6 research outputs found

    Octants are cover-decomposable into many coverings

    Get PDF
    We prove that octants are cover-decomposable into multiple coverings, i.e., for any k there is an m(k)m(k) such that any m(k)m(k)-fold covering of any subset of the space with a finite number of translates of a given octant can be decomposed into k coverings. As a corollary, we obtain that any m(k)m(k)-fold covering of any subset of the plane with a finite number of homothetic copies of a given triangle can be decomposed into k coverings. Previously only some weaker bounds were known for related problems [20]

    Making Octants Colorful and Related Covering Decomposition Problems

    Full text link
    We give new positive results on the long-standing open problem of geometric covering decomposition for homothetic polygons. In particular, we prove that for any positive integer k, every finite set of points in R^3 can be colored with k colors so that every translate of the negative octant containing at least k^6 points contains at least one of each color. The best previously known bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound for the decomposability of multiple coverings by homothetic triangles. We also investigate related decomposition problems involving intervals appearing on a line. We prove that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals under insertion of new intervals, even in a semi-online model, in which some coloring decisions can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases of the octant problem.Comment: version after revision process; minor changes in the expositio

    Proper Coloring of Geometric Hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored so that anymember ofF that contains at leastm points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then such an m exists. We prove this in the special case when F is the family of all homothetic copies of a given convex polygon. We also study the problem in higher dimensions

    Coloring planar homothets and three-dimensional hypergraphs

    No full text
    We prove that every finite set of homothetic copies of a given convex body in the plane can be colored with four colors so that any point covered by at least two copies is covered by two copies with distinct colors. This generalizes a previous result from Smorodinsky (SIAM J. Disc. Math. 2007). Then we show that for any k≥2, every three-dimensional hypergraph can be colored with 6(k-1) colors so that every hyperedge e contains min{SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore