
Algorithm Selection in Auction-based
Allocation of Cloud Computing Resources

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Diana Gudu
aus Slobozia, Rumänien

Tag der mündlichen Prüfung: 17. Juli 2019
Erster Gutachter: Prof. Dr. Achim Streit
Zweiter Gutachter: Prof. Dr. Dorothea Wagner

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en

Erklärung zur selbständigen Anfertigung der Dissertationsschrift

Hiermit erkläre ich, dass ich die Dissertationsschrift mit dem Titel

Algorithm Selection in Auction-based Allocation of Cloud Computing Resources

selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittelbe-
nutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemach-
tund die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für
Technologie (KIT) beachtet habe.

Ort, Datum Diana Gudu

To my family.

Abstract

The hallmarks of Cloud Computing—pay-as-you-go, on-demand provisioning, and well-
defined service level agreements—have fostered a strong relation between its usage and the
financial aspects, making it the ideal candidate for amarket-based resource allocation. Market-
based approaches can increase provider revenue and resource utilization by providing appro-
priate economic incentives to cloud providers and customers.

This thesis addresses limitations of current cloud resource allocation approaches: on the
one hand, in dealing with fluctuating demand and supply, and on the other hand, in provid-
ing greater control to cloud customers. The goal is to ultimately enable a more flexible and
efficient allocation through market-based mechanisms. As a result, I propose and motivate
a model for the cloud resource allocation problem as a double combinatorial auction. The
principal reason why a combinatorial auction-based approach has not yet been used in prac-
tice is its intractability. This thesis is focused on making combinatorial auctions practicable,
in the context of cloud resource allocation. This is based on the assumption that sacrificing
optimality in favor of speed is acceptable, but it needs to be bounded, which opens up the
possibility of using approximate, heuristic algorithms.
The key contributions of this thesis are two meta-heuristic approaches, that enable the se-

lection of the most appropriate heuristic algorithm for any given input.
These algorithm selection approaches are founded on a portfolio of heuristic algorithms.

The portfolio is created by adapting existing approaches, as well as applying generic optimiza-
tion methods, to the proposed problem model. However, a systematic and comprehensive
comparison of existing work was lacking. I perform such a comparative study in this thesis,
harmonized through a common problem formulation and test data. A pivotal finding is the
fact that no algorithm outperforms the others in all the test cases.

To assist in the evaluation, a new approach for input data generation is proposed, which
enables the creation of realistic data for cloud auctions, while considering the double combi-
natorial aspect. This was necessary, as there is no cloud-specific auction data available, and
existing work on auction data generation is not applicable to the modeled auction flavor.
The two algorithm selection approaches distinguish themselves from relatedwork through

the fact that they target heuristic algorithms rather than optimal ones, and implicitly consider
two typically conflicting objectives when selecting the best algorithm—fast execution and
high solution quality. A cost model is proposed, which quantifies this described trade-off,
and facilitates algorithm comparison in the multi-objective space. The first algorithm selec-
tion approach uses domain knowledge and supervised learning to create a prediction model
of the best algorithm, while the second approach uses algorithm properties and probes the
search space to create per-algorithm performance models—which are ultimately used to de-

vii

cide which algorithm ismost suitable. The two approaches complement each other, and each
has its ownmerits. While the second approach is domain-independent and thusmore general,
the first approach has a faster selection (since the training is done beforehand) and thus more
suitable when algorithm speed is essential.

Finally, an extensive evaluation shows that both approaches can predict the best algorithm
fairly accurately. More importantly, the evaluation reveals that they perform better than any
individual algorithm, thus demonstrating the value of the proposed approaches, and of algo-
rithm selection in general.

viii

Zusammenfassung

Die Merkmale von Cloud Computing—Pay-as-you-go, On-Demand-Provisioning und klar
definierte Service Level Agreements—haben einen starken Zusammenhang zwischen der
Nutzung und den finanziellen Aspekten geschaffen und machen es zum idealen Kandidaten
für eine marktbasierte Ressourcenallokation. Marktbasierte Ansätze können den Umsatz
und die Ressourcenausnutzung von Anbietern steigern, indem sie geeignete wirtschaftliche
Anreize für Cloud-Anbieter und Kunden schaffen.

Diese Arbeit befasst sich mit den Grenzen der aktuellen Ansätze der Cloud-Ressourcen-
allokation: mit dem Umgang schwankender Nachfrage und Angebot auf der einen Seite,
undmit der Bereitstellung einer besseren Kontrolle für Cloud-Kunden auf der anderen Seite.
Ziel ist es, letztlich eine flexiblere und effizientere Zuordnung durch marktbasierte Mecha-
nismen zu ermöglichen. Als Ergebnis schlage ich ein Modell für das Problem der Cloud-
Ressourcenallokation als doppelte kombinatorische Auktion vor. Der Hauptgrund, warum
ein kombinatorischer auktionsbasierter Ansatz in der Praxis noch nicht angewendet wurde,
ist seine Komplexität. Diese Arbeit konzentriert sich darauf, kombinatorische Auktionen
im Rahmen der Cloud-Ressourcenallokation praktikabel zu machen. Dies basiert auf der
Annahme, dass es akzeptabel ist, die Optimalität zugunsten der Geschwindigkeit zu opfern,
wodurch es möglich wird, approximative, heuristische Algorithmen einzusetzen.

Die wichtigsten Beiträge dieser Arbeit sind zwei meta-heuristische Ansätze, die es er-
möglichen, den am besten geeigneten heuristischen Algorithmus für jeden Input zu wählen.

Diese Algorithmus-Auswahlverfahren basieren auf einem Portfolio von heuristischen Al-
gorithmen. Das Portfolio besteht aus angepassen bestehendenAnsätze sowie generischer Op-
timierungsmethoden die auf das vorgeschlagene Problemmodell angewendet werden. Da ein
systematischer und umfassender Vergleich der vorhandenenArbeiten jedoch fehlte, führe ich
eine solche vergleichende Studie in dieser Arbeit, erstellte durch eine gemeinsame Problem-
formulierung und gleichen Testdaten. Eine entscheidende Erkenntnis ist die Tatsache, dass
kein Algorithmus die anderen in allen Testfällen übertrifft.

Zur Unterstützung der Bewertung wird ein neuer Ansatz für die Generierung von Input-
Daten vorgeschlagen, der die Erstellung realistischer Daten für Cloud-Auktionen unter
Berücksichtigung des doppelten kombinatorischenAspekts ermöglicht. Dieswar notwendig,
da keine cloudspezifischen Auktionsdaten verfügbar sind und bestehende Arbeiten zur
Generierung von Auktionsdaten für die modellierten Auktionsvarianten nicht anwendbar
sind.

Die beiden Algorithmus-Auswahlverfahren unterscheiden sich von verwandten Arbeiten
dadurch, dass sie auf heuristische statt auf optimale Algorithmen abzielen und bei der
Auswahl des besten Algorithmus zwei typischerweise gegensätzliche Ziele berücksichtigen—

ix

schnelle Ausführung und hohe Lösungsqualität. Es wird ein Kostenmodell vorgeschla-
gen, das diesen beschriebenen Kompromiss quantifiziert und den Algorithmenvergleich
im mehrkriteriellen Raum erleichtert. Der erste Algorithmus-Auswahlansatz verwendet
Domänenwissen und überwachtes Lernen, um ein Vorhersagemodell des besten Algorith-
mus zu erstellen, während der zweite Ansatz Algorithmeneigenschaften verwendet und den
Suchraum untersucht, um Leistungsmodelle pro Algorithmus abzuleiten, die letztlich ver-
wendet werden, um zu entscheiden, welcher Algorithmus am besten geeignet ist. Die beiden
Ansätze ergänzen sich gegenseitig und haben jeweils ihre eigenen Vorzüge. Während der
zweite Ansatz domänenunabhängig und damit allgemeiner ist, hat der erste Ansatz eine
schnellere Auswahl (da das Training vorher durchgeführt wird) und ist somit besser geeignet,
wenn die Geschwindigkeit des Algorithmus entscheidend ist.

Schließlich zeigt eine umfangreiche Auswertung, dass beide Ansätze den besten Algorith-
mus in den meißten Fällen vorhersagen können. Noch wichtiger ist, dass sie besser abschnei-
den als jeder Algorithmus einzeln abschneiden würde und so den Wert der vorgeschlagenen
Ansätze, als auch der Algorithmusauswahl im Allgemeinen, demonstrieren.

x

Acknowledgments

This thesis would not have been possible without the help of a number of people, towhom
I would like to give my sincere thanks.

First of all, I would like to express my deep gratitude to my supervisor Prof. Achim Streit,
for giving me the opportunity to pursue my PhD under his guidance, for his support and
valuable feedback throughout this entire process, and above all for providing an environment
where I learned about all the facets of research. I would like to sincerely thank Prof. Dorothea
Wagner for accepting to bemy co-supervisor, and for providingmewith constructive feedback
that contributed to significant improvements in my work.

I am particularly thankful to Marcus Hardt for all the time, patience, and energy he dedi-
cated to supervising my work, from inception to the final write-up. His enthusiasm for dis-
cussing any new ideas, his always on-point questions, his patience for reading and correcting
all my writings, or for going through the abundance of plots I tend to create, his continu-
ous encouragements, all made my work better, and gave me confidence in my abilities as a
researcher. I am also thankful for the team feeling he managed to create, which contributed
to a great working atmosphere.

A very special thank you goes to Peter Krauß, whose contribution to successfully finishing
this work cannot be overstated. From the ideas we came up with over countless cups of cof-
fee, embedded all over this thesis, to the intense programming sessions on the joint project, he
made the PhDpursuit less lonely. I am especially grateful for his invaluable infrastructure sup-
port andmoral support during the thesis writing, which helpedme stay sane and successfully
reach the finish line.

I owemany thanks to Yoshiyuki Sakai, whose love for science and incredible ability to look
at the big picture helped discover and shape the topic of this thesis early on, through countless
stimulating discussions. I also am grateful for his support in carefully correcting many of my
writings, and patiently listening to my conference presentations.

I am also thankful to all my current and former colleagues, for countless enjoyments, lively
lunch break discussions, which created a warm and inspiring atmosphere. I would also like to
extend my thanks to Gabriel, for his hard work in implementing the initial algorithm portfo-
lio.

Last, but not least, I would like to thank my family, Stelian, Marioara, Tania, Andrei, for
their unconditional love and support throughout this long journey, ever since I decided to
move to Germany and follow my passion for science. I would not be here without them.
Haristo!

Diana Gudu
Karlsruhe, May 2019

xi

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Scientific Contributions . 5
1.3 List of Publications . 8
1.4 Thesis Outline . 9

2 Background 11
2.1 Evolution of Cloud Computing . 11

2.1.1 Cloud Fundamentals . 12
2.1.2 Cloud Computing Trends . 13
2.1.3 Cloud Resource Allocation . 15
2.1.4 Towards Market-inspired Allocation 15

2.2 Fundamentals of Markets . 17
2.2.1 Microeconomic System Framework 18
2.2.2 Mechanism Design . 21
2.2.3 Auctions . 23

2.3 Algorithm Selection Problem . 26
2.3.1 Basic Model . 27
2.3.2 Classification of Approaches . 28
2.3.3 Combinatorial Auction Algorithm Selection 32

3 ProblemModeling 35
3.1 Requirement Analysis . 35

3.1.1 Resource Allocation-driven Requirements 36
3.1.2 Proposed Approach . 37
3.1.3 Market-driven Requirements . 38

3.2 Problem Formulation . 39
3.2.1 Allocation Rule . 41
3.2.2 Payment Rule . 43

3.3 Mechanism Properties . 44

4 ApproximateWinner Determination 49
4.1 Algorithm Portfolio . 49

4.1.1 Optimal Algorithm . 50
4.1.2 Greedy Algorithms . 50

xiii

4.1.3 Relaxed Linear Program-based 52
4.1.4 Hill Climbing Algorithms . 53
4.1.5 Simulated Annealing Algorithms 54
4.1.6 Casanova Algorithms . 57

4.2 Input Data Generation . 59
4.2.1 Bundle Generation . 60
4.2.2 Valuation Generation . 64

4.3 Evaluation . 66
4.3.1 Average Case . 66
4.3.2 Effect of Randomization . 70
4.3.3 Best Algorithm . 71

5 High-knowledge Algorithm Selection 73
5.1 Approach . 74

5.1.1 Cost Model . 76
5.1.2 Features . 78

5.2 Methodology . 80
5.2.1 Prediction EvaluationMetrics 82

5.3 Evaluation . 83
5.3.1 Dataset Analysis . 83
5.3.2 Classification Evaluation . 87

6 Low-knowledge Algorithm Selection 89
6.1 Approach . 90
6.2 Methodology . 91

6.2.1 Probing . 92
6.2.2 Algorithm Properties . 93
6.2.3 Prediction . 96
6.2.4 Prediction EvaluationMetrics 97

6.3 Evaluation . 98
6.3.1 Sample Size Study . 98
6.3.2 Prediction Evaluation . 101
6.3.3 OverheadMitigation . 103

6.4 praise vs. malaise . 105

7 Conclusion 107
7.1 Summary . 107
7.2 Outlook . 109

Appendix A Algorithm Selection Survey 111

xiv

Appendix B Pseudocode 113

Appendix C Datasets Parameters 117

References 119

xv

List of Figures

2.1 Key differences between the three main cloud service delivery models. . . . 13
2.2 Revenue forecast for public cloud services worldwide. 14
2.3 Microeconomic System Framework. 18
2.4 Basic algorithm selection model. 27
2.5 Algorithm selection categories. 29

3.1 Requirements for a flexible and practicablemarket-based allocation of cloud
resources. 37

4.1 Approach for artificially generating realistic cloud bundles. 62
4.2 Two example histograms used to create amodel, with different binnings: reg-

ular (left) and clustered (right). 63
4.3 Real (left) vs artificial (right) data, both binnedwith 64x64 regular bins, gen-

erated from a model of only 16x16 clustered bins. 64
4.4 Social welfare results for the two datasets, normalized by the optimal welfare

computed with cplex. 68
4.5 Execution time results for the twodatasets, normalized by the execution time

of the optimal algorithm cplex. 69
4.6 Variation in social welfare for the stochastic algorithms. 71

5.1 Overview of malaise approach. 75
5.2 Visualization of a problem instance in the two-dimensional cost space. . . . 78
5.3 malaise methodology. 81
5.4 Algorithm selection dataset: breakdown by class labels for several λ values. . 84
5.5 Relative feature importances averaged over all λ values. 85
5.6 Relative feature importances for λ ∈ {0, 0.1, 1}. 86
5.7 Accuracy of malaise for different λ values. 87
5.8 RMSE comparison of malaise to random selection and best pure algo-

rithm for different λ values. 88

6.1 Overview of praise approach. 91
6.2 praise methodology. 92
6.3 Welfare and time scaling over problem size. 95
6.4 ˜RMSE over sampling ratio ρ for λ = 0.5. 99
6.5 Accuracy of praise for different λ values. 101

xvii

6.6 ˜RMSE comparison of praise to random selection and best pure algorithm
for different λ values. 102

6.7 Evaluation of praise with parallel probing. 104

A.1 Yearly evolution of the number of publications on algorithm selection. . . . 111
A.2 Number of publications using the different types of algorithms portfolios

and selection modes. 112

xviii

List of Tables

3.1 Comparison of the proposed model to related work w.r.t. requirements sat-
isfied. 47

4.1 Algorithm portfolio: algorithms and families. 50
4.2 Resource pricing model parameters used in generating datasets D1 and D2. 67
4.3 Breakdown of datasets D1 and D2 by best algorithm. 72

5.1 Instance features used for algorithm selection. 79

6.1 Algorithm properties. 94
6.2 Optimal values and acceptable ranges of sampling ratios per λ. 100
6.3 Comparison of the two proposed approaches for algorithm selection. . . . 105
6.4 Advantages and disadvantages of proposed algorithm selection approaches. 106

A.1 Classification of features used in state-of-the-art algorithm selection. 112
A.2 Categorization of relatedwork on algorithm selection for combinatorial auc-

tions. 112

xix

List of Algorithms

1 Greedy algorithms for different calculation methods of relevance factors. . . 52
2 Hill climbing. 53
3 Function that returns the neighbor in the solution space of a given solution,

by changing the bid ordering. Used in hill1. 54
4 Function that returns the neighbor in the solution space of a given solution,

by toggling a random xi. Used in hill2. 54
5 Simulated annealing. 57
6 Casanova algorithm, based on stochastic local search. 58
7 Neighbor function for Casanova algorithm. 59
8 Greedy algorithm with seller priority. 113
9 Function that returns the neighbor in the solution space of a given solution,

by changing the ask ordering. Used in hill1s. 114
10 Function that returns the neighbor in the solution space of a given solution,

by toggling a random ask j. Used in hill2s. 114
11 Function that returns the neighbor in the solution space of a given solution,

by toggling a random xi. Used in sa. 114
12 Function that returns the neighbor in the solution space of a given solution,

by toggling a random ask j. Used in sas. 115
13 Casanova algorithm with seller priority. 115
14 Neighbor function for casanovas algorithm. 116

xxi

1
Introduction

Cloud Computing’s defining features, such as the pay-as-you-go model, on-demand provi-
sioning, and well-defined services, continue to attract more and more businesses seeking to
take advantage of the low-costs, elasticity, availability, and flexibility that the cloud offers.
This has led to a rapid growth of the cloud market, as more cloud infrastructures are being
built and deployed to meet these rising demands.

By now, Cloud Computing has become a mature technology, ubiquitous in today’s tech-
nological landscape. Nevertheless, there are still a number of issues that have not been suffi-
ciently addressed. I focus on the allocation of cloud resources, and discuss the identified issues
in the following.

Problem 1
Current approaches for cloud resource allocation are not specifically designed to seamlessly

regulate demand and supply, and deal with variable load.

Cloud Computing promises to offer elasticity and infinite scalability to customers. Behind
the scenes, cloud providers need to ensure that they have enough spare resources to accommo-
date peak load times (for example, during Black Friday sales at Amazon or any other online
store). This also means that, during normal or low load times, providers have idle resources
that nonetheless consume energy and cooling. Someproviders try tomonetize these resources
by selling them at lower prices, with some limitations in terms of lifetime and service quality
guarantees. The most prominent example is the Amazon EC2 Spot market (Amazon, 2017).

1

Although this is a step into the right direction, there is no resource allocation in production
today that is entirely based on market concepts. This would regulate demand and supply by
design.

Problem 2
Currently used pricing models are not flexible enough.

The fixed-price models currently used in CloudComputing are inefficient when resource val-
ues change dynamically, as in the case of fluctuating customer demands for resources. Admit-
tedly, some commercial cloud providers complement their fixed-price models with dynamic
pricing schemes (e.g., the Amazon Spot instances mentioned above), but these prices are not
market-driven (Agmon Ben-Yehuda et al., 2013): even though single-good auctions are being
run to designate who will receive the resources, the prices are randomly drawn from a tight
interval via a hidden dynamic reserve price.

A truly market-driven pricing would provide appropriate economic incentives to both
cloud providers and customers, while increasing revenue and resource utilization.

Problem 3
Cloud customers lack fine-grained control, aggravated by the burden of choice and lack of

interoperability.

Customers lack control in the sense of being able to fully customize the resources they buy,
rather than choosing from a list of predefined options offered by the providers. Furthermore,
customers have the burden of finding the provider that matches their needs—this problem is
addressed bybrokering solutions (Grozev&Buyya, 2014)—, augmentedby the fact that there
is no standardization for cloud interfaces and interoperability. The cloud market is clearly
imbalanced in terms of control, biased towards cloud providers.

A marketplace where providers and customers can meet and trade resources would effec-
tively address this issue, ensuring thatmarket forces shape the interactions and provide proper
incentives for both sides to participate.

Essentially, all these problems can be addressed by employing certain market-inspired ap-
proaches. I will show in Chapter 3 that double combinatorial auctions fulfill all these de-
mands. The auction aspect ensures market-driven allocation and pricing, the combinatorial
aspect ensures fine-grained control, while the double aspect restores the power balance. How-
ever, double combinatorial auctions are complex problems, accompanied by their own set of
challenges.

2

Problem 4
Combinatorial auctions are impracticable due to their intractability.

Combinatorial auctions are a thoroughly studied topic. However, their applicability to cloud
resource allocation has, so far, been limited to the realm of academic research, due to their
intractability. They are NP -hard problems (Sandholm, 2002), and the time for finding an
optimal solution scales exponentially with the problem size.

The ever-growing cloud market requires a scalable approach for resource allocation. For
the adoption of combinatorial auctions in practice, it is necessary to sacrifice the optimality
requirements in favor of speed, by using heuristic algorithms.

Problem 5
Heuristic algorithms for combinatorial auctions yield highly input-dependent results.

A wide spectrum of algorithms can be employed for approximating the solution of a combi-
natorial auction. However, due to their heuristic nature, these algorithms perform differently
depending on their input data. Depending on the techniques used, certain algorithms might
perform better on a specific class of problems, and worse on others.

1.1 research questions
Given these challenges, a number of research questionswere identified and studied. Themain
question underlying this thesis is:

How can market-based mechanisms be used to make cloud resource allocation more flexible,
scalable, and efficient?

This question canbebrokendown into4different researchquestions, in an attempt to address
all the issues above.

Research Question 1
How can the resource allocation problem be modeled as a combinatorial auction?

To answer this question, a thorough analysis is needed, in order to derive the essential require-
ments of the resource allocation. Cloud resources and customer preferences need to be ab-
stracted and modeled. Next, it should be investigated which economic properties can be sat-
isfied and what assumptions are necessary for designing an appropriate auction mechanism.

3

Finally, based on these analyses, rules for allocation and pricing can be designed. This research
question addresses the first three problems discussed above.

Research Question 2
Which auction mechanisms exist and how can they be applied to the modeled problem?

An extensive literature review of heuristic algorithms is required to identify existing ap-
proaches that are applicable to themodeled problem. Existing approaches need to be adapted,
or new methods need to be developed.

Research Question 3
How can heuristic algorithms for combinatorial auctions be evaluated and compared, and

what input data is suitable for a fair comparison?

Having a set of heuristic algorithms that perform differently depending on the input data
produces the need to consistently compare and evaluate these algorithms. Given that they
typically trade solution quality for execution speed, it is necessary to first model this trade-off.
Furthermore, evaluating the heuristic algorithms is challenging due to the lack of empirical
data for cloud auctions.

Research Question 4
To what extent can automated algorithm selection yield better results than a single auction

mechanism?

Algorithm selection is a meta-algorithmic technique where the best algorithm is chosen from
a portfolio on a case-by-case basis. Applying algorithm selection to heuristic algorithms for
combinatorial auctions can improve the auction outcome. Since these improvements can
be directly translated to significant revenue gains, any improvement in solution quality is
paramount. It is necessary to study the extent of such improvements, as well as the features
in the input space that could be predictive of algorithm performance. Further investigations
are necessary into how machine learning techniques or dynamic information can aid in the
selection of the best algorithm.

4

1.2 scientific contributions
Overall, the contributions of this thesis focus on making cloud resource allocation more flex-
ible, scalable and efficient by employing market-based mechanisms. To tackle the computa-
tional challenges of combinatorial auctions, I propose two approaches for algorithm selection
for combinatorial auctions: a high-knowledge, machine learning-based approach, and a low-
knowledge, probing-based approach. These methods are supported by an underlying model
for the cloud resource allocation as an auction problem, aswell as amulti-objective costmodel
to evaluate auction mechanisms. Each contribution is discussed in more detail in the follow-
ing.

Contribution 1
An extensible model for cloud resource allocation as a combinatorial auction.

Following an analysis of the cloud computing landscape, a number of requirements were de-
rived for the resource allocation and pricing, such as scalability, market-driven pricing, or
tractability. Tomeet these requirements, the cloud resource allocation problem is modeled as
a double combinatorial auction, consisting of an allocationmechanism and a pricing scheme.
Theproposedmodel enables customers to define their resource requests in a fine-grainedman-
ner, represent resource complementarity relations, and ultimately only pay for the amount of
resources they actually need, while cloud providers can sell otherwise idle resources to other
customers. The dynamic pricing scheme minimizes the economic loss that occurs with fluc-
tuating demand and supply. The model is generic and can be easily extended to support ad-
ditional requirements. This contribution was published in (Gudu et al., 2016) and (Gudu
et al., 2018a), and it addresses Research Question 1.

Contribution 2
A unified comparative study of heuristic algorithms for combinatorial auctions.

The use of combinatorial auctions in practice is hindered by their computational complexity.
To fulfill the scalability requirements, fast, approximate algorithms must be employed, but
they incur a certain monetary loss that needs to be bounded. Although there is a plethora of
heuristic algorithms for combinatorial auctions in the literature, their problem formulations
are not consistent, and neither are the test scenarios and application domains, which makes
systematic comparison practically not possible. A systematic and comprehensive comparison

5

was highly desirable. One contribution of this thesis consists of a unified benchmarking ap-
proach for heuristic algorithms for combinatorial auctions, under the umbrella of a consistent
problem formulation and a variety of common test cases. By adapting existing algorithms or
applying well-known optimization methods to my proposed model, an algorithm portfolio
was created. Furthermore, an extensive empirical evaluation over a wide range of test scenar-
ios was performed. This contribution addresses Research Question 2 and the first part of
Research Question 3, and was published in (Gudu et al., 2018b) and (Gudu et al., 2019).

Contribution 3
A flexible model for generating input data for multi-good, multi-unit combinatorial auctions.

Since commercial cloud providers do not typically release information on customer requests,
there is a lack of real-world data that can be used in scientific research of auctions of cloud
resources. Synthetic input was thus required, but existing work on artificial data generation
for combinatorial auctions was not suitable for the model studied in this thesis. Therefore,
a novel auction data generator was proposed. The flexible, easily extensible tool considers
the two-sided aspect of the auction to generate multi-good, multi-unit bids and asks. An
approach which is based on public datasets of cloud traces was also proposed, to generate re-
alistic resource bundles. Artificial data generation has a number of benefits: flexibility, wider
coverage of the input space, as well as more control over input parameters, making it an inte-
gral part of the benchmarking efforts. This contribution also assists in answering Research
Question 3.

Contribution 4
Amulti-objective cost model to quantitatively evaluate and compare approximate algorithms

for combinatorial auctions.

As heuristic algorithms sacrifice solution quality in favor of execution speed, it was neces-
sary to quantify this trade-off for a quantitative comparison of the algorithms over the two-
dimensional space. Therefore, a cost model that expresses the trade-off between execution
time and solution quality was introduced, which relies on scalarization of a multi-objective
optimization problem. Increased control over the relative importance of solution quality to
time is afforded through user-defined weights. This contribution was published in (Gudu
et al., 2018a), and is also associated with Research Question 3.

6

Contribution 5
A high-knowledge, machine learning-based algorithm selection method for combinatorial

auctions.

The comprehensive evaluation of various heuristics for combinatorial auctions revealed that
the results are highly dependent on the input. Thus, there is no single algorithm that out-
performs all other algorithms on all input data. In order to minimize costs, the most suitable
heuristic can be automatically selected on an instance-by-instance basis. A central contribu-
tion of this thesis is an approach for algorithm selection for combinatorial auctions, which
employs supervised learning techniques to train a classification model that can predict, based
on individual instance features, which algorithm in the portfolio is the most suitable for the
given problem. The proposedmulti-objective cost model is used tomeasure the suitability of
an algorithm. A range of features of the problem domain were investigated in order to find
out which features are predictive of algorithm performance and solution quality. The train-
ing was performed using automatic machine learning, which optimizes the hyper-parameters
of the classification model. The machine learning approach resulted in high accuracy over
a comprehensive dataset, which was artificially generated using the proposed input genera-
tor. Moreover, even when the cost of the mispredictions was taken into account to compare
against a perfect prediction, this approach was better than the best single auctionmechanism,
as well as better than a random selection. This contribution was published in (Gudu et al.,
2018a), and addresses Research Question 4.

Contribution 6
A low-knowledge, probing-based algorithm selection method for combinatorial auctions.

An alternativemethod for algorithm selectionwas proposed, that requires less domain knowl-
edge and is dynamic. Rather than relying on domain-specific features, this approach uses a
probing technique to run each algorithm on a sample of the problem. It then extrapolates the
result to predict each algorithm’s behavior on the full instance. Insights into the algorithms’
time complexity and scaling of social welfare over problem size were considered in the extrap-
olation, to account for differences in algorithm behavior over problem size. In contrast to the
machine learning-based approach, no training is necessary, making this method more robust
against changes in the algorithm portfolio. On the other hand, the probing phase introduces
a runtime overhead that has to be taken into account. An evaluation of the sample size was
performed, in order to balance the prediction quality against the runtime overhead of the

7

probing phase. Extensive evaluation showed that this method improves upon the single best
mechanism approach in most cases. This contribution also addresses Research Question 4.

1.3 list of publications
Most of the contributions in this thesis (Contributions 1, 2, 4, 5) have already been published
in peer-reviewed conference proceedings and journals. The publications relevant to the con-
tent presented in this thesis are listed in the following.

• Diana Gudu. MAS-based, Scalable Allocation of Resources in Large-scale, Dynamic
Environments. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems (AAMAS), Doctoral Consortium, pages 1530–1531.
IFAAMAS, 2016. http://dl.acm.org/citation.cfm?id=2936924.2937240.

• Diana Gudu, Marcus Hardt, and Achim Streit. OnMAS-based, Scalable Resource Al-
location in Large-scale, Dynamic Environments. 2016 International IEEE Conference
on Scalable Computing and Communications (ScalCom), pages 567-574. Toulouse,
2016. doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0097

• Diana Gudu, Gabriel Zachmann, Marcus Hardt, and Achim Streit. Approximate Al-
gorithms for Double Combinatorial Auctions for Resource Allocation in Clouds: An Em-
pirical Comparison. In Proceedings of the 10th International Conference on Agents
and Artificial Intelligence (ICAART), pages 58–69. INSTICC, SciTePress, 2018.
doi:10.5220/0006593900580069.

• Diana Gudu, Marcus Hardt, and Achim Streit. Combinatorial Auction Algorithm Se-
lection for Cloud Resource Allocation UsingMachine Learning. European Conference
onParallel Processing (Euro-Par), pages 378–391. LectureNotes inComputer Science,
vol 11014. Springer, Cham, 2018. doi:10.1007/978-3-319-96983-1_27

• Diana Gudu, Marcus Hardt, and Achim Streit. A Unified Comparative Study of
Heuristic Algorithms for Double Combinatorial Auctions: Locality-constrained Re-
source Allocation Problems. In Agents and Artificial Intelligence, pages 3–22. Lecture
Notes in Computer Science, vol 11352. Springer, Cham, 2018. doi:10.1007/978-
3-030-05453-3_1

8

http://dl.acm.org/citation.cfm?id=2936924.2937240
https://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0097
https://dx.doi.org/10.5220/0006593900580069
https://dx.doi.org/10.1007/978-3-319-96983-1_27
https://dx.doi.org/10.1007/978-3-030-05453-3_1
https://dx.doi.org/10.1007/978-3-030-05453-3_1

1.4 thesis outline
The remainder of this thesis is organized as follows.

In Chapter 2, the background relevant to the research in this thesis is presented. I start
by introducing the fundamentals of Cloud Computing, outline current trends, and lay out
the challenges related to cloud resource allocation. Given the trend towards market-based
allocation, the underlying market concepts are introduced. The market structure and inter-
actions betweenmarket components are described. Next, I highlight the steps and challenges
of designing mechanisms that guide market behavior. A family of competitive mechanisms
(auctions) is then discussed. Finally, the algorithm selection problem is formalized, and exist-
ing approaches are presented. The chapter ends with related work on algorithm selection for
combinatorial auctions, and their shortcomings.

Chapter 3 presents the requirements analysis that motivates the use of double combina-
torial auctions for cloud resource allocation. The proposed formalization of the allocation
problem as an auction is introduced.
In Chapter 4, I investigate how existing approaches can be applied to solve the allocation

problem of the previously introduced combinatorial auction. The algorithms are grouped in
an algorithmportfolio and described in detail. Next, an approach for generating artificial data
for double combinatorial auctions is introduced, based on real cloud workloads. Finally, the
algorithmportfolio is evaluated under a comprehensive range of test cases, using the proposed
input data generator.

In Chapter 5, I propose a machine learning-based approach for algorithm selection, ap-
plied to heuristic algorithms for combinatorial auctions. A novel multi-objective cost model
is presented, used to assess the best algorithm with respect to time and solution quality. I ex-
amine which features of the input data are predictive of algorithm performance, and evaluate
the accuracy of the approach, as well as the improvement it brings compared to using a single
heuristic algorithm.

Chapter 6 presents the second proposed approach for algorithm selection, based on prob-
ing information. I describe how the probing is performed, and detail the algorithm proper-
ties fundamental to the prediction quality. Finally, after a sample size study, the approach
is evaluated on the same dataset as the machine learning-based approach, and the results are
discussed.
Chapter 7 summarizes the work in this thesis, emphasizing my contributions. I conclude

with an overview of open questions and sketch out directions for future research.

9

Theory is the essence of facts. Without theory scientific
knowledge would be only worthy of the madhouse.

Oliver Heaviside

2
Background

In this chapter, the necessary background to understand the research described in this thesis is
provided. Section 2.1 gives a brief overviewof cloud computing. It introduces somebasic con-
cepts and terminology, and proceeds with an incursion in the evolution of cloud computing,
focusing on the emerging related challenges for cloud resource allocation, in the larger context
of an unfolding paradigm shift towards market-oriented cloud computing. Section 2.2 then
defines fundamental market concepts, delves into mechanism design, and presents a taxon-
omy of auctions. Finally, Section 2.3 explains the algorithm selection problem, by detailing
the basicmodel and classifying existing approaches. The chapter concludes with relatedwork
in algorithm selection for combinatorial auctions.

2.1 evolution of cloud computing

Clouds are large-scale distributed systems that enable on-demand access over the network to
virtualized resources. This section does not aim to describe Cloud Computing in all its com-
plexity, but rather provide the necessary concepts that will allow us to focus on the challenges
that the cloud is currently facing, particularly regarding resource allocation.

11

2.1.1 cloud fundamentals
Since CloudComputing is constantly evolving, there is no consensus on an all-encompassing
definition of Cloud Computing. Therefore, the early attempt by the National Institute of
Standards and Technology (NIST) to define Cloud Computing (Mell & Grance, 2011) is
provided below, touching on points still relevant today:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction.”

In the midst of this continuous transformation, a number of invariant characteristics re-
main. According to NIST (Mell & Grance, 2011), Cloud Computing provides on-demand
self-service (consumers can automatically and unilaterally provision resources) over the net-
work to pools of resources, which are shared using a multi-tenant model. Moreover, resources
appear to be infinite and can be elastically provisioned and released to cope with different
loads. Finally, themetering capability—a concept leveraged from utility computing (Parkhill,
1966)—allows for transparent monitoring, control, and optimization of resource usage. The
benefits of the cloud model for customers are indisputable (Armbrust et al., 2009): reduced
IT costs, no up-front payments, and the ability to pay per use of resources as needed—the
so-called pay-as-you-gomodel.
The main enabling technologies for Cloud Computing are virtualization (Marshall, 2007)

and web services (Endrei et al., 2004). Virtualization abstracts out the resources of a ma-
chine by partitioning them into multiple execution environments. Irrespective of the tech-
niques used (binary translation, paravirtualization, hardware-assist) or the resources virtual-
ized (CPU, memory, device), virtualization abstracts the underlying hardware, provides per-
formance and security isolation, and facilitates resource customization. Web services are self-
contained, self-describing, modular applications, accessible over a network through standard
Internet protocols (Endrei et al., 2004). Advantages of using web services include: reduced
complexity by encapsulation, reusability, interoperability, accessibility, and abstraction.

As such, clouds deliver everything as a service, ensuring service quality through formal con-
tracts named Service Level Agreements (SLA) (Wu & Buyya, 2012). The original NIST clas-
sification (Mell & Grance, 2011) only identified three service delivery models, depending on
the capabilities provided: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

12

Applications

IaaS

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Applications

PaaS

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Applications

SaaS

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Figure 2.1: Key differences between the three main cloud service delivery models1: IaaS, PaaS, SaaS. The components
managed by the cloud provider in each model are highlighted through the gray boxes, while the customer capabili es are
depicted by white boxes.

Software as a Service (SaaS). Figure 2.1 depicts the key difference between these models, fo-
cusing on which components of the hardware and software stack are managed by the cloud
provider. Although the examples in this thesis will mostly refer to IaaS—where fundamental
resources are offered in the form of virtual machine (VM) instances, storage, etc.—, my work
is generic enough to be applied to other types of cloud services.

In fact, this categorization is now largely extended, as the ever-changing cloud landscape
accommodates concepts like Blockchain as a Service2,3 (BaaS), Function as a Service4 (FaaS or
serverless computing (Baldini et al., 2017)), or Machine Learning as a Service5,6 (MLaaS).

2.1.2 cloud computing trends
As the cloud enters its second decade, it has established itself as a key technology that is
here to stay, as depicted by the mainstream adoption of certain cloud delivery models (IaaS,

1https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-
to-choose/

2https://aws.amazon.com/blockchain/
3https://azure.microsoft.com/en-us/solutions/blockchain/
4https://aws.amazon.com/de/lambda/
5https://aws.amazon.com/machine-learning/
6https://cloud.google.com/ml-engine/

13

https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://aws.amazon.com/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://aws.amazon.com/de/lambda/
https://aws.amazon.com/machine-learning/
https://cloud.google.com/ml-engine/

2017 2018 2019 2020 2021

50

100

year

re
ve
nu

e[
bi
lli
on
so
f$

]
PaaS
IaaS
BPaaS
SaaS

Figure 2.2: Revenue forecast for public cloud services worldwide, according to Gartner (Graham et al., 2018). BPaaS is the
term used to denote Cloud Business Process Services.

SaaS) (Smith & Anderson, 2018). This is also apparent from the steady yearly growth in
revenue, which is forecast to continue at a rapid pace for several cloudmarket segments. Gart-
ner (Graham et al., 2018) forecast a 17.3% growth for the worldwide public cloud services
market in 2019, with the growth of individual market segments portrayed in Figure 2.2. The
fastest growing segment is IaaS, fueled by demands for integrated IaaS and PaaS offerings. On
the other hand, SaaS is the largest segment of the cloud market, which will continue to bring
in more revenue by providing enterprise content management services.

Among the trends (Khnaser et al., 2018) and the hype cycle analysis (Smith & Anderson,
2018) envisioned byGartner forCloudComputing in 2019, the termsmulticloud and hybrid
IT were identified as increasingly important.

More and more IT organizations are adopting a multicloud strategy, that is, they are us-
ing different services from several public cloud providers. The initial drivers for multicloud
were redundancy and avoiding vendor lock-in. Although still relevant, multicloud is nowa-
days driven by business and technical concerns, i.e., price and performance. Besides the obvi-
ous advantages, a multicloud strategy also poses some challenges: a wide reaching expertise is
required from IT staff, across multiple providers and types of services; the lack of standardiza-
tion among the various providers makes workload and application management difficult.

Gartner (Khnaser et al., 2018) advises IT organizations to prepare formulticloud adoption
by establishing their own governance and policies over the cloud services consumed. There-
fore, there is a trend towards developing tooling that can achieve this in an automatedmanner,
with focus on federated identity, access, and costmanagement. This new area is termedCloud
Management, and brokering is an important component. This paves the way towards hybrid
IT, which Gartner (Khnaser et al., 2018) defines as the process of IT departments becoming

14

“brokers of IT-based services, blending traditional services, public cloud services and private cloud
services”.

In a general sense, a cloud service broker is a “cloud service partner that negotiates relation-
ships between cloud service customers and cloud service providers” (Commission et al., 2014). A
broker covers a wide range of activities, with open issues identified (Guzek et al., 2015) in the
areas of: price, security, and trust optimization, as well as multi-objective matching of cus-
tomer requirements. In the following I will address challenges of cloud brokerage from the
perspective of resource allocation.

2.1.3 cloud resource allocation
Resource allocation is concerned with “the distribution of resources economically among com-
peting groups of people or programs” (Manvi & Shyam, 2014). Brokering of cloud resource
allocation is a matter of matching customer requests for cloud services with offers of cloud
providers in a mutually optimal way.

The majority of cloud brokering research (Grozev & Buyya, 2014) have taken an SLA-
based approach: customers specify their requirements in an SLA, which are then matched
automatically and transparently by the broker. However, this leaves customers with no direct
control over the provisioning of their application. Moreover, the requirements that can be
specified are limited: pricing, data location, legislation / policy constraints. More complex
brokering approaches (Jrad, 2014, Zhang et al., 2012) also consider non-functional Quality
of Service (QoS) requirements. Outside the academic realm, cloud service brokers7,8 are sim-
pler in terms of requirements optimized, but manage to take into account particularities of
real-world scenarios in a more effective and reliable way (Guzek et al., 2015).
Nevertheless, these brokering solutions are one-sided, since they assist single cloud users

in their service selection, independent of other users and thus oblivious to the cloud market
dynamics.

2.1.4 towards market-inspired allocation
Early on, Buyya et al. (2008) envisioned a future of market-oriented Cloud Computing,
where economic incentives and demand and supply regulate the terms of cloud resource

7https://www.ibm.com/us-en/marketplace/cloud-brokerage-solutions
8https://www.appdirect.com/

15

https://www.ibm.com/us-en/marketplace/cloud-brokerage-solutions
https://www.appdirect.com/

management. A few years later, Ben-Yehuda et al. (2014) reinforced this economic model of
Cloud Computing and termed it Resource as a Service (RaaS). They identified three trends
in the operation and use of IaaS (shorter rental periods, finer grained resources, and differ-
entiated SLAs), as well as economic forces acting on cloud providers (competition-driven
need for efficiency and dynamic pricing) and customers (individual economic incentives
drive client needs for better cost control and for computerized agents to negotiate on their
behalf). The outlined trends and economic forces were predicted to ultimately lead to the rise
of RaaS, where fine-grained resources would be continuously traded at market-driven prices.
Although the cloud landscape has since changed in ways that could not have been predicted
five years ago, the opportunities and challenges engendered by RaaS are eminently relevant
today. This is supported by myriad research works, as well as by a shift of the industry sector
in this direction. I present a few relevant examples below.

Amazon sells unused VMs from their IaaS compute service—Elastic Compute Cloud
(EC2)—as spot instances9. The dynamic price resulted from running provider-side single-
good auctions enables customers to save up to 90% of the on-demand price if they are willing
to forego any lifetime guarantees. AlthoughAmazonhas not released anydetails of themarket
mechanism employed, it is the only IaaS provider so far that publicly provides an auction-
like mechanism, in this way using demand and supply to regulate prices. However, this is
somewhat controversial, since Agmon Ben-Yehuda et al. (2013) reverse engineered Amazon’s
pricing scheme and showed evidence that it is not market-driven, but rather uses a dynamic
hidden reserve price.

Google (Stokely et al., 2009) proposed and tested internally amarket-based solution to pro-
vision resources across clusters, based on an ascending clock combinatorial exchange mecha-
nism, but they have not implemented it in any of their cloud products yet.

Nejad et al. (2015a) addressed the problem of bidding on bundles of different VM instance
types through combinatorial auctions. The authors proposed several mechanisms that con-
sider heterogeneity and scarcity of resources. They approached the problem from the per-
spective of mechanism design, by investigating which incentives can be provided to enforce
truthful bidding, but in exchange compute sub-optimal solutions.

Mashayekhy et al. (2014) consider the two-sided scenario for trading of computing re-
sources for big data, i.e., when multiple cloud customers and providers wish to trade with
each other, and design a novel truthful auction mechanism. This work does not deal with
bundling of resources, but it does take into account customer preferences for the time slot

9https://aws.amazon.com/ec2/spot/

16

https://aws.amazon.com/ec2/spot/

when a job should be run.
Toosi et al. (2016a) implemented an open-source alternative to the Amazon spot instance

market. Their framework, termed Spot instance pricing as a Service (SipaaS), implements dy-
namic pricing for IaaS markets, and can be easily integrated with existing cloud platforms.
The authors also provide an extension for integration with OpenStack10. The employedmar-
ket mechanism (Toosi et al., 2016b) is a multi-unit auction, truthful with a high probability,
that leads to near-optimal provider revenue. Similar to Amazon’s spot instance pricing, they
use a dynamic reserve price.

Watzl (2014) developed a framework for trading cloud resources on an exchange. This
research spans multiple topics, including comparability of cloud services through quantifi-
cation, classification, and quality and performance rating. The vendor-neutral marketplace
came into operation in 2015 as the Deutsche Börse Cloud Exchange AG11, and was unfor-
tunately discontinued in 2016. Hermann (2016) speculated that despite the ambitious goals
and pertinent ideas, the cloud market was not prepared for it, while end users did not yet
understand the added value of such a platform.

In summary, there is sustained interest and need for market-based cloud resource alloca-
tion, but a number of open issues impede its practical implementation. For example, there
are issues of standardization across providers, partly addressed byWatzl (2014). In this thesis,
however, I dealwith issues related to themarketmechanisms, since practicable yet fine-grained
and flexible mechanisms are still missing. Although fine-grained mechanisms (combinatorial
auctions) arewell-studied in academia, in the real world simplicity and speed havewon against
flexibility—as exemplified by the Amazon spot market. Nevertheless, if providers could reli-
ably increase their revenue, they would be willing to adopt more complex mechanisms.

2.2 fundamentals of markets
In order to incorporate market-based concepts in the design of cloud resource allocation
mechanisms, a good understanding of markets and mechanism design is required.
This section aims to provide a comprehensive overview of market concepts. Section 2.2.1

introduces the market terminology used throughout the thesis, as well as the microeconomic
system framework that formalizes, at a high level, themarket structure. Section 2.2.2 assumes

10https://www.openstack.org/
11http://cloud.exchange/

17

https://www.openstack.org/
http://cloud.exchange/

the mechanism designer’s perspective, and discusses how the implemented rules affect mar-
ket behavior. Finally, Section 2.2.3 describes a type of competitive market mechanisms—
auctions—with a focus on double combinatorial auctions.

2.2.1 microeconomic system framework
An economic system, to the extent that it determines the allocation of resources, can be seen
as a machine (Reiter, 1977), which takes as input an economy’s basic data and outputs an
allocation of commodities among the participants in the economy. The first attempt to cre-
ate a consistent terminology for describing any economic system (Smith, 1982) identified two
main components: the economic environment and the institution. The microeconomic sys-
tem framework is depicted in Figure 2.3, and described in more detail in the following, based
on (Smith, 1982, Neumann, 2007).

economic environment

Definition 1 (Economic environment). The economic environment is defined as the set of
initial circumstances that have an impact on the system performance, but cannot be changed
by the agents or the institutions in the system.

Outcome
allocation, prices

System Performance
efficiency, incentive compatibility,

budget balance, individual rationality
Institution

language, rules of communication,
procedural structure

Economic Environment
agent preferences, resources, public information

Choice Behaviour
based on

private information

Figure 2.3: Microeconomic System Framework (Smith, 1982, Neumann, 2007).

18

More specifically, an economic environment consists of a set of agents, a set of resources,
and certain private characteristics of each agent, such as preferences, utility, knowledge, and
endowment.

In this work, I only consider non-cooperative environments, since they are more appropri-
ate for modeling a cloud resource economy where cloud providers compete to sell resources
to individually-motivated customers. As such, the modeling unit of an environment is the
agent, which is (assumed to be) a self-interested and rational entity.

An agent is self-interested not in the sense that it only cares about itself, but rather that it
has its owndescriptionofwhich states of theworld it likes and acts accordingly to induce these
states (Shoham&Leyton-Brown, 2008). Themost commonway tomodel an agent’s interest
stems from utility theory: a utility function that quantifies the agent’s preference over a set of
alternative outcomes. More intuitively, a utility function measures the level of satisfaction
obtained by an agent from an outcome. Agents then act in ways thatmaximize their expected
utility (von Neumann et al., 1944).
While utility is a useful metric as a uni-dimensional function, it is actually grounded in a

more complex concept called preference.

Definition 2 (Preference). LetO denote a finite set of possible outcomes. For a given pair
o1, o2 ∈ O, let o1 ≽ o2 denote the fact that an agent weakly prefers outcome o1 to o2. Then≽
is called the preference relation.

Definition 3 (Utility function). A utility function u : O → R ranks each outcome based
on preference: if an agent weakly prefers outcome o1 over o2, then u(o1) ≥ u(o2).

An important finding in microeconomics is that, if an agent’s preference relation is com-
plete and transitive, then the agent is rational (von Neumann et al., 1944). Formally, it can
also be said that the utility function u represents the preference relation≽, or:

u(o1) ≥ u(o2) ⇐⇒ o1 ≽ o2. (2.1)

In addition to preference, an agent’s utility is also affected by an agent’s response to un-
certainty, or its risk attitude (Shoham & Leyton-Brown, 2008). The risk attitude encodes an
agent’s value for money: a risk averse agent has a sublinear value for money and thus prefers
a definite situation to a risky one with the same expected value (losing and gaining the same
amount of money is not valued the same in its utility function), while a risk seeking agent has

19

a superlinear value for money. Nevertheless, it is common and quite reasonable to assume
risk-neutral agents who have a linear value for money, as I do in this thesis.

While preference and risk attitudes are in essence private agent characteristics, there can be
public information influencing an agent’s utility, either observable by all agents, or vaguely
known and therefore estimated by each agent differently. For example, in cloud computing,
an agent does not know how much one virtual machine is worth, but it might roughly es-
timate its price based on the model and amount of CPUs, the time the machine is needed,
current energy prices, and other assumptions about the size and characteristics of the data
center where it is running. As such, each agent will have its own estimation for the value of
the sameVM.On the other hand, historical VMprices can also constitute public information,
equally available to all agents.

Finally, an important constituent of the economic environment is the set of resources to
be allocated, with different characteristics (Neumann, 2007), such as: number of resources,
discreetness, number of units, substitutability, complementarity. The characteristics are pub-
licly known to all agents and can have an impact on the agents’ utility. For example, two com-
plementary resources are valued more when sold together rather than individually, while sub-
stitutable resources might serve the same purpose or have similar technical attributes, there-
fore being less valuable when sold together than separately.

institution

Definition 4 (Institution). The institution is the entirety of rules for establishing an out-
come, as well as for defining agent messaging behavior. Amarket is the most prominent ex-
ample of an institution.

The institution provides a language, which defines the nature and content of feasible mes-
sages for agents to communicate their preferences. Examples of messages include bids and
offers. For practical use, a language should be expressive, concise, natural, and tractable.

Furthermore, the institution defines rules that govern the transition frommessages to out-
comes, grouped in three categories:

• allocation (choice) rules, whichmap the submittedmessages to afinal resource allocation
among the agents,

• payment (transfer) rules, which state the payments to be made by each agent as a func-
tion of the submitted messages; usually institutions offer incentives to nudge agents to
behave in desired ways,

20

• adjustment process rules, which govern the message exchange procedure: the starting
rule specifies the time and conditions for the message exchange to begin, transition
rules describe the sequencing and exchange ofmessages, and the stopping rule specifies
the exchange termination conditions.

Compared to the economic environment, the institution is the component that can be
modified—through the defined rules—in order to enforce certain agent behaviors or system
performance requirements. This enables closing the loop between environment, institution
and outcome, as depicted in Figure 2.3, and is the subject of mechanism design. Therefore,
I will cover the remaining components in Figure 2.3—system performance, choice behavior,
and outcome—in the following section, through the lens of mechanism design.

2.2.2 mechanism design
In this section I take on the market designer’s perspective: how can market rules be defined
without any knowledge of the agents’ private preferences, but which guide the market to be-
have in accordance to certain performance metrics? What kind of incentives can be put in
place tomake agents reveal enough private information that will lead to the desired outcome?

Mechanism design hence deals with aggregating preferences of strategic agents in order to
find an optimal outcome (Shoham & Leyton-Brown, 2008). The assumption that agents
are strategic entails that they will behave in a way that maximizes their individual utility, for
example, even by misrepresenting their preferences (lying).

It can also be said that a mechanism defines the “rules of the game” (Parkes, 2001), where a
game is defined as the totality of circumstances that have a result dependent on the actions of
multiple strategic players (or agents). In its normal form (Shoham&Leyton-Brown, 2008), a
game is defined by the set of players, each with a finite set of actions available to them, as well
as an associated utility function.

Definition 5 (Strategy). A strategy is a complete contingent plan defining the actions an
agent will take in every state of the game (Parkes, 2001).

Game theory studies such systems of strategic agents, attempting to find equilibrium
states—states where agents cannot increase their utility by unilaterally changing their strat-
egy. This concept is called aNash equilibrium (Nash, 1950). Although fundamental in game
theory, it assumes that agents have perfect information about the preferences of the other
agents, and that all agents will select the same Nash equilibrium. In games with incomplete

21

information, where agents only have prior knowledge about the distribution of the other
agents’ preferences, a Bayesian-Nash equilibrium can be reached when each agent selects a
strategy that maximizes their expected utility.

A stronger type of equilibrium is the dominant strategy equilibrium, where each agent has
a single utility-maximizing strategy, independent of the other agents’ strategies. This is a desir-
able solution, as it is very robust since itmakes no assumptions about the information available
to each agent, but it might not be available in all games.

An ideal mechanism provides agents with a dominant strategy that will ultimately lead to
anoptimal outcome. Theoptimal outcome for the entire system is definedwith a social choice
function.

Definition 6 (Social choice function). A social choice function f : Θ1 × . . . × ΘN → O
chooses an outcome f(θ) given the agents’ preferences θ = (θ1, . . . , θN).

Definition 7 (Market mechanism). AmarketmechanismM = (Ω, g(·)) defines the strate-
gies Ω = Ω1× . . .×ΩN available to each agent, and an outcome rule g : Ω→ O that maps
strategy profiles to possible outcomes.

Thus the mechanism can restrict agent behavior through the defined strategies (e.g., by
allowing only bids above the asking price of a resource), and then select the outcome based on
these strategies (e.g., the highest bidder wins and pays the second highest bid).

Then, it can be said that a mechanism implements a social choice function if the outcome
computedwith equilibrium strategies is a solution to the social choice function for all possible
agent preferences.

Definition 8 (Mechanism implementation). Given the mechanismM = (Ω, g(·)) and
the social choice function f(·),M implements f if g(s∗(θ)) = f(θ),∀θ ∈ Θ1 × . . . × ΘN,
where s∗ ∈ Ω is an equilibrium strategy profile.

Mechanisms are designed to reach certain objectives, which should be defined upfront by
the mechanism designer. In the following, I outline the most relevant objectives (or system
performance metrics, cf. Figure 2.3) for a cloud computing economy, while a comprehensive
overview can be found in the literature (Neumann, 2007).

Definition 9 (Incentive compatibility). Amechanism is incentive compatible, or truthful, if
it is direct (agents are asked to report their individual preferences), and each agent’s equilib-
rium strategy is to report its true preference.

22

Definition 10 (Economic efficiency). A mechanism is economically efficient if it produces
a strictly Pareto efficient outcome: there is no other allocation that improves any individual
preference without making at least one preference worse off. This can also be expressed as
the allocation that maximizes the social welfare, or the total utility of all agents, if quasilinear
utilities are assumed.

Definition 11 (Budget balance). Amechanism is budget balanced if it breaks even: it makes
neither a profit, nor a loss. The relaxation of this condition allows the mechanism to make a
profit, and is called weak budget balance.

Definition 12 (Individual rationality). A mechanism is individually rational if no agent
loses by participating in the mechanism.

2.2.3 auctions
One family of market mechanisms—auctions—provides a general solution to the resource
allocation problem in systems of self-interested agents.

Auctions have been thoroughly studied from a theoretical point of view, due to their long
tradition of practical use. Owing to their omnipresence in day-to-day life, the term auction in-
stantly invokes in any reader’smind somewell-known examples: the antique business, fine art
collectibles, the Amsterdam flowermarket, electromagnetic spectrum licenses, or governmen-
tal contracts. With the advent of the internet, the reach of auctions has expanded to trading
almost any type of goods through online platforms such as eBay 12.
The reasons to use auctions are abundant; for example, for goods that have no standard

value (such as rare paintings), or for fair decision-making in situations where there is intense
competition; more recently, for efficiency in allocating computational resources. As a result,
there is an equally diverse ecosystem of auctions, each designed to attain a different goal. In
this section, I give a brief overview of the taxonomy of auctions.

Definition 13 (Auction). McAfee &McMillan (1987) define an auction as “a market insti-
tution with an explicit set of rules determining resource allocation and prices on the basis of bids
from the market participants”.

Formally, auctions provide a bidding language for potential buyers or sellers to express their
interest, anddefine an allocation rule and a payment rule to decide, based on the collected bids,
the auction winners and the corresponding payments.

12https://www.ebay.com

23

https://www.ebay.com

Auctions can be classified according to several criteria (Shoham& Leyton-Brown, 2008):

• one-sided vs. two-sided, depending on whether there are both buyers and sellers whose
bids the auctioneer has to match, or only one side, typically buyers.

• sealed-bid vs. open-outcry, if the bids are only known to the auctioneer or openly avail-
able to the other participants as well.

• first-price vs. k-th price, if the winner pays the price of the winning bid or the price of
the k-th ranked bid.

• single-unit vs. multi-unit, if it is possible to bid for a single good or for multiple units
of the same good (homogeneous resources).

• single-item vs. multi-item, if the bidding can be done for a single good or bundles of
multiple goods (heterogeneous resources).

One-sided single-unit auctions are the most known, most used, and also the simplest type
of auctions. Although there are many variations, such as the English auction (where the bids
are announced in ascendingorder, usually sell-sidewith reserve price, and thewinner pays first-
price; a classic type of auction, used in most auction houses, such as Sotheby’s), the Dutch
auction (similar to the English auction, but the bids are announced in descending order; used
in the Dutch flower markets), the Japanese auction (where the auctioneer calls out ascending
prices and bidders announce when they drop out of the auction until a single bidder remains,
hence open-outcry first-price; it originated in the Japanese fish markets), or the Vickrey auc-
tion (second-price sealed-bid; first used in stamp auctions (Lucking-Reiley, 2000), now very
popularwith Internet auctions, e.g., on eBay), to just name a few, they are not that different in
terms of expected revenue, according to the Revenue Equivalence Theorem (Vickrey, 1961).
In practice, however, factors such as risk attitudes and incomplete information might lead to
different revenues for different auction formats.

combinatorial auctions

Combinatorial auctions (De Vries &Vohra, 2003) are one-sidedmulti-itemmechanisms that
allow agents to express more complex preferences over arbitrary combinations (bundles) of
multiple goods, and thus encode complementarity and substitutability of resources.

There are several aspects that make combinatorial auctions difficult: defining an appropri-
ate bidding language, solving the allocation rule, and putting proper incentives in place for
reaching a number of desired objectives.

24

Bidders use the bidding language to communicate their valuation, which should theoreti-
cally be defined for all possible bundles. Unfortunately, the number of possible combinations
of goods grows exponentially with the number of goods, rendering this task impossible. It is
necessary to have a concise but expressive language, that is also tractable for the auctioneer’s
allocation algorithm. Common ways to express bids are (Shoham & Leyton-Brown, 2008):
atomic bids (a particular bundle of goods accompanied by the price the bidder is willing to
pay), OR bids (disjunction of atomic bids), and XOR bids (exclusive OR bids).

The allocation rule has been named the Winner Determination Problem and determines
which bids are to be accepted.

Definition 14 (Winner Determination Problem). The Winner Determination Problem
(WDP) (Lehmann et al., 2006) for a combinatorial auction, given the agents’ valuations, is
to find a feasible allocation of goods to agents that maximizes the total utility of agents (the
social welfare).

Consequently, considering that resources are discrete and bundled together, the WDP is
formulated as an integer program, which is anNP−hard problem. TheWDP is actually an
instance of the Set Packing Problem, as stated by Sandholm (2002).

Since polynomial time algorithms do not exist for the general-case WDP, there are two
ways of dealing with the computational issue (De Vries & Vohra, 2003): either restricting
the problem to a special class of problems that can be solved in polynomial time (such as total
unimodularity (Nemhauser&Wolsey, 1988)), or using heuristics that sacrifice the optimality
of the solution. As a result, economic efficiency cannot be guaranteed in most cases.

Another important incentive issue relates to truthfulness. Allocative efficiency and incen-
tive compatibility can only be achieved simultaneously through amechanism namedVickrey-
Clarke-Groves (VCG) (Nisan et al., 2007a), where each agent pays its social cost. This means
that, for each agent, it is necessary to also compute the social welfare of the system if the agent
wouldnotparticipate in the auction, essentially solving another (exponential)WDP-like prob-
lem. The computational complexity makes this payment scheme unusable in practice. Fur-
thermore, VCG violates the budget balance property by forcing the auctioneer to subsidize
the trade.

exchanges

When competitive bidding occurs onboth seller andbuyer side, we are dealingwith two-sided,
or double auctions, also called exchanges. The most notable example of an exchange is the

25

stock market.
Unfortunately, exchanges are not aswell-studied as their one-sided counterparts, as they are

difficult to model game-theoretically. One important, albeit negative, theoretical result is the
impossibility theorem by Myerson & Satterthwaite (1983), which states that no mechanism
can simultaneously satisfy the following four properties: individual rationality, truthfulness,
economic efficiency, and budget balance. Consequently, it is left to the mechanism designer
to decide which properties must be satisfied, in accordance to other problem-specific require-
ments.

A significant aspect for exchanges is the timing of clearing the market. Two types of mar-
kets can be distinguished here: the continuous double auction (CDA) and the periodic dou-
ble auction (call market). In a CDA, bids are submitted asynchronously and the auctioneer
tries to satisfy them immediately, while the call market is cleared after fixed time intervals,
during which bids are collected. It is clear that CDAs are more suitable when response time
is essential, while call markets typically yield more efficient allocations.

In summary, this section demonstrated the theoretical breadth of auctionmechanisms and
theirwide applicability for real-world problems, being especially suited for resource allocation.
The multitude of auction flavors facilitates the design of mechanisms tailored to any given
problem’s specifications.

2.3 algorithm selection problem
The algorithm selection problem has been widely studied in different areas of artificial in-
telligence, often under different names, such as hyper-heuristics (Burke et al., 2013) or
meta-learning (Lemke et al., 2015). This sustained interest is prompted by the ubiquity
of NP−hard combinatorial optimization problems, for which optimal algorithms are in-
tractable, but a multitude of heuristics are being developed. However, in most cases, a new
heuristic improves upon existing algorithms for certain classes of problems, only to perform
worse for other classes. This idea was formalized through the No Free Lunch (NFL) theo-
rems (Wolpert & Macready, 1997), showing that, usually, one single algorithm cannot yield
superior performance across all possible problems. Algorithm selection promises to close the
performance gap between different heuristic algorithms by selecting the best heuristic for
each given instance.

Definition 15 (Algorithm Selection Problem). The algorithm selection problemdealswith

26

choosing the most suitable algorithm for solving a problem instance on a case-by-case ba-
sis (Kotthoff, 2014).

2.3.1 basic model
Rice (1976) was the first to formulate an abstract model for algorithm selection, depicted in
Figure 2.4. Essentially, the model states that, given a space of algorithms A and a space of
problems X , one can construct a mapping P : A × X → Rn from each pair of algorithm–
problem (A,X) to its performance P(A,X), where performance can be a multi-dimensional
measure. Then the algorithmselectionproblemcanbe reformulated as theproblemoffinding
the selection mapping S : X → A that maximizes performance (normalized as ∥P∥). In the
following, I discuss the model components in more detail.

The set of problem instances is large, possibly infinite, and diverse. The problem space X
can be defined as a highly-dimensional space that describes the input data, where by dimen-
sions I understand the various independent problem characteristics that have an impact on
algorithm performance. Since the problem space cannot be fully known, algorithm selection
typically works with samples drawn from this space for empirical evaluation. The difficulty is
to ensure that the samples are representative. In a refined model of algorithm selection, Rice
(1976) added a feature space, in order to reduce the dimensionality of the problem space while
extracting features that are relevant to the selection mapping. He also argues that,

“The determination of the best (or even good) features is one of the most important,
yet nebulous, aspects of the algorithm selection problem”.

Nevertheless, almost all modern approaches base their algorithm selection on feature extrac-
tion (usually fed to a Machine Learning system).

X ∈ X

Problem space

A ∈ A

Algorithm space

P ∈ Rn

Performance
measure space

∥P∥ = algorithm performance

S(X)

Selection
mapping

P(A,X)

Performance
mapping

Norm
mapping

Figure 2.4: Basic algorithm selec on model introduced by (Rice, 1976).

27

The algorithm space A can be equally diverse and large, even though in practice only a
small number of algorithms are considered. Different parameters for the same algorithm are
counted as different algorithms, since their effect on performance can be significant. The
algorithms are typically organized in portfolios.

The performance measure space consists of the multitude of criteria used to evaluate algo-
rithm performance, contingent on the desired objectives. The criteria might not be compa-
rable, and might have some degree of uncertainty. Execution time and solution accuracy are
the most commonly used, but the space can also include metrics such as: memory usage, ease
of use, interpretability, etc.

Rice (1976) also identified four different (non-exhaustive) criteria for the selection:

• best selection, equivalent to choosing the selection mapping that results in maximum
performance for ech problem.

• best selection for a subclass of problems: a single algorithm is selected for every subclass
of problems, such that the performance degradation per subclass is minimized.

• best selection from a subclass of mappings: the selection mapping is restricted to be of a
certain form (i.e. from a subclass of mappings); then the best selection is chosen from
this subclass such that performance degradation for all problems is minimized.

• best selection from a subclass of mappings and problems combines the last two criteria.

The best selection is the ideal case, but difficult to attain in practice, due to incomplete in-
formation about the problem space or algorithm behavior.

The basic model in Figure 2.4 can be extended (Kotthoff, 2014) to include a feedback loop
from performancemeasure back to the selectionmodel, to incorporate past algorithm perfor-
mance into the model.

2.3.2 classification of approaches
Kotthoff (2016) surveyed the literature of existing approaches for algorithm selection, applied
to combinatorial search problems. Despite the large number of publications on the topic
and the growing interest over the last years, according to Kotthoff (2014), the research com-
munity is fragmented and there is little exchange of ideas, leading to some techniques being
re-invented. This is also due to the fact that researchers tend to publish in domain-specific
venues, as there is no algorithm selection community per se.

28

Problem space

Feature space Algorithm space Performance
measure space

∥p∥ = algorithm performance

· static vs. dynamic
· low vs. high-knowledge

·when: online vs. offline
·what: algorithm vs. schedule
· how: manual vs. automatic

· static vs. dynamic

· per portfolio vs.
per algorithmmodels

Feature
extraction Selection

mapping
Performance
mapping

Norm
mapping

Feedback

Figure 2.5: Categoriza on of algorithm selec on techniques based on different aspects along the selec on pipeline.

As a result, there is a proliferation of approaches, often similar, butwith variations imposed
by problem-specific challenges. I categorize the existing approaches below, according to vari-
ous criteria, based on the survey performed byKotthoff (2016). Figure 2.5 places these criteria
along the algorithm selection pipeline.

features

The feature space characterizes the problems or the algorithms in a way that is meaningful for
the selection. Since defining these features is the most difficult stage of algorithm selection, a
myriad of approaches exist, each with its individual strengths. The features can be classified
according to two criteria: how much domain knowledge is needed to define them (low or
high-knowledge), and when and how are the features computed (static or dynamic).

High-knowledge features are themost common (Leyton-Brownet al., 2002,Xu et al., 2007,
Kadioglu et al., 2010, Xu et al., 2011), yet complex type. Domain-specific expertise informs
the definition of a diverse sets of features, gathered under the all-encompassing term of in-
stance features. For example, Kadioglu et al. (2010) apply instance-specific algorithm config-
uration to several problem domains and define features for each domain, such as: number
of variables and of constraints, percentage of binary variables, mean and standard deviation
of coefficients of objective function (Mixed Integer Programs), number of clauses, node de-
gree statistics for the variable graph (satisfiability problems or SAT), statistics for vectors of

29

normalized costs, item costs, bag densities (Set Covering Problem).
In comparison, low-knowledge features are more generic, hence applicable to other do-

mains. They can be extracted from: past performance of the algorithms on previous in-
stances (Fitzgerald & O’Sullivan, 2017), probing the search space—e.g. by running the
portfolio for a short time on the current instance (Beck & Freuder, 2004)—, or search statis-
tics computed at runtime to guide the search to solution—e.g. for constraint satisfaction
problems, conflict related information (Stergiou, 2008). It is also possible to combine low-
and high-knowledge features (Xu et al., 2011).

Static features are computed offline, before beginning to solve the problem instance. Most
instance features fit into this category, since they are numerous and costly to compute. How-
ever, they fail to take into account the performance of the algorithms on the current instance.

Alternatively, dynamic features are computed during the solution process, which is then
adapted based on these features by e.g. changing the algorithm configuration (Xu et al., 2011)
or selecting a different heuristic to continue solving the instance (Stergiou, 2008).

Some probing features (Beck & Freuder, 2004) fall in-between these categories and are
termed semi-static, since they are computed before the actual solving of the instance (i.e. stat-
ically), but they do explore a part of the search space for the current instance.

algorithm portfolio

Two types of algorithm portfolios can be distinguished, depending on how the portfolio is
constructed: static and dynamic. This classification is similar to the distinction between
heuristic selection and generation made in the survey on hyper-heuristics (Burke et al., 2013).

Static portfolios are the most common (Leyton-Brown et al., 2002, Beck & Freuder, 2004,
Xu et al., 2007, Fitzgerald&O’Sullivan, 2017). A static portfolio is constructedbefore solving
anyproblem instance and it does not change at runtime. As a result, the number of algorithms
is fixed and the algorithms cannot be adapted based on information gained at runtime, which
makes this approach inflexible. On the upside, this approach is also straightforward and has
no runtime overhead. The said inflexibility can be mitigated by thoughtfully deciding on
the composition of the portfolio. Perhaps counter-intuitively, rather than including the algo-
rithmswith good overall performance, it is preferable that algorithms complement each other.
For that reason,Xu et al. (2007) select candidate solvers whose runtimes are relatively uncorre-
lated. Xu et al. (2012) quantify an algorithm’s valuewith regard to its ability to solve instances
that cannot be solved by other algorithms, i.e. the algorithm’s marginal contribution to the

30

state-of-the-art, and propose constructing portfolios based on this measure.
Dynamic portfolios aremodified at runtime, either by assembling heuristic building blocks

into algorithms (Elsayed &Michel, 2011), or through automatic parameter tuning (Xu et al.,
2011, Kadioglu et al., 2010).

selection

Depending on when and what is selected, and how the selection is performed, algorithm se-
lection approaches can be categorized as follows.

When. The distinction between offline and online selection is linked to the distinction be-
tween static and dynamic features, and it indicates whether the selection is performed before
(offline) or while solving the problem (online). The latter has the benefit of a finer-grained
control, since it can mitigate bad choices by monitoring the performance of the selected al-
gorithm on the current instance and selecting a more suitable algorithm. However, the in-
creased overhead and complexity of implementation make this approach (Kadioglu et al.,
2010, Fitzgerald & O’Sullivan, 2017, Stergiou, 2008, Elsayed & Michel, 2011) less explored
than the offline one (Leyton-Brown et al., 2002, Beck& Freuder, 2004, Xu et al., 2007, 2011).
It is also possible to combine both approaches: Stern et al. (2010) complement an offline selec-
tion (based on instance features) with runtime information, which is fed back into the system
for online training, as well as for adapting or switching the algorithms at runtime.

What. Most selectionmodels choose a single algorithm to solve the instance. Alternatively,
a schedule of algorithms can be devised, to be run in parallel (Yun& Epstein, 2012), or in the
order and for a duration proportional to the algorithms’ expected performance (Roberts &
Howe, 2006). Both methods can work equally well, depending on the use case: selecting a
single algorithm has the advantage of simplicity of implementation and lower computational
cost, while a schedule brings robustness.

How. Early research on algorithm selection used explicit rules, handcrafted based on ex-
pert knowledge, to decide when to switch an algorithm while solving an instance (Borrett
& Tsang, 2009) or to estimate the best performing algorithm based on probing informa-
tion (Beck& Freuder, 2004). In contrast, recent work automates the creation of performance
models (discussed in the next section) through various machine learning methods, be it clas-
sification (Roberts & Howe, 2006, Xu et al., 2011), regression (Leyton-Brown et al., 2002,
Xu et al., 2007), clustering (Stergiou, 2008, Kadioglu et al., 2010), or reinforcement learn-
ing (Fitzgerald &O’Sullivan, 2017).

31

performance models

The performancemodels are closely linked towhat is predicted and how the selection ismade.
The prediction can be a categorical value (the best algorithm), a performance value (the run-
time/cost/utility of each algorithm in the portfolio), or the solution quality (used as a criteria
for when to switch the algorithm in online settings). Accordingly, one can differentiate be-
tween per-portfolio and per-algorithm performance models.

A performance model for an entire portfolio can be constructed from training data, usu-
ally to predict the best algorithm for a given instance, without actually modelling each algo-
rithm’s performance. For example, Kadioglu et al. (2010) cluster a training set of representa-
tive instances and assign suitable algorithm configurations to each cluster; then, for each new
instance, the configuration of the closest cluster (in the defined feature space) is used.

Another approach is to build a performance model for each algorithm; then, for any new
problem instance, one can use these models to predict the performance of each algorithm on
the instance, and select the best-performing one. For example, Leyton-Brown et al. (2002)
use regression to build per-algorithm performance models in order to predict running time.
Per-algorithm models have the benefit that it is easy to add and remove algorithms from the
portfolio, since it is not necessary to retrain the model for the entire portfolio, but rather just
for a single algorithm. However, they fail to consider interactions between algorithms.

2.3.3 combinatorial auction algorithm selection
Even though there is a substantial amount of research on algorithm selection, there is not
much particularly aimed at combinatorial auctions (the winner determination problem), or
simply generic but tested on auctions. Moreover, existing work is designed towards optimiz-
ing runtime as a single measure of performance and does not consider other objectives.

Leyton-Brown et al. (2002) build performancemodels for optimal algorithms for theWDP
(so-called empirical hardness models) to predict algorithm runtime—more specifically, the
log of runtime, i.e. order ofmagnitude. They do so by training a regressionmodel on domain-
specific instance features extracted fromartificially generated data, coupledwith themeasured
algorithm performance on the training instances. Individual models are trained for the three
algorithms in the portfolio, which are then used to predict each algorithm’s runtime for any
new problem instance (after computing its feature values). The algorithm predicted to be
fastest is finally selected. The authors show that the portfolio approach outperforms the al-

32

gorithm that is fastest on average by roughly a factor of 3 (Leyton-Brown et al., 2003). They
further tune their approach by smart feature computation and capping runs.

Fitzgerald&O’Sullivan (2017) introduce an online automatic algorithm configuration sys-
tem, which is tested, among other datasets, on combinatorial auction instances. The system
selects multiple solver configurations from a set of possible candidates, which are run in paral-
lel on each instance. The algorithm that finishes first is considered the winner, and by means
of reinforcement learning, this information is fed back into the ranking system used in the
selection procedure for future instances. The influence of ordering and grouping of instances
over the solving time is also investigated.
Stern et al. (2010) propose a novel approach to portfolio-based algorithm selection that

combines two sources of information: static instance features with dynamically updated al-
gorithm features. The algorithm features are learned by a Bayesian model, trained online
with past algorithmperformance. The approach is tested on the same combinatorial auctions
dataset as Leyton-Brown et al. (2003), and yields similar improvements.

33

Essentially, all models are wrong, but some are useful.

George Box

3
ProblemModeling

Section 2.1 reviewed the state-of-the-art inCloudComputing and emphasized the discernible
trend towards market-driven resource allocation. In this chapter, I formulate the require-
ments expected from a such a resource allocation approach, in accordance with the presented
trends and unanswered needs. I then formally describe the proposed market-based model for
the cloud resource allocation problem in Section 3.2, first introduced in (Gudu et al., 2018a).
Finally, in Section 3.3, the model is compared against existing approaches, with respect to the
elicited requirements.

3.1 requirement analysis
Having established the need for market-inspired approaches in Section 2.1, there are two sig-
nificant issues that need to be addressed in the allocation of cloud resources.

1. Inflexibility: any novel approach should be flexible enough for both customers and
providers. For customers, this means the ability to customize the resources they pay for, with
a fine-grained control that supports a wide range of preferences. For providers, flexibility
is reflected in the pricing scheme: dynamic prices that adapt with changes in demand and
supply lead to higher revenues. In contrast, the industry standard is to provide predefined
combinations of resources (e.g. so-called VM instance types for EC2) at fixed prices.

35

2. Impracticability: crucial for practical adoption, the proposed approach should reconcile
the two conflicting goals of allocative efficiency and speed in a satisfying manner. This has
been the primary hindrance for implementing such flexiblemechanisms in practice, otherwise
well studied in theory.

Consequently, several requirements for a flexible and practicable market-based allocation
of cloud resources can be extracted, as depicted in Figure 3.1. The reasoning behind each
requirement is detailed in the following.

3.1.1 resource allocation-driven requirements
Requirement 1 (Market-driven pricing). In competitive environments with variable de-
mand like cloud computing, a fixed pricing scheme leads to inefficiencies (Lai, 2005): a de-
mand below the fixed price causes unrealized utility for the customers who are unwilling to
pay such a high price. On the other side, a demand above the fixed price produces unreal-
ized profit on the provider side, since some customers would be willing to pay more for the
resources. What is more, the fixed pricing prevents providers from differentiating between
the preferences of potential buyers, and thus fail to sell the resources to the customers that
want them themost; this is more unrealized utility on the client side. A variable price that fol-
lows the variable demand and supply of resources (i.e. market-driven) would eliminate these
inefficiencies.

Requirement 2 (Fine-grained control). Customer needs are quite diverse, since cloud cus-
tomers themselves are diverse. As a result, customers should be able to specify the combina-
tion and characteristics of the resources theyneed, andonly pay for those, rather than selecting
from a small number of predefined options. This would also increase resource utilization on
the provider side.

Requirement 3 (Resource bundling). Customers typically need several types of resources to
be able to perform a single task. For example, the NASA image and video library1 uses several
Amazon cloud services2, including resources such asVMs, object storage, message queue, and
relational database. If a customer is not allocated one of the resources, then it will not be able
to run its task, and thus have no use for the other resources. Hence customers should have the
possibility to request and buy resources in bundles, which are then allocated simultaneously.

1https://images.nasa.gov/
2https://aws.amazon.com/partners/success/nasa-image-library/

36

https://images.nasa.gov/
https://aws.amazon.com/partners/success/nasa-image-library/

Resource allocation driven Market-driven

Flexibility

Practicability

R1. Market-driven pricing R2. Resource bundling

R3. Fine-grained controlR4. Double-sided

R5. Scalable R6. Computationally tractable

R7. Individually rational

R8. Budget balanced

R9. Economically efficient

R10. Incentive compatible

Figure 3.1: Requirements for a flexible and prac cable market-based alloca on of cloud resources.

Requirement 4 (Double-sided). Current allocation mechanisms and many proposed ap-
proaches are one-sided. On the one hand, each provider runs its own market-based mecha-
nism, and customers have to submit bids to all the providers they are interested in. On the
other hand, brokering is done for each customer, in order to match one customer’s needs to
the available resources from several providers. A double sided approach would include multi-
ple customers and providers in the decision process. This would take the decision burden off
either side to offload it onto a third objective party, and ensure a healthy competition among
all the players in the marketplace.

Requirement 5 (Scalable). As the cloud market is constantly growing (cf. Section 2.1), any
novel allocation mechanism should be able to deal with requests from many customers and
providers. The mechanism should thus be scalable in all stages of allocation: receipt and pro-
cessing of incoming requests, matchmaking of requests to offers, and communicating the
decision and payments.

Requirement 6 (Computationally tractable). Related to the scalability requirement, the
mechanism should also be computationally tractable. This refers specifically to the problem
of finding the best allocation, for which polynomial time algorithms should be used.

3.1.2 proposed approach
Double combinatorial auctions satisfy the requirements, with the caveat that fast heuristic al-
gorithms are needed to solve the otherwise intractableWDP.My proposed approach assumes

37

a callmarketmodel—auctions are run at predefined intervals rather than continuouslymatch-
ing requests as they are submitted.

I now discuss how double combinatorial auctions comply with the requirements above.
The market-driven pricing requirement is satisfied by auctioning off resources and setting

their price basedon submittedbids and asks. The combinatorial aspect dealswithfine-grained
control and resource bundling, since customers can express complementarity of resources by
submitting bids on their preferred combination and quantities of resources. The two-sided
aspect of the auction enables the satisfaction of the double-sided requirement.

Scalability can be ensured by employing a bidding language that is simple, easy to use, and
tractable. Furthermore, since the WDP isNP−hard, using heuristic algorithms to approxi-
mate the solution rather than solving the problem optimally guarantees tractability and scal-
ability of the matchmaking part of the allocation.

Be that as itmay, the problemwith using heuristics is not just that they are not optimal, but
for combinatorial auctions they provide no guarantees of how far from optimal the solution
is. Evenmore, heuristics can perform quite differently across the input space. This is the issue
at the core of this thesis; I address it by proposing two approaches for algorithm selection, in
Chapter 5 and Chapter 6.

3.1.3 market-driven requirements
Due to the decision using market mechanisms for resource allocation, there are some addi-
tional requirements driven by mechanism design. When designing an auction mechanism,
four essential economic properties need to be considered, as defined in Section 2.2.2: incen-
tive compatibility, individual rationality, economic efficiency, and budget balance. Since no
mechanism can simultaneously satisfy all four properties, their significance for cloud resource
allocation is discussed below.

Requirement 7 (Individually rational). In a real world environment, it is unacceptable for
either buyers or seller to lose any money by participating in the auction, since there are no
other incentives for participants. As such, individual rationality must be met.

Requirement 8 (Budget balanced). The auctioneer should not incur any loss by running
the auction. Assuming that this is a piece of software ran by a third-party, the auctioneer
cannot subsidize the trade, since it needs an incentive to set-up and maintain the necessary
infrastructure. Thus, the market mechanism should either be weakly budget balanced (the

38

auctioneermakes a profit from every auction it runs) or budget balanced (assuming a different
business model for the auctioneer, e.g. where providers pay a fixed fee to join the market).

Requirement 9 (Economically efficient). A mechanism is economically efficient if it max-
imizes the social welfare of the system. This property typically conflicts with revenue maxi-
mization (Myerson, 1981), but it is usually preferred (Neumann, 2007) since it encourages
participation (Parkes, 2001). As a result, this thesis also aims for an economically efficient
mechanism. For combinatorial exchanges, this requirement unfortunately conflicts with the
tractability requirement, which is essential in a real world scenario. Under the circumstances,
the efficiency requirement can be relaxed; I nonetheless take steps to improve efficiency as
much as possible.

Requirement 10 (Incentive compatible). A mechanism is incentive compatible if each
agent’s equilibrium strategy is to reveal its true valuation. Although possible in theory, such
mechanisms are difficult to implement. This is another requirement that can be relaxed. Sec-
tion 3.2.2 discusses the reasons why existing truthful schemes can not be used, as well as the
payment scheme chosen to mitigate, to some extent, any attempts to game the system.

3.2 problem formulation
The participants of a double combinatorial auction for cloud resource allocation are:

• a set of n cloud customers, or buyers, U = {1, . . . , n},

• a set ofm cloud providers, or sellers,P = {1, . . . ,m},

• and an auctioneer that decides upon the allocation and pricing of resources based on
the requests received from the buyers and sellers.

The object of the exchange is a set of l goods, or types of cloud resources, G = {1, . . . , l},
which can be traded in various integer amounts, packaged in bundles.

Each trade participant, be it a buyer or a seller, submits a single request to the auctioneer,
expressing its interest in acquiring or selling a particular bundle of cloud resources. A buyer’s
request is called a bid, while a seller’s request is called an ask, and they are defined below.

Definition 16 (Bid). A buyer i’s bid for a bundle of cloud resources is defined as a vector of
quantities and an associated bundle value:

(⟨ri1, . . . , ril⟩, bi),∀i ∈ U (3.1)

39

where rig is the (integer) amount of resource type g in the bundle requested by buyer i, and bi
is the maximum amount buyer i is willing to pay for the bundle.

Definition 17 (Ask). An ask or offer of a seller j for a bundle of resources is defined as:

(⟨sj1, . . . , sjl⟩, aj),∀j ∈ P (3.2)

where sjg is the (integer) amount of resource type g in the bundle offered by seller j, and aj is
the minimum payment seller j is willing to accept for the bundle.

After collecting the bids and asks, the auctioneer computes the resource allocation and
pricing according to two rules:

1. Allocation rule: the auctioneer solves the Winner Determination Problem (WDP) by
deciding which bidders and sellers will trade goods such that the social welfare is maxi-
mized.

2. Payment rule: the auctioneer computes the prices at which the bundles are traded by
using a payment scheme that satisfies certain economic properties.

The social welfare is defined (Shoham & Leyton-Brown, 2008) as the total utility of all
trade participants, where utility is, informally, a quantitative measure of an agent’s happiness
(formal definition in Section 2.2.1).

A significant impact on utility is carried by an agent’s valuation function. Briefly, the valu-
ation v : O → R+ is the true monetary value that the agent places on each possible bundle,
typically derived by combining public information with private preferences.

For simplicity of bid representation, I assume that both bidders and sellers are single-
minded, which means that they are only interested in buying or selling one particular bundle
in full, and have zero valuation for any other bundle.

Definition 18 (Single-mindedness). A valuation v is single-minded if there exists a bundle
S∗ and a value v∗ ∈ R+ such that v(S) = v∗,∀S ⊇ S∗, and v(S) = 0 otherwise.

Given these assumptions, the utility of bidders and sellers, as well as the social welfare can
be formally defined as follows (Nisan et al., 2007b, Shoham& Leyton-Brown, 2008).

Definition 19 (Bidder utility). Let vi(S) be a buyer i’s valuation for a bundle S. If the buyer
pays a price pi for the bundle, then its utility ui(S) can be defined as the difference between

40

the bundle valuation and the actual price paid by buyer i at the end of the auction.

ui(S) =

vi(S)− pi, if iwins bundle S in the auction

0, otherwise.
(3.3)

Definition 20 (Seller utility). Let v′j(S) be a seller j’s valuation for a bundle S, and p′j the
payment seller j receives for the bundle at the end of the auction. Then its utility u′j(S) can be
defined as the difference between the bundle’s price and its valuation, also viewed as the profit
of seller j.

u′j(S) =

p′j − v′j(S), if jwins bundle S in the auction

0, otherwise.
(3.4)

Definition 21 (Social welfare). Amarket’s social welfare is defined as the sum of the utilities
of all trade participants. For a double combinatorial auction with n buyers andm sellers, the
social welfare w can be expressed as:

w =
n∑
i=1

ui +
m∑
j=1

u′j. (3.5)

3.2.1 allocation rule
In a combinatorial exchange, maximizing the social welfare is equivalent to maximizing the
surplus, or profit (Kothari et al., 2004), which is essentially the difference between the revenue
brought in by the buyers and the amount paid to the sellers. Therefore, the allocation rule
determines the auction winners such that the surplus is maximized.

Let xi ∈ {0, 1},∀i ∈ U denote the decision variable for bidder i, whose value represents
whether bidder iwill win the requested bundle in the auction (xi = 1) or not (xi = 0).

Thewinning sellers are designated in relationwith the buyers that they tradewith. As such,
let yij ∈ {0, 1},∀i ∈ U ,∀j ∈ P denote the decision variable stating whether bidder i will
buy a bundle of resources from seller j (yij = 1) or not (yij = 0).

Definition 22 (Surplus). Given a combinatorial double auction, let vi : O → R+,∀i ∈ U
be the valuation functions of the bidders, and v′j : O → R+,∀j ∈ P the valuation functions
of the sellers. Then the net monetary gain realized by trading the goods is called a surplus, and
is defined as the difference between the sum of the valuations of the winning bidders and the

41

sum of the valuations of the winning sellers:

Δ =
n∑
i=1

vixi −
m∑
j=1

n∑
i=1

v′jyij. (3.6)

Note that the auctioneer does not know the true valuations, but only has access to the
revealed valuations submitted by bidders and sellers: bi and aj, respectively. Accordingly, the
allocation rule will maximize the revealed surplus (Kothari et al., 2004).

Then theWDP is formalized as the surplus-maximizing integer program:

max
x,y

 n∑
i=1

bixi −
m∑
j=1

n∑
i=1

ajyij

 (3.7)

subject to the following constraints:

xi, yij ∈ {0, 1},∀i ∈ U ,∀j ∈ P (3.8)

n∑
i=1

yij ≤ 1,∀j ∈ P (3.9)

m∑
j=1

yij = xi,∀i ∈ U (3.10)

rigxi ≤
m∑
j=1

sjgyij,∀i ∈ U , ∀g ∈ G. (3.11)

Constraint (3.8) expresses the single-mindedness of bidders and sellers and forbids partial
bundle allocations. Constraint (3.9) ensures that a seller allocates its bundle to at most one
bidder, while Constraint (3.10) ensures that each bidder receives the resources in its bundle
from a single provider. Finally, Constraint (3.11) ensures that, in the eventuality of a trade,
a seller’s bundle contains at least the quantity of resources requested by the bidder for each
resource type.

42

3.2.2 payment rule
The Vickrey-Clarke-Groves (VCG) payment scheme (Nisan et al., 2007a) discussed in Sec-
tion 2.2.3 might guarantee truthfulness, but is computationally expensive, and runs a deficit
which requires auctioneer subsidies (thus violating the budget balance property). Both issues
conflict with the requirements discussed in Section 3.1. As a result, VCG cannot be used for
modeling this problem.

Satterthwaite (1993) proposed the k-pricing scheme, which engendered a new class of
mechanisms called k-double auctions (k-DA), where the market clearing price is chosen from
the interval of possiblemarket clearing prices using aweight k ∈ [0, 1]. This interval is derived
from the intersection of the demand and supply curves. The scheme is proven to be worst-
case asymptotic optimal (Satterthwaite & Williams, 2002). Although valid for single-unit
exchanges, adapting this payment scheme to combinatorial exchanges, while preserving its
properties, is not straightforward.

Schnizler et al. (2008) introduced a k-pricing scheme for a combinatorial exchange which,
for each trade, essentially distributes the resulting surplus among the trade participants, in a
proportion given by the factor k ∈ [0, 1]. In (Schnizler et al., 2008), buyers can trade with
multiple sellers at the same time, resulting in complex calculations for the seller payments: for
each buyer, the sellers with which it trades need to distribute the surplus among themselves,
proportionally to their contribution to the trade. Since my proposed problem formulation
constrains each buyer to trade with a single seller, the payment rule is vastly simplified.

Let δij denote the surplus resulting from a trade between a buyer i and seller j:

δij = bi − aj,∀yij = 1, i ∈ U , j ∈ P . (3.12)

Then bidder iwill receive a discount of a k-th part of this surplus, resulting in payment pi:

pi = bi − kδij = (1− k)bi + kaj,∀yij = 1. (3.13)

Similarly, seller jwill receive the following payment:

p′j = aj + (1− k)δij = (1− k)bi + kaj,∀yij = 1. (3.14)

In this work, the trade surplus is equally distributed among the winning buyers and sellers
(k = 0.5).

43

3.3 mechanism properties
This section discusses which economic properties are satisfied, and concludes with a compar-
ison of the proposed model to related work, with respect to all the presented requirements.

Theorem 1 (BB). The mechanism is budget balanced.

Proof. In the k-pricing scheme, the trade surplus is distributed among the trade participants.
As a result, the payments made by the buyers are equal to the ones received by the sellers.
Hence the auctioneer neither makes a profit, nor subsidizes the trade. The detailed proof is
presented below.

Formally, budget balance means that the payments made by the (winning) buyers must be
equal to the payments received by the (winning) sellers:

n∑
i=1

pixi =
m∑
j=1

p′j
n∑
i=1

yij. (3.15)

On the basis of Constraint 3.10 and the price definitions in Equation 3.13 and Equation 3.14,
Equation 3.15 can be reformulated as follows:

n∑
i=1

pi
m∑
j=1

yij =
m∑
j=1

p′j
n∑
i=1

yij (3.16)

n∑
i=1

m∑
j=1

(pi − p′j)yij = 0 (3.17)

n∑
i=1

m∑
j=1

(
(1− k)bi + kaj − (1− k)bi − kaj

)
yij = 0 (3.18)

0 = 0 (3.19)

Theorem 2 (IR). The mechanism is individually rational.

Proof. The individual rationality property holds when each agent’s utility after taking part in
the auction is non-negative, irrespective of it winning the auction or not.
According to the utility definitions in Equation 3.3 and Equation 3.4, an agent’s utility is

0 if it does not buy or sell a bundle in the auction, thus non-negative.

44

Let us analyze the case when a buyer i is allocated a bundle S in the auction. Then, cf.
Equation 3.3, its utility is:

ui(S) = vi(S)− pi. (3.20)

Using the price definition inEquation 3.13 and assuming truthfulness (vi(S) = bi), the utility
can be reformulated as:

ui(S) = bi − (bi − kδij) = k(bi − aj). (3.21)

Moreover, the trade between buyer i and seller j can only occur when the bid value exceeds
the ask value (bi ≥ aj), otherwise the objective function would not be maximized—a greater
welfare can be obtained when the trade does not occur. Then, it follows that:

ui(S) = k(bi − aj) ≥ 0. (3.22)

That is, the utility of a buyer that won a bundle in the auction is also non-negative.
Similarly, it can be shown that a winning seller’s utility is non-negative (using Equation 3.4

and Equation 3.14):

uj′(S) = pj′ − vj′ = aj + (1− k)δij − aj = (1− k)(bi − aj) ≥ 0. (3.23)

Theorem 3 (EE). The mechanism is at most asymptotically economically efficient.

Proof. The economic efficiency property is satisfied only when an optimal algorithm is used
to solve the WDP. However, tractability is typically desired for cloud resource allocation, i.e.
the algorithm should execute in polynomial time. Heuristic algorithms do not always yield
the optimal solution, but it was shown for algorithms such as Greedy (Lehmann et al., 2002)
that a solution within a factor of

√
l of the optimal solution can be guaranteed.

Theorem 4 (TF). The mechanism is not truthful or incentive compatible.

Proof. According to Schnizler et al. (2008), the chosen k-pricing scheme cannot achieve in-
centive compatibility. This means that agents are not motivated to reveal their true valua-
tions and might try to game the system to their advantage. However, they also showed that
non-truthful bidding increases the risk of no allocation because of competition in themarket.
Thus, in practice, most agents are truthful.

45

Table 3.1 gives an overview of the requirements satisfied by the model described in this
chapter, and compares it to related work in market-based cloud resource allocation, as well
as to industry-standard approaches for resource allocation (all discussed in Section 2.1). To
that end, three approaches from academia were selected, which are based on auction mech-
anisms (Mashayekhy et al., 2014, Nejad et al., 2015a, Toosi et al., 2016b), and the one com-
mercial implementation of a market-based allocation—the Amazon EC2 spot market. For
reference, the dominant standard fixed-pricing resource allocation was also included, exem-
plified by Amazon EC2’s on-demand pricing.3

The requirements drivenbymechanismdesign are not applicable toEC2on-demand, since
the allocation is notmarket-based. TheEC2 spot pricing scheme is not public, as suchone can
only speculate on the economic properties: individual rationality is clearly satisfied, since cus-
tomers do not lose money by participating; otherwise, the other properties cannot be proven.

For the budget balance requirement, weak budget balance was also considered (e.g. for
Mashayekhy et al. (2014)). Mashayekhy et al. (2014) allow bidding on a whole cluster offered
by a provider, implementing in this way a single-good auction where customers do not have
fine-grained control over the resources they need, and cannot request bundles of different
resources.

The approach proposed by Toosi et al. (2016b) satisfies resource bundling, but only for
resources of the same type, since they implement a single-goodmulti-unit auction. Moreover,
it is not truthful and economically efficient in the absolute sense, but the authors prove that it
has highprobability of being truthful. Theynevertheless choose to optimize provider revenue
over social welfare, and achieve near optimal revenue.

3https://aws.amazon.com/de/ec2/pricing/on-demand/

46

https://aws.amazon.com/de/ec2/pricing/on-demand/

Table 3.1: Comparison of the proposed model to related work w.r.t. requirements sa sfied.

Requirement Pro
pos

ed
mo
del

Ma
sha
yek

hy
et a

l. (
201

4)

Ne
jad

et a
l. (
201

5a)

To
osi

et a
l. (
201

6b
)

EC
2 o
n-d

em
and

EC
2 s
pot

R1 Market-driven pricing ! ! ! ! !

R2 Fine-grained control ! !

R3 Resource bundling ! ! !

R4 Double-sided ! !

R5 Scalable ! ! ! ! ! !

R6 Computationally tractable ! ! ! ! ! !

R7 Individually rational ! ! ! ! n/a !

R8 Budget balanced ! ! ! n/a
R9 Economically efficient n/a
R10 Incentive compatible ! ! n/a

47

Although this may seem a paradox, all exact science is dom-
inated by the idea of approximation.

Bertrand Russell

4
Approximate Winner Determination

This chapter partially addresses Research Questions 2 and 3, defined in Section 1.1. Namely,
I investigate how existing heuristic approaches can be applied to solving the Winner Deter-
mination Problem for double combinatorial auctions (as defined in Section 3.2.1), as well as
how these approaches can be evaluated and compared in a comprehensive and consistent way.

To that end, an algorithm portfolio was constructed, presented in detail in Section 4.1.
Section 4.2 describes a novel, flexible input generator for combinatorial auctions, based on
realistic cloud workloads. Finally, in Section 4.3, the portfolio is evaluated using a wide range
of test cases and artificially-generated instances. The results and key insights derived from the
evaluation are discussed. Work on the algorithm portfolio and its evaluation was published
in (Gudu et al., 2018b) and (Gudu et al., 2019). The contributions presented in this section
consist of a unified comparative study of heuristic algorithms for double combinatorial auc-
tions, as well as a new approach for generating realistic input data for double combinatorial
auctions of cloud resources.

4.1 algorithm portfolio
I built a portfolio of heuristic algorithms for solving the Winner Determination Problem.
This section gives a detailed account of the algorithms, the optimization methods used, as
well as my specific contributions. Generally, the algorithms are based on the vast literature on

49

Table 4.1: Algorithm por olio: algorithms and families. A reference to related work is provided if the algorithm is based on
exis ng research on algorithms for WDP. If a reference is missing, it means that I applied a general op miza on method to
combinatorial auc ons.

Family Related work Algorithms

Optimal cplex
Greedy Nejad et al. (2015a) greedy1, greedy2, greedy3,

greedy1s
Relaxed LP based Luenberger & Ye (2015) rlps
Hill climbing Zurel & Nisan (2001) hill1, hill1s

Bertocchi et al. (1995) hill2, hill2s
Simulated annealing sa, sas
Stochastic local search Hoos & Boutilier (2000) casanova, casanovas

approximate algorithms for combinatorial auctions or generic optimization algorithms, but
they are normalized to a single problem formulation, described in Chapter 3. This enables a
consistent comparison.

The portfolio consists of 14 algorithms belonging to 6 families of optimization approaches.
Table 4.1 provides an overview of the portfolio, and each algorithm family is described in the
following sections. The code was open-sourced and is available at (Gudu, 2019b).

4.1.1 optimal algorithm
The optimal algorithm was included in the portfolio, to be used as a reference throughout
the evaluation. The optimal algorithm treats the WDP as a mixed-integer linear program
(MILP) (Gonen & Lehmann, 2000), a class of problems which is typically solved using
branch-and-cut techniques (Padberg & Rinaldi, 1991). The optimal algorithm is imple-
mented using IBM’s commercial software CPLEX (IBM, 2015), hailed as the most perfor-
mant solver for MILPs.

4.1.2 greedy algorithms
Greedy algorithms are heuristics that make the locally optimal choice at every step, aiming for
a globally optimal solution (Cormen et al., 2001). The rich literature of greedy algorithms for
the WDP (Nejad et al., 2015b, Lehmann et al., 2002, Pfeiffer & Rothlauf, 2008) hinges on
a common idea: the bids (and asks for two-sided auctions) are sorted according to a certain

50

criterion, and then they are greedily allocated as long as there are no conflicts.
The presented implementation use bid and ask densities as sorting criteria, which are de-

fined for buyer i and seller j in Equation 4.1 and Equation 4.2, respectively.

di =
bi√∑l
g=1 fgrig

,∀i ∈ U (4.1)

d′j =
aj√∑l
g=1 f′gsjg

,∀j ∈ P (4.2)

Compared to the average price per unit, the density gives priority to smaller customer re-
quests and was shown to yield higher welfare (Lehmann et al., 2002).

Based on the work ofNejad et al. (2015b), I also employed the concept of relevance factors,
or relative weights of resource types, used to express differences in value for the different re-
source types. In (Gudu et al., 2018b), I proposed using different weights for bids and asks: fg
and f′g, respectively. I hence extended the three calculation methods proposed by Nejad et al.
(2015b) to the case of two-sided auctions as follows.

1. Uniform weights, as a generalization of the one-sided case (Lehmann et al., 2002):

fg = f′g = 1,∀g ∈ G (4.3)

2. Weights based on the absolute scarcity of each resource, defined as the inverse of the
supply of the resource on the market (for bids) or the inverse of the demand for the
respective resource (for asks):

fg =
1∑m
j=1 sjg

,∀g ∈ G (4.4)

f′g =
1∑n
i=1 rig

,∀g ∈ G (4.5)

3. Weights based on the relative scarcity of each resource, defined as the difference be-
tween demand and supply, normalized by the demand (for bids), and normalized by
the supply (for asks):

fg =

∣∣∣∑n
i=1 rig −

∑m
j=1 sjg

∣∣∣∑n
i=1 rig

, ∀g ∈ G (4.6)

51

f′g =

∣∣∣∑n
i=1 rig −

∑m
j=1 sjg

∣∣∣∑m
j=1 sjg

,∀g ∈ G (4.7)

In this work, the greedy algorithms for each method of calculating the relevance factors
will be referred to as: greedy1, greedy2, and greedy3. The pseudocode is shown in Algo-
rithm 1.

Additionally, due to the two-sided aspect, a greedy algorithm that gives priority to sellers
was implemented, which moves through the list of bids until one that satisfies the considered
ask is found. InAlgorithm1, this is achievedby simply swapping lines 10 and11. Throughout
this work, the naming convention is to add an “‘-s” prefix for algorithms that prioritize asks,
in this case greedy1s. The pseudocode is included in Appendix B (Algorithm 8).

Algorithm 1 Greedy algorithms for different calculation methods of relevance factors.
1: function greedyX(n,m, l, b, r, a, s) ▷X∈ {1, 2, 3}
2: compute fg, f′g, ∀g ∈ G with method X ▷ relevance factors
3: compute di,∀i ∈ U and d′j,∀j ∈ P ▷ bid and ask densities
4: sort bids descendingly by d
5: sort asks ascendingly by d′
6: i← 1; j← 1
7: while i ≤ n and j ≤ m do
8: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
9: xi ← 1; yij ← 1 ▷ allocate resources offered by

seller j to bidder i
10: i← i+ 1 ▷move to next bidder
11: j← j+ 1 ▷move to next seller
12: return (x, y)

4.1.3 relaxed linear program-based
Relaxing the integrality constraints of the decision variables xi and yij transforms the integer
program in Equation 3.7 into a linear program that can be solved faster—weakly polynomial
time when using interior point methods, or exponential time for simplex methods (Luen-
berger&Ye, 2015)—and that provides an upper bound for socialwelfare. An algorithmbased
on the relaxed linear problem was added to the portfolio, similar to the work of Pfeiffer &
Rothlauf (2008), but adapted to the two-sided case, called Relaxed LP Solution (rlps). The

52

algorithm sorts the bids and asks descendingly by their continuous decision variables, which
in this case are x∗i , ∀i ∈ U and

∑n
i=1 y∗ij,∀j ∈ P , respectively, and then applies a greedy al-

gorithm similar to greedy1. x∗i and y∗ij denote the solutions of the relaxed linear program,
computed using the CPLEX library (IBM, 2015).

4.1.4 hill climbing algorithms
Hill climbing algorithms (Russell & Norvig, 2009, Holte, 2001) typically perform a local
search in the solution space by starting off at a random point andmoving to a neighboring so-
lution if the new solution is better. The algorithm stopswhen it finds a (local) optimum. This
is depicted in Algorithm 2, where the initial solution is determined using a greedy algorithm.

Algorithm 2Hill climbing.
1: function hill(n,m, l, b, r, a, s)
2: (x, y)←greedy1(n,m, l, b, r, a, s) ▷ generate initial solution
3: while solution improves do
4: while solution has unexplored neighbors do
5: (x′, y′)←neighbor(x, y) ▷ get neighboring solution
6: if welfare(x′, y′) > welfare(x, y) then ▷ if new solution is better
7: (x, y)← (x′, y′) ▷move to new solution
8: break
9: return (x, y)

I devised twodifferentmethods of exploring the neighborhood of a solution in the solution
space.

Firstly, as shown in Algorithm 3, a neighboring solution is found by changing the ordering
of bids or asks, and applying a greedy algorithm onto this ordering. Based on an idea by Zurel
& Nisan (2001), an unallocated bid is moved to the beginning of the bid list to generate a
neighboring solution, starting with the first bid after the critical bid (or first unallocated bid
in the ordered list) and then going through the sorted list. This algorithm is calledhill1. The
version that prioritizes sellers, hill1s, changes the ordering of asks to explore the neighbor-
hood of a solution and uses greedy1s.

Amore generic hill climbing algorithm, where neighboring solutions are generated by tog-
gling the xi variables, as proposed by Bertocchi et al. (1995) for the multiknapsack problem,
is depicted in Algorithm 4. This means that a randomly selected bid is allocated. The cor-
responding yij variable is adjusted by greedily searching through the list of unallocated asks,

53

already sorted by density. The neighborhood exploration stops after a number of n unsuc-
cessful attempts of increasing the welfare. This algorithm is called hill2.

Algorithm 3 Function that returns the neighbor in the solution space of a given solution, by
changing the bid ordering. Used in hill1.
1: function neighbor1(x, y)
2: move bid i to beginning of list ▷ i← critical i+ 1, n
3: return greedy1(n,m, l, b, r, a, s)[6 : 12] ▷ apply on new ordering

lines 6–12 in Algorithm 1

Algorithm 4 Function that returns the neighbor in the solution space of a given solution, by
toggling a random xi. Used in hill2.
1: function neighbor2(x, y)
2: i← random(1, n) ▷ randomly select bid
3: if xi = 0 then ▷ if bid i not already allocated
4: for j← 1,m do ▷ greedy-like search for ask
5: if yqj = 0,∀q ∈ U then ▷ if ask j not allocated
6: if rig ≤ sjg, ∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
7: xi ← 1; yij ← 1 ▷match bid i and ask j
8: break ▷ stop—match found
9: return (x, y) ▷ return neighboring solution

A hill climbing algorithm that prioritizes sellers, hill2s, was also implemented. Algo-
rithm hill2s explores the neighborhood of a solution by allocating a random ask j, and uses
greedy1s for allocation.

4.1.5 simulated annealing algorithms
Simulated annealing (Kirkpatrick et al., 1983) is an optimizationmethod that tries tomitigate
the issues of gradient-basedmethods (such as hill climbing) of being stuck in local optima. To
that end, it acceptsworse solutions during the search process, with a probability that decreases
over time.

Inspired by annealing of solids, physical terms are used to describe the optimization pro-
cess (Aarts et al., 2014): the system consists of discrete states (feasible solutions), each with its
own energy level (cost). A system can transition from one state to the other (move to a neigh-
boring solution) based on an acceptance criteria. The annealing process starts at a certain

54

temperature (where temperature denotes a control parameter) and is gradually cooled until
the system is frozen (no change in cost for a certain number of temperature values). Guided
by Aarts et al. (2014), I discuss below the four key parameters of a simulated annealing algo-
rithm: cost function, acceptance criteria, cooling schedule, and neighborhood structure.

cost function

This is a measure of solution quality. In this case, the cost is simply the social welfare. Since
it is calculated in every iteration of the algorithm, it is more efficient to use delta evaluation:
only computing the cost difference between the current and neighboring solution.

acceptance criteria

State transitions are probabilistic processes: the system moves towards lower-energy states,
but at high enough temperatures it might also transition to higher-energy states. This is ex-
pressed by the following acceptance criteria: the system always accepts a lower-energy state,
and, with a probability that decreases with the temperature, also accepts a higher-energy state.
Consequently, the acceptance probability is computed using the formula in Equation 4.8,
where (x, y) is the current solution in the search space, while (x′, y′) is the explored neighbor-
ing solution. As a result, better solutions are always accepted (the probability is always higher
or equal to 1), while for worse solutions, the probability that they are accepted is in [0, 1] but
decreases with the temperature variable T, ultimately allowing the search to converge.

ap = e(welfare(x′,y′)−welfare(x,y))/T (4.8)

cooling schedule

The control parameter (temperature) changes according to the cooling schedule, which thus
specifies the sequence of possible values for the temperature. More specifically, it is defined
by a starting and a final temperature, a decrement function, and a finite number of iterations
to be performed at each temperature. In this thesis, a static schedule is employed, where the
parameters are fixed before the algorithm execution.

Choosing a suitable starting temperature is not an easy task: a low temperature would lead
to rarely accepting worse solutions, effectively behaving like a hill climbing algorithm, while
too high temperatures will transform the algorithm into a random search, thus inherently

55

inefficient until the temperature is low enough. Typically, a good starting temperature is the
maximumpossible cost difference between two neighboring solutions. Since its computation
for the WDP is time consuming, I estimate this value using the formula in Equation 4.9: the
highest welfare increase can be obtained by matching the highest bid to the lowest ask. This
does not consider if the allocation is feasible, or if the requests are already allocated, but it
provides a reasonable upper bound quickly.

Tmax = max
i∈U

bi −min
j∈P

aj (4.9)

The temperature decreases at a constant rate α ∈ (0, 1), according to the geometric func-
tion in Equation 4.10. Values for α that have shown to yield good results lie between 0.8 and
0.99. Higher values lead to higher solution quality, but slow convergence.

Tk+1 = α · Tk, k = 0, 1, . . . (4.10)

In the implementation included in the proposed portfolio, a constant number of iterations
Nit is executed at each temperature value. This has to be balanced against the decrement α:
an appropriate number of iterations allows the system to stabilize at each temperature. The
following values were used with good results: α = 0.9,Nit = 100.
The search stops when the system is frozen—the temperature reached zero (or a suitably

low value), or no state transitions happened for a while. I set the final temperature to Tmin =

10−5, and consider that a system is frozen if the solution has not changed for three consecutive
temperature values.

neighborhood structure

Similar to hill2, a neighboring solution is generated by toggling a randomly selected xi vari-
able (cf. function neighbor2 in Algorithm 4). The only difference is that an already allo-
cated bid can be removed from the solution, since a simulated annealing algorithm can accept
worse solutions. The modified function, neighbor_sa, is shown in Algorithm 11 in Ap-
pendix B.

Two algorithms were implemented, sa and sas, by giving priority to bidders and sellers,
respectively, and using the appropriate greedy algorithm. The sa algorithm is shown in Algo-
rithm 5.

56

Algorithm 5 Simulated annealing.
1: function sa(n,m, l, b, r, a, s)
2: (x, y)←greedy1(n,m, l, b, r, a, s) ▷ generate initial solution
3: Tmax = maxi∈U bi −minj∈P aj ▷ initialize temperature
4: while T > Tmin and system not frozen do ▷ decreasing temperature
5: for it← 1,Nit do ▷ fixed number of iterations
6: (x′, y′)←neighbor_sa(x, y) ▷ get neighboring solution
7: ap = e(welfare(x′,y′)−welfare(x,y))/T ▷ acceptance probability
8: if ap > rand(0, 1) then ▷with probability ap…
9: (x, y)← (x′, y′) ▷…move to new solution
10: T← αT ▷ fixed rate α = 0.9
11: return (x, y)

4.1.6 casanova algorithms
Two stochastic local search algorithms were also included in the portfolio, based on the
Casanova algorithm introduced by Hoos & Boutilier (2000). Similar to sa, casanova uses
randomization to escape from local optima. However, it differs substantially in the strategies
used for neighborhood exploration and randomization. What is more, the algorithm uses
random restarts, whichwere shown tomitigate the large performance variability of stochastic
combinatorial search methods (Gomes et al., 1997).

The approach proposed byHoos & Boutilier (2000), adapted tomy problem formulation,
is described in the following. The pseudocode is shown in Algorithm 6.

The algorithm is based on scoring each state by the revenue per good that it brings. Since a
neighbor in the search space can be reached by adding a bid to the solution, the scoring func-
tion can be defined (cf. Equation 4.11) as the bid value normalized by the total quantity of
resources in the requested bundle. Note that for the proposed double-sided auction, this is a
rough approximation, since the corresponding ask is not included in the score. It nevertheless
allows us to rank and process bids based on their score.

score(i) =
bi∑l
g=1 rig

, ∀i ∈ U (4.11)

The search starts with an empty allocation and moves to a neighboring solution in the
search space by allocating a single bid: with a walk probability wp, a random bid is chosen;
with a probability of 1− wp, a bid is selected from the list of bids sorted by score—either the

57

Algorithm 6 Casanova algorithm, based on stochastic local search.
1: function casanova(n,m, l, b, r, a, s)
2: for try← 1,maxTries do ▷ restart search try times
3: (x, y)← 0 ▷ empty allocation
4: sort bids descendingly by score
5: sort asks ascendingly by density
6: for step← 1,maxSteps do
7: if wp > rand(0, 1) then ▷with walk probability wp
8: (x, y)←insert(random unallocated bid i, x, y)
9: else if age(first unallocated bid)> age(second unallocated bid) then
10: (x, y)←insert(first unallocated bid, x, y)
11: else if np > rand(0, 1) then ▷with novelty probability np
12: (x, y)←insert(second unallocated bid, x, y)
13: else
14: (x, y)←insert(first unallocated bid, x, y)
15: if step > θr and no improvement in last θr/2 steps then
16: break ▷ soft restart
17: return best (x, y) found

highest or second highest ranked bid. The highest-ranked bid is selected if its age is larger than
that of the second highest-ranked bid; otherwise, I select the second highest-ranked bid with
a novelty probability np and the highest one with a probability of 1− np. The age of a bid is
defined as the number of steps since it was last selected in the current try.

The search is performed for at most maxSteps iterations and is restarted maxTries times.
The best solution from all runs is chosen. The soft restart strategy proposed by Hoos &
Boutilier (2000) is used, which restarts the search if at least θr steps have been performed since
the last restart, but no improvement occurred within the last θr/2 steps.
The maxSteps and θr variables are problem-size dependent, and need to ensure that the

search space is sufficiently explored. Thus, maxSteps = n and θr = n/4 are used. The
other parameters are fixed to values shown by Hoos & Boutilier (2000) to yield good results:
wp = 0.15, np = 0.5,maxTries = 10.

Algorithm 7 shows how a bid is added to a partial solution: a greedy-like algorithm is used
to find an unallocated ask that can satisfy it. If nomatch is found, the search continues among
the already allocated asks: the bid can replace an already allocated bid only if it improves the
social welfare.

An algorithm that prioritizes sellers, casanovas, was also implemented, with the follow-

58

Algorithm 7Neighbor function for Casanova algorithm. The function adds an unallocated
bid and best matching ask to the current solution.
1: function insert(i, x, y)
2: for j← 1,m do ▷ greedy-like search for ask
3: if yqj = 0,∀q ∈ U then ▷ j not allocated
4: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
5: xi ← 1; yij ← 1 ▷match bid i and ask j
6: reset age(i)
7: return (x, y) ▷match found
8: for j← 1,m do ▷ no match, restart search
9: if ∃q ∈ U , yqj = 1 then ▷ j already allocated
10: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
11: if bi > bq then ▷ if bid i improves allocation
12: xi ← 1; yij ← 1 ▷match bid i and ask j
13: xq ← 0; yqj ← 0 ▷ undo allocation of bid q
14: reset age(i)
15: return (x, y) ▷match found
16: return (x, y) ▷ no match found

ing differences: asks are sorted by their score (the ask value normalized by the total quantity
of resources in the offered bundle), while bids are sorted by density; the insert function takes
an ask j and tries to find a matching bid i.

4.2 input data generation
Although most research on combinatorial auctions uses artificial data for evaluation (Sand-
holm, 2002, Fujishima et al., 1999, De Vries & Vohra, 2003), the generation approaches are
typically simplistic, and not representative of real data. The Combinatorial Auctions Test
Suite (CATS) (Leyton-Brown et al., 2000) is the only work that aims to create a comprehen-
sive tool for generating artificial data for combinatorial auctions, and to provide support for
more realistic distributions—bymodeling complementarity and substitutability of goods us-
ing graphs. Nevertheless, this work is not sufficient to generate input data adequate for the
problemmodel proposed in this thesis.

This is because, to my knowledge, there is no work that addresses all of the following as-
pects:

59

• multi-unit and multi-good aspect: generating bids for bundles of resources (combina-
torial bids), but allowing multiple units for each resource type.

• two-sided aspect: generating both bids and asks, while considering the interactions or
dependencies between buyers and sellers.

• cloud aspect: generating data for cloud resource auctions, by creating bundles that are
similar or representative to some extent of real-world cloud workloads.

A new approach for input generation that could address these issues was necessary. This
approach should enable flexible input generation, be easily parameterizable, generate realistic
cloud bundles, and provide a way to model the dependency between the two sides when it
comes to generating bid and ask values.

Thus, I propose an improved way of generating artificial data for multi-good multi-unit
double combinatorial auctions for cloud resources. The developed input generation tool
CAGE (Combinatorial Auctions input GEnerator) (Gudu, 2019a) is introduced in the fol-
lowing.

Given the desired amount of bids n, the desired amount of asksm, as well as the number
of possible resource types l, generating an auction instance means generating all the bids and
asks, expressed as:

bids : (⟨ri1, . . . , ril⟩, bi),∀i ≤ n (4.12)

asks : (⟨sj1, . . . , sjl⟩, aj), ∀j ≤ m (4.13)

The input generation is done in two steps:

1. generating the vectors of resource quantities, through the realistic cloud bundle gener-
ation approach proposed in Section 4.2.1, and

2. generating the bid and ask values, by using the previously generated bundles, with the
pricing model and valuation generation approach proposed in Section 4.2.2.

4.2.1 bundle generation
The goal is to create artificial bundles resembling the characteristics of real bundles of comput-
ing resources, while maintaining flexibility by allowing for parameterizable ranges and granu-

60

larities of resources. The bundle generation presented in this section is the result of jointwork
with Peter Krauß (publication in preparation).

traces

It must first be defined what realistic means. Since there is no public dataset of resource re-
quests submitted to cloud providers, public cluster traces are used to extract information on
the kind of jobs thatmight typically run inside a datacenter. It cannot be proven that these
traces are representative of all workloads running in the cloud nowadays, but they are real
workloads of specific use cases, thus ensuring that realistic bundles are generated. Another
plus is the fact that they are publicly available and often used in cloud research, paving the
way towards standardization and comparability of research in this field.

Two sources of traces were selected: the Google cluster data (Wilkes, 2011, Reiss et al.,
2011), containing several traces of Google cluster management software and systems, and the
fastStorage trace (Shen et al., 2015, Bitbrains ITServices Inc., 2014), providedby theBitbrains
IT Services provider, specializing in business computation for enterprises (such as financial
reporting). The latter dataset is hosted at the GridWorkloads Archive1.
These tracesmeasure various performancemetrics over time (CPUandmemory usage, disk

and network I/O performance), for all the jobs running in a distributed datacenter in a pre-
defined period of time (e.g. 29 days for the Google traces). The values of these performance
metrics are normalized for anonymization. Next, the raw traces are processed to extract the
set of jobs that were run in the datacenter, each with its total resource usage.

At this point, I make the following assumptions:

1. Each job and its resource usage can be mapped to a submitted request for the same
amount of cloud resources. Then the full cluster workload can be mapped to a set of
bids.

2. The relevant characteristics for cloudworkloads are the relations between the resources
and their distribution throughout the whole domain space.

Regarding the second assumption, let us consider an example: if the resources areCPUand
memory, then it is relevant how they are combined in bundles—e.g. bundles with 8 CPUs
and 8 GB of memory exist, but bundles with 100 CPUs and 1 GB of memory do not—, and
how often they appear in a workload consisting of multiple bundles—e.g. the (8 CPUs, 8
GB) bundles are 10 times more common than (64 CPUs, 64 GB) bundles.

1http://gwa.ewi.tudelft.nl/

61

http://gwa.ewi.tudelft.nl/

approach

An approach is proposed, that can create a model of these relevant characteristics for any real
workload, which can then be used to generate artificial data that resembles the real workload,
but allowing user-defined parameters for the generated bundles (e.g. number of bundles, re-
source types and amount ranges, quantization).

The advantages ofmodelling instead of directly using the real data concern size constraints,
and flexibility and variety demands. Real datasets can be hard to handle due to their large
sizes, as opposed tomodels, which are small, while capturingmost of the characteristics of the
source data. Models are therefore increasinglymore portable, since once they are created, they
are independent from the data source and directly usable to generate artificial data of any size.
Moreover, models enable parameterized generation, by allowing e.g., different quantizations
of resources, different amounts of bundles, giving the possibility to generate asmany different
datasets as necessary. Real data, however, is limited with respect to the number of available
datasets and variety within datasets, and can be noisy.

Figure 4.1 describes the bundle generation approach.
First, a model is created from a given data source. The data model is a multi-dimensional

probability density function, where each dimension represents a resource, while each point
in this space represents the probability of generating a bundle with the resource composition
given by its coordinates. The model is created in two steps: discretization and interpolation.

The discretization consists of creating a multi-dimensional histogram of the real data,
where the resources are binned in a configurable number of bins. The binning directly im-
pacts themodel size and quality: themore bins are used, themore closely themodel resembles
the real data; however, this also increases themodel size. An example 2-dimensional histogram
created from one of the Google traces is shown in Figure 4.2: only the CPU usage and mem-
ory resources are considered, with 16 regular bins in each dimension. Irregular bins can
also be used, for example to increase the granularity only in a certain region on the resource
domain. Even more, by applying clustering on the real data, one can determine a binning

Real
data Model Artificial

data
(1) Binning
(2) Interpolation

(1) Re-binning
(2) Random sampling

Figure 4.1: Approach for ar ficially genera ng realis c cloud bundles.

62

Figure 4.2: Two example histograms used to create a model, with different binnings: regular (le) and clustered (right). The
two dimensional space denotes the two resource types: maximum memory used and average cycles per second. Both
binnings use 16 bins in each dimension.

that tries to capture the data distribution and is thus finer where the clusters are located (cf.
Figure 4.2).

In the interpolation step, the histogram values are used, together with the bin centers as
support points, to create the probability density function: a function defined on the full do-
main, that returns the probability of any bundle in this domain.

Finally, once a model is created, artificial data can be generated. The following parameters
can be changed: the number and type of bins in each dimension, the number of bundles; the
domain can also be re-scaled to any desired range. The data generation is done in two steps:
first, re-binning from the model bins to the desired bins, and computing the probability of
each possible bundle; second, randomly sampling the desired amount of bundles from the
possible bundles, according to the computed probabilities.

Figure 4.3 shows an example of artificial data, generated with 64 bins in each dimension,
from a model based on clustered binning with 16 bins in each dimension. The real data
binned in the same way is also showed for comparison. It can be seen that the generated data
maintains the characteristics of the real data, while smoothing out irregular data.

Finally, in addition to the real workloads, two flavors of artificial models are included, to
aid in the evaluation of bundle generation. The first model is called uniform, and assumes a
uniformprobability of bundles throughout the resource space: any combination of resources
is equally possible. The second model, hotspots, assumes only a specific set of bundles are
possible, with equal probabilities, while other resource combinations are not allowed. Due to

63

Figure 4.3: Real (le) vs ar ficial (right) data, both binned with 64x64 regular bins, generated from a model of only 16x16
clustered bins.

their simplicity, these models can be used to quickly generate bundles in any resource domain
space. Thesemodels are appropriate to generate cloud offers (for example, the hotspots in the
resource space can be mapped to the predefined VM instance types offered by Amazon).

4.2.2 valuation generation
Applying the bundle generation method, with the desired models and parameters, outputs
the vectors of resource quantities for all the bids and asks. To complete the generation of an
auction instance—a set of bids and asks—, the bid values (bi)i≤n and ask values (aj)j≤m are
left to generate.

First, let us consider each resource type individually. Todescribe how the price of a resource
changes with the number of units of said resource, I define a resource pricingmodel. This can
be any function Ψ : R → R, that takes a quantity of resources of type g ∈ G, and assigns a
value to this quantity.

A simple and straightforward model is a linear pricing model: the value of a resource in-
creases linearly with quantity. A fixed cost can also be included, for example to model the
cost of provisioning a certain type of resource, which does not change with quantity. In this
thesis, linear pricing models are used for all the resources, with different parameters. Nev-
ertheless, the input generator can be easily extended with more complex, non-linear pricing
models.

Moving from one type of resources to l types, let us define the linear pricing model Ψ on

64

the l-dimensional resource domain, returning an l-dimensional value of resources:

Ψ : Rl → Rl, Ψ(q) = slope · q+ fixed, (4.14)

where q is a vector of resource quantities, the slope vector contains the unit prices of each
resource type, and fixed is a vector of fixed costs for provisioning each type of resources (it can
also be zero).

Given base values for resources (through their pricing models), I now wish to encode the
difference in valuations between the two sides, bidders and sellers: in order to have a chance at
receiving a desired bundle, a bidder will likely bid a higher value than what providers offer. A
fixed valuedist is introduced that expresses the distance between the pricingmodels of bidders
and sellers (relative to the slope). Then the bidder and seller pricing models have different
slopes, each at half of a given distance dist from the base slope. This results in pricing models
Ψb and Ψa for bidders and sellers, where the quantity vectors are r and s:

slopeb = slope · (1+ dist
2

) =⇒ Ψb(r) = slopeb · r+ fixed (4.15)

slopea = slope · (1− dist
2

) =⇒ Ψa(s) = slopea · s+ fixed (4.16)

Additive valuations for bids and asks are assumed when combining resource types. This
means that, to compute bid and ask values, the values of all the resources in the bundle—
according to the pricingmodel—are added up. This can be expressed formally as theL1 norm
of the Ψ vectors.

Finally, to simulate the fact that auction participants have different preferences and risk
attitudes, and for example they might be willing to pay more for some resources than other
bidders, randomperturbations are added around the computed values, according to a normal
distribution with a given standard deviation (relative to the mean value, e.g. 5% around the
mean).

Let σb and σa be the user-defined standard deviations for biders and sellers, respectively.
Then the bid and ask values are calculated as follows:

b = |Ψb(r)|1(1± σb) (4.17)

a = |Ψa(s)|1(1± σa) (4.18)

The user-defined parameters dist, σb, σa determine the amount of overlap between the bid

65

and ask values, and indirectly the likelihood of finding matches between bids and asks.

4.3 evaluation
I performed an extensive and systematic evaluation of the algorithm portfolio, and present
the results in the rest of this section.

Since real-world auction data for cloud resources is not available, artificial data was used in
all the tests, a common practice in the area of combinatorial auctions (Leyton-Brown et al.,
2000, Sandholm, 2002, De Vries & Vohra, 2003). However, in contrast to other work, I en-
sure that the data are realistic, through the proposed approach of bundle generation based
on extracting relevant characteristics from real cloud traces. The synthetic aspect affords a
coverage of a wider scope of scenarios, while providing full control over the input.

Using CAGE—the novel tool for generating artificial combinatorial auction data intro-
duced in Section 4.2—, two different datasets for evaluating the algorithm portfolio were
created:

D1: the bundles in this dataset have 3 resource types (e.g., CPU cycles, memory, disk) and
they were generated using four different models based on the Google cluster traces, as
well as the artificialmodels uniformandhotspots. The costmodel parameterswere
varied to support different spreads of agent valuations around a common value, as well
as different degrees of overlap between bidder and seller valuations.

D2: the bundles in this dataset have 4 resource types (e.g. CPU usage, memory, disk I/O,
network I/O) and are based on the Bitbrains workload traces, as well as the uniform
and hotspots models. The other parameters are the same as for dataset D1.

Table 4.2 summarizes the pricing model parameters used to generate the auction instances
in D1 and D2. The number of bids and asks were fixed (n = m = 1000), as well as the
binning type (regular) and binning domain ([0, 128] in each dimension) for both bid and ask
bundles.

4.3.1 average case
First, the average behavior of the algorithm portfolio was studied on each dataset. The execu-
tion time and the computed welfare were recorded, and the results are depicted in Figure 4.4
and Figure 4.5.

66

Table 4.2: Resource pricing model parameters used in genera ng datasets D1 and D2.

Parameter D1 D2

slope {[1, 1, 1], {[1, 1, 1, 1],
[1, 0.9, 0.5], [1, 0.9, 0.5, 1],
[1.1, 1, 0.9]} [1.1, 1, 0.9, 1]}

fixed {[0, 0, 0], {[0, 0, 0, 0],
[0, 0, 0.1]} [0, 0, 0.1, 0]}

dist {0, 0.1, 0.5} {0, 0.1, 0.5}
σa {0.05, 0.1, 0.25} {0.05, 0.1, 0.25}
σb {0.05, 0.1, 0.25} {0.05, 0.1, 0.25}
instances 46,656 8440

Note that during the analysis of results, to refer to both variations of an algorithm (i.e. with
bidder and seller priority), the term<algo>(s)will be used, where <algo> canbe for example
hill2. Then, hill2(s) denotes hill2 and hill2s in a shorthand manner.

Figure 4.4 shows that there are large differences between the algorithms in terms of com-
puted welfare (normalized to the optimal welfare). The greedy algorithms generally yield a
low welfare (on average, 5–12% on D1, and only ≈ 1.3% on D2), but have a large variation
over the dataset, sometimes reaching near-optimal solutions. Algorithms hill2(s) and sa(s)
compute the highest welfare in the portfolio, with averages of 71-80% of the optimal welfare.
The remaining algorithms, casanova(s) and hill1(s) give inconclusive results, having the
largest spread of welfare value of all algorithms. On D1, the casanova(s) algorithms yield,
on average, half of the optimal welfare, and the hill1(s) algorithms only about a quarter.

This behavior is consistent over the two datasets, with one notable exception: the algo-
rithms based on optimizing the ordering of bids and asks, onto which a greedy allocation can
be applied (all from the greedy family, rlps, casanova(s), hill1(s)) yield up to one order
of magnitude lower welfare on D2 than on D1. This is due to the fact that instances in D2
have more resource types (l = 4), increasing the complexity of finding a match, since for an
ask to be able to satisfy a bid, all the resource types in the ask should be in a quantity higher
than the ones requested in the bid. However, ordering the bid and ask lists typically relies on
average values over a bundle, such as density or price per unit.

The immediate conclusion of the results in Figure 4.4 is that the hill2(s) or sa(s) algo-
rithms are the best in the portfolio, but the execution time analysis in Figure 4.5 paints a
different picture.

67

(a) Dataset D1: Social welfare, normalized by the optimal welfare computed with cplex

(b) Dataset D2: Social welfare, normalized by the optimal welfare computed with cplex

Figure 4.4: Social welfare results for the two datasets, normalized by the op mal welfare computed with the op mal
algorithm CPLEX. The average value for each algorithm is represented by a red star, with the actual value a ached at the
top of each box. The boxes extend from the lower to the upper quar le values of the data, with a blue line at the median.
The notches around the median represent the confidence interval around the median. The whiskers reach from 5% to 95%
of the data. The remaining data are represented as outliers with gray circles.

68

(a) Dataset D1: Execution time, normalized by the execution time of the optimal algorithm cplex

(b) Dataset D2: Execution time, normalized by the execution time of the optimal algorithm cplex

Figure 4.5: Execu on me results for the two datasets, normalized by the execu on me of the op mal algorithm CPLEX.
The average value for each algorithm is represented by a red star, with the actual value a ached at the top of each box.
The boxes extend from the lower to the upper quar le values of the data, with a blue line at the median. The notches
around the median represent the confidence interval around the median. The whiskers reach from 5% to 95% of the data.
The remaining data are represented as outliers with gray circles. A logarithmic scale was used for the y-axis for be er
readability.

69

Fig. 4.5 shows that the greedy algorithms are at least 2 orders of magnitude faster than any
other algorithm in the portfolio. Furthermore, while hill2(s) and sa(s) all have an average
time of≈ 1-3% of cplex’s time, they scale differently with the problem size—hill2(s) have
a time complexity of O(n2), vs. O(n log n) for sa(s). Also note that on D2, hill1 is, on
average, faster than all the other algorithms (with the exception of the greedy family), and
can therefore not be ruled out as a viable option for solving combinatorial auctions when the
speed is an important factor.

Nevertheless, the average case behavior confirms my hypothesis that algorithm perfor-
mance and solution quality are highly dependent on the input, and thus there is no clear
portfolio winner, especially when considering both execution time and welfare. Each algo-
rithm has its strengths and weaknesses. I explore this further in Section 4.3.3.

The only exception is the rlps algorithm, which is often slower than cplex (due to the use
of simplexmethods for solving the linear relaxation problem), and yields lowwelfare (6.3% of
the optimal welfare on D1, and 1.5% on D2) with a large spread. As a result, is was excluded
from the portfolio.

4.3.2 effect of randomization
The casanova(s), sa(s), and hill2(s) algorithms are stochastic, causing them to yield differ-
ent results for different runs on the same input. For a reliable usage, it is desirable tominimize
welfare variations between runs. Thus, the robustness of the four algorithms with respect to
randomness was evaluated. The D1 dataset was used, and 100 runs were performed on each
problem instance.

Figure 4.6 shows the percentual variations for each algorithm with respect to the mean of
the 100 runs. This normalizationwas performed in order to have a comparative overview over
all the instances and algorithms. Over all the evaluated algorithms, it can be observed that the
lower andupper quartile are inside the interval [-4.28%, 3.46%]with respect to themean, with
5% to 95% of the data in [-38%,31%]. However, outliers can be seen even beyond± 100%.

The highest variations were observed for the casanova(s) algorithms, since they work
with an improved score-based ordering of bids and asks, and the computed welfare is very
sensitive to ordering changes (as Figure 4.4 shows).

Themore interesting result concerns the difference betweenhill2(s) and sa(s) algorithms.
Even though sa(s) have a slightly more narrow range of values that contains the 50% of
the data (the boxes in Figure 4.6 extend from the lower to the upper quartile), and even

70

Figure 4.6: Varia on in social welfare for the stochas c algorithms: results for dataset D1, with 100 runs per instance. The
difference of each run to the average value of the respec ve instance, normalized by that average value, is plo ed. The
average value (red star) is always at 0. The boxes extend from the lower to the upper quar le, with a blue line at the median.
The whiskers reach from 5% to 95% of the data, and the rest are outliers (gray circles).

though their welfare distributions are more skewed towards the higher values (depicted by
the whiskers in Figure 4.6, which extend from 5% to 95% of the data, and are shorter to the
right side of the mean value compared to the left side), they also exhibit long tail behavior
towards the lower end. This means that the hill2(s) algorithms are more robust, yielding
more consistent results between runs.

The difference can also be explained by the fact that the hill2(s) algorithms use random-
ization to select a neighbor for each solution in space, but otherwise follow a gradient descent
approach, whereas sa(s) randomly accept worse solutions and thus explore the search space
much more before settling towards gradient descent—which can sometimes end in worse so-
lutions overall.

In conclusion, even though the variation is small in most cases, in order to use these algo-
rithmsmore reliably, multiple runs are necessary, and the best solution can be used in the end.
This would, however, increase the execution time.

4.3.3 best algorithm
Even though in Section 4.3.1 it was observed that some algorithms, such as hill2, perform
better than others on average, a deeper investigation is necessary to find out whether they
perform best on any given instance.

Consequently, I analyzed the two datasets by checking, for each instance, which algorithm

71

Table 4.3: Breakdown of datasets D1 and D2 by best algorithm: number of instances where each heuris c algorithm
computes the highest welfare in the por olio (excluding CPLEX)—absolute numbers and percentage of total instances on
which the por olio was run.

D1 D2
instances % instances # instances % instances

greedy1 3681 7.89 % 42 0.49 %
greedy2 15 0.03 % 0 0 %
greedy3 4 0.01 % 0 0 %
greedy1s 60 0.13 % 0 0 %
hill1 1472 3.16 % 65 0.77 %
hill1s 80 0.17 % 2 0.02 %
hill2 6048 12.96 % 312 3.67 %
hill2s 5592 11.99 % 3078 36.23 %
sa 12103 25.94 % 1846 21.73 %
sas 14310 30.67 % 3134 36.89 %
casanova 708 1.52 % 9 0.11 %
casanovas 2583 5.54 % 8 0.09 %

computes the highest welfare. The results of the breakdown are summarized in Table 4.3.
Note that, even though sas computes the highestwelfaremore often thanother algorithms

(30.67% and 36.23% for D1 and D2, respectively), there is no single best algorithm in the
portfolio. No algorithm has majority, and the title of best algorithm is relatively balanced
among sa(s) andhill2(s) algorithms. Furthermore, considered underdogs such as greedy1,
hill1, and casanovas succeed in winning in a significant number of cases (a total of 16.6%
on D1). Overall, all the algorithms are winners in certain cases.

This result reinforces the idea that there is no clear winner of the algorithm portfolio, espe-
cially if preferences for the time-quality trade-off are considered. It is also a strongmotivation
for an algorithm selection approach which selects the best algorithm on a case-by-case basis.

72

Effective algorithms make assumptions, show a bias to-
ward a simple solutions, trade off the costs of error against
the cost of delay, and take chances.

Brian Christian, TomGriffiths

5
High-knowledge Algorithm Selection

Double combinatorial auctions areNP -hard (DeVries &Vohra, 2003), hindering their wide
adoption in real-world applications. In Chapter 4, I showed that heuristic algorithms can
mitigate the tractability and scalability issues posed by optimal algorithms. However, the
evaluation in Section 4.3 also revealed that the solution quality of heuristics is highly input-
dependent. Algorithm selection enables a more robust usage of heuristic algorithms for com-
binatorial auctions, by selecting the most suitable algorithm on a case-by-case basis.

In this thesis I propose two approaches for algorithm selection: a high-knowledge approach
(malaise), which uses supervised machine learning to train a per-portfolio performance
model, and a low-knowledge approach (praise), which builds per-algorithm models using
probing information.

This chapter is devoted to the high-knowledge approach, published in (Gudu et al., 2018a).
It starts with a high-level description and an outline of my contributions in Section 5.1. It
then dives deeper into the building blocks of the algorithm selection: the novel cost model
is introduced in Section 5.1.1, which enables a quantitative multi-objective algorithm com-
parison; the feature space is described in Section 5.1.2. Section 5.2 formulates the selection
as a classification problem, and delineates mymethodology for constructing and evaluating a
malaise selection model. Finally, an evaluation of the approach in Section 5.3 shows that it
yields better results than a single algorithm—in response to Research Question 4.

73

5.1 approach
malaise (MAchineLearning-basedAlgorIthmSElection) is an algorithm selection approach
that uses supervised learning techniques to automatically extract relevant information from
large amounts of data, in order to predict which algorithm in a portfolio will perform best for
a given instance.

For a more detailed description of malaise, the algorithm selection is broken down into
four building blocks (problem, feature, algorithm, and performancemeasure space)—similar
to Figure 2.5 in the Background chapter. Then, malaise can be categorized according to the
characteristics of each building block, as visualized in Figure 5.1.
A defining aspect of this approach concerns the feature space design: as the chapter title sug-

gests, the features are domain-specific, statistical information extracted from the problem in-
stances. As such, high-knowledge of the problem domain—double combinatorial auctions—
is required to define the features. This also means that the approach is not directly applicable
to other problem domains.

The feature space is derived from the problem space, which consists of auction instances
that, in the presented experiments, are artificially generated using cage, the input generator
introduced in Section 4.2. The artificial nature of the problem instances allows a comprehen-
sive coverage of the problem space, while ensuring realistic cloud resource bundles.

Another important aspect is the offline selection—the selection model is constructed in ad-
vance, in the initial training phase. Furthermore, the feature extraction and prediction are
also performed before running any algorithm on the given instance. Only after the selection
is done, the predicted best algorithm is run to completion. Even though the training phase
can be costly, once the model is constructed, the selection is fast, since the feature extraction
and applying the model are designed for fast execution (linear time complexity).

For each instance, a single algorithm is selected from a static algorithm portfolio. The pro-
posed malaise approach distinguishes itself from related work (see Section 2.3.3) by deal-
ing with heuristic algorithms for combinatorial auctions instead of optimal algorithms. This
comes with its own set of challenges, among which themost significant being algorithm com-
parability: since heuristics generally trade solutionquality for speed, it is often the case that the
most accurate algorithm is not the fastest. Tobe able to decidewhich algorithm is the best, I in-
troduce a cost model that considers both objectives—speed and accuracy—and an adjustable
importance of each objective, in order to evaluate algorithmperformance. In contrast, related
work is only concerned with speed, as it aims to predict execution time or problem hardness.

74

Problem
space

Feature
space

Algorithm
space

Performance
measure space

· auction instances
· artificially generated
· realistic cloud bundles

· high-knowledge
· static
· domain-specific
· statistics

· static portfolio
· heuristic algorithms

· best algorithm
→min cost

Feature
extraction

Selection
mapping

Performance
mapping

· linear time
O(l(n+m))

·when: offline
·what: algorithm
· how: automatic
· supervised learning

· per portfolio
· 2d cost model

Figure 5.1: Overview of MALAISE approach for algorithm selec on. Categoriza on and descrip on of each building block
(cf. Figure 2.5).

Finally, the cost model is used to build a performance model for the algorithm portfolio.
Since the prediction is a categorical value (the best algorithm according to the cost model),
modelling each algorithm’s performance is not necessary. As a result, this approach has the
benefit of considering the algorithms relative to each other rather than independently. How-
ever, this also means that adding or removing algorithms to/from the portfolio requires re-
building the performance model.

contributions

I summarize the contributions of malaise to thefieldof algorithmselectionbelow, anddetail
them in the following sections:

• malaise is the only approach, tomy knowledge, that selects from a portfolio of heuris-
tic algorithms for double combinatorial auctions.

• To that end, the proposed approach builds a performance model that considers both
time and welfare objectives.

• The relative importance of the two objectives in selecting the best algorithm can be
configured by the auctioneer.

75

• Moreover, features specific to the combinatorial auction domainwere engineered; even
more, objective-specific feature relevance was investigated in order to build selection
models tailored to the desired relative importance of the time and welfare objectives.

5.1.1 cost model
Since the algorithms in the portfolio are heuristic, they generally trade solution quality for
speed. For a quantitative comparison of the algorithms with respect to both objectives, it is
necessary to quantify the trade-off between accuracy and execution time. Finding the best al-
gorithm is then equivalent to minimizing the proposedmeasure of trade-off. The cost model
is based on an idea developed in collaboration with Peter Krauß.

I propose modeling this as a multi-objective optimization problem (Deb, 2014), whose
objectives are a maximum social welfare (or solution quality) and a minimum execution time.
In order to find a Pareto optimal solution, the idea of a compromise solution (Marler&Arora,
2004) is used, whichminimizes the distance between the potential optimal point and a utopia
(or ideal) point.

Firstly, as welfare and time are measured on different scales, they should be normalized to
obtain non-dimensional objective functions.

The welfare objective function is normalized, and called welfare cost cw(X,A), as defined
in Equation 5.1, where w(X,A) is the welfare computed by algorithmA on instanceX, while
wmin(X) and wmax(X) are, respectively, the minimum and maximum welfare obtained for in-
stanceX by any algorithm in the portfolio. Thus, the best algorithmwhen only welfare objec-
tive is considered (with maximumwelfare) will have zero welfare cost.

cw(X,A) =
wmax(X)− w(X,A)
wmax(X)− wmin(X)

(5.1)

Similarly, Equation 5.2 defines the time cost ct(X,A) as the normalized time objective,
where t(X,A) is the execution time of algorithm A on instance X, and tmin(X) and tmax(X)
are the execution times of the fastest and slowest algorithms in the portfolio on instance X.
The best algorithm with respect to time will also have zero time cost.

ct(X,A) =
t(X,A)− tmin(X)
tmax(X)− tmin(X)

(5.2)

76

Then themulti-objective function is defined as a vectorC in the two-dimensional objective
space:

C =

[
cw
ct

]
(5.3)

Furthermore, a user-defined preference parameter λ ∈ [0, 1] is introduced, which reflects
the relative importance of the two objectives, in order to provide more control over the de-
cision of selecting the best algorithm. This decision over the value of λ is entrusted to the
auctioneer, who nevertheless has tomake this information public, as it influences the bidding
strategies of bidders and sellers.

As such, the welfare cost is weighted by a factor λ, while the time cost is weighted by 1− λ.
Then the multi-objective vector can be written as a λ-dependent vector Cλ:

Cλ =

[
λcw

(1− λ)ct

]
(5.4)

A value of λ = 1 implies that solely the welfare objective should be considered, while λ = 0
ignores the welfare objective and focuses on the algorithm’s execution time. An equal impor-
tance is placed on welfare and time with λ = 0.5.

Finally, the optimal solution (best algorithm) is found by minimizing the distance to the
utopian vector C◦, whose components are the lower bounds of each objective function—in
this case both zero:

C◦ =

[
0
0

]
(5.5)

This distance, denoted by cλ(X,A), is computed using the L2 norm (Euclidean distance):

cλ(X,A) = ∥Cλ − C◦∥ (5.6)

=

√
(λcw (X,A))2 + ((1− λ) ct (X,A))2 (5.7)

Then the best algorithm for a problem instance X ∈ X and a given preference λ ∈ [0, 1] is
the algorithm with a minimum cost cλ:

bestλ(X) = argmin
A∈A

cλ(X,A) (5.8)

Figure 5.2 exemplifies the use of λ on a problem instance. For specific λ values, different al-

77

0.7

0.5

0.3

0.1 0.1

0 0.5 1
0

0.5

1

cw

c t
λ = 0.1, best=casanovas

0.7
0
.5

0.5

0.50.3

0
.1

0 0.5 1
0

0.5

1

cw

λ = 0.5, best=sas

0
.7

0
.5

0
.3

0
.1

0 0.5 1
0

0.5

1

cw

λ = 0.9, best=hill2s greedy1
greedy2
greedy3
greedy1s
hill1
hill1s
hill2
hill2s
sa
sas
casanova
casanovas

Figure 5.2: Visualiza on of a problem instance in the two-dimensional cost space. Isolines represent scalar cost cλ. Different
algorithms emerge as best depending on the chosen value for λ.

gorithms haveminimum cost and are thus selected as the best: when speed is more important
(λ = 0.1), the casanovas algorithm is selected, while an algorithm based on hill climbing
(hill2s) is best when welfare has a higher priority (λ = 0.9). A simulated annealing algo-
rithm (sas) is the best when time and welfare are weighted equally (λ = 0.5).

5.1.2 features
Using domain knowledge—insights into the inner workings of combinatorial auctions, as
well as of each individual algorithm—I defined a number of 75 features that can be extracted
from any problem instance. The features are mainly statistics, and can be computed in linear
time (O (l (m+ n))), which is faster than any of the algorithms in the portfolio. The defined
features can be grouped in four categories: price related, quantity related, quantity per re-
source related (as measures of heterogeneity of requests) and demand-supply balance related.
The features in each group are listed in Table 5.1. I discuss a few examples in the following.

First, statistics of the distribution of the asking price per unit over all asks were included
(mean, standard deviation, skewness and kurtosis). Similarly, I looked at the distribution of
the bid price per unit over all bids, as well as the corresponding quantity related features: the
total bundle sizes of bids and asks.

Moreover, economics concepts were included, such as the bid-ask spread, defined as the
difference between themaximumbid value and theminimumask value, andused as ameasure
of market liquidity. Similarly, a quantity spread per resource was defined, as the difference
between the maximum requested quantity and the minimum offered quantity per resource,
and the first four centralmoments of the distribution of quantity spread over all the l resource
types were computed. Other features in the group of demand-supply balance related features

78

Table 5.1: Instance features used for algorithm selec on. The first four moments of various probability distribu ons (mean,
variance, skewness, kurtosis) are denoted by μ1, μ2, μ3, μ4.

1-4. average bid price: μ1, μ2, μ3, μ4
5-8. average ask price: μ1, μ2, μ3, μ4

price 9. average bid price: max
related 10. average ask price: min

11. mid price
12. bid-ask spread
13. bid-ask spread over mid price

quantity 14-17. bid bundle size: μ1, μ2, μ3, μ4
related 18-21. ask bundle size: μ1, μ2, μ3, μ4

22-25. total demand per resource: μ1, μ2, μ3, μ4
26-29. average demand per resource: μ1, μ2, μ3, μ4

quantity 30-33. minimum demand per resource: μ1, μ2, μ3, μ4
per 34-37. maximum demand per resource: μ1, μ2, μ3, μ4
resource 38-41. total supply per resource: μ1, μ2, μ3, μ4
related 42-45. average supply per resource: μ1, μ2, μ3, μ4

46-49. minimum supply per resource: μ1, μ2, μ3, μ4
50-53. maximum supply per resource: μ1, μ2, μ3, μ4

54. surplus value per surplus quantity
55. demand-supply value ratio
56. demand-supply quantity ratio

demand- 57-60. demand-supply ratio of total quantity per resource: μ1, μ2, μ3, μ4
supply 61-64. demand-supply ratio of average quantity per resource: μ1, μ2, μ3, μ4
balance 65. surplus quantity
related 66-69. surplus of total quantity per resource: μ1, μ2, μ3, μ4

70-73. quantity spread per resource: μ1, μ2, μ3, μ4
74. mean average price bid to ask ratio
75. mean bundle size bid to ask ratio

79

deal with quantity surpluses, either total surplus (the difference between the total quantity of
resources offered and requested), or a quantity surplus per resource type.

5.2 methodology
The malaise algorithm selection can be formulated as a multi-class classification problem.
Classification (Russell & Norvig, 2009) is a supervised learning approach that takes labeled
training data and constructs a model that can predict the labels of any new, unseen data.

Given a training set (X,Y) consisting ofN training examples, in the form:

(X,Y) = {(X1,Y1), . . . , (XN,YN)}, (5.9)

where Xi is the feature set of the i-th training example and Yi is its label (or class), a learning
algorithm tries to approximate the function F : X → A that maps any feature set from the
feature spaceX to a label from the set of possible labelsA. For malaise, the feature space is
the 75-dimensional space described in Section 5.1.2; the label set is the algorithm portfolioA
presented in Section 4.1.

The methodology for training and evaluating a malaise selection model is described in
the following, and depicted in Figure 5.3.
Having constructed an algorithm portfolioA of heuristics, first a raw dataset is build, that

will later be processed and used for training and evaluating the learned model. The data are
collected in two sub-steps:

(1.a) generating a large number of auction instances (defined by a set of bids and asks) that
covers a representative part of the input space, by usingmy artificial input generator for
combinatorial auctions CAGE (cf. Section 4.2);

(1.b) running all the algorithms in the portfolio on all the generated instances to record their
runtime and resulting social welfare.

The next step—(2) Preprocessing—includes feature extraction, labeling the data, and split-
ting the dataset into training and test data. Since using the raw input for learning can be com-
putationally expensive or even intractable, it is necessary to use domain knowledge to extract
a set of features that contain sufficient information to aid the learning process (see Sect. 5.1.2).
Labeling the dataset means selecting the best algorithm for each problem instance—the algo-
rithm with the lowest cost, as defined in Sect. 5.1.1. The processed dataset is then split into a
training set (X,Y) and a test set (X′,Y′).

80

CAGE

Instances

Algorithm
portfolio

Raw data
D=instances
cλ=algorithm costs

Features:
- average bid price
- average ask price
- demand-supply ratio
- bid-ask spread
...

Training set
X=instance features
Y=best algorithms

Test set
X′=instance features
Y′=best algorithms

Selection
model

auto-sklearn

Prediction
Ŷ=predicted algorithms

(1.a) Input generation

(1.b) Run all

combinations

(2) Pre-
processing

(3) Train classifier

(4) Evaluate
model

Figure 5.3: MALAISE methodology.

In step (3), a model is trained that can predict the class label of any new problem instance,
using the auto-sklearn (Feurer et al., 2015) library, which implements an automated machine
learning approach. The library relies on Bayesian optimization methods to construct an en-
semble of classifiers and find their best hyperparameters and preprocessing steps. The prepro-
cessing, in this case, includes feature scaling and feature selection for dimensionality reduc-
tion, based on their relevance as described in Sect. 5.3.1. The 15 classification algorithms in
auto-sklearn fall into seven categories: general linear models, support vector machines, dis-
criminant analysis, nearest neighbors, naïve Bayes, decision trees, and ensembles.

Formalaise, ensemblemodels were built, which combine several learning algorithms into
one predictive model, in order to decrease variance or bias (Russell &Norvig, 2009). The en-
semblemethods consideredbyauto-sklearn are: AdaBoost, gradient boosting, randomforests,
and extremely randomized trees. These methods use decision trees as base classifiers, which
have the benefit of interpretability and fast execution on test data. This motivates the use
of ensemble models over, for example, neural networks. Although neural networks do not
require feature engineering, but rather infer the features during training, they are slower for
both training and prediction. Furthermore, their black-box nature makes them impractica-
ble for auction design: interpretable models are important for market participants, in order
to devise appropriate bidding strategies.

81

Finally, the model is (4) tested on unseen data. At this step, several appropriate metrics to
evaluate the quality of the prediction are considered, and discussed in the following.

5.2.1 prediction evaluation metrics
There are several success measures when evaluating a classificationmodel. Themost intuitive
metric is the accuracy, namely how often the model correctly predicts the algorithm with the
lowest cost. More specifically, I define the accuracy in Equation 5.10, for a given dataset X, as
the fraction of the instances for which the predicted algorithm Ŷi is the same as the algorithm
with the lowest cost Yi.

accuracyλ(Y, Ŷ) =
1
|Y|

|Y|∑
i=1

1(Ŷi = Yi) (5.10)

However, the accuracy does not give a quantitative evaluation of a model’s mispredictions:
it penalizes all misclassifications equally, irrespective of their associated costs. To address this,
I introduce ametric that considers the cost of the predicted algorithm: themean squared error
(MSE), defined in Equation 5.11 as the mean squared differences between the predicted and
true best algorithms. TheMSE can therefore detect when a wrongly predicted algorithm has
the same cost as the best algorithm—and not count it towards the total error. On the other
hand, large cost differences have a significant impact on the error due to squaring.

MSEλ(Y, Ŷ) =
1
|Y|

|Y|∑
i=1

(
cλ(Xi, Ŷi)− cλ(Xi,Yi)

)2
(5.11)

However, the absoluteMSE values needs to be put into context in order to be ameaningful
indicator of prediction quality: only by comparing it to the error of other approaches (a single
auction mechanism or random selection), it can be said if and to what extent the algorithm
selection improves upon these approaches.

First, to compare the malaise algorithm selection against a single algorithm A∗, I intro-
duce the relative mean squared error (RMSE) metric, defined in Equation 5.12 as the ratio
between theMSEof the classificationmodel and theMSEof using algorithmA∗ on the entire
dataset.

RMSEλ(Y, Ŷ,A∗) =
MSEλ(Y, Ŷ)
MSEλ(Y,A∗)

(5.12)

82

The classification model can be similarly compared to a random selection model, where a
random algorithm Ỹi is selected for each instance i.

RMSEλ(Y, Ŷ, Ỹ) =
MSEλ(Y, Ŷ)
MSEλ(Y, Ỹ)

(5.13)

5.3 evaluation
Using the proposed input generator CAGE, a dataset D3 was created, consisting of 69,984
problem instances. Similar to the datasetD1 in Section 4.3, used to compare the algorithms in
the portfolio, the bundles in this dataset have 3 resource types (e.g., CPUcycles,memory, disk)
and theywere generated using four differentmodels based on theGoogle cluster traces, as well
as the artificial models uniform and hotspots. The valuation parameters were similarly
varied to support different spreads of agent valuations around a common value, as well as
different degrees of overlap between bidder and seller valuations. The main difference stems
from the larger problem sizes in D3: 10,000 bids and 10,000 asks. This is now possible since
only the heuristic algorithms need to be run on this dataset. The script and parameters used
to create D3 are listed in Appendix C (Listing C.3).

5.3.1 dataset analysis
The dataset was analyzed by evaluating the relevance of the defined features to the prediction,
aswell as the distribution of class labels. The datasetwas labeled by selecting, for eachproblem
instance, the algorithm that yielded the lowest cost. Since the cost is λ-dependent, so are the
labels.

Figure 5.4 shows the support for each class, over 11 values of λ equidistantly distributed
over [0, 1]. Note that the dataset is imbalanced for all λ. Furthermore, for small λ values, when
time ismore important thanwelfare, greedy algorithmswere selectedmore frequently, as they
are fast, but less accurate, while at the other end hill climbing algorithms, although slower,
were selected for their higher welfare. For λ ∈ [0.1, 0.6], simulated annealing algorithms
were most often selected as best—not surprising, since they are similar to hill climbing, but
randomly acceptworse solutions to climbout of local optima and reach a solution faster. Even
though they were selected less often, the hill1(s) and casanova(s) algorithms have a non-
negligible coverage for several λ values. Thus, they cannot be excluded from the portfolio, as

83

Figure 5.4: Algorithm selec on dataset: breakdown by class labels for several λ values.

they seem to serve a certain (albeit niche) type of problems. An interesting result is that there
is a number of instances for which the greedy algorithms were selected as best even when
execution time was not important (λ = 1). This means that the other algorithms could not
improve upon the greedy solution (since they typically use it as an initial solution). In some
cases, this is because no match exists and the social welfare is zero (the so-called infeasible
instances)—thus the fastest algorithm is always selected as best.

Figure 5.4 hence demonstrates the input-dependent performance of heuristic algorithms,
and the potential for improvement by using algorithm selection.

Next, I investigated which features are more relevant to the prediction. The aim is to iden-
tify irrelevant or redundant features, and remove them to reduce the dimensionality of the
input space and prevent over-fitting. Tree-based estimators were used to compute relative fea-
ture importances for the model’s performance.

In Figure 5.5, all 75 features are sorted based on their importance and the first 20 are shown.
Note that only a few are relevant, e.g. 17 features have an importance over 0.02.

Themost relevant features are related to the asking price per unit—the spread (standard de-
viation) over the set of asks, theminimumvalue. Other important features are concernedwith
the relationship between the asking and bidding price per unit (their ratio, the bid-ask spread,

84

2 4 6 8
·10−2

average_ask_price_stddev
ratio_average_price_bid_to_ask

average_ask_price_min
demand_supply_ratio_value

bid_ask_spread_over_mid_price
average_bid_price_stddev

mid_price
bid_ask_spread

surplus_quantity
average_bid_price_max
average_ask_price_mean
average_bid_price_mean

minimum_demand_per_resource_mean
surplus_total_quantity_per_resource_mean

demand_supply_ratio_mean_quantity_per_resource_mean
demand_supply_ratio_total_quantity_per_resource_mean

ratio_bundle_size_bid_to_ask
demand_supply_ratio_quantity

average_supply_per_resource_mean
total_supply_per_resource_mean

Figure 5.5: Rela ve feature importances averaged over all λ values, computed using ExtraTreesClassifier in scikit-learnwith
500 es mators. Only the first 20 most relevant features are shown.

the mid price, the value demand-supply ratio). This is not surprising, since this relationship
is inextricably embedded in the problem: a bid and ask can be matched only if the bid value
is larger than the ask value; expensive offers (with high asking values) are hard to match, and
thus often not part of the solution. Nevertheless, stochastic algorithms might consider them
during the search as a way to escape local optima, while hill-climbing algorithms only move
to better solutions. It is clear that these features affect each algorithm’s behavior differently.

From the quantity-related features, only the ones that encode the relation between the
quantities of bids and asks, either overall (surplus quantity) or per resource (surplus/demand-
supply ratio quantity per resource), have a certain effect on the prediction. This can be ex-
plained by the fact that quantities per resource are instrumental in assessing the feasibility of
a solution, as enforced by constraint (3.11), and influence the way algorithms move in the
search space.

85

bi
d_
bu
nd
le_
siz
e_
std
de
v

av
era
ge
_a
sk
_p
ric
e_
sk
ew
ne
ss

ask
_b
un
dle
_s
ize
_k
ur
to
sis

av
era
ge
_a
sk
_p
ric
e_
ku
rto
sis

av
era
ge
_b
id_

pr
ice
_k
ur
to
sis

0

2

4

6

8
·10−2

λ = 0

av
era
ge
_a
sk
_p
ric
e_
std
de
v

rat
io_

av
era
ge
_p
ric
e_
bi
d_
to
_a
sk

av
era
ge
_a
sk
_p
ric
e_
m
in

bi
d_
ask

_s
pr
ea
d_
ov
er_

m
id_

pr
ice

de
m
an
d_
su
pp
ly_

rat
io_

va
lu
e

0

2

4

6

8
·10−2

λ = 0.1

av
era
ge
_a
sk
_p
ric
e_
std
de
v

av
era
ge
_a
sk
_p
ric
e_
m
in

su
rp
lu
s_
to
tal
_q
ua
nt
ity
_p
er_

res
ou
rce
_m

ea
n

bi
d_
ask

_s
pr
ea
d_
ov
er_

m
id_

pr
ice

su
rp
lu
s_
qu
an
tit
y

0

2

4

6

8
·10−2

λ = 1

Figure 5.6: Rela ve feature importances for λ ∈ {0, 0.1, 1}, computed using ExtraTreesClassifier in scikit-learn with 500
es mators. Only the first 5 most relevant features are shown.

The error bars in Figure 5.5 suggest that different features might be relevant for different λ
values. As a result, I investigate feature relevance for extreme λ values (λ = 0 and λ = 1), and
plot the 5 most relevant features for each λ in Figure 5.6. When only welfare is considered in
the selection (λ = 1), the features discussed above (spread andminimumvalue of ask price per
unit, and surplus quantity—total or per resource) are still the most relevant. What is more,
their impact on the prediction compared to the rest of the features is more pronounced than
for other λ values. Therefore, it can be said that my proposed feature set contains sufficient
information to reliably predictwhich algorithmwill result in thehighestwelfare. On theother
hand, when λ = 0 and only execution time is considered, all the features have a similar, low
relevance. In this case, the best algorithms are the greedy ones, even if they do not find any
matches; the feature set is not able to discriminate between the different greedy algorithms—
mostly because their runtimes are strikingly similar. Finally, I also looked at λ = 0.1, to
investigate whether the features are predictive of execution time: for such a low λ, runtime
is still the most important objective for algorithm selection, but welfare is also considered,

86

resulting in amore balanced label distribution. In this case, the value-related features aremore
relevant than the quantity-related ones.

It can be concluded that the defined feature set is useful in the prediction of the best al-
gorithm, with the caveat that irrelevant and redundant features should be eliminated before
training, for faster training and enhanced generalization (reduced over-fitting). This is done
automatically by auto-sklearn, which selects the relevant features from the 75 given features.

5.3.2 classification evaluation
The dataset was split into a training set (70%) and a test set (30%) used to test how the model
generalizes on unseen data. Because of the imbalanced dataset, the splitting was performed
using stratified sampling, to ensure that the training and test sets have the same percentage of
samples of each class as the full set.

Using auto-sklearn, a classification model was trained for each λ value. This is necessary
since the labels are different for each λ value.
Figure 5.7 shows the accuracy of themodels for each λ, on both training and test set. Good

accuracies (between 90–97%on the training set, 80–92%on the test set) are obtained formost
λ preferences, with higher accuracy for higher λ, suggesting that the selected features aremore
relevant to the welfare objective rather than the time objective. The only exception is λ = 0,
where malaise only achieves 42% and 38% accuracy on the training and test set, respectively.
The reasons for this were explained in Section 5.3.1: the fastest algorithms all belong to the
greedy family, and the feature set cannot discriminate between the execution times of the
greedy algorithms, since the differences in runtime are small and essentially random.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

40

60

80

100

λ

ac
cu
ra
cy
[%

]

training set
test set

Figure 5.7: Accuracy of MALAISE for different λ values.

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−6

10−4

10−2

100

λ

R
M
SE

training set (vs. A∗) test set (vs. A∗)
training set (vs. random) test set (vs. random)

Figure 5.8: RMSE comparison of MALAISE to random selec on and best pure algorithm for different λ values.

Next, the mispredictions are quantified by calculating the prediction errorMSE (cf. Equa-
tion 5.11), and compared to a random selection, as well as a single algorithm, using theRMSE
metric (cf. Equation 5.12). Note that an RMSE value below 1 implies that the malaise ap-
proach is better than its counterpart in the comparison.

The comparison between the trained models for each λ, and random selection (see Fig-
ure 5.8) shows that malaise is always 2 to 7 orders of magnitude better than a random se-
lection approach. This is true especially for λ = 0: since the greedy algorithms are orders of
magnitude faster than the others, randomly selecting a non-greedy algorithmwill have a large
impact on the error. Similarly, I compared the malaise models to the best pure algorithm
A∗ for each λ, where A∗ is defined as the algorithm selected most often as best in the labeling
phase (cf. Figure 5.4). The best pure algorithmmethod can also be seen as a rule-based system
that uses domain knowledge to select an algorithm per λ value, e.g. when speed is the most
important, greedy algorithms are always used. The comparison revealed that malaise out-
performs the best pure algorithm for all values of λ (see Figure 5.8), with overall lowerRMSE
for larger λ. On the test set, my approach results in an error that is 2 to 14 times lower. The
only exception is, again, λ = 0: with an RMSE of 0.96, malaise is only slightly better than
the best pure algorithm approach. This confirms that the runtime differences between the
greedy algorithms are small and unpredictable.

All in all, the trend of better prediction for higher λ values is confirmed by both accuracy
andRMSE evaluations. The evaluation showed that the proposed malaise approach yields
accurate predictions for all user-preferences λ, and it improves upon the single algorithm ap-
proach.

88

In your thirst for knowledge, be sure not to drown in all the
information.

Anthony J. D’Angelo

6
Low-knowledge Algorithm Selection

While the malaise algorithm selection approach presented in Chapter 5 delivers good re-
sults by accurately selecting the best algorithm, and improves upon the best (on average) sin-
gle algorithm in the portfolio, it has a few limitations. First, domain knowledge is needed
to define combinatorial auction-specific features that facilitate the machine learning process.
This makes it hard to generalize the approach to other problem domains. Second, a training
phase is necessary in order to build the selection model; what is more, the model needs to be
re-trained after every change to the algorithm portfolio.

In this chapter, I propose a second approach for algorithm selection, praise, which does
not require any knowledge of the problem domain, or training. praise uses probing infor-
mation to build per-algorithm performance models. As a result, adding an algorithm to the
portfolio only involves modelling the performance of the new algorithm. However, this ap-
proach requires some knowledge of the algorithms in the portfolio, namely time complexity
and welfare scaling over problem size.

Section 6.1 gives an overview of themethod and contributions. In Section 6.2, themethod-
ology behind praise is detailed: I describe how the probing is done and how the acquired
information is used to predict algorithm performance. Updated metrics for evaluating the
prediction are presented in Section 6.2.4. The proposedmethod is evaluated in Section 6.3. I
show the caseswhere it outperforms a single algorithm, anddiscuss the reasonswhy it does not
in other cases. Finally, the two algorithm selection approaches are compared in Section 6.4,
and the benefits and drawbacks of each method are discussed.

89

6.1 approach

praise (PRobing-based AlgorIthm SElection) is an algorithm selection approach that pre-
dicts individual algorithm performance, based on information obtained by running the algo-
rithm portfolio on a sample of the problem instance; the best algorithm is then selected after
computing the predicted cost of each algorithm.

Aswithmalaise (in Figure 5.1), the algorithm selection is brokendown into four building
blocks: problem, feature, algorithm, and performance measure space. Then, praise can be
described by characterizing each building block, as visualized in Figure 6.1.

The problem space and the algorithm space remain the same as for malaise: the problems
continue to be artificially generated auction instances, while the algorithm portfolio remains
static and comprises heuristic algorithms for solving the WDP. Nevertheless, there are signif-
icant differences in other areas.

First of all, the only features needed for the prediction on a given instance are the execu-
tion time and social welfare of each algorithm on a sample of the instance. These features are
termed low-knowledge, since no domain-knowledge is required to define them. The feature
extraction is performed semi-statically through a process known as probing—taking a probe
of algorithm performance. In contrast to similar approaches in the literature that run the al-
gorithms for a short time andmeasure their performance, in praise the algorithms are run to
completion on a sample of the problem instance. The semi-static nature of a probing-based
approach was explained in Section 2.3.2: the features are computed before actually solving
the instance (like static features), but they do explore a part of the current instance’s search
space (similar to dynamic features).

The second notable difference to malaise concerns the performance mapping and, im-
plicitly, the selection mapping. Performance models are built per algorithm by predicting the
values of time and welfare of each algorithm on a given instance. The selectionmapping then
employs these performancemodels, together with simple hand-crafted rules, to select the best
algorithm—the algorithm with the minimum predicted cost. The cost model, introduced in
Section 5.1.1, considers both time and welfare objectives to quantitatively evaluate and com-
pare algorithms. As with malaise, the selection is performed offline. Once the selection is
finished, the selected algorithm is run to completion.

90

Problem
space

Feature
space

Algorithm
space

Performance
measure space

· auction instances
· artificially generated
· realistic cloud bundles

· low-knowledge
· semi-static
· time and welfare
on probe

· static portfolio
· heuristic algorithms

· predicted values for
time and welfare

Feature
extraction

Selection
mapping

Performance
mapping

probing

·when: offline
·what: algorithm
· how: manual
· hand-crafted rules

per algorithm

Figure 6.1: Overview of PRAISE approach for algorithm selec on. Categoriza on and descrip on of each building block
(cf. Figure 2.5).

contributions

The praise approach makes the following contributions to the field of algorithm selection:

• Same as malaise, it selects from a portfolio of heuristic algorithms for double combi-
natorial auctions.

• To that end, it builds individual performance models for each algorithm, for both time
and welfare objectives.

• The features used in the prediction are obtained through probing, making the ap-
proach generic and transferable to other problem domains. No domain-specific fea-
tures are employed, but the required knowledge is shifted onto deriving algorithm
properties.

6.2 methodology
This section describes the methodology for applying praise on a single problem instance, as
depicted in Figure 6.2.

91

Instance

Probe

Algorithm
portfolio

Probe data
t=execution times
w=social welfares

Algorithm properties:
- time complexity (theoretical)
- welfare scaling (empirical)

Predicted instance data
t̂=execution times
ŵ=welfares

Best
algorithm

(1) Random sampling

(2) Run all algorithms

on probe

(3) Extrapolation

(4) Cost calculation
argminA∈A ĉλ(X,A)

(4’) Cost calculation
argminA∈A cλ(ρX,A)

Figure 6.2: PRAISE methodology.

In step (1), a probe is taken from the problem instance through random sampling. The
probe consists of a subset of the instance’s bids and asks. Next, all the algorithms in the port-
folio are (2) run on the probe, and the resulting welfares and runtimes are recorded. Using
prior knowledge of the algorithms’ properties, the probe data is (3) extrapolated to predict the
execution time and welfare of each algorithm on the full instance. The algorithm properties
characterize the scaling behavior for time and welfare with respect to problem size—the time
complexity is theoretically proven, while the welfare scaling is derived empirically. Finally, in
step (4), the predicted times and welfares are used to compute the predicted cost of each algo-
rithmon the full instance. The algorithmwith theminimumpredicted cost is then selected as
the best. Alternatively, the best algorithm on the probe can be selected as the best algorithm
for the full instance (4’).

Each step is discussed more extensively in the following.

6.2.1 probing
The probing step consists of taking a sample of the problem instance and then running all
algorithms in the portfolio on the sample.

The idea is similar to other approaches (Beck & Freuder, 2004) where heuristic algorithms
for the job shop scheduling problem are run for a short fixed time, and the best algorithm
is chosen based on the solution quality at that point. However, such methods are aimed at

92

selecting the fastest optimal algorithm, and are sensitive to how the solution quality changes
over the running time.

In contrast, since the work presented thesis deals with heuristic algorithms, it considers
both their runtime and solution quality (welfare). This is why both time and welfare are vari-
able, and instead the sample size is fixed. A sample of the problem instance itself is thus taken,
and the algorithms are run to completion on the sample.

The sampling technique used is simply random. This is the most appropriate technique
for situations where not much information is available about the population, as in this case:
praise aims to reduce the domain expertise needed and increase applicability to other do-
mains.

Formally, the sampling is definedby a parameter ρ ∈ (0, 1), representing the sampling ratio,
or the fraction of the full problem that is selected to be part of the sample. Given an auction
instanceX ∈ X , consisting ofnbids andm asks, a random sample is constructed by randomly
selecting ρn bids and ρm asks. The sample problem instance is denoted by ρX.

For malaise, the feature extraction was performed in linear time, and could thus be ne-
glected when evaluating the approach, since all the algorithms have a time complexity of at
leastO(n log n).

In contrast, the time overhead of probing is non-negligible, proportional to the sample size,
and dependent on the algorithms included in the portfolio.

For an instance X and a sampling ratio ρ, the time overhead τ can be defined as the sum of
the execution times of all the algorithms in the portfolio on the sample ρX:

τ(X, ρ) =
∑
A∈A

t(ρX,A) (6.1)

6.2.2 algorithm properties
Given the low-knowledge features, no expertise is required regarding the problem domain.
Instead, the expertise is shifted to extracting the algorithm properties, increasing the general-
ity of this approach. The only relevant properties concern the scaling of execution time and
solution quality over problem size. They are discussed below, and summarized in Table 6.1.

For simplicity, it can be assumed that the number of bids and asks are in the same order of
magnitude (n ≈ m), and the number of resource types is much smaller than the number of
bids (l ≪ n). Then, without loss of generality, the problem size can be expressed through
the number of bids n.

93

Table 6.1: Algorithm proper es: scaling of me and welfare with problem size.

Algorithm Time complexity Welfare scaling

greedy1 O(n log n) O(n0.86)
greedy2 O(n log n) O(n0.86)
greedy3 O(n log n) O(n0.87)
greedy1s O(n log n) O(n0.96)
hill1 O(n2 log n) O(n0.85)
hill1s O(n2 log n) O(n0.93)
hill2 O(n2) O(n1.03)
hill2s O(n2) O(n1.03)
sa O(n log n) O(n0.96)
sas O(n log n) O(n0.96)
casanova O(n2) O(n)
casanovas O(n2) O(n)

The time scaling over problem size is given by each algorithm’s complexity class. Following
a time complexity analysis, I derived each algorithm’s asymptotic upper bound, as listed in
Table 6.1. A few aspects of the analysis are discussed below.

For the greedy algorithms, the execution time is dominated by the sorting step (lines 4–5
in Algorithm 1), which has a complexity ofO(n log n) (Cormen et al., 2009). The rest of the
algorithm is executed in linear time,O(n), since thewhile loop (lines 7–11) only goes through
the sorted bid and ask lists and tries to match them, being executed at most l(n + m) times.
Thus the complexity of the greedy algorithms isO(n log n). This can be similarly proven for
the simulated annealing algorithms, where the cooling schedule has aO(1) number of steps,
albeit a large number in the order of 104:

maximum number of steps = Nit
logTmin − logTmax

log α
. (6.2)

For the hill1(s) algorithms, the Master Theorem (Cormen et al., 2009) was employed, a
method for analyzing the complexity of recursive algorithms.

Next, I investigated how the welfare computed by each algorithm scales with the problem
size. Thiswas derived empirically, since there is no theoretical basis for it. The algorithmswere
run on random samples of increasing size (ρ = 0.05, 0.1, . . . , 0.95) for each instance in an ar-
tificially generated dataset. The average welfare over sampling ratio is plotted in Figure 6.3(a),
for a subset of the algorithms in the portfolio. The plot suggests a near linear scaling, with

94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4
·104

ρ

we
lfa

re

greedy1 greedy1s
hill1 hill2
sa casanova

(a) Welfare scaling over problem size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

·104

ρ

tim
e[
m
s]

greedy1 greedy1s
hill1 hill2
sa casanova

(b) Time scaling over problem size.

Figure 6.3: Welfare and me scaling over problem size, where the problem size is given by the sampling ra o ρ. Only 6
algorithms in the por olio are shown.

95

different slopes per algorithm. The algorithms based on optimizing the ordering of bids and
asks (all the greedy algorithms, hill1(s)) have the worst scaling behavior. An interesting re-
sult is the difference between hill2 and sa: the two curves grow together and diverge only
after ρ = 0.5. This can be explained by the stochastic nature of simulated annealing, which
accepts worse solutions with a probability that decreases with the temperature. The limits im-
posed on temperature and number of iterations speed up the search, but for large problems,
they do not allow the algorithm to sufficiently explore the search space.

Given the measured welfare values over problem size, the precise welfare scaling was com-
puted for each algorithm through curve fitting, using non-linear least squares. The obtained
functions are shown in Table 6.1.
A similar investigation was performed for time, which validated empirically the theoretical

complexity classes. Figure 6.3(b) shows how the execution time scales with the problem size—
for readability reasons, only a subset of the algorithms are displayed. The plot highlights the
significance of the algorithm properties, most visible when comparing the scaling curves of
hill1 and casanova: up to a sample size of 0.85, hill1 runs faster, after which point this
flips, and hill1 becomes slower than casanova.

6.2.3 prediction
In this section, steps (3) and (4) in the praiseworkflow are described (cf. Figure 6.2), namely
how the probing information and the algorithmproperties are combined topredict algorithm
performance, as well as how the best algorithm is selected.

During the probing, the time t and welfare w values on the sample are measured for each
algorithm. Knowing how they scale with problem size (cf. Section 6.2.2), one can predict
each algorithm’s time t̂ and welfare ŵ values on the full instance through extrapolation.

Equation 6.3 defines the extrapolation for any function φ that describes a scaling behavior
(e.g. φ(n) = n log n). Given a sampling ratio ρ and the function value on the sample, φ(ρX),
and assuming the function is invertible (∃φ−1, and is unique, such that φ−1(φ(x)) = x,∀x),
the function value on the full instance, φ(X), can be expressed as:

φ(X) = φ
(
φ−1(φ(ρX))

ρ

)
(6.3)

Next, the cost model introduced in Section 5.1.1 is used to quantitatively compare algo-
rithm performance with respect to both time and welfare. In this case, the predicted welfare

96

and time values are used to compute the predicted cost, as shown in Equation 6.6. Besides the
preference λ, the predicted cost of an algorithm A on a problem instance X also depends on
the chosen sampling ratio ρ. The predicted costs of welfare and time are formulated below, in
Equation 6.4 and Equation 6.5, respectively.

ĉw(X,A, ρ) =
ŵmax(X, ρ)− ŵ(X,A, ρ)
ŵmax(X, ρ)− ŵmin(X, ρ)

(6.4)

ĉt(X,A, ρ) =
t̂(X,A, ρ)− t̂min(X, ρ)
t̂max(X, ρ)− t̂min(X, ρ)

(6.5)

ĉλ(X,A, ρ) =
√

(λ̂cw (X,A, ρ))2 + ((1− λ) ĉt (X,A, ρ))2 (6.6)

Finally, the algorithmwith theminimumpredicted cost is selected as best for the respective
instance:

bestλ(X, ρ) = argmin
A∈A

ĉλ(X,A, ρ) (6.7)

A simpler approach, that does not even require knowledge about the algorithms, would be
to skip the extrapolation and assume that the best algorithm on the full instance is the same
as the best algorithm on the sample—given by the minimum cost. Even though this ignores
important differences in algorithm behavior, I include this approach in the evaluation—and
name it praise0—in order to visualize the impact of the knowledge of algorithm scaling be-
havior.

6.2.4 prediction evaluation metrics
The praise approach can be evaluated by the same metrics as malaise (cf. Section 5.2.1).
The accuracy measures how often the prediction is correct. The mean squared error MSE
measures how bad themispredictions are. TheRMSE, or relativemean squared error, is used
to compare the approach against other methods with respect to MSE. However, the MSE
andRMSEmetrics should be updated to include the non-negligible overhead of the probing
phase.

Since the probing phase only affects the runtime of the full instance and not the welfare,
I introduce a time cost of probing c̃t in Equation 6.8. This is defined as the time overhead τ
(previously defined inEquation6.1), normalized to the same time interval between the slowest

97

and fastest algorithm in the portfolio. The time cost of probing is simply added to the time
cost of each algorithm, resulting in an updated cost c̃λ in Equation 6.9.

c̃t(X, ρ) =
τ(X, ρ)

tmax(X)− tmin(X)
(6.8)

c̃λ(X,A, ρ) =
√

(λcw (X,A))2 + ((1− λ) (ct (X,A) + c̃t (X, ρ)))2 (6.9)

Note the subtle differences between the various costs introduced in this chapter. The cost
c̃λ in this section uses the real welfare and time values of the selected algorithm, measured
after the algorithm selection, to evaluate the algorithm performance. The predicted cost ĉλ in
Section 6.2.3 uses the predicted time and welfare values to select the best algorithm.
With the updated cost c̃λ, one can reformulate the mean squared error M̃SEλ in Equa-

tion 6.10, and R̃MSEλ in Equation 6.11.

M̃SEλ(Y, Ŷ, ρ) =
1
|Y|

|Y|∑
i=1

(
c̃λ(Xi, Ŷi, ρ)− cλ(Xi,Yi)

)2
(6.10)

R̃MSEλ(Y, Ŷ,A∗, ρ) =
M̃SEλ(Y, Ŷ, ρ)
MSEλ(Y,A∗)

(6.11)

6.3 evaluation
For consistency, the praise approachwas evaluated on the same dataset D3 as malaise. The
dataset was artificially generated using cage, with the parameters described in Section 5.3.

6.3.1 sample size study
First, the effect of the chosen sampling ratio ρ on the prediction was investigated, in order to
find the most appropriate value.

There are two interacting factors that affect the prediction: on the one hand, it is expected
that the accuracy of the prediction increases with the sample size; on the other hand, a large
sample also means higher time overhead. These factors are already encoded in the updated
cost model c̃λ, and correspondingly in the error M̃SEλ and R̃MSEλ. As such, the optimal

98

sampling ratio ρbest is the one that minimizes the error:

ρbest = argmin
ρ

M̃SEλ(Y, Ŷ, ρ). (6.12)

From Equation 6.12, it also follows that the optimal sampling ratio is λ-dependent. Since
the λ parameter indirectly controls the significance of the time overhead in the quality of the
prediction, it is expected that the maximum acceptable sampling ratio increases with the λ
values.

A range of acceptable sample sizes can be determined for each λ by considering the ratios
for which the error relative to the single algorithm is below 1:

ρ ∈ [ρmin, ρmax] such that R̃MSEλ(Y, Ŷ,A∗, ρ) < 1. (6.13)

Figure 6.4 exemplifies the sample size study forλ = 0.5 (equally balanced time andwelfare),
by plotting the R̃MSE over sampling ratio. The plot confirms the expected trend of predic-
tion quality increasing with sample size (decreasing R̃MSE) up to a certain point, after which
the time overhead takes over, and the quality starts decreasing. This point indicates the opti-
mal sampling ratio, in this case 0.15. Acceptable ρ values are in the interval [0.1, 0.25], since
with these values, praise still improves upon the single algorithmapproach, with R̃MSE < 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

100

ρ

R̃
M
SE

λ = 0.5

praise vs A∗

praise0 vs A∗

Figure 6.4: R̃MSE over sampling ra o ρ for λ = 0.5. Op mal ra os, ρbest for PRAISE, and ρ
0
best for PRAISE0, are encircled

in green. Acceptable ρ values are all ρ for which the R̃MSE curve is below 1, denoted by the dashed red line. For λ = 0.5,
the best algorithm A∗ is SAS.

99

This shows thatwith running only 20%of the problem size—and accounting for this runtime
overhead in the error—I can deliver reasonable improvements.

I also included the results for praise0, the probing-based approach that skips the extrap-
olation step and selects the best algorithm on the sample. The optimal sampling ratio in this
case is ρ0best = 0.2, with ρ = 0.25 also acceptable. However, note that the improvements of
praise0 over the single algorithm are marginal, as the R̃MSE value is very close to 1.

A notable conclusion to be drawn from comparing praise and praise0 in Figure 6.4 is
that using the algorithm properties to predict the algorithm performance on the full instance
has an impact on the predictionquality, improving it considerably. This is especially visible for
small sample sizes, where the timeoverhead is stillmanageable. For large sample sizes, praise0
might be just as accurate as praise, but the time overhead is too large for it to matter.

The same analysis is performed for all λ values, and the results are displayed inTable 6.2: the
optimal ratio, as well as the range of acceptable ratios, for both praise and praise0. The re-
sults show that praise can deliver good results for a wider range of sampling ratios—covering
the lower end better than praise0. This is also true for quality over λ values. The results in
Table 6.2 reinforce the point that using the algorithm properties increases prediction quality.

Table 6.2: Op mal values and acceptable ranges of sampling ra os per λ. The superscript 0 denotes the PRAISE0method,
included here for comparison, which skips the extrapola on step. If there are no acceptable values, this is denoted by a
horizontal bar.

λ ρ0best ρbest ρ0min ρ0max ρmin ρmax

0.0 0.10 0.10 – – – –
0.1 0.35 0.05 – – – –
0.2 0.30 0.15 – – 0.15 0.2
0.3 0.25 0.15 – – 0.05 0.25
0.4 0.20 0.15 0.2 0.25 0.05 0.25
0.5 0.20 0.15 0.2 0.25 0.1 0.25
0.6 0.25 0.20 0.2 0.25 0.1 0.3
0.7 0.25 0.30 0.2 0.3 0.05 0.45
0.8 0.10 0.30 – – 0.25 0.35
0.9 0.65 0.45 – – 0.15 0.65
1.0 0.95 0.95 0.35 0.95 0.05 0.95

100

6.3.2 prediction evaluation

In this section, the praise approach is evaluated by looking at prediction accuracy, as well as
comparing the cost error to other approaches: a single algorithm, aswell as a random selection.
The optimal sampling ratios found in Section 6.3.1 were used for each λ. Alternatively, the
same value of ρ could be used over all λ values—a value inside the range of acceptable values
for most λ, e.g., 0.25.

Figure 6.5 shows that the accuracy of my approach increases with λ. This can be explained
by the fact that the impact of the time overhead decreases with λ, and thus larger sample sizes
can be used. A larger sample is more representative of the problem instance, which means
higher prediction accuracy.

The plot highlights one more time the usefulness of algorithm properties, as praise0 is
less accurate for all values of λ, except the extremes. For λ = 0, only the greedy algorithms
are selected; as explained when evaluating malaise (cf. Section 5.3), the time differences be-
tween the greedy algorithms are essentially random; since they have the same time complexity,
extrapolation does not aid in discriminating between their performance. At the other end,
for λ = 1, the time overhead is inconsequential; therefore, any sample size can be used, with
increasing accuracy; as the optimal ratio was determined to be 0.95, the sample is almost as
big as the problem instance, therefore the knowledge of scaling behavior is irrelevant.

Next, the mispredictions are quantified by calculating the prediction error M̃SE, which
includes the time cost of probing (cf. Equation 6.10), and the approach is compared to a
random selection, as well as a single algorithm, using the R̃MSEmetric (cf. Equation 6.11).
The results are plotted in Figure 6.6, for both praise and praise0. Note that an R̃MSE value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

40

60

80

100

λ

ac
cu
ra
cy
[%

]

praise
praise0

Figure 6.5: Accuracy of PRAISE for different λ values.

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

λ

R̃
M
SE

praise vs. A∗ praise vs. random
praise0 vs. A∗ praise0 vs. random

Figure 6.6: R̃MSE comparison of PRAISE to random selec on and best pure algorithm for different λ values.

below 1 implies that the praise approach is better than its counterpart in the comparison.
The comparison to the random selection shows that both praise and praise0 are always

better than the random selection approach, up to 2 orders of magnitude. Moreover, the rela-
tive error decreases with increasing λ values.
Similarly, the praise approaches are compared to the best pure algorithm A∗ for each λ,

where A∗ is defined as the algorithm selected most often as the best in the labeling phase (cf.
Figure 5.4). Figure 6.6 shows that praise outperforms the single best algorithm for almost all
λ values, with decreasing error over λ. The only exceptions are λ = 0 and λ = 0.1, where the
time objective is either the only objective, or has a much higher importance than the welfare
objective. This results in an equally high impact of the probing overhead, which cannot be
amortized by prediction accuracy. Therefore, a single algorithm is preferable when the time
objective is valued very highly.

In Figure 6.6, the impact of including knowledge of algorithm properties in the prediction
can be observed more clearly: the praise0 approach outperforms the single best algorithm
only formid-range λ values (between 0.4 and 0.7, where time andwelfare are balanced), aswell
as for λ = 1, where the time overhead is not relevant. Furthermore, at the lower and upper
end, praise0 even exhibits two spikes where the relative error is unusually high compared to
the single best algorithm, specifically at λ = 0.2 and λ = 0.9. Those are the points where
extrapolation based on algorithm properties makes the biggest difference. Those are also the
points where changing the weight of each objective effects big changes in the distribution of
the best algorithms (cf. Figure 5.4), similar to an inflection point. For example, for λ = 0.1,
the execution time is still important enough that the greedy algorithms are selected as best

102

in ≈ 20% of the cases, even though they have poor solution quality. Then for λ = 0.2, the
greedy algorithms are selected as best altogether is only ≈ 2.5% of the cases. Comparable
circumstances are found at λ = 0.9, where the speed of simulated annealing algorithms is
not sufficiently important anymore to outperform the slower, more accurate hill climbing
algorithms; on the other hand, the slower casanova(s) algorithms gain an advantage.

In summary, the evaluation showed that the proposed praise approach accurately predicts
the best algorithms for most values of λ—aided by the knowledge of algorithm properties—
and outperforms the single best algorithms in these cases, even when including the time over-
head of probing in the comparison.

The approach does not performwell for small λ values (high importance of time objective),
where the time overhead renders the approach irrelevant, and a single algorithm is preferable.

6.3.3 overhead mitigation
praise yields reasonable results, even though the probing phase incurs a time overhead. Nev-
ertheless, adding more algorithms to the portfolio increases this overhead, which could lead
to a situationwhere praise cannot improve upon a single algorithm. In this section, I explore
ideas for reducing the overhead.

The first idea I propose is to parallelize the probing phase, by running the algorithms in par-
allel on the sample. This means that the overhead will be equal to the runtime of the slowest
algorithm (cf. Equation 6.14), rather than the total runtime of the algorithms. The reason-
ing behind this idea is that running all the algorithms on the sample does not require a large
amount of resources, be it memory (12 algorithmsmeans that the memory required is within
a factor of 12ρ of the memory required for the full instance) or CPUs (equal to the number
of algorithms).

τ′(X, ρ) = max
A∈A

t(ρX,A) (6.14)

Figure 6.7 shows the effect that parallelizing the probing has on the sample size study
and the prediction quality—measured by accuracy and R̃MSE. Note that both praise and
praise0 deliver better results—withmore visible effects on praise0, where the overheadwas
more problematic. However, the parallelization does not manage to completely overcome
the impact of probing for λ = 0 and λ = 0.1.

Another idea for improvement is to reduce the algorithm space in some cases, e.g. only
select from the greedy algorithms for λ = 0, or exclude the casanova(s) and hill1(s) algo-

103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

ρ

R̃
M
SE

praise vs A∗

praise0 vs A∗

(a) R̃MSE over sampling ratio ρ for λ = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

40

60

80

100

λ

ac
cu
ra
cy
[%

]

praise
praise0

(b) Accuracy for different λ values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

λ

R̃
M
SE

praise vs. A∗ praise vs. random
praise0 vs. A∗ praise0 vs. random

(c) R̃MSE comparison of praise to random selection and best pure algorithm for different λ values.

Figure 6.7: Evalua on of PRAISE with parallel probing.

104

rithms for small values of λ, since they are too slow to be selected as best in those cases. Further
analysis is required to evaluate the impact on the overhead and, implicitly, on R̃MSE.

6.4 praise vs. malaise
In this thesis, I proposed two approaches for algorithm selection for combinatorial auctions. I
showed that theyboth yield good results, by improving significantly upon the single algorithm
approach. This section discusses the differences between the two proposed approaches, and
highlights the benefits and drawback of each approach.
Although both approaches perform offline selection of heuristic algorithms for combina-

torial auctions—and consider both time andwelfare objectives to assess the best algorithm—,
they are very different otherwise. The key differences are highlighted in Table 6.3.

malaise uses supervised learning to train a portfolio-wide model that can predict the best
algorithm for every given problem instance, based on domain-specific features extracted from
the problem instance. In contrast, praise extracts probing information (time and welfare of
each algorithm on a sample of the problem instance) without any knowledge of the problem
domain, and then uses this information to predict the time and welfare of each algorithm
on the instance (per-algorithm models). This information is then used to select the best al-
gorithm using hand-crafted rules—the algorithm with the minimum predicted cost. Even

Table 6.3: Comparison of the two proposed approaches for algorithm selec on.

malaise praise

Features static semi-static
high-knowledge low-knowledge
domain-specific probing information

Portfolio static static
heuristics heuristics

Selection offline offline
supervised learning hand-crafted-rules

Performance per-portfolio per-algorithm
best algorithm predicted time and welfare

105

though no domain knowledge is required, the praise approach still calls for expertise regard-
ing the algorithms.

As a result, the approaches have different strengths. praise is more generalizable due
to the domain-independent features, and more robust to portfolio changes—when adding
a new algorithm, only its performance model needs to be created. In the case of malaise,
the portfolio-wide model needs to be re-trained after every addition or removal of algorithms
from the portfolio. Moreover, individual models need to be trained for each λ value.

Nevertheless, once the training is done, the selection formalaise is fast, and delivers better
results than praise. This ismostly due to the time overhead introduced by the probing phase
in praise.

The advantages and disadvantages of each approach are summarized in Table 6.4.

Table 6.4: Advantages and disadvantages of proposed algorithm selec on approaches.

malaise praise

– domain knowledge for features + no domain knowledge
– knowledge of algorithm properties

– expensive training + no training
– retraining after portfolio changes + robust to portfolio changes
– per-λmodels need to be trained

+ fast selection – time overhead of probing
+ works for all λ values – does not work for small λ values

106

Reasoning draws a conclusion and makes us grant the con-
clusion, but does notmake the conclusion certain, nor does it
remove doubt so that the mindmay rest on the intuition of
truth, unless the mind discovers it by the path of experience.

Roger Bacon

7
Conclusion

This chapter provides an overview of the achievements of this thesis, and draws a few direc-
tions of possible future research.

7.1 summary
The overarching goal of this thesis was to improve the flexibility, scalability, and efficiency of
cloud resource allocation by employing market-based mechanisms.

Thiswasmotivated by a discernible trend towardsmarket-driven allocation inCloudCom-
puting, coupled with a number of shortcomings identified in the state of the art. More specif-
ically, I addressed the issue of inflexible fixed-pricemodels, the challenge of regulating variable
demand and supply, and the lack of fine-grained control for cloud customers over the combi-
nations of resources desired.
This work is a step towards understanding the strengths and challenges of implementing

market concepts in the cloud resource allocation. I assessed the fundamental requirements
of a market-based cloud resource allocation, but found that the most suitable approach to
deal with the identified shortcomings—double combinatorial auction—is impracticable due
to intractability, on one hand, and to input-dependent heuristics, on the other hand.
Then the achievements of this thesis can be summarized in one simple sentence:

Making combinatorial auctions more usable in practice through meta-heuristic approaches.

107

To accomplish this, contributions spanning over several research areas were made. First, a
model was devised that formalizes the allocation problem as a double combinatorial auction.
Since the optimal algorithm isNP -hard, heuristic approaches for solving the combinatorial
auction were investigated. A significant contribution of this thesis was to harmonize such
existing approaches under a single governing problem formulation, and then systematically
compare them over a broad spectrum of test scenarios. To make this possible, a flexible ap-
proach for generating realistic input data was proposed. This is the first work on artificial
data generation that considers the two-sided aspect of the combinatorial auction, and gener-
ates multi-unit multi-good bundles. Another unique characteristic is the ability to generate
data that resembles realistic cloud bundles, by relying on information extracted from public
cloud traces.

The systematic evaluation reasserted the premise that heuristic algorithms for combina-
torial auctions yield highly input-dependent results. More importantly, no algorithm was
found to perform best in all cases, either with respect to solution quality, or execution speed.

For practical use, it was necessary to increase the robustness and reliability of heuristic al-
gorithms. I proposed achieving this through a meta-heuristic approach termed algorithm se-
lection, which selects the best heuristic algorithm to be used for each input. Then, the central
contributions of this thesis are two different approaches for algorithm selection. This is the
first work, to my knowledge, to apply algorithm selection to heuristic algorithms for combi-
natorial auctions, and as a result consider both time and solution quality in the selection.

The first approach, malaise, uses supervised learning to train amodel that can predict, for
each input, which algorithm will perform best on the given input. To quantitatively define
what it means to perform best, a flexible cost model was proposed for comparing and scoring
algorithms with respect to both execution time and solution quality; the importance of these
two objectives can be changed depending on user preferences. The learning process first ex-
tracts features that could be predictive of algorithm performance, specifically engineered for
the combinatorial auction domain. Using the proposed input data generator, this approach
was evaluated, and showed to be up to 2 orders ofmagnitude better than using a single heuris-
tic algorithm.

The second approach for algorithm selection, praise, aims for a wider applicability, and
as such is based on probing information rather than domain-specific features. For each in-
put, I proposed probing the search space and predicting the best algorithm based on this in-
formation. The probing consists of running all the algorithms on a random sample of the
input; then the results are combined with algorithm properties that define scaling behavior

108

(determined theoretically when possible, or empirically), in order to predict each algorithm’s
performance on the full input. The same cost model is then employed to determine the best
algorithm. The evaluation showed that this approach also improves upon the single heuristic
algorithm approach, with one notable exception: when execution time is significantly more
important than solution quality, the time overhead of probing cannot be overcome.

In conclusion, in this thesis I showed that heuristic algorithms for combinatorial auctions
can be used reliably in practice through the proposed approaches for algorithm selection.
These methods significantly outperform the single algorithm approach, with malaise yield-
ing overall better results.

7.2 outlook
I believe that the work presented in this thesis can provide a strong foundation for future
research in several directions.
Although the proposed model for the resource allocation problem as a combinatorial auc-

tion is generic enough, theremay be some scenarioswhere the assumptionsmade are not valid
or sufficient to capture certain characteristics. Futurework should consider addingmore com-
plexity to the model and changing the auction mechanism accordingly. For example, more
complex bidder preferences could be modeled using the XOR bidding language, allowing
customers to express their interest in obtaining one of multiple possible bundles. Another
promising direction is to investigate other payment rules and corresponding business models
for the auctioneer, for example to ensure truthfulness of bidders and sellers.
There is immense research potential for the algorithm selection approaches. For the ma-

chine learning approach, future research should consider adding a feedback loop that enables
re-training the models with incoming data. This is challenging due to the expensive training,
which requires running all the algorithms on each training instance. As a result, it is necessary
to purposefully and effectively select the instances which will be included in the training data
(possibly based on similarity with existing data), and to find a balance with regards to when
the models should be re-trained. Furthermore, other machine learning approaches could be
considered. For example, regression can be used to predict individual algorithm performance,
which can then inform the selection of the best algorithm.

More heuristic algorithms can be added to the existing portfolio (e.g., an evolutionary al-
gorithm). This would require re-training in the machine learning-based approach, and char-

109

acterizing the scaling behavior of the new algorithms in the probing-based approach. For the
probing-based selection, a challenge related to adding more algorithms concerns the corre-
sponding increase in probing overhead. Possibilities for parallelization should be investigated.

Another idea for future research is to explore other cost functions for determining the best
algorithm with respect to both time and solution quality. Since execution time and solution
quality are not directly comparable, in this thesis, this was dealt with by normalizing each
objective before including them in the cost model. Another idea would be to express both
objectives using a common denominator: money. That would require models for translating
execution time and solution quality into monetary value.

On a different note, the input data generator can be extended with other pricingmodels or
cloud traces, to widen the range of test cases.

Finally, although the proposed algorithm selection approaches target combinatorial auc-
tions, they are generic enough to be applied to other areas as well. Investigating their applica-
bility to other problem domains is a rich area of research, and it will require domain-specific
feature engineering for the machine learning-based approach, as well as appropriate test data
in both cases.

110

A
Algorithm Selection Survey

Kotthoff (2014) surveyed the existing research on algorithm selection and collected data1on
yearly number of publication on the topic (cf. Figure A.1), types of algorithm portfolios used
(cf. Figure A.2(a)), types of selection (cf. Figure A.2(b)), and features used (cf. Table A.1).

1985 1990 1995 2000 2005 2010 2015 2020
0

10

20

year

#a
rt
icl
es

Figure A.1: Yearly evolu on of the number of publica ons on algorithm selec on.

1data available at http://larskotthoff.github.io/assurvey/

111

http://larskotthoff.github.io/assurvey/

0 50 100 150 200 250

both
dynamic

static

articles
(a) algorithm portfolio types

50 100 150

both
online
offline

articles
(b) selection types (when)

Figure A.2: Number of publica ons using the different types of algorithms por olios (le) and the different selec on ap-
proaches based on when the selec on is done (right).

Table A.1: Classifica on of features used in state-of-the-art algorithm selec on based on two criteria: domain knowledge
needed and when (and how) are the features computed. Popularity of each type of features from a survey of 263 ar cles.

Features Knowledge When & how Usage (% articles)

instance features high static 65 %
past performance low static 26 %
probing low semi-static 8.7 %
search statistics low dynamic 7.2 %
runtime performance low dynamic 2 %
problem domain features high static 2 %
algorithm features low static 1.1 %
algorithm parameters low static 0.8 %

Table A.2: Categoriza on of related work on algorithm selec on for combinatorial auc ons.

Citation Features Portfolio Selection Performance
model

Leyton-Brown et al. (2003) high-knowledge, static offline per-algorithm
static

Fitzgerald &O’Sullivan (2017) low-knowledge, static online per-portfolio
static

Stern et al. (2010) high-knowledge, static offline, per-portfolio
static, online
dynamic

112

B
Pseudocode

This chapter is largely devoted to the pseudocode corresponding to the algorithms that prior-
itize sellers in the search process (denoted by the suffix -s).

Algorithm 8 Greedy algorithm with seller priority.
1: function greedy1s(n,m, l, b, r, a, s)
2: compute fg, f′g, ∀g ∈ G with method 1 ▷ relevance factors
3: compute di,∀i ∈ U and d′j,∀j ∈ P ▷ bid and ask densities
4: sort bids descendingly by d
5: sort asks ascendingly by d′
6: i← 1; j← 1
7: while i ≤ n and j ≤ m do
8: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
9: xi ← 1; yij ← 1 ▷ allocate resources offered by

seller j to bidder i
10: j← j+ 1 ▷move to next seller
11: i← i+ 1 ▷move to next bidder
12: return (x, y)

113

Algorithm 9 Function that returns the neighbor in the solution space of a given solution, by
changing the ask ordering. Used in hill1s.
1: function neighbor1s(x, y)
2: move ask j to beginning of list ▷ j← critical j+ 1,m
3: return greedy1s(n,m, l, b, r, a, s)[6 : 12] ▷ apply on new ordering

lines 6–12 in Algorithm 8

Algorithm 10 Function that returns the neighbor in the solution space of a given solution,
by toggling a random ask j. Used in hill2s.
1: function neighbor2s(x, y)
2: j← random(1,m) ▷ randomly select ask
3: if yij = 0,∀i ∈ U then ▷ if ask j not already allocated
4: for i← 1, n do ▷ greedy-like search for bid
5: if xi = 0 then ▷ if bid i not allocated
6: if rig ≤ sjg, ∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
7: xi ← 1; yij ← 1 ▷match bid i and ask j
8: break ▷ stop—match found
9: return (x, y) ▷ return neighboring solution

Algorithm 11 Function that returns the neighbor in the solution space of a given solution,
by toggling a random xi. Used in sa.
1: function neighbor_sa(x, y)
2: i← random(1, n) ▷ randomly select bid
3: if xi = 1 then ▷ if bid i already allocated
4: xi ← 0; yij ← 0,∀j ∈ P ▷ deallocate bid i
5: else ▷ if bid i not allocated
6: for j← 1,m do ▷ greedy-like search for ask
7: if yqj = 0,∀q ∈ U then ▷ if ask j not allocated
8: if rig ≤ sjg, ∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
9: xi ← 1; yij ← 1 ▷match bid i and ask j
10: break ▷ stop—match found
11: return (x, y) ▷ return neighboring solution

114

Algorithm 12 Function that returns the neighbor in the solution space of a given solution,
by toggling a random ask j. Used in sas.
1: function neighbor_sas(x, y)
2: j← random(1,m) ▷ randomly select ask
3: if ∃i ∈ U , yij = 1 then ▷ if ask j already allocated
4: xi ← 0; yij ← 0,∀j ∈ P ▷ deallocate ask j
5: else ▷ if ask j not allocated
6: for i← 1, n do ▷ greedy-like search for bid
7: if xi = 0 then ▷ if bid i not allocated
8: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
9: xi ← 1; yij ← 1 ▷match bid i and ask j
10: break ▷ stop—match found
11: return (x, y) ▷ return neighboring solution

Algorithm 13 Casanova algorithm with seller priority.
1: function casanovas(n,m, l, b, r, a, s)
2: for try← 1,maxTries do ▷ restart search try times
3: (x, y)← 0 ▷ empty allocation
4: sort bids descendingly by density
5: sort asks ascendingly by score
6: for step← 1,maxSteps do
7: if wp > rand(0, 1) then ▷with walk probability wp
8: (x, y)←insert_s(random unallocated ask j, x, y)
9: else if age(first unallocated ask)> age(second unallocated ask) then
10: (x, y)←insert_s(first unallocated ask, x, y)
11: else if np > rand(0, 1) then ▷with novelty probability np
12: (x, y)←insert_s(second unallocated ask, x, y)
13: else
14: (x, y)←insert_s(first unallocated ask, x, y)
15: if step > θr and no improvement in last θr/2 steps then
16: break ▷ soft restart
17: return best (x, y) found

115

Algorithm 14Neighbor function for casanovas algorithm. The function adds an unallo-
cated ask and best matching bid to the current solution.
1: function insert_s(j, x, y)
2: for i← 1, n do ▷ greedy-like search for bid
3: if xi = 0 then ▷ i not allocated
4: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
5: xi ← 1; yij ← 1 ▷match bid i and ask j
6: reset age(j)
7: return (x, y) ▷match found
8: for i← 1, n do ▷ no match, restart search
9: if ∃q ∈ P , yiq = 1 then ▷ i already allocated
10: if rig ≤ sjg,∀g ∈ G and bi ≥ aj then ▷ if ask j can satisfy bid i
11: if aj < aq then ▷ if ask j improves allocation
12: xi ← 1; yij ← 1 ▷match bid i and ask j
13: yiq ← 0 ▷ undo allocation of ask q
14: reset age(j)
15: return (x, y) ▷match found
16: return (x, y) ▷ no match found

116

C
Datasets Parameters

Lis ng C.1: Parameters used to generate the D1 dataset (46656 instances).

#!/bin/bash
this script assumes all models have 3 resource types
V_BIDS_N=1000
V_BIDS_MODEL="models/model-uniform3* models/model-hotspots3_8*

models/model-part-000*0-of-*clustered*"
V_BIDS_BINNING_TYPE='regular'
V_BIDS_BINNING_COUNTS='16 8'
V_BIDS_DOMAIN='[128,128,128]'
V_ASKS_N=1000
V_ASKS_MODEL=${V_BIDS_MODEL}
V_ASKS_BINNING_TYPE=${V_BIDS_BINNING_TYPE}
V_ASKS_BINNING_COUNTS='8'
V_ASKS_DOMAIN=${V_BIDS_DOMAIN}
V_SLOPE='[1,1,1] [1,0.9,0.5] [1.1,1,0.9]'
V_FIXED='[0,0,0] [0,0,0.1]'
V_DIST_MEANS='0.0 0.1 0.5'
V_A_SIGMA='0.05 0.1 0.25'
V_B_SIGMA='0.05 0.1 0.25'

117

Lis ng C.2: Parameters used to generate the D2 dataset (11664 instances).

#!/bin/bash
this script assumes all models have 4 resource types
V_BIDS_N=1000
V_BIDS_MODEL="models/model-uniform4* models/model-hotspots4_16*

models/model-bitbrains*clustered*"
V_BIDS_BINNING_TYPE='regular'
V_BIDS_BINNING_COUNTS='16 8'
V_BIDS_DOMAIN='[128,128,128,128]'
V_ASKS_N=1000
V_ASKS_MODEL=${V_BIDS_MODEL}
V_ASKS_BINNING_TYPE=${V_BIDS_BINNING_TYPE}
V_ASKS_BINNING_COUNTS='8'
V_ASKS_DOMAIN=${V_BIDS_DOMAIN}
V_SLOPE='[1,1,1,1] [1,0.9,0.5,1] [1.1,1,0.9,1]'
V_FIXED='[0,0,0,0] [0,0,0.1,0]'
V_DIST_MEANS='0.0 0.1 0.5'
V_A_SIGMA='0.05 0.1 0.25'
V_B_SIGMA='0.05 0.1 0.25'

Lis ng C.3: Parameters used to generate the D3 dataset (69984 instances).

#!/bin/bash
this script assumes all models have 3 resource types
V_BIDS_N=10000
V_BIDS_MODEL="models/model-uniform3* models/model-hotspots3_8*

models/model-part-000*0-of-*clustered*"
V_BIDS_BINNING_TYPE='regular'
V_BIDS_BINNING_COUNTS='16 8 32'
V_BIDS_DOMAIN='[128,128,128]'
V_ASKS_N=10000
V_ASKS_MODEL=${V_BIDS_MODEL}
V_ASKS_BINNING_TYPE=${V_BIDS_BINNING_TYPE}
V_ASKS_BINNING_COUNTS='8'
V_ASKS_DOMAIN=${V_BIDS_DOMAIN}
V_SLOPE='[1,1,1] [1,0.9,0.5] [1.1,1,0.9]'
V_FIXED='[0,0,0] [0,0,0.1]'
V_DIST_MEANS='0.0 0.1 0.5'
V_A_SIGMA='0.05 0.1 0.25'
V_B_SIGMA='0.05 0.1 0.25'

118

References

Aarts, E., Korst, J., & Michiels, W. (2014). Simulated Annealing, (pp. 265–285). Springer
US: Boston, MA. doi:10.1007/978-1-4614-6940-7_10.

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2013). Deconstruct-
ing Amazon EC2 spot instance pricing. ACM Trans. Econ. Comput., 1(3), 16:1–16:20.
doi:10.1145/2509413.2509416.

Amazon (2017). Amazon ec2 spot instaces. https://aws.amazon.com/ec2/spot/. (Ac-
cessed: October 7, 2019).

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Randy, K., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the clouds: A Berkeley view
of Cloud Computing. Dept. Electrical Eng. and Comput. Sciences, University of Califor-
nia, Berkeley, Rep. UCB/EECS, 28(13), 2009.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V.,Mitchell, N.,Muthusamy,
V., Rabbah, R., Slominski, A., & Suter, P. (2017). Serverless Computing: Current Trends
andOpenProblems, (pp. 1–20). Springer Singapore: Singapore. doi:10.1007/978-981-
10-5026-8_1.

Beck, J. & Freuder, E. (2004). Simple rules for low-knowledge algorithm selection. Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, (pp. 50–64). doi:10.1007/978-3-540-24664-0_4.

Ben-Yehuda, O. A., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2014). The rise of RaaS:
the resource-as-a-service cloud. Communications of the ACM, 57(7), 76–84. doi:10.
1145/2627422.

Bertocchi, M., Butti, A., Słomiñ ski, L., & Sobczynska, J. (1995). Probabilistic and deter-
ministic local search for solving the binary multiknapsack problem. Optimization, 33(2),
155–166. doi:10.1080/02331939508844072.

119

https://dx.doi.org/10.1007/978-1-4614-6940-7_10
https://dx.doi.org/10.1145/2509413.2509416
https://aws.amazon.com/ec2/spot/
https://dx.doi.org/10.1007/978-981-10-5026-8_1
https://dx.doi.org/10.1007/978-981-10-5026-8_1
https://dx.doi.org/10.1007/978-3-540-24664-0_4
https://dx.doi.org/10.1145/2627422
https://dx.doi.org/10.1145/2627422
https://dx.doi.org/10.1080/02331939508844072

Bitbrains IT Services Inc. (2014). GWA-T-12 fastStorage trace. http://gwa.ewi.
tudelft.nl/datasets/gwa-t-12-bitbrains. Trace analysis by: Siqi Shen, Vincent
van Beek, Alexandru Iosup (Accessed: October 7, 2019).

Borrett, J. E. & Tsang, E. P. K. (2009). Adaptive constraint satisfaction: The quickest first
principle. In C. L. Mumford & L. C. Jain (Eds.), Computational Intelligence: Collabo-
ration, Fusion and Emergence (pp. 203–230). Berlin, Heidelberg: Springer Berlin Heidel-
berg. doi:10.1007/978-3-642-01799-5_7.

Burke, E. K., Gendreau,M., Hyde,M., Kendall, G., Ochoa, G., Özcan, E., &Qu, R. (2013).
Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research
Society, 64(12), 1695–1724. doi:10.1057/jors.2013.71.

Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing: Vision,
hype, and reality for delivering IT services as computing utilities. In High Performance
Computing and Communications, 2008. HPCC’08. 10th IEEE International Conference
on (pp. 5–13).: IEEE. doi:10.1109/HPCC.2008.172.

Commission, I. S. O. E. et al. (2014). Information technology–Cloud Computing–
overview and vocabulary. International Standard, 17788.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Greedy algorithms.
Introduction to algorithms, 1, 329–355.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition. ISBN: 0262033844,
9780262033848.

De Vries, S. & Vohra, R. V. (2003). Combinatorial auctions: A survey. INFORMS Journal
on computing, 15(3), 284–309. doi:10.1287/ijoc.15.3.284.16077.

Deb, K. (2014). Multi-objective optimization. In E. K. Burke & G. Kendall (Eds.), Search
methodologies (pp. 403–449). doi:10.1007/978-1-4614-6940-7_15.

Elsayed, S. A. M. & Michel, L. (2011). Synthesis of search algorithms from high-level cp
models. In J. Lee (Ed.), Principles and Practice of Constraint Programming – CP 2011
(pp. 256–270). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN: 9783642237867.

120

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
https://dx.doi.org/10.1007/978-3-642-01799-5_7
https://dx.doi.org/10.1057/jors.2013.71
https://dx.doi.org/10.1109/HPCC.2008.172
https://dx.doi.org/10.1287/ijoc.15.3.284.16077
https://dx.doi.org/10.1007/978-1-4614-6940-7_15

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., & Newl-
ing, T. (2004). Patterns: service-oriented architecture and web services. IBM Corporation,
International Technical Support Organization.

Feurer,M., Klein, A., Eggensperger, K., Springenberg, J., Blum,M.,&Hutter, F. (2015). Ef-
ficient and robust automated machine learning. In Advances in Neural Information Pro-
cessing Systems (pp. 2962–2970).: Curran Associates, Inc. https://papers.nips.cc/
paper/5872-efficient-and-robust-automated-machine-learning (Accessed:
October 7, 2019).

Fitzgerald, T. & O’Sullivan, B. (2017). Analysing the effect of candidate selection and in-
stance ordering in a realtime algorithm configuration system. In Proceedings of the Sympo-
sium on Applied Computing (pp. 1003–1008).: ACM. doi:10.1145/3019612.3019718.

Fujishima, Y., Leyton-Brown, K., & Shoham, Y. (1999). Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In Proceedings
of the 16th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’99
(pp. 548–553). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. http:
//dl.acm.org/citation.cfm?id=1624218.1624297 (Accessed: October 7, 2019).

Gomes, C. P., Selman, B., & Crato, N. (1997). Heavy-tailed distributions in combinatorial
search. InG. Smolka (Ed.), Principles and Practice of Constraint Programming-CP97 (pp.
121–135). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/BFb0017434.

Gonen, R. & Lehmann, D. (2000). Optimal solutions for multi-unit combinatorial auc-
tions: Branch and bound heuristics. In Proceedings of the 2nd ACM conference on Elec-
tronic commerce (pp. 13–20).: ACM. doi:10.1145/352871.352873.

Graham, C., Ng, F., Singh, T., Gupta, N., Nag, S., & Roth, C. (2018). Fore-
cast analysis: Public cloud services, worldwide, 2Q18 update. Gartner Inc.
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-
gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-
percent-in-2019 (Accessed: October 7, 2019).

Grozev, N. & Buyya, R. (2014). Inter-cloud architectures and application brokering: Tax-
onomy and survey. Software—Practice and Experience, 44(3), 369–390. doi:10.1002/
spe.2168.

121

https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
https://dx.doi.org/10.1145/3019612.3019718
http://dl.acm.org/citation.cfm?id=1624218.1624297
http://dl.acm.org/citation.cfm?id=1624218.1624297
https://dx.doi.org/10.1007/BFb0017434
https://dx.doi.org/10.1145/352871.352873
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://dx.doi.org/10.1002/spe.2168
https://dx.doi.org/10.1002/spe.2168

Gudu, D. (2019a). ca-ingen: Combinatorial Auctions input GEnerator with realistic bun-
dles for cloud resources. https://github.com/dianagudu/ca-ingen. (Accessed:
October 7, 2019).

Gudu,D. (2019b). ca-portfolio: a portfolio of heuristic algorithms for double combinatorial
auctions. https://github.com/dianagudu/ca-portfolio. (Accessed: October 7,
2019).

Gudu, D., Hardt, M., & Streit, A. (2016). On MAS-based, Scalable Resource Alloca-
tion in Large-scale, Dynamic Environments. In 2016 Intl IEEE Conferences on Ubiq-
uitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (pp. 567–574).: IEEE.
doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0097.

Gudu,D.,Hardt,M., & Streit, A. (2018a). Combinatorial AuctionAlgorithm Selection for
Cloud Resource Allocation Using Machine Learning. In M. Aldinucci, L. Padovani, &
M. Torquati (Eds.), Euro-Par 2018: Parallel Processing (pp. 378–391). Cham: Springer
International Publishing. doi:10.1007/978-3-319-96983-1_27.

Gudu, D., Hardt, M., & Streit, A. (2019). AUnified Comparative Study of Heuristic Algo-
rithms for Double Combinatorial Auctions: Locality-constrained Resource Allocation
Problems. In J. van denHerik&A. P.Rocha (Eds.),Agents andArtificial Intelligence (pp.
3–22). Cham: Springer International Publishing. doi:10.1007/978-3-030-05453-
3_1.

Gudu, D., Zachmann, G., Hardt, M., & Streit, A. (2018b). Approximate Algorithms
for Double Combinatorial Auctions for Resource Allocation in Clouds: An Empirical
Comparison. In Proceedings of the 10th International Conference on Agents and Ar-
tificial Intelligence - Volume 1: ICAART (pp. 58–69).: INSTICC SciTePress. doi:
10.5220/0006593900580069.

Guzek, M., Gniewek, A., Bouvry, P., Musial, J., & Blazewicz, J. (2015). Cloud brokering:
Current practices and upcoming challenges. IEEE Cloud Computing, 2(2), 40–47. doi:
10.1109/MCC.2015.32.

122

https://github.com/dianagudu/ca-ingen
https://github.com/dianagudu/ca-portfolio
https://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0097
https://dx.doi.org/10.1007/978-3-319-96983-1_27
https://dx.doi.org/10.1007/978-3-030-05453-3_1
https://dx.doi.org/10.1007/978-3-030-05453-3_1
https://dx.doi.org/10.5220/0006593900580069
https://dx.doi.org/10.5220/0006593900580069
https://dx.doi.org/10.1109/MCC.2015.32
https://dx.doi.org/10.1109/MCC.2015.32

Hermann, W. (2016). Deutsche Börse Cloud Exchange gibt auf. Computerwoche.
https://www.computerwoche.de/a/deutsche-boerse-cloud-exchange-
gibt-auf,3223201 (Accessed: October 7, 2019).

Holte, R. C. (2001). Combinatorial auctions, knapsack problems, and hill-climbing search.
In Conference of the Canadian Society for Computational Studies of Intelligence (pp. 57–
66).: Springer. doi:10.1007/3-540-45153-6_6.

Hoos, H. H. & Boutilier, C. (2000). Solving combinatorial auctions using stochastic local
search. In Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence (pp. 22–29).:
AAAI Press. http://dl.acm.org/citation.cfm?id=647288.721095.

IBM (2015). Ilog cplex 12.6.3. http://www-03.ibm.com/software/products/en/
ibmilogcpleoptistud. (Accessed: October 7, 2019).

Jrad, F. (2014). A service broker for Intercloud computing. PhD thesis, Karlsruhe, Karlsruher
Institut für Technologie (KIT). urn:nbn:de:swb:90-423243.

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). Isac –instance-specific algo-
rithm configuration. InProceedings of the 2010Conference on ECAI 2010: 19th European
Conference on Artificial Intelligence (pp. 751–756). Amsterdam, The Netherlands, The
Netherlands: IOS Press. http://dl.acm.org/citation.cfm?id=1860967.1861114.

Khnaser, E., Leong, L., Toombs, D., Richard, S., Fritsch, J., Waite, A., Delory, P., Clayton,
T., Siegfried, G., Meinardi, M., Murray, G., Simpson, N., &Davis, K. (2018). 2019 Plan-
ning Guide for Cloud Computing. Gartner Inc. https://www.gartner.com/doc/
3891095/-planning-guide-cloud-computing (Accessed: October 7, 2019).

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated an-
nealing. Science, 220(4598), 671–680. doi:10.1126/science.220.4598.671.

Kothari, A., Sandholm, T., & Suri, S. (2004). Solving combinatorial exchanges: Optimal-
ity via a few partial bids. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’04 (pp. 1418–1419).
Washington, DC, USA: IEEE Computer Society. doi:10.1109/AAMAS.2004.248.

123

https://www.computerwoche.de/a/deutsche-boerse-cloud-exchange-gibt-auf,3223201
https://www.computerwoche.de/a/deutsche-boerse-cloud-exchange-gibt-auf,3223201
https://dx.doi.org/10.1007/3-540-45153-6_6
http://dl.acm.org/citation.cfm?id=647288.721095
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
https://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:de:swb:90-423243
http://dl.acm.org/citation.cfm?id=1860967.1861114
https://www.gartner.com/doc/3891095/-planning-guide-cloud-computing
https://www.gartner.com/doc/3891095/-planning-guide-cloud-computing
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1109/AAMAS.2004.248

Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey. AI
Magazine, 35(3), 48–60. doi:10.1609/aimag.v35i3.2460.

Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey. InC.
Bessiere, L. De Raedt, L. Kotthoff, S. Nijssen, B. O’Sullivan, &D. Pedreschi (Eds.),Data
Mining andConstraint Programming: Foundations of a Cross-Disciplinary Approach (pp.
149–190). Springer. doi:10.1007/978-3-319-50137-6_7.

Lai, K. (2005). Markets are dead, long live markets. SIGecom Exchanges, 5(4), 1–10. doi:
10.1145/1120717.1120719.

Lehmann, D., Müller, R., & Sandholm, T. (2006). The winner determination problem.
Combinatorial auctions, (pp. 297–318). doi:10.7551/mitpress/9780262033428.
003.0013.

Lehmann, D., Oćallaghan, L. I., & Shoham, Y. (2002). Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM (JACM), 49(5), 577–602. doi:
10.1145/585265.585266.

Lemke, C., Budka,M., &Gabrys, B. (2015). Metalearning: a survey of trends and technolo-
gies. Artificial Intelligence Review, 44(1), 117–130. doi:10.1007/s10462-013-9406-
y.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003). Boost-
ing as a metaphor for algorithm design. In F. Rossi (Ed.), Principles and Practice of Con-
straint Programming – CP 2003 (pp. 899–903). Berlin, Heidelberg: Springer Berlin Hei-
delberg. doi:10.1007/978-3-540-45193-8_75.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002). Learning the empirical hardness
of optimization problems: The case of combinatorial auctions. In P. Van Hentenryck
(Ed.),Principles andPractice ofConstraint Programming -CP2002 (pp. 556–572). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi:10.1007/3-540-46135-3_37.

Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000). Towards a universal test suite for
combinatorial auction algorithms. InProceedings of the 2ndACMconference onElectronic
commerce (pp. 66–76).: ACM. doi:10.1145/352871.352879.

124

https://dx.doi.org/10.1609/aimag.v35i3.2460
https://dx.doi.org/10.1007/978-3-319-50137-6_7
https://dx.doi.org/10.1145/1120717.1120719
https://dx.doi.org/10.1145/1120717.1120719
https://dx.doi.org/10.7551/mitpress/9780262033428.003.0013
https://dx.doi.org/10.7551/mitpress/9780262033428.003.0013
https://dx.doi.org/10.1145/585265.585266
https://dx.doi.org/10.1145/585265.585266
https://dx.doi.org/10.1007/s10462-013-9406-y
https://dx.doi.org/10.1007/s10462-013-9406-y
https://dx.doi.org/10.1007/978-3-540-45193-8_75
https://dx.doi.org/10.1007/3-540-46135-3_37
https://dx.doi.org/10.1145/352871.352879

Lucking-Reiley, D. (2000). Vickrey auctions in practice: Fromnineteenth-century philately
to twenty-first-century e-commerce. Journal of Economic Perspectives, 14(3), 183–192.
doi:10.1257/jep.14.3.183.

Luenberger, D. G. & Ye, Y. (2015). Linear and nonlinear programming, volume 228.
Springer. ISBN: 9780387745039, 9780387745022, 9781441945044, doi:10.1007/
978-3-319-18842-3.

Manvi, S. S. & Shyam, G. K. (2014). Resource management for infrastructure as a service
(IaaS) in Cloud Computing: A survey. Journal of network and computer applications, 41,
424–440. doi:10.1016/j.jnca.2013.10.004.

Marler, R. T. & Arora, J. S. (2004). Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6), 369–395. doi:10.
1007/s00158-003-0368-6.

Marshall, D. (2007). Understanding full virtualization, paravirtualization, and hardware
assist. VMWareWhite Paper, (pp.1̃7). https://www.vmware.com/de/techpapers/
2007/understanding-full-virtualization-paravirtualizat-1008.html
(Accessed: October 7, 2019.

Mashayekhy, L., Nejad, M. M., & Grosu, D. (2014). A two-sided market mechanism for
trading big data computing commodities. In Big Data (Big Data), 2014 IEEE Interna-
tional Conference on (pp. 153–158).: IEEE. doi:10.1109/BigData.2014.7004225.

McAfee, R. P.&McMillan, J. (1987). Auctions andbidding. Journal of Economic Literature,
25(2), 699–738. http://www.jstor.org/stable/2726107.

Mell, P. & Grance, T. (2011). The NIST definition of Cloud Computing. doi:10.6028/
NIST.SP.800-145.

Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research, 6(1),
58–73. doi:10.1287/moor.6.1.58.

Myerson, R. B. & Satterthwaite, M. A. (1983). Efficient mechanisms for bilateral trading.
Journal of economic theory, 29(2), 265–281. doi:10.1016/0022-0531(83)90048-0.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1), 48–49. https://www.pnas.org/content/36/1/48.

125

https://dx.doi.org/10.1257/jep.14.3.183
https://dx.doi.org/10.1007/978-3-319-18842-3
https://dx.doi.org/10.1007/978-3-319-18842-3
https://dx.doi.org/10.1016/j.jnca.2013.10.004
https://dx.doi.org/10.1007/s00158-003-0368-6
https://dx.doi.org/10.1007/s00158-003-0368-6
https://www.vmware.com/de/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/de/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://dx.doi.org/10.1109/BigData.2014.7004225
http://www.jstor.org/stable/2726107
https://dx.doi.org/10.6028/NIST.SP.800-145
https://dx.doi.org/10.6028/NIST.SP.800-145
https://dx.doi.org/10.1287/moor.6.1.58
https://dx.doi.org/10.1016/0022-0531(83)90048-0
https://www.pnas.org/content/36/1/48

Nejad, M. M., Mashayekhy, L., & Grosu, D. (2015a). Truthful greedy mechanisms for dy-
namic virtual machine provisioning and allocation in clouds. Parallel and Distributed
Systems, IEEE Transactions on, 26(2), 594–603. doi:10.1109/TPDS.2014.2308224.

Nejad, M. M., Mashayekhy, L., & Grosu, D. (2015b). Truthful greedy mechanisms for dy-
namic virtual machine provisioning and allocation in clouds. Parallel and Distributed
Systems, IEEE Transactions on, 26(2), 594–603. doi:10.1109/TPDS.2014.2308224.

Nemhauser, G. L. &Wolsey, L. A. (1988). Integer and Combinatorial Optimization. New
York, NY, USA:Wiley-Interscience. ISBN: 047182819X.

Neumann, D. G. (2007). Market Engineering: A structured design process for electronic mar-
kets. Universitätsverlag Karlsruhe, Karlsruhe. ISBN: 9783866440654.

Nisan, N. et al. (2007a). Introduction to mechanism design (for computer scientists). Algo-
rithmic game theory, 9, 209–242.

Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007b). Algorithmic Game
Theory. New York, NY, USA: Cambridge University Press. ISBN; 0521872820.

Padberg, M. & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM review, 33(1), 60–100. doi:doi.
org/10.1137/1033004.

Parkes, D. C. (2001). Iterative Combinatorial Auctions: Achieving Economic and Computa-
tional Efficiency. PhD thesis, Philadelphia, PA, USA. ISBN: 0493131213.

Parkhill, D. F. (1966). Challenge of the computer utility. Addison-Wesley Publishing Com-
pany. ISBN: 0240507177.

Pfeiffer, J. & Rothlauf, F. (2008). Greedy heuristics and weight-coded eas for multidimen-
sional knapsack problems andmulti-unit combinatorial auctions. InOperations Research
Proceedings 2007 (pp. 153–158). Springer. doi:10.1007/978-3-540-77903-2_24.

Reiss, C.,Wilkes, J., &Hellerstein, J. L. (2011). Google cluster-usage traces: format + schema.
Technical report, Google Inc., Mountain View, CA, USA. Revised 2014-11-17 for ver-
sion 2.1. Posted at https://github.com/google/cluster-data.

126

https://dx.doi.org/10.1109/TPDS.2014.2308224
https://dx.doi.org/10.1109/TPDS.2014.2308224
https://dx.doi.org/doi.org/10.1137/1033004
https://dx.doi.org/doi.org/10.1137/1033004
https://dx.doi.org/10.1007/978-3-540-77903-2_24
https://github.com/google/cluster-data

Reiter, S. (1977). Information and performance in the (new) welfare economics. The Amer-
ican Economic Review, 67(1), 226–234. http://www.jstor.org/stable/1815908.

Rice, J. R. (1976). The algorithm selection problem. volume 15 of Advances in Computers
(pp. 65–118). Elsevier. doi:10.1016/S0065-2458(08)60520-3.

Roberts, M. & Howe, A. E. (2006). Directing a portfolio with learning. In AAAI 2006
Workshop on Learning for Search (pp. 129–135).

Russell, S. & Norvig, P. (2009). Artificial Intelligence: AModern Approach. Prentice Hall
Press, 3rd edition. ISBN: 0136042597, 9780136042594.

Sandholm, T. (2002). An algorithm for optimal winner determination in combinatorial
auctions. Artificial intelligence, 135(1), 1–54. doi:10.1016/S0004-3702(01)00159-
X.

Satterthwaite, M. (1993). The bayesian theory of the k-double auction. The Double
Auction Market: Institutions, Theories, and Evidence, (pp. 99–123). doi:0.4324/
9780429492532.

Satterthwaite, M. A. & Williams, S. R. (2002). The optimality of a simple market mecha-
nism. Econometrica, 70(5), 1841–1863. http://www.jstor.org/stable/3082022.

Schnizler, B.,Neumann,D., Veit,D.,&Weinhardt,C. (2008). Trading grid services–amulti-
attribute combinatorial approach. European Journal of Operational Research, 187(3),
943–961. doi:10.1016/j.ejor.2006.05.049.

Shen, S., v. Beek, V., & Iosup, A. (2015). Statistical characterization of business-critical work-
loads hosted in cloud datacenters. In 2015 15th IEEE/ACMInternational Symposium on
Cluster, Cloud and Grid Computing (pp. 465–474). doi:10.1109/CCGrid.2015.60.

Shoham, Y. & Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-theoretic,
and Logical Foundations. Cambridge University Press. ISBN: 0521899435.

Smith, D. & Anderson, E. (2018). Hype cycle for cloud computing, 2018. Gartner Inc.
https://www.gartner.com/en/documents/3884671 (Accessed: October 7, 2019).

Smith, V. L. (1982). Microeconomic systems as an experimental science. The American
Economic Review, 72(5), 923–955. http://www.jstor.org/stable/1812014.

127

http://www.jstor.org/stable/1815908
https://dx.doi.org/10.1016/S0065-2458(08)60520-3
https://dx.doi.org/10.1016/S0004-3702(01)00159-X
https://dx.doi.org/10.1016/S0004-3702(01)00159-X
https://dx.doi.org/0.4324/9780429492532
https://dx.doi.org/0.4324/9780429492532
http://www.jstor.org/stable/3082022
https://dx.doi.org/10.1016/j.ejor.2006.05.049
https://dx.doi.org/10.1109/CCGrid.2015.60
https://www.gartner.com/en/documents/3884671
http://www.jstor.org/stable/1812014

Stergiou, K. (2008). Heuristics for dynamically adapting propagation. In Proceedings of
the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence
(pp. 485–489). Amsterdam, The Netherlands, The Netherlands: IOS Press. http://
dl.acm.org/citation.cfm?id=1567281.1567388.

Stern, D., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., & Tacchella, A. (2010).
Collaborative expert portfolio management. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA. http://www.
aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1857.

Stokely, M., Winget, J., Keyes, E., Grimes, C., & Yolken, B. (2009). Using a market econ-
omy to provision compute resources across planet-wide clusters. In Proceedings of the
2009 IEEE International Symposium on Parallel and Distributed Processing, IPDPS ’09
(pp. 1–8).Washington,DC,USA: IEEEComputer Society. doi:10.1109/IPDPS.2009.
5160966.

Toosi, A. N., Khodadadi, F., & Buyya, R. (2016a). SipaaS: Spot instance pricing as a service
framework and its implementation in openstack. Concurrency andComputation: Practice
and Experience, 28(13), 3672–3690. doi:10.1002/cpe.3749.

Toosi, A. N., Vanmechelen, K., Khodadadi, F., & Buyya, R. (2016b). An auction mech-
anism for cloud spot markets. ACM Trans. Auton. Adapt. Syst., 11(1), 2:1–2:33. doi:
10.1145/2843945.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The
Journal of finance, 16(1), 8–37. doi:10.1111/j.1540-6261.1961.tb02789.x.

von Neumann, J., Morgenstern, O., & Rubinstein, A. (1944). Theory of Games and Eco-
nomic Behavior (60th Anniversary Commemorative Edition). Princeton University Press.
ISBN: 9780691130613, http://www.jstor.org/stable/j.ctt1r2gkx.

Watzl, J. (2014). A framework for exchange-based trading of cloud computing commodities.
PhD thesis, Ludwig Maximilian University of Munich (LMU). urn:nbn:de:bvb:19-
168702.

Wilkes, J. (2011). More Google cluster data. Google research blog. Posted at http://
googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

128

http://dl.acm.org/citation.cfm?id=1567281.1567388
http://dl.acm.org/citation.cfm?id=1567281.1567388
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1857
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1857
https://dx.doi.org/10.1109/IPDPS.2009.5160966
https://dx.doi.org/10.1109/IPDPS.2009.5160966
https://dx.doi.org/10.1002/cpe.3749
https://dx.doi.org/10.1145/2843945
https://dx.doi.org/10.1145/2843945
https://dx.doi.org/10.1111/j.1540-6261.1961.tb02789.x
http://www.jstor.org/stable/j.ctt1r2gkx
https://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:de:bvb:19-168702
https://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:de:bvb:19-168702
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

Wolpert, D. H. &Macready,W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82. doi:10.1109/4235.585893.

Wu, L. & Buyya, R. (2012). Service level agreement (sla) in utility computing systems. In V.
Cardellini, E. Casalicchio, K. R. L. J. Castelo Branco, J. C. Estrella, & F. J.Monaco (Eds.),
Performance and dependability in service computing: Concepts, techniques and research di-
rections (pp. 1–25). IGI Global. doi:10.4018/978-1-60960-794-4.ch001.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2012). Evaluating component solver
contributions to portfolio-based algorithm selectors. InA.Cimatti&R. Sebastiani (Eds.),
Theory and Applications of Satisfiability Testing – SAT 2012 (pp. 228–241). Berlin, Hei-
delberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-31612-8_18.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2007). Satzilla-07: the design and
analysis of an algorithm portfolio for sat. In International Conference on Principles and
Practice of Constraint Programming (pp. 712–727).: Springer. doi:10.1007/978-3-
540-74970-7_50.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Hydra-MIP: Automated
algorithm configuration and selection for mixed integer programming. In RCRA work-
shop on experimental evaluation of algorithms for solving problems with combinatorial ex-
plosion at the international joint conference on artificial intelligence (IJCAI) (pp. 16–30).
https://www.cs.ubc.ca/~hoos/Publ/XuEtAl11.pdf (Accessed: October 7, 2019).

Yun, X. & Epstein, S. L. (2012). Learning algorithm portfolios for parallel execution. In Y.
Hamadi &M. Schoenauer (Eds.), Learning and Intelligent Optimization (pp. 323–338).
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-34413-8_
23.

Zhang,M.,Ranjan,R.,Haller, A.,Georgakopoulos,D.,Menzel,M.,&Nepal, S. (2012). An
ontology-based system for cloud infrastructure services’ discovery. In 8th International
Conference onCollaborative Computing: Networking, Applications andWorksharing (Col-
laborateCom) (pp. 524–530).: IEEE.

Zurel, E. & Nisan, N. (2001). An efficient approximate allocation algorithm for combina-
torial auctions. In Proceedings of the 3rd ACM Conference on Electronic Commerce, EC
’01 (pp. 125–136). New York, NY, USA: ACM. doi:10.1145/501158.501172.

129

https://dx.doi.org/10.1109/4235.585893
https://dx.doi.org/10.4018/978-1-60960-794-4.ch001
https://dx.doi.org/10.1007/978-3-642-31612-8_18
https://dx.doi.org/10.1007/978-3-540-74970-7_50
https://dx.doi.org/10.1007/978-3-540-74970-7_50
https://www.cs.ubc.ca/~hoos/Publ/XuEtAl11.pdf
https://dx.doi.org/10.1007/978-3-642-34413-8_23
https://dx.doi.org/10.1007/978-3-642-34413-8_23
https://dx.doi.org/10.1145/501158.501172

	Introduction
	Research Questions
	Scientific Contributions
	List of Publications
	Thesis Outline

	Background
	Evolution of Cloud Computing
	Cloud Fundamentals
	Cloud Computing Trends
	Cloud Resource Allocation
	Towards Market-inspired Allocation

	Fundamentals of Markets
	Microeconomic System Framework
	Mechanism Design
	Auctions

	Algorithm Selection Problem
	Basic Model
	Classification of Approaches
	Combinatorial Auction Algorithm Selection

	Problem Modeling
	Requirement Analysis
	Resource Allocation-driven Requirements
	Proposed Approach
	Market-driven Requirements

	Problem Formulation
	Allocation Rule
	Payment Rule

	Mechanism Properties

	Approximate Winner Determination
	Algorithm Portfolio
	Optimal Algorithm
	Greedy Algorithms
	Relaxed Linear Program-based
	Hill Climbing Algorithms
	Simulated Annealing Algorithms
	Casanova Algorithms

	Input Data Generation
	Bundle Generation
	Valuation Generation

	Evaluation
	Average Case
	Effect of Randomization
	Best Algorithm

	High-knowledge Algorithm Selection
	Approach
	Cost Model
	Features

	Methodology
	Prediction Evaluation Metrics

	Evaluation
	Dataset Analysis
	Classification Evaluation

	Low-knowledge Algorithm Selection
	Approach
	Methodology
	Probing
	Algorithm Properties
	Prediction
	Prediction Evaluation Metrics

	Evaluation
	Sample Size Study
	Prediction Evaluation
	Overhead Mitigation

	praise vs. malaise

	Conclusion
	Summary
	Outlook

	Appendix Algorithm Selection Survey
	Appendix Pseudocode
	Appendix Datasets Parameters
	References

