53 research outputs found

    Incentive Based Load Shedding Management in a Microgrid Using Combinatorial Auction with IoT Infrastructure

    Get PDF
    This paper presents a novel incentive-based load shedding management scheme within a microgrid environment equipped with the required IoT infrastructure. The proposed mechanism works on the principles of reverse combinatorial auction. We consider a region of multiple consumers who are willing to curtail their load in the peak hours in order to gain some incentives later. Using the properties of combinatorial auctions, the participants can bid in packages or combinations in order to maximize their and overall social welfare of the system. The winner determination problem of the proposed combinatorial auction, determined using particle swarm optimization algorithm and hybrid genetic algorithm, is also presented in this paper. The performance evaluation and stability test of the proposed scheme are simulated using MATLAB and presented in this paper. The results indicate that combinatorial auctions are an excellent choice for load shedding management where a maximum of 50 users participate

    Algorithm Selection in Auction-based Allocation of Cloud Computing Resources

    Get PDF

    05011 Abstracts Collection -- Computing and Markets

    Get PDF
    From 03.01.05 to 07.01.05, the Dagstuhl Seminar 05011``Computing and Markets\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Optimizing the Replication of Multi-Quality Web Applications Using ACO and WoLF

    Get PDF
    This thesis presents the adaptation of Ant Colony Optimization to a new NP-hard problem involving the replication of multi-quality database-driven web applications (DAs) by a large application service provider (ASP). The ASP must assign DA replicas to its network of heterogeneous servers so that user demand is satisfied and replica update loads are minimized. The algorithm proposed, AntDA, for solving this problem is novel in several respects: ants traverse a bipartite graph in both directions as they construct solutions, pheromone is used for traversing from one side of the bipartite graph to the other and back again, heuristic edge values change as ants construct solutions, and ants may sometimes produce infeasible solutions. Experiments show that AntDA outperforms several other solution methods, but there was room for improvement in the convergence rates of the ants. Therefore, in an attempt to achieve the goals of faster convergence and better solution values for larger problems, AntDA was combined with the variable-step policy hill-climbing algorithm called Win or Learn Fast (WoLF). In experimentation, the addition of this learning algorithm in AntDA provided for faster convergence while outperforming other solution methods

    Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

    Get PDF
    A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production management, games theory, and resources allocation in multi-agent systems. This has motivated the quest for efficient approximate algorithms both in terms of solution quality and computational time. This paper proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS) algorithm for solving Winner Determination Problem (WDP) in combinatorial auctions. Our proposed MNLS algorithm uses the fact that using various neighborhoods in local search can generate different local optima for WDP and that the global optima of WDP is a local optima for a given its neighborhood. Therefore, proposed MNLS algorithm simultaneously explores a set of three different neighborhoods to get different local optima and to escape from local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems confirm the efficiency of ACO-MNLS in the terms of solution quality and computational time

    Instantaneous multi-sensor task allocation in static and dynamic environments

    Get PDF
    A sensor network often consists of a large number of sensing devices of different types. Upon deployment in the field, these sensing devices form an ad hoc network using wireless links or cables to communicate with each other. Sensor networks are increasingly used to support emergency responders in the field usually requiring many sensing tasks to be supported at the same time. By a sensing task we mean any job that requires some amount of sensing resources to be accomplished such as localizing persons in need of help or detecting an event. Tasks might share the usage of a sensor, but more often compete to exclusively control it because of the limited number of sensors and overlapping needs with other tasks. Sensors are in fact scarce and in high demand. In such cases, it might not be possible to satisfy the requirements of all tasks using available sensors. Therefore, the fundamental question to answer is: “Which sensor should be allocated to which task?", which summarizes the Multi-Sensor Task Allocation (MSTA) problem. We focus on a particular MSTA instance where the environment does not provide enough information to plan for future allocations constraining us to perform instantaneous allocation. We look at this problem in both static setting, where all task requests from emergency responders arrive at once, and dynamic setting, where tasks arrive and depart over time. We provide novel solutions based on centralized and distributed approaches. We evaluate their performance using mainly simulations on randomly generated problem instances; moreover, for the dynamic setting, we consider also feasibility of deploying part of the distributed allocation system on user mobile devices. Our solutions scale well with different number of task requests and manage to improve the utility of the network, prioritizing the most important tasks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Combinatorial auctions for electronic business

    Get PDF
    Combinatorial auctions (CAs) have recently generated significant interest as an automated mechanism for buying and selling bundles of goods. They are proving to be extremely useful in numerous e-business applications such as e-selling, e-procurement, e-logistics, and B2B exchanges. In this article, we introduce combinatorial auctions and bring out important issues in the design of combinatorial auctions. We also highlight important contributions in current research in this area. This survey emphasizes combinatorial auctions as applied to electronic business situations
    • …
    corecore