194 research outputs found

    Coloring d-Embeddable k-Uniform Hypergraphs

    Full text link
    This paper extends the scenario of the Four Color Theorem in the following way. Let H(d,k) be the set of all k-uniform hypergraphs that can be (linearly) embedded into R^d. We investigate lower and upper bounds on the maximum (weak and strong) chromatic number of hypergraphs in H(d,k). For example, we can prove that for d>2 there are hypergraphs in H(2d-3,d) on n vertices whose weak chromatic number is Omega(log n/log log n), whereas the weak chromatic number for n-vertex hypergraphs in H(d,d) is bounded by O(n^((d-2)/(d-1))) for d>2.Comment: 18 page

    K3K_3-WORM colorings of graphs: Lower chromatic number and gaps in the chromatic spectrum

    Get PDF
    A K3K_3-WORM coloring of a graph GG is an assignment of colors to the vertices in such a way that the vertices of each K3K_3-subgraph of GG get precisely two colors. We study graphs GG which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer., 219 (2014) 161--173] who asked whether every such graph has a K3K_3-WORM coloring with two colors. In fact for every integer k≥3k\ge 3 there exists a K3K_3-WORM colorable graph in which the minimum number of colors is exactly kk. There also exist K3K_3-WORM colorable graphs which have a K3K_3-WORM coloring with two colors and also with kk colors but no coloring with any of 3,…,k−13,\dots,k-1 colors. We also prove that it is NP-hard to determine the minimum number of colors and NP-complete to decide kk-colorability for every k≥2k \ge 2 (and remains intractable even for graphs of maximum degree 9 if k=3k=3). On the other hand, we prove positive results for dd-degenerate graphs with small dd, also including planar graphs. Moreover we point out a fundamental connection with the theory of the colorings of mixed hypergraphs. We list many open problems at the end.Comment: 18 page

    Coloring face hypergraphs on surfaces

    Get PDF
    AbstractThe face hypergraph of a graph G embedded on a surface has the same vertex set as G and its edges are the sets of vertices forming faces of G. A hypergraph is k-choosable if for each assignment of lists of colors of sizes k to its vertices, there is a coloring of the vertices from these lists avoiding a monochromatic edge.We prove that the face hypergraph of the triangulation of a surface of Euler genus g is O(g3)-choosable. This bound matches a previously known lower bound of order Ω (g3). If each face of the graph is incident with at least r distinct vertices, then the face hypergraph is also O(gr)-choosable. Note that colorings of face hypergraphs for r=2 correspond to usual vertex colorings and the upper bound O(g) thus follows from Heawood’s formula. Separate results for small genera are presented: the bound 3 for triangulations of the surface of Euler genus g=3 and the bound 7+36g+496 for surfaces of Euler genus g≥3. Our results dominate the previously known bounds for all genera except for g=4,7,8,9,14

    Approximating acyclicity parameters of sparse hypergraphs

    Get PDF
    The notions of hypertree width and generalized hypertree width were introduced by Gottlob, Leone, and Scarcello in order to extend the concept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx, who introduced the fractional hypertree width of a hypergraph. All these width parameters on hypergraphs are useful for extending tractability of many problems in database theory and artificial intelligence. In this paper, we study the approximability of (generalized, fractional) hyper treewidth of sparse hypergraphs where the criterion of sparsity reflects the sparsity of their incidence graphs. Our first step is to prove that the (generalized, fractional) hypertree width of a hypergraph H is constant-factor sandwiched by the treewidth of its incidence graph, when the incidence graph belongs to some apex-minor-free graph class. This determines the combinatorial borderline above which the notion of (generalized, fractional) hypertree width becomes essentially more general than treewidth, justifying that way its functionality as a hypergraph acyclicity measure. While for more general sparse families of hypergraphs treewidth of incidence graphs and all hypertree width parameters may differ arbitrarily, there are sparse families where a constant factor approximation algorithm is possible. In particular, we give a constant factor approximation polynomial time algorithm for (generalized, fractional) hypertree width on hypergraphs whose incidence graphs belong to some H-minor-free graph class

    Difference of Facial Achromatic Numbers between Two Triangular Embeddings of a Graph

    Get PDF
    A facial 33-complete kk-coloring of a triangulation GG on a surface is a vertex kk-coloring such that every triple of kk-colors appears on the boundary of some face of GG. The facial 33-achromatic number ψ3(G)\psi_3(G) of GG is the maximum integer kk such that GG has a facial 33-complete kk-coloring. This notion is an expansion of the complete coloring, that is, a proper vertex coloring of a graph such that every pair of colors appears on the ends of some edge. For two triangulations GG and G2˘7G\u27 on a surface, ψ3(G)\psi_3(G) may not be equal to ψ3(G2˘7)\psi_3(G\u27) even if GG is isomorphic to G2˘7G\u27 as graphs. Hence, it would be interesting to see how large the difference between ψ3(G)\psi_3(G) and ψ3(G2˘7)\psi_3(G\u27) can be. We shall show that an upper bound for such difference in terms of the genus of the surface

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Clique-Relaxed Graph Coloring

    Get PDF
    We define a generalization of the chromatic number of a graph G called the k-clique-relaxed chromatic number, denoted χ(k)(G). We prove bounds on χ(k)(G) for all graphs G, including corollaries for outerplanar and planar graphs. We also define the k-clique-relaxed game chromatic number, χg(k)(G), of a graph G. We prove χg(2)(G)≤ 4 for all outerplanar graphs G, and give an example of an outerplanar graph H with χg(2)(H) ≥ 3. Finally, we prove that if H is a member of a particular subclass of outerplanar graphs, then χg(2)(H) ≤ 3
    • …
    corecore