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Abstract 

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The 

Winner Determination Problem (WDP) in combinatorial auctions is the problem of finding winning bids that 

maximize the auctioneer’s revenue under constraint, where each item can be allocated to at most one bidder. 

WDP is known as an NP-hard problem with practical applications like electronic commerce, production 

management, games theory, and resource allocation in multi-agent systems. This has motivated the quest for 

efficient approximate algorithms in terms of both the solution quality and computational time. This paper 

proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS) 

algorithm for solving WDP in combinatorial auctions. Our proposed MNLS algorithm uses the fact that 

using various neighborhoods in local search can generate different local optima for WDP and that the global 

optima of WDP is a local optima for a given neighborhood. Therefore, the proposed MNLS algorithm 

simultaneously explores a set of three different neighborhoods to get different local optima and to escape 

from the local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic 

Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems 

confirm the efficiency of the ACO-MNLS algorithm in terms of both the solution quality and computational 

time. 

 

Keywords: Winner Determination Problem, Combinatorial Auctions, Ant Colony Optimization, Multi-

Neighborhood Local Search, Combinatorial Optimization. 

1. Introduction 

Auctions play a significant role in multi-agent 

systems, where the auction mechanisms are used 

for task distribution and resource allocation. The 

items that are auctioned range from network 

bandwidth to radio frequencies, and pollution 

rights. Combinatorial Auction (CA) is a sort of 

auctions in which bidders (agents) can place bids 

on combinations of items (goods) rather than only 

the individual ones. Buyers offer their bids to 

auctioneer, each bid being defined by a subset of 

items with a price (bidder’s valuation). Two bids 

are conflicting if they share at least one item. The 

main advantage of combinatorial auction is that it 

produces a high economic efficiency [1]. 

The Winner Determination Problem (WDP) in 

combinatorial auctions is defined as finding a 

conflict-free allocation of items that maximize the 

auctioneer’s revenue. WDP is equivalent to the 

weighted set packing problem, a well-known NP-

hard problem [2-4]. From a practical viewpoint, 

WDP has many applications in electronic 

commerce, production management, game theory, 

and resource allocation in multi-agents systems 

[5-8]. 

The computational challenge of WDP and its wide 

practical applications have motivated a variety of 

algorithms. These algorithms can be classified as 

either “exact” or “approximate”. Exact algorithms 

can obtain optimal solutions and guarantee their 

optimality for every instance of WDP. However, 

it has been shown that for optimization problems 

that are NP-hard, no polynomial time algorithm 

exists unless P = NP [3,9]. Therefore, exact 

algorithms for WDP require exponential time, and 
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this makes them impractical for most real-world 

applications. In contrast to exact algorithms, 

approximate algorithms do not guarantee the 

optimality of the solutions obtained. In these 

algorithms, the optimal solution is sacrificed for 

the sake of obtaining good solutions in a 

reasonable time [10-12]. 

Approximate algorithms may be classified into 

three classes: approximation algorithms, problem-

specific heuristics, and metaheuristics. Unlike 

problem-specific heuristics and metaheuristics, 

approximation algorithms provide a provable 

solution quality and run-time bounds. Problem-

specific heuristics are problem-dependent and are 

designed for a particular problem, whereas 

metaheuristics represent more general 

approximate algorithms and are applicable to a 

large variety of optimization problems. 

Metaheuristics solve complex optimization 

problems by “exploring” the large solution space 

and achieve this goal by effectively reducing the 

size of this space and “exploiting” the reduced 

space efficiently [10,11,13]. This class of 

algorithms includes Evolutionary Computation 

(EC) [14], Ant Colony Optimization (ACO) [15], 

Greedy Randomized Adaptive Search Procedure 

(GRASP) [16], Tabu Search (TS) [17], Variable 

Neighborhood Search (VNS) [18], Iterated Local 

Search (ILS) [19], Particle Swarm Optimization 

(PSO) [20], Gravitational Search Algorithm 

(GSA) [21], etc. 

In this paper, we propose a hybrid Ant Colony 

Optimization with Multi-Neighborhood Search 

(ACO-MNLS) algorithm for solving WDP. The 

experimental results obtained by the proposed 

algorithm are compared with the results of 

Genetic Algorithm (GA), Memetic Algorithm 

(MA), Stochastic Local Search (SLS), and Tabu 

Search (TS). The comparisons confirm the 

efficiency of ACO-MNLS in terms of solution 

quality and computational time.  

The rest of the paper is organized as what follows. 

In Section 2, we present the formal definition of 

WDP and provide an overview of the existing 

algorithms for WDP. Section 3 provides a review 

of ACO. In Section 4, the proposed ACO-MNLS 

algorithm for WDP is presented. Section 5 

contains the experimental part of the paper, in 

which the performance of the proposed approach 

is evaluated. Finally, in Section 6, conclusion is 

given. 

 

2. Winner Determination Problem and existing 

algorithms 

2.1. Winner Determination Problem 
In this section, we discuss WDP and winner 

determination algorithms for combinatorial 

auctions. Let us say that the auctioneer has a set of 

items, M = {1, 2, …, m}, to sell, and the buyers 

propose a set of bids, B = {b1, b2, …, bn}. A bid is 

a tuple bj = (Sj, pj), where MS j   is a set of 

items and 0jp  is price of bj, which is a 

positive real number that shows the value the 

buyer is willing to pay for bundle Sj. Further, 

consider a matrix am×n having m rows and n 

columns, where aij = 1 if item i belongs to Sj , aij = 

0, otherwise. Finally, the decision variables are 

defined as follow: xj = 1 if bid bj is accepted (a 

winning bid), and xj = 0 otherwise (a losing bid). 

WDP is the problem of finding the winning bids 

that maximize the auctioneer’s revenue under the 

constraint that each item can be allocated to the 

most bidder. WDP can be modeled as the 

following integer optimization problem [22]: 

,
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j
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j

j xpMaximize 
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where, the objective function given in (1) 

maximizes the auctioneer’s revenue that is 

computed as the sum of prices of the winning 

bids. The constraints given in (2) mean that the 

item can be allocated to at most one bidder. The 

inequality (aij xj ≤ 1) allows that some items could 

be left uncovered. This is due to the free disposal 

assumption. 

Example 1: Consider a combinatorial auction 

with a set of five items M = {1, 2, 3, 4, 5} to be 

auctioned and a set of five bids B = {b1, b2, b3, b4, 

b5} that are the following: 

 b1 = ({1, 3}, 5.5) 

 b2 = ({1, 3, 4}, 15) 

 b3 = ({2}, 1) 

 b4 = ({2, 4}, 12) 

 b5 = ({4}, 8) 

 b6 = ({4, 5}, 10). 
 

Note that the combined value of the two bids for 

the individual items 2 and 4 is lower than the 

value of the bundle bid for both (b4), which 

reflects the complementarity of these items. Let us 

consider the allocations A1 = {b2, b4} and A2 = {b1, 
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b4}. While A2 is feasible, A1 is infeasible because 

b2 and b4 both require item 4. The value for A2 is 

17.5, which is the maximum value over all 

possible feasible allocations for this problem 

instance. Under the optimal allocation A2, bids b1 

and b4 win, with items 1 and 3 assigned to b1 and 

items 2 and 4 assigned to b4. Note that item 5 

remains unassigned under this allocation; there is 

a feasible allocation that assigns all items to bids 

(A3 = {b1, b3, b6}) but its value is lower than 17.5. 

 

2.2. Existing algorithms 
Attempts to exactly solve WDP (under the name 

of set packing) can be found as early as in the 

beginning of 1970s [23]. Many studies have 

appeared ever since. Most exact algorithms are 

based on the general branch-and-bound (B&B) 

technique. Some examples include the 

combinatorial auction structural search (CASS) 

[2], Combinatorial Auction Multi-Unit Search 

(CAMUS) [24], BOB algorithm [25], CABOB 

algorithm [26], and linear programming-based 

B&B algorithm [27]. Other interesting exact 

methods for WDP are a branch-and-price 

algorithm based on a set packing formulation [28], 

a branch-and-cut algorithm [29], and a dynamic 

programming algorithm [30]. The general integer 

programming approach based on CPLEX has been 

intensively studied in [31,32], showing an 

excellent performance in many cases. In [33], a 

clique-based branch-and-bound approach has been 

introduced for WDP, which relies on a 

transformation of WDP into the maximum weight 

clique problem. To ensure the efficiency of the 

proposed search algorithm, specific bounding and 

branching strategies using a dedicated vertex 

coloring procedure and a specific vertex sorting 

technique has been proposed. In [34], Complete 

Set Partitioning problem captures the special case 

of WDP in combinatorial auctions, where bidders 

place bids on every possible bundle of goods, and 

the goal is to find an allocation of goods to 

bidders that maximizes the profit of the 

auctioneer. 

On the other hand, given the intrinsic intractability 

of WDP, various heuristic algorithms have been 

devised to handle problems whose optimal 

solutions cannot be reached by exact approaches. 

For instance, Casanova [35] is a well-known 

stochastic local search algorithm that explores the 

space of feasible allocations (non-overlapping 

subsets of bids) by adding at each step an 

unallocated bid and removing from the allocation 

the bids that are conflicting with the added bid. 

The selection rule employed by Casanova takes 

into consideration both the quality and history 

information of the bid. Casanova has been shown 

to be able to find high quality solutions much 

faster than the CASS algorithm [2]. WDP is also 

modeled as a set packing problem and is solved 

by a simulated annealing algorithm (SAGII) with 

three different local move operators: an embedded 

branch-and-bound move, greedy local search 

move, and exchange move [32]. SAGII 

outperforms dramatically Casanova and the 

CPLEX 8.0 solver for realistic test instances. A 

memetic algorithm has been proposed by [36], 

which combines a local search component with a 

specific crossover operator. The local search 

component adds at each iteration either a random 

bid with a probability p or a best bid with the 

largest profit with probability 1-p, and then 

removes the conflicting bids from the allocation. 

This hybrid algorithm reaches excellent results on 

the tested realistic instances. Other interesting 

heuristics include greedy algorithm [37], a tabu 

search algorithm [38], an equilibrium-based local 

search method [39], and a recombination-based 

tabu search algorithm [40]. In [41], a new 

mathematical formulation for WDP (under the 

name of set packing) and an efficient method for 

generating near-optimal solution have been 

proposed. In [42], a mathematical model that aims 

to maximize the expected economization of 

procurement has been established and a solution 

algorithm based on genetic algorithm (GA), where 

an order encoding scheme is designed and a 

special repair method is employed to accomplish 

the translation from the individual encoding to the 

corresponding solution of WDP, has been 

proposed. In [43], a stochastic hyper-heuristic 

(SHH) for combining heuristics for solving WDP 

has been proposed, in which a new idea is 

developed for hyper-heuristics by combining 

choice function and randomness strategies. In 

[44], an agent learning approach has been 

proposed for solving WDP, in which a Lagrangian 

relaxation approach is used to develop an efficient 

multi-agent learning algorithm. In [45], the 

authors have presented a metaheuristic approach 

for the bi-objective WDP, which integrates the 

greedy randomized adaptive search procedure 

with a two-stage candidate component selection 

procedure, large neighborhood search, and self-

adaptive parameter setting in order to find a 

competitive set of non-dominated solutions. 

From the above-mentioned review, we observe 

that the existing (exact and heuristic) methods 

follow two solution strategies. The first one is to 

consider directly WDP and design dedicated 

algorithms. This is the case for most of the 
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reviewed methods. The second one is to recast 

WDP as another related problem P and then 

solved with a solution method designed for P. 

Examples have been given in [23,32], where 

WDP is modeled as the set packing problem and 

in [26, 31], where WDP is reformulated as an 

integer programming problem and solved by the 

general CPLEX solver. 

 

2.3. Disadvantages of existing algorithms 
The existing exact algorithms to solve WDP [23-

34] have an exponential time complexity, and this 

makes them impractical for most real-world 

instances of WDP. On the other hand, although 

heuristic algorithms used to solve WDP [35-45] 

have a polynomial time complexity, they have a 

low efficiency and a low effectiveness. To the 

best of our knowledge, the best results of direct 

heuristic methods come from a Memetic 

Algorithm (MA) proposed by [34]. In Section 5, 

we will see that the proposed ACO-MNLS 

algorithm outperforms the GA, MA, SLS, and TS 

algorithms in terms of the computational time, and 

overcomes the GA, TS, MA, and SLS algorithms 

in terms of the solution quality in most problems, 

whereas in the case of other problems, both ACO-

MNLS and other algorithms get the same results. 

 

3. Ant Colony Optimization 

Ant Colony Optimization (ACO) algorithms are 

constructive stochastic metaheuristics that make 

use of a pheromone model and heuristic 

information on the problem being tackled in order 

to probabilistically construct solutions. A 

pheromone model is a set of pheromone trail 

parameters whose numerical values can be 

obtained by a reinforcement type of learning 

mechanism and show the search experience of the 

algorithm. Therefore, the pheromone model can 

be used to bias the solution construction over time 

towards the regions of the solution space 

containing high quality solutions. Note that the 

stochastic procedure in ACO permits the ants to 

explore a much larger number of solutions; 

meanwhile, the use of heuristic information 

guides the ants towards the most promising 

solutions.  

Several ACO algorithms for NP-hard problems 

have been proposed in the literature. Ant System 

(AS) was proposed as the first ACO algorithm for 

the well-known Traveling Salesman Problem 

(TSP) [49]. The Ant Colony System (ACS) [50] 

and the MAX–MIN Ant System (MMAS) 

algorithm [51] are among the most successful 

ACO variants in practice. In order to provide a 

unifying view to identify the most important 

aspects of these algorithms, [52], put them in a 

general framework by defining the ACO 

metaheuristic. The template of this ACO 

metaheuristic has been shown in Algorithm (1). 

After initializing parameters and pheromone trails, 

the metaheuristic iterates over three phases. At 

each iteration, a number of solutions are 

constructed by the ants; these solutions are then 

improved through a local search (this step is 

optional), and finally, the pheromone trails are 

updated. 
 

Algorithm (1): Template of Ant Colony Optimization. 

Set parameters; 

Initialize the pheromone trails; 

Repeat 

    For each ant Do 

 Solution construction using the pheromone trail; 

 Solution improvement using local search; 

 Update the pheromone trails: 

 Evaporation ; 

 Reinforcement ; 

    Endfor 

Until stopping criteria are satisfied. 

Output: Best solution found. 
 

The solution construction is done by a 

probabilistic rule. Each artificial ant can be 

considered as a stochastic greedy algorithm that 

constructs a solution probabilistically by adding 

solution components to partial ones until a 

complete solution is derived. This stochastic 

greedy algorithm takes into account the 

followings: 

Pheromone trails that memorize the patterns of 

“good” constructed solutions, and will guide the 

construction of new solutions. The pheromone 

trails change dynamically during the search to 

store the obtained knowledge of problem. 

Heuristic information that gives more hints 

about most promising solutions to ants in their 

decisions to construct solutions. 

The solution improvement is a local search 

method that starts with an initial solution and 

follows moves from the current solution to a 

neighbor. Many strategies can be used in the 

selection of a neighbor such as: (1) Best 

improvement selection strategy, in which the best 

neighbor (i.e. the neighbor that improves the 

objective function the most) is selected, (2) First 

improvement selection strategy, which consists of 

choosing the first improving neighbor that is 

better than the current solution, and (3) Random 

selection strategy, in which a random selection is 

applied to the neighbors of the current solution. 

The process of exchanging the current solution 

with a neighbor is continued until the stopping 
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criteria are satisfied [53]. Note that solution 

improvement is an optional component of ACO, 

although it has been shown that it can improve the 

performance of ACO when static combinatorial 

optimization problems are considered. An 

explanation of the good performance of a 

combination of ACO with local search can be 

found in the fact that these two search methods 

are complementary. An ACO algorithm usually 

performs a rather coarse-grained search. 

Therefore, it is a good idea to try and improve its 

solutions locally. 

The pheromone update is done using the 

constructed solutions. A good pheromone 

updating rule is used in two phases: 

An evaporation phase that decreases the 

pheromone trail value. The goal of the 

evaporation is to escape from premature 

convergence toward “good” solutions and then to 

encourage the exploration in the solution space. 

A reinforcement phase that updates the 

pheromone trail using constructed solutions. 

Three different strategies can be used [54]: off-

line pheromone update [55], online step-by-step 

pheromone update [50], and online delayed 

pheromone update [56]. Among these strategies, 

the off-line pheromone update is the most popular 

approach, in which different strategies can be 

applied: quality-based pheromone update [49], 

rank-based pheromone update [57], worst 

pheromone update [58], and elitist pheromone 

update [51]. 
  

4. Proposed algorithm for winner 

determination 

In this section, we present a hybrid ant colony 

optimization and multi-neighborhood search 

(ACO-MNLS) algorithm for solving WDP. In 

addition to common search components in all 

metaheuristics (e.g. representation of solutions 

and definition of the objective function), the main 

components of the proposed ACO-MNLS are 

pheromone information, solution construction, 

local search, and pheromone update. 
 

4.1. Solution representation 

To design a metaheuristic, representation is 

necessary to encode each solution of the problem. 

The representation used in the proposed ACO-

MNLS is the binary representation [11]. For a 

WDP of n bids, a vector X={x1, x2, …, xn} of 

binary variables xj may be used to represent a 

solution: 

.
0

1
},,...,2,1{






otherwise

solutioninisbif
xnj

j

j

 

(4) 

 

In other words, a solution will be encoded by a 

vector X of n binary variables, where the jth 

decision variable of X denotes the presence or 

absence of the jth bid in the solution. For 

example, consider a set of five bids B = {b1, b2, b3, 

b4, b5} and the feasible allocation A1 = {b2, b4} in 

which bids b1 and b4 are won. Figure 1 illustrates 

a binary representation used by ACO-MNLS for a 

solution. 

 

Figure 1. A candidate solution in proposed ACO-MNLS 

for a WDP with five bids. 

 

4.2. Fitness evaluation 
Each metaheuristics must use a fitness evaluation 

function that associates with each solution of the 

search space a numeric value that describes its 

quality. An effective fitness evaluation function 

must yield better evaluations to solutions that are 

closer to the optimal solution than those that are 

farther away. The fitness evaluation function for a 

given problem is chosen by the problem solver, 

and it is not given with the problem but is directly 

related to the specifications for that problem. 

Fortunately, the definition of fitness evaluation 

function for WDP is straightforward. It specifies 

the originally formulated objective function. The 

objective function defined in (1) is used to 

measure the quality of a candidate solution X. 

Thus for a candidate solution X, its quality is just 

equal to the sum of the valuations of the winning 

bids [48]: 

,)(
1

j

n

j

j xpXFitness 




 

(5) 

 

where, X={x1, x2, …, xn} is a 1×n matrix, and 

P={p1, p2, …, pn} is a 1×n matrix in which pj is 

the price of bj. 
 

4.3. Pheromone information 

Pheromone information consists of defining a 

vector of model parameters τ called pheromone 

trail parameters, where pheromone values τi ∈ τ 

should give the relevant information for solution 

construction. Here, a pheromone τj is associated 

with each bid j (i.e. bj). Therefore, the pheromone 

information is represented by a 1×n matrix τ, 

where each element τj of the matrix says the 

desirability to have the bj in the solution. The 

X: 

x1 x2 x3 x4 x5 

0 1 0 1 0 
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pheromone matrix is initialized by the same 

values. During the search, the pheromone is 

updated to estimate the utility of any bid. 
4.4. Solution construction 

In addition to the pheromone trails, the main 

question in the solution construction is concerned 

with the definition of the problem-specific 

heuristic to be used in guiding the search. As 

stated in Section 3, artificial ants can be 

considered as stochastic greedy algorithms that 

construct a solution in a probabilistic manner by 

considering two important parameters: pheromone 

trails and problem-dependent heuristic 

information. 

Given an initial arbitrary solution A, we define set 

C composed of each bid bj = (Sj, pj) such that

  


)(
Ai

ij SS  . In this case, an ant selects the 

next bid bj ∈ C with the probability: 

,
)()(

)()(









Ck

kk

jj

jp








 

(6) 

where: 

  j
 is the value of problem-specific 

heuristic for bj. The problem-specific 

heuristic information is represented by a 1×n 

matrix   , where the value for each element 

j  of the matrix is equal to the normalized 

price of bj, i.e. 



n

k

kjj pp
1

 .  

 α and β are the parameters representing the 

relative influence of the pheromone values 

and the problem-specific heuristic values. 

The ACO algorithm will be similar to a 

stochastic greedy algorithm if we have α = 0. 

In this case, the bids with a large price are 

more likely to be selected. If β = 0, only the 

pheromone trails will guide the search 

direction. In this case, stagnation may occur, 

in which all ants will construct similar 

solutions. Hence, a suitable balance must be 

done in using this kind of information [11]. 

Note that the process of adding a new bid to the 

current solution A is repeated until set C is not 

empty. 
 

4.5. Local search: Multi-Neighborhood Local 

Search (MNLS) 

Definition of the neighborhood space is the 

common search concept for all local search 

algorithms. The neighborhood space is defined by 

an undirected graph H=(N, E) associated with the 

solution space of the problem, where the nodes in 

N correspond to candidate solutions and the edges 

in E correspond to moves in the neighborhood 

space, i.e. Eji ),(  if and only if 

)(,, iNjNjNi  , and )( jNi , where N(y) 

denotes the neighbors of a solution Ny . The 

structure of the neighborhood depends on the 

target optimization problem. A neighbor solution 

y’ for a given solution y is constructed by 

applying a move m to the solution y using a move 

operator , denoted by y’ = ym. The 

neighborhood space is called single-neighborhood 

if for constructing it we use only a one-move 

operator, and is called multi-neighborhood if for 

constructing it we use several-move operators 

[11].  

A local search may be seen as a walk in the 

neighborhood space. A walk is performed by 

move operators that move from the current 

solution to another one in the neighborhood space. 

Here, we define three basic move operators for 

WDP, denoted by ADD, EXCHANGE, and 

REMOVE. Suppose an initial arbitrary allocation 

A composed of some non-conflicting bids.  

The ADD(bj) move operator consists of adding to 

A a bid bj = (Sj, pj) from the set of bids that are 

excluded from the A and have no conflict with 

bids in A. In example 1, let us consider the 

feasible allocation A = {b1, b3}. There are only 

two bids b5 and b6 that are excluded from the A 

and have no conflict with bids in the A. Note that 

after the ADD(bj) move, the change in the fitness 

of solution is +pj. Since the value for pj is always 

positive, the move gain is always positive for an 

ADD move, and therefore, such a move always 

leads to an improved neighboring solution.  

EXCHANGE(bi, bj) move operator consists of 

exchanging a bid bi = (Si, pi) (from the set of bids 

that are excluded from the A and have no conflict 

with bids in set A-bj ) with only bid bj of A that 

have conflict with bi. In example 1, let us consider 

the feasible allocation A = {b1, b3}. Bid b2 is a 

candidate bid to exchange with bid b1, and bid b4 

is a candidate bid to exchange with bid b3. The 

move gain of the EXCHANGE(bi, bj) move 

operator is pi - pj. Note that the move gain can be 

either positive or negative for an EXCHANGE 

move. Hence, we can see that an EXCHANGE 

move can increase or decrease the fitness of A. 

The REMOVE(bj) move operator removes a bid bj 

= (Sj, pj) from the A. The move gain of the 

removed bid bj is -pj. Note that the move gain is 

always negative for a REMOVE move because pj 

is always positive. Hence, we can see that a 
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REMOVE move always leads to a decrease in the 

fitness of A. 

For the three move operators ADD, ECXHANGE, 

and REMOVE, there is no absolute dominance of 

one operator over the other ones. Therefore, the 

best move operator to be applied depends on the 

current situation. These facts lead us to generate a 

combined neighborhood space H, which 

corresponds to the union of the three 

neighborhoods H1, H2, and H3, denoted by 

321 HHHH  . Using this multi-

neighborhood, our local search algorithm, i.e. 

Multi-Neighborhood Local Search (MNLS), at 

each iteration selects the move with the largest 

gain among all the ADD, ECXHANGE, and 

REMOVE moves if the move gain is positive, and 

selects a random move among all possible moves 

if the move gain is negative. Note that the MNLS 

algorithm simultaneously explores a set of three 

neighborhoods H1, H2, and H3 to get different 

local optima and to escape from local optima. 

MNLS uses the fact that using various 

neighborhoods in local search can generate 

different local optima and that the global optima is 

a local optima for a given neighborhood. The 

template of the MNLS algorithm is shown in 

Algorithm (2). 
 
Algorithm (2): Template of Multi-Neighborhood Local Search 

algorithm for WDP. 

Input: X as the initial solution, and maxiter as the maximum 

iteration of MNLS algorithm. 

For i = 1 to maxiter Do 

Generate candidate neighbors to X by three move operators 

ADD, ECXHANGE, and REMOVE; 

X’ = the best neighbor of X; 

If Fitness(X’)-Fitness(X) > 0  Then 

 X = X’; 

Else 

 X = a random neighbor of X; 

Endif 

Endfor 

Output: Best solution found. 

 

4.6. Pheromone update 
As stated in Section 3, a general pheromone 

updating strategy is used in two phases: 

evaporation phase and reinforcement phase. 

Here, we use the classical evaporation method for 

the pheromone trails so that each pheromone 

value is reduced by a fixed proportion. For each 

bj, its pheromone τj will evaporate as follows: 

},,...,1{,)1( njjj  

 

(7) 
 

where, ρ ∈ [0, 1] shows the reduction rate of the 

pheromone. 

Now the pheromone update method has to be 

specified. Here, we use elitist pheromone update 

[35], in which the best solution found so far will 

increment the pheromone matrix to reinforce 

exploitation ability of the search. This operation is 

done by (8): 

,, bidwinneraisbif jjj 

 

(8) 
 

where, 



n

k

kpXFitness
1

)( , and P={p1, p2, …, 

pn} is a 1×n matrix, in which pk is the price of bk. 

 

4.7. General framework of ACO-MNLS 

The pseudo-code of ACO-MNLS is described in 

Algorithm (3). At first, the initial values for the 

parameters are determined. After initialization, the 

main search loop is entered. It is repeated until a 

maximum number of iterations is satisfied. In the 

main loop itself, four important phases exist: 

Solution construction, Solution improvement, 

pheromone evaporation, and pheromone 

reinforcement. 
 
Algorithm (3): Template of ACO-MNLS. 

Set the value of below parameters: 

the number of ants;  

the initial value of pheromone matrix ; 

the relative influence of the pheromone values, i.e. α; 

the problem-dependent parameter β; 

the reduction rate of the pheromone, i.e. ρ ; 

the maximum number of iterations; 

the maximum iteration of MNLS algorithm; 

Repeat 

    For each ant Do 

 Solution construction using the pheromone trail; 

 Solution improvement using MNLS algorithm; 

 Pheromone evaporation using Eq. (7); 

 Pheromone reinforcement using Eq. (8); 

    Endfor 

Until maximum number of iterations are satisfied. 

Output: Best solution found. 

 

5. Experimental results 

In this Section, the performance of the proposed 

algorithm is measured on several benchmark 

instances. In order to show the effectiveness of 

our approach, we compared the ACO-MNLS 

algorithm with four different approaches for 

solving the WDP reported in [48], i.e. Stochastic 

Local Search (SLS), Tabu Search (TS), Genetic 

Algorithm (GA), and Memetic Algorithm (MA). 

The structure of this section is as what follows. 

First we describe the characteristics of the 

selected benchmarks. Then we present the results 

obtained from ACO-MNLS for benchmark 

instances. Finally, we present a comparison of 

ACO-MNLS with the other four metaheuristics. 
 

5.1. Benchmarks 

To evaluate the performance of algorithms on the 

WDP problem, [59] has created the program 
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Combinatorial Auction Test Suite (CATS) to 

generate benchmarks. Recently, [37] has provided 

new benchmarks of various sizes consisting of up 

to 1500 items and 1500 bids. The CATS instances 

are easily solved by CPLEX and CABoB [60]. In 

this paper, we use the realistic benchmarks by 

[37] for which CPLEX cannot find the optimal 

solution in a reasonable period of time. These 

benchmarks include 500 instances, and are 

available at the Zhuyi’s home page 

(http://logistics.ust.hk/~zhuyi/instance.zip). These 

benchmarks are divided into five groups of 

problems, where each group contains 100 

instances given in table 1. In this table, m is the 

number of items and n is the number of bids. 

 

5.2. Results and comparisons 

In this section, the performance of the proposed 

ACO-MNLS is measured by applying the 

proposed algorithm to solve different benchmarks. 
The proposed ACO-MNLS was implemented in C 

language and run on a PC with an Intel 2.2 GHz 

CPU. The  ACO-MNLS parameters are fixed on 

the following values: the number of ants is set to 

100, the initial value of pheromone matrix is set to 

10, the relative influence of the pheromone 

values, i.e. α parameter, is set to 0.5, the relative 

influence of the problem-dependent heuristic 

values, i.e. β parameter, is set to 5, the reduction 

rate of the pheromone, i.e. ρ parameter, is set to 

0.1, the stopping criterion of ACO-MNLS is 

satisfied after 200 iterations, and the maximum 

iteration of MNLS algorithm is set to 50. All of 

these values for the parameters are obtained 

experimentally. 

Tables 2–6 present the computational results of 

the ACO-MNLS algorithm in comparison with 

different metaheuristics reported in [48]. Each 

table is designed to one of the 5 groups of the 

REL benchmarks. 

 In these tables, the first column shows the name 

of the instance, columns with sol caption 

correspond to the maximum revenue obtained by 

each algorithm, and columns with time caption 

correspond to CPU time in seconds for each 

algorithm. 

From tables 2-6, it can be observed that the ACO-

MNLS algorithm outperforms the GA, MA, SLS, 

and TS algorithms in terms of computational time 

in all the REL instances. Also ACO-MNLS 

outperforms GA in terms of the solution quality in 

all REL instances and overcomes the TS, MA, and 

SLS algorithms in most instances, whereas in the 

case of other instances, both the ACO-MNLS and 

other algorithms get the same results. The 

proposed ACO-MNLS is ranked in the first place 

among five metaheuristics in terms of both the 

solution quality and computational time. In order 

to determine the statistical significance of the 

advantage of ACO-MNLS, t-test (all 

compared with ACO-MNLS) is applied. In 

the first row of each table, the symbols + and 

≈ represent that other methods are statistically 

inferior to or equal to the proposed algorithm, 

respectively. The last three rows of each table 

summarize how many cases ACO-MNLS 

perform better, similar or worse than the other 

algorithms. From these results, we can conclude 

that the ACO-MNLS algorithm dominates the GA 

[48], MA [48], SLS [48], and TS [48] algorithms 

in terms of both the solution quality and 

computational time. 

Note that from an optimization viewpoint, ACO-

MNLS combine global and local search using 

ACO to perform exploration, while the MNLS 

algorithm performs exploitation. ACO ensures 

that ACO-MNLS can explore new bids that may 

have not been seen in the search process yet. In 

fact, ACO makes the entire search space 

reachable, despite the finite population size. 

Furthermore, the MNLS algorithm was able to 

enhance the convergence rate of ACO-MNLS by 

finely tuning the search on the immediate area of 

the landscape being considered.  

 

Table 1. Main characteristics of benchmarks used. 

Benchmarks m n Description 

REL-1000-500 

REL-1000-1000 

REL-500- 1000 

REL-1500-1000 

REL-1500-1500 

500 

1000 

1000 

1000 

1500 

1000 

1000 

500 

1500 

1500 

100 instances from in 101 to in 200 

100 instances from in 201 to in 300 

100 instances from in 401 to in 500 

100 instances from in 501 to in 600 

100 instances from in 601 to in 700 
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Table 2. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1000-500. 

Instances ACO-MNLS GA MA SLS TS 

 sol time sol time sol time sol time sol time 

in101 

in102 

in103 

in104 

in105 

in106 

in107 

in108 

in109 

in110 

69840.07 

70897.46 

69791.25 

67268.71 

69834.28 

66436.08 

69182.25 

74588.51 

66239.28 

67395.07 

16.84 

16.02 

15.36 

15.64 

17.14 

13.48 

14.28 

16.14 

13.56 

14.28 

42100.71+ 

39641.22+ 

43376.54+ 

42790.65+ 

40841.21+ 

41770.07+ 

38781.82+ 

43881.51+ 

42001.62+ 

38632.49+ 

336.90 

432.76 

338.89 

376.37 

331.31 

385.43 

379.15 

337.35 

336.89 

320.84 

67101.93≈ 

67797.61+ 

66350.99+ 

64618.41+ 

66376.83+ 

65481.64≈ 

66245.70+ 

74588.51≈ 

62492.66+ 

65171.19≈ 

129.62 

132.18 

133.34 

135.14 

153.96 

140.96 

146.40 

161.03 

144.71 

149.01 

66170.61+ 

65466.95+ 

66350.99+ 

67268.71≈ 

67268.71≈ 

63479.26+ 

66245.70+ 

71505.66+ 

61751.22+ 

64083.64+ 

23.51 

23.89 

24.79 

22.92 

22.92 

22.37 

23.18 

24.01 

22.20 

23.25 

66170.61+ 

64716.31+ 

66350.99+ 

62524.23+ 

62524.23+ 

64591.70≈ 

63972.62+ 

68776.34+ 

64343.07≈ 

60275.66+ 

57.86 

63.43 

128.68 

120.56 

120.56 

129.42 

128.51 

119.84 

80.98 

115.31 

Average 

Rank 

69147.30 

1 

15.28 

1 

41381.78 

5 

357.59 

5 

66622.55 

2 

142.64 

4 

65959.15 

3 

23.30 

2 

64424.58 

4 

106.52 

3 

Better 

Similar 

Worse 

- 

- 

- 

- 

- 

- 

10 

0 

0 

- 

- 

- 

6 

4 

0 

- 

- 

- 

8 

2 

0 

- 

- 

- 

8 

2 

0 

- 

- 

- 

 

 

Table 3. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1000-1000. 

Instances ACO-MNLS GA MA SLS TS 

 sol time Sol time Sol time sol time sol time 

in201 

in202 

in203 

in204 

in205 

in206 

in207 

in208 

in209 

in210 

81557.74 

90464.19 

86239.21 

87075.42 

82469.19 

86881.42 

91033.51 

91782.20 

81966.65 

87569.19 

6.10 

7.32 

7.00 

6.98 

6.16 

6.32 

6.38 

7.22 

6.82 

6.52 

56640.60+
 

59029.76+ 

59476.80+ 

57671.10+ 

59915.07+ 

58674.13+ 

60383.29+ 

63052.38+ 

59333.98+ 

64762.35+ 

697.65 

693.14 

562.29 

732.71 

573.98 

627.01 

667.75 

646.34 

655.09 

547.09 

77499.82+ 

90464.19≈ 

86239.21≈ 

81969.05+ 

82469.19≈ 

86881.42≈ 

91033.51≈ 

83667.76+ 

81966.65≈ 

85079.98≈ 

98.26 

106.68 

102.28 

97.40 

91.26 

93.99 

100.90 

101.29 

96.42 

97.78 

56640.60+ 

59029.76+ 

59476.80+ 

57671.10+ 

59915.07+ 

58674.13+ 

60383.29+ 

63052.38+ 

59333.98+ 

64762.35+ 

697.65 

693.14 

562.29 

732.71 

573.98 

627.01 

667.75 

646.34 

655.09 

547.09 

77499.82+ 

90464.19≈ 

86239.21≈ 

81969.05+ 

82469.19≈ 

86881.42≈ 

91033.51≈ 

83667.76+ 

81966.65≈ 

85079.98≈ 

98.26 

106.68 

102.28 

97.40 

91.26 

93.99 

100.90 

101.29 

96.42 

97.78 

Average 

Rank 

86703.87 

1 

6.68 

1 

59893.95 

4 

640.31 

4 

84727.08 

2 

98.63 

2 

59893.95 

4 

640.31 

4 

84727.08 

2 

98.63 

2 

Better 

Similar 

Worse 

- 

- 

- 

- 

- 

- 

10 

0 

0 

- 

- 

- 

3 

7 

0 

- 

- 

- 

10 

0 

0 

- 

- 

- 

3 

7 

0 

- 

- 

- 

 

 

Table 4. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-500-1000. 

Instances ACO-MNLS GA MA SLS TS 

 sol time sol time sol time sol time sol time 

in401 

in402 

in403 

in404 

in405 

in406 

in407 

in408 

in409 

in410 

77417.48 

74469.07 

74843.96 

78761.68 

74899.12 

71791.03 

73935.28 

77018.73 

73188.62 

73791.66 

3.52 

3.94 

3.80 

3.84 

4.02 

3.56 

4.16 

3.98 

3.36 

4.24 

56437.68+ 

56637.00+ 

57024.78+ 

61123.14+ 

58852.75+ 

58714.53+ 

58239.19+ 

59185.08+ 

54950.59+ 

59764.76+ 

1193.89 

1272.06 

1299.01 

1088.39 

1030.96 

1318.40 

1021.79 

1348.82 

1342.28 

1005.54 

72948.07+ 

71454.78+ 

74843.96≈ 

78761.68≈ 

72674.25≈ 

71791.03≈ 

73935.28≈ 

72580.04+ 

68724.53+ 

71791.57+ 

37.07 

37.20 

38.81 

38.78 

39.29 

38.09 

40.95 

39.07 

36.28 

41.90 

72948.07+ 

71454.78+ 

74843.96≈ 

78761.68≈ 

72674.25≈ 

71791.03≈ 

73278.66≈ 

72580.04+ 

67177.35+ 

71791.57+ 

5.67 

5.79 

6.01 

6.12 

6.04 

5.87 

6.35 

5.95 

5.48 

6.37 

68485.81+ 

72820.03≈ 

74843.96≈ 

73385.62+ 

72674.25≈ 

71791.03≈ 

71578.48+ 

70144.19+ 

67177.35+ 

72791.68≈ 

44.14 

23.57 

34.15 

16.85 

15.90 

37.12 

15.57 

27.37 

25.48 

14.01 

Average 

Rank 

75011.66 

1 

3.84 

1 

58092.95 

5 

1192.11 

5 

72950.52 

2 

38.74 

4 

72730.14 

3 

5.97 

2 

71569.24 

4 

25.42 

3 

Better 

Similar 

Worse 

- 

- 

- 

- 

- 

- 

10 

0 

0 

- 

- 

- 

5 

5 

0 

- 

- 

- 

5 

5 

0 

- 

- 

- 

5 

5 

0 

- 

- 

- 
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Table 5. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1500-1000. 

Instances ACO-MNLS GA MA SLS TS 

 sol Time sol time sol time sol time sol time 

in501 

in502 

in503 

in504 

84165.23 

83163.66 

83277.71 

83947.13 

6.28 

6.16 

5.98 

5.66 

64961.36+ 

56954.75+ 

59161.13+ 

59691.51+ 

1624.84 

1707.18 

1450.79 

1662.53 

79132.03+ 

80340.76+ 

83277.71≈ 

81903.02≈ 

107.82 

108.71 

114.15 

116.11 

77140.72+ 

78574.26+ 

79554.65+ 

81903.02≈ 

15.62 

15.98 

15.99 

16.48 

82216.35≈ 

74127.61+ 

77005.81+ 

81903.02≈ 

98.71 

120.82 

114.11 

155.54 

Average 

Rank 

83638.43 

1 

6.02 

1 

60192.19 

5 

1611.34 

5 

81163.38 

2 

111.70 

3 

79293.16 

3 

16.02 

2 

78813.20 

4 

122.30 

4 

Better 

Similar 

Worse 

- 

- 

- 

- 

- 

- 

4 

0 

0 

- 

- 

- 

2 

2 

0 

- 

- 

- 

3 

1 

0 

- 

- 

- 

2 

2 

0 

- 

- 

- 
 

 

Table 6. Experimental results of proposed ACO-MNLS, GA, MA, SLS, and TS on some instances of REL-1500-1500. 

Instances ACO-MNLS GA MA SLS TS 

 sol time sol time sol time sol time sol time 

in601 

in602 

in603 

in604 

in605 

in606 

in607 

in608 

in609 

in610 

105286.68 

101150.89 

96628.98 

106127.19 

106273.50 

105218.21 

105869.44 

99541.75 

104602.39 

109008.35 

5.88 

5.22 

5.22 

5.50 

6.02 

5.42 

5.52 

5.38 

5.26 

6.12 

73665.13+ 

76006.38+ 

71585.28+ 

71958.50+ 

71348.06+ 

72505.09+ 

72162.60+ 

76189.79+ 

71664.87+ 

72393.14+ 

1489.40 

1810.56 

1685.07 

1627.37 

1634.68 

1656.29 

1625.37 

1625.46 

1581.18 

1572.06 

99044.32+ 

98164.23+ 

94126.96≈ 

103568.86+ 

102404.76+ 

104346.07≈ 

105869.44≈ 

95671.77+ 

98566.94+ 

102468.60+ 

110.62 

114.18 

110.71 

110.60 

122.40 

107.79 

113.26 

109.15 

111.12 

120.17 

96255.53+ 

95328.21+ 

94126.96≈ 

103568.86+ 

98799.71+ 

104346.07≈ 

100417.40≈ 

95671.77+ 

98566.94+ 

99975.09+ 

15.54 

15.71 

15.48 

15.59 

17.36 

15.60 

15.89 

15.26 

16.76 

17.57 

97473.85+ 

93873.31+ 

92568.61+ 

92869.78+ 

95787.59+ 

104346.07≈ 

98674.39+ 

91554.61+ 

96652.44+ 

99975.09+ 

100.76 

155.34 

137.95 

96.70 

175.14 

334.12 

267.79 

95.62 

103.10 

146.03 

Average 

Rank 

103970.70 

1 

5.54 

1 

72947.88 

5 

1630.74 

5 

100423.20 

2 

113.00 

3 

98705.65 

3 

16.08 

2 

96377.57 

4 

161.26 

4 

Better 

Similar 

Worse 

- 

- 

- 

- 

- 

- 

10 

0 

0 

- 

- 

- 

7 

3 

0 

- 

- 

- 

7 

3 

0 

- 

- 

- 

9 

1 

0 

- 

- 

- 
 

 

6. Conclusions 

A hybrid Ant Colony Optimization with a novel 

Multi-Neighborhood Local Search (ACO-MNLS) 

algorithm was proposed for solving Winner 

Determination Problem (WDP) in combinatorial 

auctions. Our proposed MNLS algorithm used the 

fact that using various neighborhoods in local 

search could generate different local optima for 

WDP and that the global optima of WDP was a 

local optima for a given neighborhood. Therefore, 

in the proposed MNLS algorithm, a set of three 

different neighborhoods was simultaneously 

explored to get different local optima and to 

escape from local optima. To the best of our 

knowledge and the research in the literature, no 

study has been done to solve WDP with 

combining general-purpose Ant Colony 

Optimization (ACO) metaheuristic and problem-

specific Multi-Neighborhood Local Search 

(MNLS) algorithm.  

The performance of the proposed algorithm was 

evaluated in terms of solution quality and 

computational time by several well-known 

benchmarks. Its performance was compared with 

four different metaheuristics for solving WDP, i.e. 

Stochastic Local Search (SLS), Tabu Search (TS), 

Genetic Algorithm (GA), and Memetic Algorithm 

(MA). The experimental results confirmed that the 

proposed ACO-MNLS outperformed the current 

best performing WDP metaheuristics in terms of 

both the solution quality and computational 

efficiency. 

A first step toward extending this paper would be 

to hybrid the proposed MNLS algorithm in other 

swarm and evolutionary algorithms. Secondly, the 

MNLS algorithm could be changed to 

simultaneously explore a set of other different 

neighborhoods. Finally, the proposed approach 

could be adopted for solving Multi-objective 

WDP (MOWDP) [45]. 
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ساز جمعیت مورچگان و های بهینههای ترکیبیاتی با استفاده از ترکیب الگوریتمتعیین برنده در حراج

 جستجوی محلی چندهمسایگی

 

 *ولی درهمی و محمدباقر دولتشاهی

 .ایران، یزد دانشگاه یزد، ،دانشکده فنی، مهندسی کامپیوترگروه 

 01/20/0202 پذیرش؛ 02/00/0202 بازنگری؛ 20/20/0202 ارسال

 چکیده:

ی تعیتی  حراجی است که در آن پیشنهادکنندگان باید پیشنهادات خود را برای خریدن یک بستهه از ننارتر ارا ته د.نتدئ هست  ه ،یک حراج ترکیبیاتی

توانتد بته .ا را تحت ای  هحدویت که .ر ننصر فقت  هتیسود حراج کنندهکه ی پیدا کردن پیشنهاداتی از هس  ه برنده در حراج ترکیبیاتی نبارت است

سخت است که کاربرد.تای نل تی زیتادی هاننتد ت تارت -ی ان پیی تعیی  برنده یک هس  هکندئ هس  هیابد، بیشینه هی یک پیشنهاد د.نده تخصیص

.تای ی ار ی ها برای جسه وی الگتوریهمای  هوضوع انگیزهئ دارد .ای چند ناه ه.ا، و تخصیص هنابع در سیسهمبازیالکهرونیک، هدیریت تولید، نظریه 

ستاز جلعیتت حل و زهان هحاسباتی استئ ای  هقاله یک الگوریهم ترکیبی با اسهفاده از ترکیب کردن الگوریهم بهینتهتقریبی کاراهد بر حسب کیفیت راه

د.تدئ الگتوریهم جسته وی ی تعیی  برنده در حراج ترکیبیاتی ارا ه هیریهم جسه وی هح ی چند.لسایگی جدید برای حل هس  ههورچگان با یک الگو

.تای برد که اسهفاده از چندی  .لسایگی در الگوریهم جسه وی هح ی بانث پیتدا کتردن بهینتههح ی چند.لسایگی پیشنهادی از ای  واقعیت بهره هی

الگتوریهم بنتابرای   ی هح ی برای یتک .لستایگی ختاس استتئیک بهینهخود ی تعیی  برنده ی سراسری برای هس  هو بهینه هح ی هخه فی هی شود،

ی هیتان کنتدئ هقایستهی هح تی استهفاده هتیی هخه ف بترای فترار از بهینتهجسه وی هح ی چند.لسایگی پیشنهادی به طور .لزهان از سه .لسایه

الگوریهم ژنهیک، الگوریهم هلهیک، جسه وی هح ی تصادفی، و جسه وی تابو بر روی هسا ل هحتک هخه تف کاراهتدی الگتوریهم الگوریهم پیشنهادی با 

 د.دئپیشنهادی را بر حسب کیفیت راه حل و زهان هحاسباتی نشان هی

 سازی ترکیبیاتیئچند.لسایگی، بهینهساز جلعیت هورچگان، جسه وی هح ی .ای ترکیبیاتی، بهینههس  ه تعیی  برنده، حراج :کلمات کلیدی

 


