, z̄) + y>λ∗ for
all y ∈ Y and thus θ ≥ Q(x̂(ε), ẑ(ε))− ε+ y>λ∗ = c>x̂(ε) + (y − ẑ(ε))>λ∗ − ε for all y ∈ Y .
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APPENDIX J LAGRANGIAN DUAL DECOMPOSITION METHOD

Without lose of generality, we rewrite problem (5.1) as follows

min
y,x,z
{f>y + c>x : By ≥ b, Wx+ Tz ≥ h, z = y, y ∈ Zn+, z ∈ Zn+, x ∈ Rm

+}

Pricing out the equality constraint z = y into the objective function using dual multiplier
λ ∈ Rn results into following Lagrangian dual problem

max
λ∈Rn

min
y,x,z
{f>y + c>x+ λ>(y − z) : By ≥ b, Wx+ Tz ≥ h, y ∈ Zn+, z ∈ Zn+, x ∈ Rm

+} =

max
λ∈Rn

min
y,x,z
{(f + λ)>y + c>x− λ>z : By ≥ b, Wx+ Tz ≥ h, y ∈ Zn+, z ∈ Zn+, x ∈ Rm

+}

for which the minimization problem can be optimized separately over y and (z, x) variables.
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APPENDIX K EXAMPLE

In this part, we provide the details of solving the toy example (5.15) when the strengthened
Benders cuts and the Lagrangian cuts are used.

Strengthened Benders cuts

Considering the binary variable as the complicating one, we derive the following relaxed LP
master problem,

min
y,θ
{θ : 1 ≥ y ≥ 0}, (A.1)

and the following subproblem

min
z,x

{
x : x+ 15z ≥ 8, 3x+ 10z ≥ 13, x+ 10z ≥ 7,

2x− 10z ≥ −1, 2x− 70z ≥ −49, z = ȳ, z ∈ [0, 1]
} (A.2)

where z is a copy of the y variable and ȳ is the current master solution. Solving the master
problem (A.1) yields ȳ = 0. This is an integer point and thus we only generate the (genera-
lized) Benders cut by solving subproblem (A.2) for ȳ = 0. This gives x = 8 and λ = −15,
where λ is the multiplier associated to the constraint z − ȳ = 0. We can thus generate an
optimality cut and updates the master problem (A.1) as follows :

min
y,θ
{θ : θ ≥ 8− 15y, 1 ≥ y ≥ 0} (A.3)

In next iteration, solving the master problem (A.3) gives y = 1 and solving the subproblem
(A.2) for ȳ = 1 yields x = 10.5 and λ = 35. Thus, we can generate a new optimality cut and
update the master problem as follows :

min
y,θ
{θ : θ ≥ 8− 15y, θ ≥ −49

2 + 35y, 1 ≥ y ≥ 0} (A.4)

Solving the above master problem we get a lower bound of -1.75 and y = 0.65. We get λ = 5
by solving subproblem (A.2) for ȳ = 0.65, resulting the Benders cut θ ≥ −0.5 + 5y. Since the
master solution is fractional, we can generate the strengthened Benders cut by solving the
following Lagrangian dual subproblem (obtained from relaxing z = ȳ into objective function
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and imposing integrality requirement on the z variable) :

min
z,x

{
x+ 5(ȳ − z) : x+ 15z ≥ 8, 3x+ 10z ≥ 13, x+ 10z ≥ 7,

2x− 10z ≥ −1, 2x− 70z ≥ −49, z ∈ {0, 1}
} (A.5)

the optimal solution of the above problem is z = 1 with objective value of 5.5. This gives the
strengthened Benders cuts θ ≥ 5.5 + 5y which is 6 units tighter than the classical Benders at
any master solution. Adding this cut to the master problem (A.4), we get

min
y,θ
{θ : θ ≥ 8− 15y, θ ≥ −49

2 + 35y, θ ≥ 5.5 + 5y, 1 ≥ y ≥ 0} (A.6)

with y = 0.125 and the lower bound of 6.125. Executing the next iteration, we observe that
this is the best solution that we can get for the LP relaxation of the master problem.

Lagrangian cuts

Note from section K that the master problem generates integer solutions for the first two
iterations. As we mentioned earlier, the classical Benders cuts are the tightest at the integer
points. We thus start directly from following master problem to avoid reduplication of the
results,

min
y,θ
{θ : θ ≥ 8− 15y, θ ≥ −49

2 + 35y, 1 ≥ y ≥ 0} (A.7)

which gives the lower bound of -1.75 and y = 0.65. To generate the Lagrangian cut, we need
to solve the following Lagrangian dual problem :

max
λ

{
λȳ + min

z,x

{
x− λz : x+ 15z ≥ 8, 3x+ 10z ≥ 13, x+ 10z ≥ 7,

2x− 10z ≥ −1, 2x− 70z ≥ −49, z ∈ {0, 1}
}} (A.8)

To solve (A.8), we use the subgradient method. To initiate the λ value, we solve problem
(A.2) with ȳ = 0.65 which gives λ = 5. For this λ value, we solve the inner minimization
problem of (A.8), i.e.,

min
z,x

{
x− 5z : x+ 15z ≥ 8, 3x+ 10z ≥ 13, x+ 10z ≥ 7,

2x− 10z ≥ −1, 2x− 70z ≥ −49, z ∈ {0, 1}
}
,

(A.9)

which gives z = 1 and x = 5.5. Notice that z = 1 is a feasible solution to the original problem
and its associated cost is 10.5 units. We can thus update the upper bound at this step. Given
the lower bound of -1.75, upper bound of 10.5, a step size of 10

49 , ȳ = 0.65, and z = 1, we
update the dual multiplier as follows λ = 5− 10

49
(10.5+1.75)
||1−0.65||22

(1− 0.65) = 2.5. We solve again the
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Lagrangian subproblem (A.9) with the new λ multiplier, i.e.,

min
z,x

{
x− 2.5z : x+ 15z ≥ 8, 3x+ 10z ≥ 13, x+ 10z ≥ 7,

2x− 10z ≥ −1, 2x− 70z ≥ −49, z ∈ {0, 1}
}
.

(A.10)

This gives x = 8, z = 0, and an optimality cut of θ ≥ 8 + 2.5y. It is easy to observe that
this cut gives the convex hull representation of the master problem. We thus terminate the
subgradient method. Moreover, z = 0 is a new integer solution which is feasible to the original
problem, we can thus update the upper bound value from 10.5 to 8.
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APPENDIX L THE TEST PROBLEMS

In this section, we give the mathematical formulation of our test problems.

Multicommodity capacitated network design

This problem is defined on a directed graph with a set of potential arcs A and the node set
N . The goal is to chose the most appropriate subset of the arcs such that each commodity
k, from set K, can flow from its unique origin node O(k) ∈ N to its unique destination node
D(k) ∈ N , while the total cost is minimum. Three parameters are associated to each arc
a ∈ A, i.e., fixed cost fa, capacity ua and flow cost cka per unit of flow for commodity k ∈ K.
Each commodity k ∈ K is associated with a stochastic demand characterized by dks for each
observation of the uncertainty s ∈ S. To model this problem, we define binary variables ya
(equal to 1 if arc a ∈ A is chosen and 0 otherwise) and continuous variables xa,ks (to measure
the amount of flow on arc a ∈ A under observation s ∈ S for commodity k ∈ K). Thus, the
extensive formulation of this problem is

ND := min
y∈{0,1}|A|, x∈R|A|×|K|×|S|+

∑
a∈A

faya +
∑
s∈S

∑
a∈A

∑
k∈K

psc
k
ax

a,k
s (B.1)

s.t.
∑

a∈A+(i)
xa,ks −

∑
a∈A−(i)

xa,ks = dis ∀i ∈ N, k ∈ K, s ∈ S (B.2)

∑
k∈K

dksx
a,k
s ≤ uaya ∀a ∈ A, s ∈ S (B.3)

where A+(i)/A−(i) indicates the set of outward/inward arcs to node i ∈ N , ps is probability
of scenario s and dis is equal to dks

(
− dks

)
if i = O(k)

(
D(k)

)
, and 0 otherwise.

Stochastic capacitated facility location problem

To define this problem, let N be the set of potential locations for the facilities and M the set
of customers. The goal is to open sufficient facilities to satisfy all the demand at minimum
cost. Each customer may be served by one or several facilities. At each potential location
i ∈ N , at most one facility with service capacity of ui can be opened which entails a fixed
cost of fi units. The routing cost from customer j ∈ M to facility i ∈ N per unit of flow is
cij. Each customer j ∈ M has a stochastic demand dsj , where s ∈ S is a specific realization
of the uncertainty with probability of ps such that ∑s∈S ps = 1.

Let binary variable yi take 1 if a facility is opened at location i ∈ N and 0 otherwise, and let
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xsij ≥ 0 indicate the amount of flow from customer j ∈ J to facility i ∈ I under realization
s ∈ S. We thus use following formulation of this problem

SFL := min
y∈{0,1}|N|, x∈R|N|×|M|×|S|+

∑
i∈N

fiyi +
∑
s∈S

∑
i∈N

∑
j∈M

pscijx
s
ij (B.4)

s.t.
∑
i∈N

xsij ≥ dsj ∀j ∈M, s ∈ S (B.5)
∑
j∈M

xsij ≤ uiyi ∀i ∈ N, s ∈ S (B.6)

∑
i∈N

uiyi ≥ max
s∈S

∑
j∈M

dsj (B.7)

The objective function minimizes the total fixed costs of opening facility plus the expected
flow cots. First constraint set imposes the demand satisfaction for each customer in every
scenario. Second constraint set imposes the capacity restriction on each facility and the last
constraint is to add the relatively complete recourse property to the problem.

Stochastic network interdiction

This problem is defined over a directed graph consisting a set of nodes N , arcs A, and a
subset of candidate arcs L ⊆ A on which sensors can be installed. The goal is to maximize
the probability of catching an intruder that traverses some path in the network. The first-
stage decisions determine whether or not to install a sensor on arc a ∈ L knowing the
probability of the intruder avoiding detection with and without a sensor on this arc (denoted
by ra and qa). A scenario s ∈ S, with probability of ps, corresponds to the origin Os and
destination Ds of the intruder. Cost of installing of a sensor on arc a ∈ D is ca units and
there is a total budget of b units to install sensors. In the second-stage the intruder choses a
maximum-reliability path from its origin to the targeted node that maximizes the probability
of avoiding detection. The maximum-reliability path from node j ∈ N to destination Ds is
represented by ψjs.

The first-stage binary variables ya takes value of 1 if a sensor is installed on arc a ∈ L and
0 otherwise. The second-stage variables πis, ∀i ∈ N, s ∈ S model the probability of reaching
destination Ds from node i without being detected. The formulation of this problem is as
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follows :

SNI := min
y∈{0,1}|L|,π∈<|N||S|+

∑
s∈S

psπ
Os
s (B.8)

s.t.
∑
a∈L

caya ≤ b (B.9)

πDs
s = 1 ∀s ∈ S (B.10)

πa
+

s − qaπa
−

s ≥ 0 ∀a ∈ L, s ∈ S (B.11)

πa
+

s − raπa
−

s ≥ 0 ∀a ∈ A\L, s ∈ S (B.12)

πa
+

s − raπa
−

s ≥ −(ra − qa)ψa
−

s ya ∀a ∈ L, s ∈ S (B.13)

where a+ and a− indicate the tail and head of arc a. Constraint (B.9) imposes the budget
restriction. The remaining constraints calculate the least probability that the intruder can
reach to the destination undetected.
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APPENDIX M PROOF OF PROPOSITION 6.1

It is trivial to observe that dȳe ∈ Y due to assumption (ii). Let assume that the recourse cost
associated to the rounded solution dȳe is known and given by ν ′s for each s ∈ S. Thus, for this
integer solution, a valid upper bound can be calculated from f>dȳe+∑

s∈S ρsν
′
s ≥ z∗. On the

other hand, based on the assumptions (ii) and (iii), we have ν∗s = Q(ȳ, s) ≥ Q(dȳe, s) = ν ′s.
Thus, f>dȳe+∑

s∈S ρsν
∗
s ≥ f>dȳe+∑

s∈S ρsν
′
s ≥ z∗. �
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APPENDIX N PROOF OF PROPOSITION 6.2

If |Sg| = 1, the results follows immediately from the disaggregated version of the BD method.
To proof the validity of the cuts for 1 < |Sg| ≤ |S|, we need to show that the derived SP
gives a valid lower approximation of the aggregated recourse variables for any y ∈ Y .

θs ≥ min
x∈Rm

+
{c>xs : Wxs ≥ hs − Tsy} s ∈ Sg

βs ≥ 0 → βsθs ≥ min
x∈Rm

+
{βsc>xs : Wxs ≥ hs − Tsy} s ∈ Sg∑

s∈Sg

βsθs ≥ min
x∈Rm|S|

+

{
∑
s∈Sg

βsc
>xs : Wxs ≥ hs − Tsy, s ∈ Sg} ≥ min

x∈Rm|S|
+

{
c>

∑
s∈Sg

βsxs :

∑
s∈Sg

Wβsxs ≥
∑
s∈Sg

βs(hs − Tsy)
}

The last inequality holds because we have aggregated the constraints using convex combina-
tion weights 1 ≥ βs ≥ 0 such that ∑s∈Sg

βs = 1. We next consider a variable transformation∑
s∈Sg

βs = 1, xg = ∑
s∈Sg

βsxs, hg = ∑
s∈Sg

βshs, Tg = ∑
s∈Sg

βsTs. Thus,

∑
s∈Sg

βsθs ≥ min
x∈Rm

+
{c>xg : Wxg ≥ hg − Tgy} = max

α∈Rl
+

{(hg − Tgy)>α : W>α ≤ c} ∀y ∈ Y,

Also, we observe that the dual polyhedron is identical to a regular dual SP which indicates
the validity of the feasibility cut. �
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APPENDIX O PROOF OF THEOREM 6.1

For an arbitrary first-stage solution y ∈ Y , let σg = (hg − Tgy)>αg be the right hand side
of the optimality cut generated from artificial scenario g ∈ G and let θ∗s = (hs − Tsy)>αi∗s ,
where i∗ ∈ arg maxi∈Et

s
(hs − Tsy)>αis for which Et

s is the set of optimality cuts associated
to scenario s at iteration t. If the cut from the artificial SP is violated by the y solution, it
means that σg > ∑

s∈Sg
βsθ
∗
s . For a given y solution, the MP can be separated for each cluster

g ∈ G and can be defined as :

min
∑
s∈Sg

ρsθs

∑
s∈Sg

βsθs ≥ σg

θs ≥ θ∗s s ∈ Sg.

It can be shown that the above formulation has a knapsack structure and since σg >∑
s∈Sg

βsθ
∗
s , the recourse variable θs̃ takes the extra violation σg − ∑s∈Sg

βsθ
∗
s > 0, where

s̃ ∈ arg mins∈Sg

ρs

βs
. This gives θs̃ = θ∗s̃ + 1

βs̃
(σg −∑s∈Sg

βsθ
∗
s) which results in a lower bound

improvement of ∆ := ρs̃

βs̃
(σg −∑s∈Sg

βsθ
∗
s) at the given y solution. The maximum value of ∆

is achieved when βs = ρs. Considering
∑
s∈Sg

βs = 1 and S} ≤ |S|, the maximum value of ∆
is achieve at βs = ρs∑

s∈Sg
ρs
. �
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APPENDIX P STOCHASTIC NETWORK DESIGN PROBLEM

The MCFNDSD is defined on a directed graph consisting a set of nodes N and a set of
potential arcs A. In this problem, a set of commodities K exist where each commodity k ∈ K
has an uncertain amount of demand that needs to be routed from its unique origin O(k) ∈ N
to its unique destination D(k) ∈ N . We assume that the demand is characterized with a set
of discrete scenarios S. Therefore, each commodity k ∈ K has a stochastic demand which is
denoted by dks ≥ 0 for each possible scenario s ∈ S. We assume that the realization probability
for each scenario s ∈ S is known and denoted by ρs such that ∑s∈S ρs = 1. The goal is to
select a proper subset of the arcs to meet all the flow requirements at minimum cost. To use
arc a ∈ A we need to pay a fixed cost of fa units and to route a unit of commodity k ∈ K
on this arc cka units will be charged. In addition, there is a capacity limit ua on each arc
a ∈ A. Thus, the objective function is to minimize sum of the fixed costs and the expected
flow costs.

To model this stochastic problem we define the binary first-stage variables ya indicating if arc
a ∈ A is used 1 or not 0. To model the second-stage, we define continuous variables xk,sa ≥ 0
to reflect the amount of flow on arc a ∈ A for commodity k ∈ K under realization s ∈ S.
The extensive formulation of MCFNDSD is thus :

MCFNDSD = min
y∈{0,1}|A|,x∈<|A||K||S|+

∑
a∈A

faya +
∑
s∈S

ρs
∑
k∈K

∑
a∈A

ckax
k,s
a (B.1)

s.t :
∑

a∈A(i)+

xk,sa −
∑

a∈A(i)−
xk,sa =


dks if i = O(k)
−dks if i = D(k)
0 otherwise

∀i ∈ N , k ∈ K, s ∈ S

(B.2)∑
k∈K

xk,sa ≤ uaya ∀a ∈ A, s ∈ S,

(B.3)

where A(i)+ and A(i)− indicate the set of outward and inward arcs incident to node i. The
objective function minimizes the total fixed costs plus the expected routing costs. For each
scenario, constraint set (B.2) imposes the flow conservation requirements for each commodity
and node. Constraints (B.3) enforce the capacity limit on each arc in every scenario. To
introduce the complete recourse property for the above formulation, we add a dummy arc
between each O-D pair with large routing cost as an outsourcing strategy.
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APPENDIX Q TEST INSTANCES

Table Q.1 presents the detail of the used instances problems from R family which we used
in this article.

Table Q.1 Attributes of the instance classes

Name |N | |A| |K| |Ω| Cost/Capacity Ratio Correlation #Instances
r04 10 60 10 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r05 10 60 25 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r06 10 60 50 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r07 10 82 10 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r08 10 83 25 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r09 10 83 50 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r10 20 120 40 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r11 20 120 100 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
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APPENDIX R NUMERICAL RESULTS OF THE SEQUENTIAL
ALGORITHM

To make fair comparisons, we have incorporated the techniques that we developed in sec-
tions 6.4.1, 6.4.2, and 6.4.4 into our sequential method (presented in Algorithm 2). We have
also incorporated the classical acceleration techniques which we have used in our parallel
algorithms, see section 6.7.

In this appendix, we present some numerical results to complement our numerical assessments
in section 6.8. In Figure R.1, we thus study impact of the cut aggregation over the sequential
algorithm. For each aggregation level, we have ran the algorithm for 2 hours. The value on
each column indicates the average optimality gap in percentages.

Figure R.1 Comparison of various cut aggregation levels for the sequential BD method

We next present the numerical performance of the sequential algorithm for a run time limit
of 10 hours. The results are presented in Table R.1.

Table R.1 Numerical results of the sequential BD algorithm

#Instance Time to solve LP Total Time Gap(%) Sol.(%)
r04 3 31.43 1098.21 0.36 100.00
r05 3 159.20 798.77 0.47 100.00
r06 3 775.99 14671.58 1.23 66.67
r07 3 34.81 12087.66 0.76 66.67
r08 3 224.44 12259.00 2.34 66.67
r09 3 1188.19 24270.19 2.79 33.33
r10 3 3582.01 24521.04 6.80 33.33
Ave. 3 856.58 12815.21 2.11 66.67
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