

Journal of AI and Data Mining

Vol 5, No 2, 2017, 169-181

Winner Determination in Combinatorial Auctions using Hybrid Ant

Colony Optimization and Multi-Neighborhood Local Search

M. B. Dowlatshahi and V. Derhami*

Computer Engineering Department, Yazd University, Yazd, Iran.

Received 02 January 2016; Revised 27 November 2016; Accepted 18 January 2017

*Corresponding author: vderhami@yazduni.ac.ir (V. Derhami).

Abstract

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The

Winner Determination Problem (WDP) in combinatorial auctions is the problem of finding winning bids that

maximize the auctioneer’s revenue under constraint, where each item can be allocated to at most one bidder.

WDP is known as an NP-hard problem with practical applications like electronic commerce, production

management, games theory, and resource allocation in multi-agent systems. This has motivated the quest for

efficient approximate algorithms in terms of both the solution quality and computational time. This paper

proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS)

algorithm for solving WDP in combinatorial auctions. Our proposed MNLS algorithm uses the fact that

using various neighborhoods in local search can generate different local optima for WDP and that the global

optima of WDP is a local optima for a given neighborhood. Therefore, the proposed MNLS algorithm

simultaneously explores a set of three different neighborhoods to get different local optima and to escape

from the local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic

Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems

confirm the efficiency of the ACO-MNLS algorithm in terms of both the solution quality and computational

time.

Keywords: Winner Determination Problem, Combinatorial Auctions, Ant Colony Optimization, Multi-

Neighborhood Local Search, Combinatorial Optimization.

1. Introduction

Auctions play a significant role in multi-agent

systems, where the auction mechanisms are used

for task distribution and resource allocation. The

items that are auctioned range from network

bandwidth to radio frequencies, and pollution

rights. Combinatorial Auction (CA) is a sort of

auctions in which bidders (agents) can place bids

on combinations of items (goods) rather than only

the individual ones. Buyers offer their bids to

auctioneer, each bid being defined by a subset of

items with a price (bidder’s valuation). Two bids

are conflicting if they share at least one item. The

main advantage of combinatorial auction is that it

produces a high economic efficiency [1].

The Winner Determination Problem (WDP) in

combinatorial auctions is defined as finding a

conflict-free allocation of items that maximize the

auctioneer’s revenue. WDP is equivalent to the

weighted set packing problem, a well-known NP-

hard problem [2-4]. From a practical viewpoint,

WDP has many applications in electronic

commerce, production management, game theory,

and resource allocation in multi-agents systems

[5-8].

The computational challenge of WDP and its wide

practical applications have motivated a variety of

algorithms. These algorithms can be classified as

either “exact” or “approximate”. Exact algorithms

can obtain optimal solutions and guarantee their

optimality for every instance of WDP. However,

it has been shown that for optimization problems

that are NP-hard, no polynomial time algorithm

exists unless P = NP [3,9]. Therefore, exact

algorithms for WDP require exponential time, and

mailto:vderhami@yazduni.ac.ir

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

170

this makes them impractical for most real-world

applications. In contrast to exact algorithms,

approximate algorithms do not guarantee the

optimality of the solutions obtained. In these

algorithms, the optimal solution is sacrificed for

the sake of obtaining good solutions in a

reasonable time [10-12].

Approximate algorithms may be classified into

three classes: approximation algorithms, problem-

specific heuristics, and metaheuristics. Unlike

problem-specific heuristics and metaheuristics,

approximation algorithms provide a provable

solution quality and run-time bounds. Problem-

specific heuristics are problem-dependent and are

designed for a particular problem, whereas

metaheuristics represent more general

approximate algorithms and are applicable to a

large variety of optimization problems.

Metaheuristics solve complex optimization

problems by “exploring” the large solution space

and achieve this goal by effectively reducing the

size of this space and “exploiting” the reduced

space efficiently [10,11,13]. This class of

algorithms includes Evolutionary Computation

(EC) [14], Ant Colony Optimization (ACO) [15],

Greedy Randomized Adaptive Search Procedure

(GRASP) [16], Tabu Search (TS) [17], Variable

Neighborhood Search (VNS) [18], Iterated Local

Search (ILS) [19], Particle Swarm Optimization

(PSO) [20], Gravitational Search Algorithm

(GSA) [21], etc.

In this paper, we propose a hybrid Ant Colony

Optimization with Multi-Neighborhood Search

(ACO-MNLS) algorithm for solving WDP. The

experimental results obtained by the proposed

algorithm are compared with the results of

Genetic Algorithm (GA), Memetic Algorithm

(MA), Stochastic Local Search (SLS), and Tabu

Search (TS). The comparisons confirm the

efficiency of ACO-MNLS in terms of solution

quality and computational time.

The rest of the paper is organized as what follows.

In Section 2, we present the formal definition of

WDP and provide an overview of the existing

algorithms for WDP. Section 3 provides a review

of ACO. In Section 4, the proposed ACO-MNLS

algorithm for WDP is presented. Section 5

contains the experimental part of the paper, in

which the performance of the proposed approach

is evaluated. Finally, in Section 6, conclusion is

given.

2. Winner Determination Problem and existing

algorithms

2.1. Winner Determination Problem
In this section, we discuss WDP and winner

determination algorithms for combinatorial

auctions. Let us say that the auctioneer has a set of

items, M = {1, 2, …, m}, to sell, and the buyers

propose a set of bids, B = {b1, b2, …, bn}. A bid is

a tuple bj = (Sj, pj), where MS j is a set of

items and 0jp is price of bj, which is a

positive real number that shows the value the

buyer is willing to pay for bundle Sj. Further,

consider a matrix am×n having m rows and n

columns, where aij = 1 if item i belongs to Sj , aij =

0, otherwise. Finally, the decision variables are

defined as follow: xj = 1 if bid bj is accepted (a

winning bid), and xj = 0 otherwise (a losing bid).

WDP is the problem of finding the winning bids

that maximize the auctioneer’s revenue under the

constraint that each item can be allocated to the

most bidder. WDP can be modeled as the

following integer optimization problem [22]:

,
1

j

n

j

j xpMaximize

(1)

},...,,1{,1
1

mixatoSubject
n

j

jij

(2)

,}1,0{jx

(3)

where, the objective function given in (1)

maximizes the auctioneer’s revenue that is

computed as the sum of prices of the winning

bids. The constraints given in (2) mean that the

item can be allocated to at most one bidder. The

inequality (aij xj ≤ 1) allows that some items could

be left uncovered. This is due to the free disposal

assumption.

Example 1: Consider a combinatorial auction

with a set of five items M = {1, 2, 3, 4, 5} to be

auctioned and a set of five bids B = {b1, b2, b3, b4,

b5} that are the following:

 b1 = ({1, 3}, 5.5)

 b2 = ({1, 3, 4}, 15)

 b3 = ({2}, 1)

 b4 = ({2, 4}, 12)

 b5 = ({4}, 8)

 b6 = ({4, 5}, 10).

Note that the combined value of the two bids for

the individual items 2 and 4 is lower than the

value of the bundle bid for both (b4), which

reflects the complementarity of these items. Let us

consider the allocations A1 = {b2, b4} and A2 = {b1,

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

171

b4}. While A2 is feasible, A1 is infeasible because

b2 and b4 both require item 4. The value for A2 is

17.5, which is the maximum value over all

possible feasible allocations for this problem

instance. Under the optimal allocation A2, bids b1

and b4 win, with items 1 and 3 assigned to b1 and

items 2 and 4 assigned to b4. Note that item 5

remains unassigned under this allocation; there is

a feasible allocation that assigns all items to bids

(A3 = {b1, b3, b6}) but its value is lower than 17.5.

2.2. Existing algorithms
Attempts to exactly solve WDP (under the name

of set packing) can be found as early as in the

beginning of 1970s [23]. Many studies have

appeared ever since. Most exact algorithms are

based on the general branch-and-bound (B&B)

technique. Some examples include the

combinatorial auction structural search (CASS)

[2], Combinatorial Auction Multi-Unit Search

(CAMUS) [24], BOB algorithm [25], CABOB

algorithm [26], and linear programming-based

B&B algorithm [27]. Other interesting exact

methods for WDP are a branch-and-price

algorithm based on a set packing formulation [28],

a branch-and-cut algorithm [29], and a dynamic

programming algorithm [30]. The general integer

programming approach based on CPLEX has been

intensively studied in [31,32], showing an

excellent performance in many cases. In [33], a

clique-based branch-and-bound approach has been

introduced for WDP, which relies on a

transformation of WDP into the maximum weight

clique problem. To ensure the efficiency of the

proposed search algorithm, specific bounding and

branching strategies using a dedicated vertex

coloring procedure and a specific vertex sorting

technique has been proposed. In [34], Complete

Set Partitioning problem captures the special case

of WDP in combinatorial auctions, where bidders

place bids on every possible bundle of goods, and

the goal is to find an allocation of goods to

bidders that maximizes the profit of the

auctioneer.

On the other hand, given the intrinsic intractability

of WDP, various heuristic algorithms have been

devised to handle problems whose optimal

solutions cannot be reached by exact approaches.

For instance, Casanova [35] is a well-known

stochastic local search algorithm that explores the

space of feasible allocations (non-overlapping

subsets of bids) by adding at each step an

unallocated bid and removing from the allocation

the bids that are conflicting with the added bid.

The selection rule employed by Casanova takes

into consideration both the quality and history

information of the bid. Casanova has been shown

to be able to find high quality solutions much

faster than the CASS algorithm [2]. WDP is also

modeled as a set packing problem and is solved

by a simulated annealing algorithm (SAGII) with

three different local move operators: an embedded

branch-and-bound move, greedy local search

move, and exchange move [32]. SAGII

outperforms dramatically Casanova and the

CPLEX 8.0 solver for realistic test instances. A

memetic algorithm has been proposed by [36],

which combines a local search component with a

specific crossover operator. The local search

component adds at each iteration either a random

bid with a probability p or a best bid with the

largest profit with probability 1-p, and then

removes the conflicting bids from the allocation.

This hybrid algorithm reaches excellent results on

the tested realistic instances. Other interesting

heuristics include greedy algorithm [37], a tabu

search algorithm [38], an equilibrium-based local

search method [39], and a recombination-based

tabu search algorithm [40]. In [41], a new

mathematical formulation for WDP (under the

name of set packing) and an efficient method for

generating near-optimal solution have been

proposed. In [42], a mathematical model that aims

to maximize the expected economization of

procurement has been established and a solution

algorithm based on genetic algorithm (GA), where

an order encoding scheme is designed and a

special repair method is employed to accomplish

the translation from the individual encoding to the

corresponding solution of WDP, has been

proposed. In [43], a stochastic hyper-heuristic

(SHH) for combining heuristics for solving WDP

has been proposed, in which a new idea is

developed for hyper-heuristics by combining

choice function and randomness strategies. In

[44], an agent learning approach has been

proposed for solving WDP, in which a Lagrangian

relaxation approach is used to develop an efficient

multi-agent learning algorithm. In [45], the

authors have presented a metaheuristic approach

for the bi-objective WDP, which integrates the

greedy randomized adaptive search procedure

with a two-stage candidate component selection

procedure, large neighborhood search, and self-

adaptive parameter setting in order to find a

competitive set of non-dominated solutions.

From the above-mentioned review, we observe

that the existing (exact and heuristic) methods

follow two solution strategies. The first one is to

consider directly WDP and design dedicated

algorithms. This is the case for most of the

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

172

reviewed methods. The second one is to recast

WDP as another related problem P and then

solved with a solution method designed for P.

Examples have been given in [23,32], where

WDP is modeled as the set packing problem and

in [26, 31], where WDP is reformulated as an

integer programming problem and solved by the

general CPLEX solver.

2.3. Disadvantages of existing algorithms
The existing exact algorithms to solve WDP [23-

34] have an exponential time complexity, and this

makes them impractical for most real-world

instances of WDP. On the other hand, although

heuristic algorithms used to solve WDP [35-45]

have a polynomial time complexity, they have a

low efficiency and a low effectiveness. To the

best of our knowledge, the best results of direct

heuristic methods come from a Memetic

Algorithm (MA) proposed by [34]. In Section 5,

we will see that the proposed ACO-MNLS

algorithm outperforms the GA, MA, SLS, and TS

algorithms in terms of the computational time, and

overcomes the GA, TS, MA, and SLS algorithms

in terms of the solution quality in most problems,

whereas in the case of other problems, both ACO-

MNLS and other algorithms get the same results.

3. Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms are

constructive stochastic metaheuristics that make

use of a pheromone model and heuristic

information on the problem being tackled in order

to probabilistically construct solutions. A

pheromone model is a set of pheromone trail

parameters whose numerical values can be

obtained by a reinforcement type of learning

mechanism and show the search experience of the

algorithm. Therefore, the pheromone model can

be used to bias the solution construction over time

towards the regions of the solution space

containing high quality solutions. Note that the

stochastic procedure in ACO permits the ants to

explore a much larger number of solutions;

meanwhile, the use of heuristic information

guides the ants towards the most promising

solutions.

Several ACO algorithms for NP-hard problems

have been proposed in the literature. Ant System

(AS) was proposed as the first ACO algorithm for

the well-known Traveling Salesman Problem

(TSP) [49]. The Ant Colony System (ACS) [50]

and the MAX–MIN Ant System (MMAS)

algorithm [51] are among the most successful

ACO variants in practice. In order to provide a

unifying view to identify the most important

aspects of these algorithms, [52], put them in a

general framework by defining the ACO

metaheuristic. The template of this ACO

metaheuristic has been shown in Algorithm (1).

After initializing parameters and pheromone trails,

the metaheuristic iterates over three phases. At

each iteration, a number of solutions are

constructed by the ants; these solutions are then

improved through a local search (this step is

optional), and finally, the pheromone trails are

updated.

Algorithm (1): Template of Ant Colony Optimization.

Set parameters;

Initialize the pheromone trails;

Repeat

 For each ant Do

 Solution construction using the pheromone trail;

 Solution improvement using local search;

 Update the pheromone trails:

 Evaporation ;

 Reinforcement ;

 Endfor

Until stopping criteria are satisfied.

Output: Best solution found.

The solution construction is done by a

probabilistic rule. Each artificial ant can be

considered as a stochastic greedy algorithm that

constructs a solution probabilistically by adding

solution components to partial ones until a

complete solution is derived. This stochastic

greedy algorithm takes into account the

followings:

Pheromone trails that memorize the patterns of

“good” constructed solutions, and will guide the

construction of new solutions. The pheromone

trails change dynamically during the search to

store the obtained knowledge of problem.

Heuristic information that gives more hints

about most promising solutions to ants in their

decisions to construct solutions.

The solution improvement is a local search

method that starts with an initial solution and

follows moves from the current solution to a

neighbor. Many strategies can be used in the

selection of a neighbor such as: (1) Best

improvement selection strategy, in which the best

neighbor (i.e. the neighbor that improves the

objective function the most) is selected, (2) First

improvement selection strategy, which consists of

choosing the first improving neighbor that is

better than the current solution, and (3) Random

selection strategy, in which a random selection is

applied to the neighbors of the current solution.

The process of exchanging the current solution

with a neighbor is continued until the stopping

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

173

criteria are satisfied [53]. Note that solution

improvement is an optional component of ACO,

although it has been shown that it can improve the

performance of ACO when static combinatorial

optimization problems are considered. An

explanation of the good performance of a

combination of ACO with local search can be

found in the fact that these two search methods

are complementary. An ACO algorithm usually

performs a rather coarse-grained search.

Therefore, it is a good idea to try and improve its

solutions locally.

The pheromone update is done using the

constructed solutions. A good pheromone

updating rule is used in two phases:

An evaporation phase that decreases the

pheromone trail value. The goal of the

evaporation is to escape from premature

convergence toward “good” solutions and then to

encourage the exploration in the solution space.

A reinforcement phase that updates the

pheromone trail using constructed solutions.

Three different strategies can be used [54]: off-

line pheromone update [55], online step-by-step

pheromone update [50], and online delayed

pheromone update [56]. Among these strategies,

the off-line pheromone update is the most popular

approach, in which different strategies can be

applied: quality-based pheromone update [49],

rank-based pheromone update [57], worst

pheromone update [58], and elitist pheromone

update [51].

4. Proposed algorithm for winner

determination

In this section, we present a hybrid ant colony

optimization and multi-neighborhood search

(ACO-MNLS) algorithm for solving WDP. In

addition to common search components in all

metaheuristics (e.g. representation of solutions

and definition of the objective function), the main

components of the proposed ACO-MNLS are

pheromone information, solution construction,

local search, and pheromone update.

4.1. Solution representation

To design a metaheuristic, representation is

necessary to encode each solution of the problem.

The representation used in the proposed ACO-

MNLS is the binary representation [11]. For a

WDP of n bids, a vector X={x1, x2, …, xn} of

binary variables xj may be used to represent a

solution:

.
0

1
},,...,2,1{

otherwise

solutioninisbif
xnj

j

j

(4)

In other words, a solution will be encoded by a

vector X of n binary variables, where the jth

decision variable of X denotes the presence or

absence of the jth bid in the solution. For

example, consider a set of five bids B = {b1, b2, b3,

b4, b5} and the feasible allocation A1 = {b2, b4} in

which bids b1 and b4 are won. Figure 1 illustrates

a binary representation used by ACO-MNLS for a

solution.

Figure 1. A candidate solution in proposed ACO-MNLS

for a WDP with five bids.

4.2. Fitness evaluation
Each metaheuristics must use a fitness evaluation

function that associates with each solution of the

search space a numeric value that describes its

quality. An effective fitness evaluation function

must yield better evaluations to solutions that are

closer to the optimal solution than those that are

farther away. The fitness evaluation function for a

given problem is chosen by the problem solver,

and it is not given with the problem but is directly

related to the specifications for that problem.

Fortunately, the definition of fitness evaluation

function for WDP is straightforward. It specifies

the originally formulated objective function. The

objective function defined in (1) is used to

measure the quality of a candidate solution X.

Thus for a candidate solution X, its quality is just

equal to the sum of the valuations of the winning

bids [48]:

,)(
1

j

n

j

j xpXFitness

(5)

where, X={x1, x2, …, xn} is a 1×n matrix, and

P={p1, p2, …, pn} is a 1×n matrix in which pj is

the price of bj.

4.3. Pheromone information

Pheromone information consists of defining a

vector of model parameters τ called pheromone

trail parameters, where pheromone values τi ∈ τ

should give the relevant information for solution

construction. Here, a pheromone τj is associated

with each bid j (i.e. bj). Therefore, the pheromone

information is represented by a 1×n matrix τ,

where each element τj of the matrix says the

desirability to have the bj in the solution. The

X:

x1 x2 x3 x4 x5

0 1 0 1 0

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

174

pheromone matrix is initialized by the same

values. During the search, the pheromone is

updated to estimate the utility of any bid.
4.4. Solution construction

In addition to the pheromone trails, the main

question in the solution construction is concerned

with the definition of the problem-specific

heuristic to be used in guiding the search. As

stated in Section 3, artificial ants can be

considered as stochastic greedy algorithms that

construct a solution in a probabilistic manner by

considering two important parameters: pheromone

trails and problem-dependent heuristic

information.

Given an initial arbitrary solution A, we define set

C composed of each bid bj = (Sj, pj) such that

)(
Ai

ij SS . In this case, an ant selects the

next bid bj ∈ C with the probability:

,
)()(

)()(

Ck

kk

jj

jp

(6)

where:

 j
 is the value of problem-specific

heuristic for bj. The problem-specific

heuristic information is represented by a 1×n

matrix , where the value for each element

j of the matrix is equal to the normalized

price of bj, i.e.

n

k

kjj pp
1

 .

 α and β are the parameters representing the

relative influence of the pheromone values

and the problem-specific heuristic values.

The ACO algorithm will be similar to a

stochastic greedy algorithm if we have α = 0.

In this case, the bids with a large price are

more likely to be selected. If β = 0, only the

pheromone trails will guide the search

direction. In this case, stagnation may occur,

in which all ants will construct similar

solutions. Hence, a suitable balance must be

done in using this kind of information [11].

Note that the process of adding a new bid to the

current solution A is repeated until set C is not

empty.

4.5. Local search: Multi-Neighborhood Local

Search (MNLS)

Definition of the neighborhood space is the

common search concept for all local search

algorithms. The neighborhood space is defined by

an undirected graph H=(N, E) associated with the

solution space of the problem, where the nodes in

N correspond to candidate solutions and the edges

in E correspond to moves in the neighborhood

space, i.e. Eji),(if and only if

)(,, iNjNjNi , and)(jNi , where N(y)

denotes the neighbors of a solution Ny . The

structure of the neighborhood depends on the

target optimization problem. A neighbor solution

y’ for a given solution y is constructed by

applying a move m to the solution y using a move

operator , denoted by y’ = ym. The

neighborhood space is called single-neighborhood

if for constructing it we use only a one-move

operator, and is called multi-neighborhood if for

constructing it we use several-move operators

[11].

A local search may be seen as a walk in the

neighborhood space. A walk is performed by

move operators that move from the current

solution to another one in the neighborhood space.

Here, we define three basic move operators for

WDP, denoted by ADD, EXCHANGE, and

REMOVE. Suppose an initial arbitrary allocation

A composed of some non-conflicting bids.

The ADD(bj) move operator consists of adding to

A a bid bj = (Sj, pj) from the set of bids that are

excluded from the A and have no conflict with

bids in A. In example 1, let us consider the

feasible allocation A = {b1, b3}. There are only

two bids b5 and b6 that are excluded from the A

and have no conflict with bids in the A. Note that

after the ADD(bj) move, the change in the fitness

of solution is +pj. Since the value for pj is always

positive, the move gain is always positive for an

ADD move, and therefore, such a move always

leads to an improved neighboring solution.

EXCHANGE(bi, bj) move operator consists of

exchanging a bid bi = (Si, pi) (from the set of bids

that are excluded from the A and have no conflict

with bids in set A-bj) with only bid bj of A that

have conflict with bi. In example 1, let us consider

the feasible allocation A = {b1, b3}. Bid b2 is a

candidate bid to exchange with bid b1, and bid b4

is a candidate bid to exchange with bid b3. The

move gain of the EXCHANGE(bi, bj) move

operator is pi - pj. Note that the move gain can be

either positive or negative for an EXCHANGE

move. Hence, we can see that an EXCHANGE

move can increase or decrease the fitness of A.

The REMOVE(bj) move operator removes a bid bj

= (Sj, pj) from the A. The move gain of the

removed bid bj is -pj. Note that the move gain is

always negative for a REMOVE move because pj

is always positive. Hence, we can see that a

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

175

REMOVE move always leads to a decrease in the

fitness of A.

For the three move operators ADD, ECXHANGE,

and REMOVE, there is no absolute dominance of

one operator over the other ones. Therefore, the

best move operator to be applied depends on the

current situation. These facts lead us to generate a

combined neighborhood space H, which

corresponds to the union of the three

neighborhoods H1, H2, and H3, denoted by

321 HHHH . Using this multi-

neighborhood, our local search algorithm, i.e.

Multi-Neighborhood Local Search (MNLS), at

each iteration selects the move with the largest

gain among all the ADD, ECXHANGE, and

REMOVE moves if the move gain is positive, and

selects a random move among all possible moves

if the move gain is negative. Note that the MNLS

algorithm simultaneously explores a set of three

neighborhoods H1, H2, and H3 to get different

local optima and to escape from local optima.

MNLS uses the fact that using various

neighborhoods in local search can generate

different local optima and that the global optima is

a local optima for a given neighborhood. The

template of the MNLS algorithm is shown in

Algorithm (2).

Algorithm (2): Template of Multi-Neighborhood Local Search

algorithm for WDP.

Input: X as the initial solution, and maxiter as the maximum

iteration of MNLS algorithm.

For i = 1 to maxiter Do

Generate candidate neighbors to X by three move operators

ADD, ECXHANGE, and REMOVE;

X’ = the best neighbor of X;

If Fitness(X’)-Fitness(X) > 0 Then

 X = X’;

Else

 X = a random neighbor of X;

Endif

Endfor

Output: Best solution found.

4.6. Pheromone update
As stated in Section 3, a general pheromone

updating strategy is used in two phases:

evaporation phase and reinforcement phase.

Here, we use the classical evaporation method for

the pheromone trails so that each pheromone

value is reduced by a fixed proportion. For each

bj, its pheromone τj will evaporate as follows:

},,...,1{,)1(njjj

(7)

where, ρ ∈ [0, 1] shows the reduction rate of the

pheromone.

Now the pheromone update method has to be

specified. Here, we use elitist pheromone update

[35], in which the best solution found so far will

increment the pheromone matrix to reinforce

exploitation ability of the search. This operation is

done by (8):

,, bidwinneraisbif jjj

(8)

where,

n

k

kpXFitness
1

)(, and P={p1, p2, …,

pn} is a 1×n matrix, in which pk is the price of bk.

4.7. General framework of ACO-MNLS

The pseudo-code of ACO-MNLS is described in

Algorithm (3). At first, the initial values for the

parameters are determined. After initialization, the

main search loop is entered. It is repeated until a

maximum number of iterations is satisfied. In the

main loop itself, four important phases exist:

Solution construction, Solution improvement,

pheromone evaporation, and pheromone

reinforcement.

Algorithm (3): Template of ACO-MNLS.

Set the value of below parameters:

the number of ants;

the initial value of pheromone matrix ;

the relative influence of the pheromone values, i.e. α;

the problem-dependent parameter β;

the reduction rate of the pheromone, i.e. ρ ;

the maximum number of iterations;

the maximum iteration of MNLS algorithm;

Repeat

 For each ant Do

 Solution construction using the pheromone trail;

 Solution improvement using MNLS algorithm;

 Pheromone evaporation using Eq. (7);

 Pheromone reinforcement using Eq. (8);

 Endfor

Until maximum number of iterations are satisfied.

Output: Best solution found.

5. Experimental results

In this Section, the performance of the proposed

algorithm is measured on several benchmark

instances. In order to show the effectiveness of

our approach, we compared the ACO-MNLS

algorithm with four different approaches for

solving the WDP reported in [48], i.e. Stochastic

Local Search (SLS), Tabu Search (TS), Genetic

Algorithm (GA), and Memetic Algorithm (MA).

The structure of this section is as what follows.

First we describe the characteristics of the

selected benchmarks. Then we present the results

obtained from ACO-MNLS for benchmark

instances. Finally, we present a comparison of

ACO-MNLS with the other four metaheuristics.

5.1. Benchmarks

To evaluate the performance of algorithms on the

WDP problem, [59] has created the program

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

176

Combinatorial Auction Test Suite (CATS) to

generate benchmarks. Recently, [37] has provided

new benchmarks of various sizes consisting of up

to 1500 items and 1500 bids. The CATS instances

are easily solved by CPLEX and CABoB [60]. In

this paper, we use the realistic benchmarks by

[37] for which CPLEX cannot find the optimal

solution in a reasonable period of time. These

benchmarks include 500 instances, and are

available at the Zhuyi’s home page

(http://logistics.ust.hk/~zhuyi/instance.zip). These

benchmarks are divided into five groups of

problems, where each group contains 100

instances given in table 1. In this table, m is the

number of items and n is the number of bids.

5.2. Results and comparisons

In this section, the performance of the proposed

ACO-MNLS is measured by applying the

proposed algorithm to solve different benchmarks.
The proposed ACO-MNLS was implemented in C

language and run on a PC with an Intel 2.2 GHz

CPU. The ACO-MNLS parameters are fixed on

the following values: the number of ants is set to

100, the initial value of pheromone matrix is set to

10, the relative influence of the pheromone

values, i.e. α parameter, is set to 0.5, the relative

influence of the problem-dependent heuristic

values, i.e. β parameter, is set to 5, the reduction

rate of the pheromone, i.e. ρ parameter, is set to

0.1, the stopping criterion of ACO-MNLS is

satisfied after 200 iterations, and the maximum

iteration of MNLS algorithm is set to 50. All of

these values for the parameters are obtained

experimentally.

Tables 2–6 present the computational results of

the ACO-MNLS algorithm in comparison with

different metaheuristics reported in [48]. Each

table is designed to one of the 5 groups of the

REL benchmarks.

 In these tables, the first column shows the name

of the instance, columns with sol caption

correspond to the maximum revenue obtained by

each algorithm, and columns with time caption

correspond to CPU time in seconds for each

algorithm.

From tables 2-6, it can be observed that the ACO-

MNLS algorithm outperforms the GA, MA, SLS,

and TS algorithms in terms of computational time

in all the REL instances. Also ACO-MNLS

outperforms GA in terms of the solution quality in

all REL instances and overcomes the TS, MA, and

SLS algorithms in most instances, whereas in the

case of other instances, both the ACO-MNLS and

other algorithms get the same results. The

proposed ACO-MNLS is ranked in the first place

among five metaheuristics in terms of both the

solution quality and computational time. In order

to determine the statistical significance of the

advantage of ACO-MNLS, t-test (all

compared with ACO-MNLS) is applied. In

the first row of each table, the symbols + and

≈ represent that other methods are statistically

inferior to or equal to the proposed algorithm,

respectively. The last three rows of each table

summarize how many cases ACO-MNLS

perform better, similar or worse than the other

algorithms. From these results, we can conclude

that the ACO-MNLS algorithm dominates the GA

[48], MA [48], SLS [48], and TS [48] algorithms

in terms of both the solution quality and

computational time.

Note that from an optimization viewpoint, ACO-

MNLS combine global and local search using

ACO to perform exploration, while the MNLS

algorithm performs exploitation. ACO ensures

that ACO-MNLS can explore new bids that may

have not been seen in the search process yet. In

fact, ACO makes the entire search space

reachable, despite the finite population size.

Furthermore, the MNLS algorithm was able to

enhance the convergence rate of ACO-MNLS by

finely tuning the search on the immediate area of

the landscape being considered.

Table 1. Main characteristics of benchmarks used.

Benchmarks m n Description

REL-1000-500

REL-1000-1000

REL-500- 1000

REL-1500-1000

REL-1500-1500

500

1000

1000

1000

1500

1000

1000

500

1500

1500

100 instances from in 101 to in 200

100 instances from in 201 to in 300

100 instances from in 401 to in 500

100 instances from in 501 to in 600

100 instances from in 601 to in 700

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

177

Table 2. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1000-500.

Instances ACO-MNLS GA MA SLS TS

 sol time sol time sol time sol time sol time

in101

in102

in103

in104

in105

in106

in107

in108

in109

in110

69840.07

70897.46

69791.25

67268.71

69834.28

66436.08

69182.25

74588.51

66239.28

67395.07

16.84

16.02

15.36

15.64

17.14

13.48

14.28

16.14

13.56

14.28

42100.71+

39641.22+

43376.54+

42790.65+

40841.21+

41770.07+

38781.82+

43881.51+

42001.62+

38632.49+

336.90

432.76

338.89

376.37

331.31

385.43

379.15

337.35

336.89

320.84

67101.93≈

67797.61+

66350.99+

64618.41+

66376.83+

65481.64≈

66245.70+

74588.51≈

62492.66+

65171.19≈

129.62

132.18

133.34

135.14

153.96

140.96

146.40

161.03

144.71

149.01

66170.61+

65466.95+

66350.99+

67268.71≈

67268.71≈

63479.26+

66245.70+

71505.66+

61751.22+

64083.64+

23.51

23.89

24.79

22.92

22.92

22.37

23.18

24.01

22.20

23.25

66170.61+

64716.31+

66350.99+

62524.23+

62524.23+

64591.70≈

63972.62+

68776.34+

64343.07≈

60275.66+

57.86

63.43

128.68

120.56

120.56

129.42

128.51

119.84

80.98

115.31

Average

Rank

69147.30

1

15.28

1

41381.78

5

357.59

5

66622.55

2

142.64

4

65959.15

3

23.30

2

64424.58

4

106.52

3

Better

Similar

Worse

-

-

-

-

-

-

10

0

0

-

-

-

6

4

0

-

-

-

8

2

0

-

-

-

8

2

0

-

-

-

Table 3. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1000-1000.

Instances ACO-MNLS GA MA SLS TS

 sol time Sol time Sol time sol time sol time

in201

in202

in203

in204

in205

in206

in207

in208

in209

in210

81557.74

90464.19

86239.21

87075.42

82469.19

86881.42

91033.51

91782.20

81966.65

87569.19

6.10

7.32

7.00

6.98

6.16

6.32

6.38

7.22

6.82

6.52

56640.60+

59029.76+

59476.80+

57671.10+

59915.07+

58674.13+

60383.29+

63052.38+

59333.98+

64762.35+

697.65

693.14

562.29

732.71

573.98

627.01

667.75

646.34

655.09

547.09

77499.82+

90464.19≈

86239.21≈

81969.05+

82469.19≈

86881.42≈

91033.51≈

83667.76+

81966.65≈

85079.98≈

98.26

106.68

102.28

97.40

91.26

93.99

100.90

101.29

96.42

97.78

56640.60+

59029.76+

59476.80+

57671.10+

59915.07+

58674.13+

60383.29+

63052.38+

59333.98+

64762.35+

697.65

693.14

562.29

732.71

573.98

627.01

667.75

646.34

655.09

547.09

77499.82+

90464.19≈

86239.21≈

81969.05+

82469.19≈

86881.42≈

91033.51≈

83667.76+

81966.65≈

85079.98≈

98.26

106.68

102.28

97.40

91.26

93.99

100.90

101.29

96.42

97.78

Average

Rank

86703.87

1

6.68

1

59893.95

4

640.31

4

84727.08

2

98.63

2

59893.95

4

640.31

4

84727.08

2

98.63

2

Better

Similar

Worse

-

-

-

-

-

-

10

0

0

-

-

-

3

7

0

-

-

-

10

0

0

-

-

-

3

7

0

-

-

-

Table 4. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-500-1000.

Instances ACO-MNLS GA MA SLS TS

 sol time sol time sol time sol time sol time

in401

in402

in403

in404

in405

in406

in407

in408

in409

in410

77417.48

74469.07

74843.96

78761.68

74899.12

71791.03

73935.28

77018.73

73188.62

73791.66

3.52

3.94

3.80

3.84

4.02

3.56

4.16

3.98

3.36

4.24

56437.68+

56637.00+

57024.78+

61123.14+

58852.75+

58714.53+

58239.19+

59185.08+

54950.59+

59764.76+

1193.89

1272.06

1299.01

1088.39

1030.96

1318.40

1021.79

1348.82

1342.28

1005.54

72948.07+

71454.78+

74843.96≈

78761.68≈

72674.25≈

71791.03≈

73935.28≈

72580.04+

68724.53+

71791.57+

37.07

37.20

38.81

38.78

39.29

38.09

40.95

39.07

36.28

41.90

72948.07+

71454.78+

74843.96≈

78761.68≈

72674.25≈

71791.03≈

73278.66≈

72580.04+

67177.35+

71791.57+

5.67

5.79

6.01

6.12

6.04

5.87

6.35

5.95

5.48

6.37

68485.81+

72820.03≈

74843.96≈

73385.62+

72674.25≈

71791.03≈

71578.48+

70144.19+

67177.35+

72791.68≈

44.14

23.57

34.15

16.85

15.90

37.12

15.57

27.37

25.48

14.01

Average

Rank

75011.66

1

3.84

1

58092.95

5

1192.11

5

72950.52

2

38.74

4

72730.14

3

5.97

2

71569.24

4

25.42

3

Better

Similar

Worse

-

-

-

-

-

-

10

0

0

-

-

-

5

5

0

-

-

-

5

5

0

-

-

-

5

5

0

-

-

-

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

178

Table 5. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1500-1000.

Instances ACO-MNLS GA MA SLS TS

 sol Time sol time sol time sol time sol time

in501

in502

in503

in504

84165.23

83163.66

83277.71

83947.13

6.28

6.16

5.98

5.66

64961.36+

56954.75+

59161.13+

59691.51+

1624.84

1707.18

1450.79

1662.53

79132.03+

80340.76+

83277.71≈

81903.02≈

107.82

108.71

114.15

116.11

77140.72+

78574.26+

79554.65+

81903.02≈

15.62

15.98

15.99

16.48

82216.35≈

74127.61+

77005.81+

81903.02≈

98.71

120.82

114.11

155.54

Average

Rank

83638.43

1

6.02

1

60192.19

5

1611.34

5

81163.38

2

111.70

3

79293.16

3

16.02

2

78813.20

4

122.30

4

Better

Similar

Worse

-

-

-

-

-

-

4

0

0

-

-

-

2

2

0

-

-

-

3

1

0

-

-

-

2

2

0

-

-

-

Table 6. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1500-1500.

Instances ACO-MNLS GA MA SLS TS

 sol time sol time sol time sol time sol time

in601

in602

in603

in604

in605

in606

in607

in608

in609

in610

105286.68

101150.89

96628.98

106127.19

106273.50

105218.21

105869.44

99541.75

104602.39

109008.35

5.88

5.22

5.22

5.50

6.02

5.42

5.52

5.38

5.26

6.12

73665.13+

76006.38+

71585.28+

71958.50+

71348.06+

72505.09+

72162.60+

76189.79+

71664.87+

72393.14+

1489.40

1810.56

1685.07

1627.37

1634.68

1656.29

1625.37

1625.46

1581.18

1572.06

99044.32+

98164.23+

94126.96≈

103568.86+

102404.76+

104346.07≈

105869.44≈

95671.77+

98566.94+

102468.60+

110.62

114.18

110.71

110.60

122.40

107.79

113.26

109.15

111.12

120.17

96255.53+

95328.21+

94126.96≈

103568.86+

98799.71+

104346.07≈

100417.40≈

95671.77+

98566.94+

99975.09+

15.54

15.71

15.48

15.59

17.36

15.60

15.89

15.26

16.76

17.57

97473.85+

93873.31+

92568.61+

92869.78+

95787.59+

104346.07≈

98674.39+

91554.61+

96652.44+

99975.09+

100.76

155.34

137.95

96.70

175.14

334.12

267.79

95.62

103.10

146.03

Average

Rank

103970.70

1

5.54

1

72947.88

5

1630.74

5

100423.20

2

113.00

3

98705.65

3

16.08

2

96377.57

4

161.26

4

Better

Similar

Worse

-

-

-

-

-

-

10

0

0

-

-

-

7

3

0

-

-

-

7

3

0

-

-

-

9

1

0

-

-

-

6. Conclusions

A hybrid Ant Colony Optimization with a novel

Multi-Neighborhood Local Search (ACO-MNLS)

algorithm was proposed for solving Winner

Determination Problem (WDP) in combinatorial

auctions. Our proposed MNLS algorithm used the

fact that using various neighborhoods in local

search could generate different local optima for

WDP and that the global optima of WDP was a

local optima for a given neighborhood. Therefore,

in the proposed MNLS algorithm, a set of three

different neighborhoods was simultaneously

explored to get different local optima and to

escape from local optima. To the best of our

knowledge and the research in the literature, no

study has been done to solve WDP with

combining general-purpose Ant Colony

Optimization (ACO) metaheuristic and problem-

specific Multi-Neighborhood Local Search

(MNLS) algorithm.

The performance of the proposed algorithm was

evaluated in terms of solution quality and

computational time by several well-known

benchmarks. Its performance was compared with

four different metaheuristics for solving WDP, i.e.

Stochastic Local Search (SLS), Tabu Search (TS),

Genetic Algorithm (GA), and Memetic Algorithm

(MA). The experimental results confirmed that the

proposed ACO-MNLS outperformed the current

best performing WDP metaheuristics in terms of

both the solution quality and computational

efficiency.

A first step toward extending this paper would be

to hybrid the proposed MNLS algorithm in other

swarm and evolutionary algorithms. Secondly, the

MNLS algorithm could be changed to

simultaneously explore a set of other different

neighborhoods. Finally, the proposed approach

could be adopted for solving Multi-objective

WDP (MOWDP) [45].

References
[1] Parsons, S., Rodriguez-Aguilar, J. A. & Klein, M.

(2011). Auctions and bidding: A guide for computer

scientists. ACM Computing Surveys, vol. 43, no. 2,

pp. 1-10.

[2] Fujishima, Y., Leyton-Brown, K. & Shoham, Y.

(1999). Taming the computational complexity of

combinatorial auctions: optimal and approximate

approaches. Sixteenth international joint conference

on artificial intelligence, Stockholm, Sweden, 1999.

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

179

[3] Garey, M. & Johnson, D. (1979). Computers and

Intractability: A Guide to the Theory on NP-

Completeness. W.H. Freeman and Co. Publishers,

New York.

[4] Sandholm, T. (2006). Optimal Winner

Determination Algorithms, In: Cramton, P. (Eds.),

Combinatorial Auctions. MIT Press, pp. 337-368.

[5] Abrache, J., Crainic, T. G., Gendreau, M. & Rekik,

M. (2007). Combinatorial auctions. Annals of

Operations Research, vol. 153, no. 1, pp. 131–164.

[6] Fontanini, W. & Ferreira, P. A. V. (2014). A

game-theoretic approach for the web services

scheduling problem. Expert Systems with

Applications, vol. 41, no. 10, pp. 4743–4751.

[7] Ray, A. K., Jenamani, M. & Mohapatra, P. K. J.

(2011). Supplier behavior modeling and winner

determination using parallel MDP. Expert Systems

with Applications, vol. 38, no. 5, pp. 4689–4697.

[8] Vries, S. & Vohra, R. (2003). Combinatorial

auctions: a survey. INFORMS Journal on Computing,

vol. 15, pp. 284-309.

[9] Lipton, R. J. (2010). The P=NP Question and

Godel's Lost Letter, Springer.

[10] Safaee, B. & Kamaleddin Mousavi Mashhadi, S.

K. (2017). Optimization of fuzzy membership

functions via PSO and GA with application to quad

rotor. Journal of AI and Data Mining, vol. 5, no. 1, pp.

1-10.

[11] Talbi, E. G. (2009). Metaheuristics: From Design

to Implementation. John Wiley & Sons.

[12] Dowlatshahi, M. B., Nezamabadi-pour, H. &

Mashinchi, M. (2014). A discrete gravitational search

algorithm for solving combinatorial optimization

problems. Information Sciences, vol. 258, pp. 94–107.

[13] AllamehAmiri, M., Derhami, V. & Ghasemzadeh,

M. (2013). QoS-Based web service composition based

on genetic algorithm. Journal of AI and Data Mining,

vol. 1, no. 2, pp. 63-73.

[14] Holland, J. H. (1975). Adaptation in Natural and

Artificial Systems. University of Michigan Press, Ann

Arbor, MI.

[15] Dorigo, M. (1992). Optimization, learning and

natural algorithms. Dissertation, Politecnico di

Milano, Italy.

[16] Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P.

(1983). Optimization by simulated annealing. Science,

vol. 220, pp. 671–680.

[17] Feo, T. A. & Resende, M. G. C. (1989). A

probabilistic heuristic for a computationally difficult

set covering problem. Operations Research Letters,

vol. 8, pp. 67–71.

[18] Glover, F. & Laguna, M. (1997). Tabu Search.

Kluwer Academic Publishers.

[19] Mladenovic, M. & Hansen, P. (1997). Variable

neighborhood search. Computers and Operations

Research, vol. 24, pp. 1097–1100.

[20] Stützle, T. (1999). Local search algorithms for

combinatorial problems: Analysis, algorithms and new

applications. Dissertation, Germany.

[21] Kennedy, J. & Eberhart, R. (1999). Particle

swarm optimization. In: Proceedings of the IEEE

International Conference on Neural Networks,

Piscataway, N.J., pp. 1942–1948.

[22] Rashedi, E., Nezamabadi-pour, H. & Saryazdi, S.

(2009). GSA: A Gravitational Search Algorithm.

Information Sciences, vol. 179, pp. 2232–2248.

[23] Sandholm, T. (1999). Algorithms for optimal

winner determination in combinatorial auctions.

Artificial Intelligence, vol. 135, pp. 1–54.

[24] Padberg, M. W. (1973). On the facial structure of

set packing polyhedra. Mathematical Programming,

vol. 5, no. 1, pp. 199–215.

[25] Leyton-Brown, K., Shoham, Y. & Tennenholz,

M. (2000). An algorithm for multi-unit combinatorial

auctions. In: Proceedings of the 7th international

conference on artificial intelligence pp. 56–61.

[26] Sandholm, T. & Suri, S. (2003). BOB: Improved

winner determination in combinatorial auctions and

generalizations. Artificial Intelligence, vol. 145, pp.

33–58.

[27] Sandholm, T., Suri, S., Gilpin, A. & Levine, D.

(2005). CABOB: A fast optimal algorithm for winner

determination in combinatorial auctions. Management

Science, vol. 51, no. 3, pp. 374–390.

[28] Nisan, N. (2000). Bidding and allocation in

combinatorial auctions. In: Proceedings of the 2nd

ACM conference on electronic commerce, pp. 1–12.

[29] Gunluk, O., Laszlo, L. & de Vries, S. (2005). A

branch-and-price algorithm and new test problems for

spectrum auctions. Management Science, vol. 51, no.

3, pp. 391–406.

[30] Escudero, L. F., Landete, M. & Marin, A. (2009).

A branch-and-cut algorithm for the winner

determination problem. Decision Support Systems,

vol. 46, no. 3, pp. 649–659.

[31] Rothkopf, M. H., Pekec, A. & Harstad, R. M.

(1998). Computationally manageable combinatorial

auctions. Management Science, vol. 44, no. 8, pp.

1131–1147.

[32] Andersson, A., Tenhunen, M. & Ygge, F. (2000).

Integer programming for combinatorial auction winner

determination. In: Proceedings of the 4th international

conference on multi-agent systems, New York: IEEE

Computer Society Press, pp. 39–46.

[33] Guo, Y., Lim, A., Rodrigues, B. & Zhu, Y.

(2006). Heuristics for a bidding problem. Computers

& Operations Research, vol. 33, no. 8, pp. 2179-2188.

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

180

[34] Wu, Q. & Hao, J.K. (2016). A clique-based exact

method for optimal winner determination in

combinatorial auctions. Information Sciences, vol.

334, pp. 103-121.

[35] Michalak, T., Rahwan, T., Elkind, E.,

Wooldridge, M. & Jennings, N.R. (2016). A hybrid

exact algorithm for complete set partitioning.

Artificial Intelligence, vol. 230, pp. 14-50.

[36] Hoos, H. H. & Boutilier, C. (2000). Solving

combinatorial auctions using stochastic local search.

In: Proceedings of the Seventeenth National

Conference on Artificial Intelligence and Twelfth

Conference on Innovative Applications of Artificial

Intelligence, pp. 22-29.

[37] Boughaci, D., Benhamou, B. & Drias, H. (2009).

A memetic algorithm for the optimal winner

determination problem. Soft Computing - A Fusion of

Foundations, Methodologies and Applications, vol.

13, pp. 905-917.

[38] Lau, H. C. & Goh, Y. G. (2002). An intelligent

brokering system to support multi-agent web-based

4th-party logistics. In: Proceedings of the 14th

international conference on tools with artificial

intelligence, pp. 54–61.

[39] Boughaci, D., Benhamou, B. & Drias, H. (2010).

Local search methods for the optimal winner

determination problem in combinatorial auctions.

Journal of Mathematical Modelling and Algorithms,

vol. 9, no. 2, pp. 165–180.

[40] Tsung, C., Ho, H. & Lee, S. (2011). An

equilibrium-based approach for determining winners

in combinatorial auctions. In: Proceedings of the 9th

IEEE international symposium on parallel and

distributed processing with applications, pp.47–51.

[41] Sghir, I., Hao, J. K., Ben Jaafar, I. & Ghedira, K.

(2014). A recombination-based tabu search algorithm

for the winner determination problem. In: Legrand, P.,

et al. (Eds.), AE 2013. Lecture notes in computer

science, vol. 8752, pp. 157–169.

[42] Nguyen, T. D. (2014). A fast approximation

algorithm for solving the complete set packing

problem. European Journal of Operational Research,

vol. 237, no. 1, pp. 62-70.

[43] Wang, N. & Wang, D. (2014). Model and

algorithm of winner determination problem in multi-

item E-procurement with variable quantities. In: The

26th Chinese Control and Decision Conference, pp.

5364-5367.

[44] Boughaci, D. & Lassouaoui, M. (2014).

Stochastic Hyper-Heuristic for the Winner

Determination Problem in combinatorial auctions. In:

Proceedings of the 6th International Conference on

Management of Emergent Digital EcoSystems, pp. 62-

66.

[45] Hsieh, F. S. & Liao, C. S. (2014). Multi-agent

Learning for Winner Determination in Combinatorial

Auctions. In: International Conference on Industrial,

Engineering and Other Applications of Applied

Intelligent Systems, pp. 1-10.

[46] Buer, T. & Kopfer, H. (2014). A Pareto-

metaheuristic for a bi-objective winner determination

problem in a combinatorial reverse auction.

Computers & Operations Research, vol. 41, pp. 208-

220.

[47] Holte, R. (2001). Combinatorial Auctions,

Knapsack Problems, and Hill-Climbing Search. In:

Stroulia, E. & Matwin, S. (Eds.), Advances in

Artificial Intelligence, vol. 2056 of Lecture Notes in

Computer Science, pp. 57-66.

[48] Schwind, M., Stockheim, T. & Rothlauf, F.

(2003). Optimization heuristics for the combinatorial

auction problem. In: Evolutionary Computation, 2003.

CEC '03. The 2003 Congress on, vol. 3, pp. 1588-

1595.

[49] Boughaci, D. (2013). Metaheuristic approaches

for the winner determination problem in combinatorial

auction. In: Yang, X.S. (Eds.), Artificial Intelligence,

Evolutionary Computing and Metaheuristics, vol. 427

of Studies in Computational Intelligence, pp. 775-791.

[50] Dorigo, M., Maniezzo, V. & Colorni, A. (1996).

Ant System: Optimization by a colony of cooperating

agents. IEEE Transactions on Systems, Man, and

Cybernetics – Part B, vol. 26, no. 1, pp. 29–41.

[51] Dorigo, M. & Gambardella, L. M. (1997). Ant

Colony System: A cooperative learning approach to

the traveling salesman problem. IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 53–66.

[52] Stützle, T. & Hoos, H. H. (2000). MAX–MIN

Ant System. Future Generation Computer Systems,

vol. 16, no. 8, pp. 889–914.

[53] Dorigo, M., Caro, G. D. & Gambardella, L. M.

(1999). Ant algorithms for discrete optimization.

Artificial Life, vol. 5, no. 2, pp. 137–172.

[54] Aarts, E. H. L. & Lenstra, J. K. (1997). Local

Search in Combinatorial Optimization. J. Wiley &

Sons, Chichester, UK.

[55] Corne, D., Dorigo, M. & Glover, F. (1999). New

Ideas in Optimization. McGraw-Hill.

[56] Merkle, D. & Middendorf, M. (2005). Swarm

intelligence. In Search Methodologies. Springer, pp.

401–435.

[57] Maniezzo, V. (1999). Exact and approximate

nondeterministic tree-search procedures for the

quadratic assignment problem. INFORMS Journal on

Computing, vol. 11, no. 4, pp. 358–369.

[58] Bullnheimer, B., Hartl, R. F. & Strauss, C. A.

(1999). New rank based version of the ant system: A

computational study. Central European Journal for

Operations Research and Economics, vol. 7, no. 1, pp.

25–38.

Derhami & Dowlatshahi/ Journal of AI and Data Mining, Vol 5, No 2, 2017.

181

[59] Cordon, O., Fernandez, I., Herrera, F. & Moreno,

L. (2000). A new ACO model integrating evolutionary

algorithms concepts: The best-worst ant system. In:

2nd International Workshop on Ant Algorithms,

Brussels, Belgium, pp. 22–29.

[60] Leyton-Brown, K., Pearson, M. & Shoham, Y.

(2000). Towards a universal test suite for

combinatorial auction algorithms. In: ACM

conference on electronic commerce, pp. 66–76.

[61] Sandholm, T., Suri, S., Gilpin, A. & Levine, D.

(2001). CABoB: a fast optimal algorithm for

combinatorial auctions. In: Proceedings of the

international joint conferences on artificial

intelligence, pp. 1102–1108.

 نشریه هوش مصنوعی و داده کاوی

ساز جمعیت مورچگان و های بهینههای ترکیبیاتی با استفاده از ترکیب الگوریتمتعیین برنده در حراج

 جستجوی محلی چندهمسایگی

 *ولی درهمی و محمدباقر دولتشاهی

 .ایران، یزد دانشگاه یزد، ،دانشکده فنی، مهندسی کامپیوترگروه

 01/20/0202 پذیرش؛ 02/00/0202 بازنگری؛ 20/20/0202 ارسال

 چکیده:

ی تعیتی حراجی است که در آن پیشنهادکنندگان باید پیشنهادات خود را برای خریدن یک بستهه از ننارتر ارا ته د.نتدئ هست ه ،یک حراج ترکیبیاتی

توانتد بته .ا را تحت ای هحدویت که .ر ننصر فقت هتیسود حراج کنندهکه ی پیدا کردن پیشنهاداتی از هس ه برنده در حراج ترکیبیاتی نبارت است

سخت است که کاربرد.تای نل تی زیتادی هاننتد ت تارت -ی ان پیی تعیی برنده یک هس هکندئ هس هیابد، بیشینه هی یک پیشنهاد د.نده تخصیص

.تای ی ار ی ها برای جسه وی الگتوریهمای هوضوع انگیزهئ دارد .ای چند ناه ه.ا، و تخصیص هنابع در سیسهمبازیالکهرونیک، هدیریت تولید، نظریه

ستاز جلعیتت حل و زهان هحاسباتی استئ ای هقاله یک الگوریهم ترکیبی با اسهفاده از ترکیب کردن الگوریهم بهینتهتقریبی کاراهد بر حسب کیفیت راه

د.تدئ الگتوریهم جسته وی ی تعیی برنده در حراج ترکیبیاتی ارا ه هیریهم جسه وی هح ی چند.لسایگی جدید برای حل هس ههورچگان با یک الگو

.تای برد که اسهفاده از چندی .لسایگی در الگوریهم جسه وی هح ی بانث پیتدا کتردن بهینتههح ی چند.لسایگی پیشنهادی از ای واقعیت بهره هی

الگتوریهم بنتابرای ی هح ی برای یتک .لستایگی ختاس استتئیک بهینهخود ی تعیی برنده ی سراسری برای هس هو بهینه هح ی هخه فی هی شود،

ی هیتان کنتدئ هقایستهی هح تی استهفاده هتیی هخه ف بترای فترار از بهینتهجسه وی هح ی چند.لسایگی پیشنهادی به طور .لزهان از سه .لسایه

الگوریهم ژنهیک، الگوریهم هلهیک، جسه وی هح ی تصادفی، و جسه وی تابو بر روی هسا ل هحتک هخه تف کاراهتدی الگتوریهم الگوریهم پیشنهادی با

 د.دئپیشنهادی را بر حسب کیفیت راه حل و زهان هحاسباتی نشان هی

 سازی ترکیبیاتیئچند.لسایگی، بهینهساز جلعیت هورچگان، جسه وی هح ی .ای ترکیبیاتی، بهینههس ه تعیی برنده، حراج :کلمات کلیدی

