13 research outputs found

    Colored spanning graphs for set visualization

    Get PDF
    We study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong exclusively to the red set, and purple points belong to both sets. A red-blue-purple spanning graph (RBP spanning graph) is a set of edges connecting the points such that the subgraph induced by the red and purple points is connected, and the subgraph induced by the blue and purple points is connected.We study the geometric properties of minimum RBP spanning graphs and the algorithmic problems associated with computing them. Specifically, we show that the general problem can be solved in polynomial time using matroid techniques. In addition, we discuss more efficient algorithms for the case in which points are located on a line or a circle, and also describe a fast (12¿+1)-approximation algorithm, where ¿ is the Steiner ratio.Peer ReviewedPostprint (author's final draft

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    On Embeddability of Buses in Point Sets

    Full text link
    Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the \emph{bus embeddability problem} (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same color are connected with vertical line segments to their bus. We present an ILP and an FPT algorithm for the general problem. For restricted versions of this problem, such as when the relative order of buses is predefined, or when a bus must be placed above all its points, we provide efficient algorithms. We show that another restricted version of the problem can be solved using 2-stack pushall sorting. On the negative side we prove the NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201

    Short Plane Supports for Spatial Hypergraphs

    Get PDF
    A graph G=(V,E)G=(V,E) is a support of a hypergraph H=(V,S)H=(V,S) if every hyperedge induces a connected subgraph in GG. Supports are used for certain types of hypergraph visualizations. In this paper we consider visualizing spatial hypergraphs, where each vertex has a fixed location in the plane. This is the case, e.g., when modeling set systems of geospatial locations as hypergraphs. By applying established aesthetic quality criteria we are interested in finding supports that yield plane straight-line drawings with minimum total edge length on the input point set VV. We first show, from a theoretical point of view, that the problem is NP-hard already under rather mild conditions as well as a negative approximability results. Therefore, the main focus of the paper lies on practical heuristic algorithms as well as an exact, ILP-based approach for computing short plane supports. We report results from computational experiments that investigate the effect of requiring planarity and acyclicity on the resulting support length. Further, we evaluate the performance and trade-offs between solution quality and speed of several heuristics relative to each other and compared to optimal solutions.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Gap-ETH-Tight Approximation Schemes for Red-Green-Blue Separation and Bicolored Noncrossing Euclidean Travelling Salesman Tours

    Full text link
    In this paper, we study problems of connecting classes of points via noncrossing structures. Given a set of colored terminal points, we want to find a graph for each color that connects all terminals of its color with the restriction that no two graphs cross each other. We consider these problems both on the Euclidean plane and in planar graphs. On the algorithmic side, we give a Gap-ETH-tight EPTAS for the two-colored traveling salesman problem as well as for the red-blue-green separation problem (in which we want to separate terminals of three colors with two noncrossing polygons of minimum length), both on the Euclidean plane. This improves the work of Arora and Chang (ICALP 2003) who gave a slower PTAS for the simpler red-blue separation problem. For the case of unweighted plane graphs, we also show a PTAS for the two-colored traveling salesman problem. All these results are based on our new patching procedure that might be of independent interest. On the negative side, we show that the problem of connecting terminal pairs with noncrossing paths is NP-hard on the Euclidean plane, and that the problem of finding two noncrossing spanning trees is NP-hard in plane graphs.Comment: 36 pages, 15 figures (colored

    Colored spanning graphs for set visualization

    No full text
    We study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong exclusively to the red set, and purple points belong to both sets. A red-blue-purple spanning graph (RBP spanning graph) is a set of edges connecting the points such that the subgraph induced by the red and purple points is connected, and the subgraph induced by the blue and purple points is connected. We study the geometric properties of minimum RBP spanning graphs and the algorithmic problems associated with computing them. Specifically, we show that the general problem can be solved in polynomial time using matroid techniques. In addition, we discuss more efficient algorithms for the case in which points are located on a line or a circle, and also describe a fast -approximation algorithm, where ρ is the Steiner ratio

    Colored Spanning Graphs for Set Visualization

    Get PDF
    We study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong exclusively to the red set, and purple points belong to both sets. A red-blue-purple spanning graph (RBP spanning graph) is a set of edges connecting the points such that the subgraph induced by the red and purple points is connected, and the subgraph induced by the blue and purple points is connected. We study the geometric properties of minimum RBP spanning graphs and the algorithmic problems associated with computing them. Specifically, we show that the general problem is NP-hard. Hence we give an (12ρ+1) -approximation, where ρ is the Steiner ratio. We also present efficient exact solutions if the points are located on a line or a circle. Finally we consider extensions to more than two sets

    Colored spanning graphs for set visualization

    No full text
    \u3cp\u3eWe study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong exclusively to the red set, and purple points belong to both sets. A red-blue-purple spanning graph (RBP spanning graph) is a set of edges connecting the points such that the subgraph induced by the red and purple points is connected, and the subgraph induced by the blue and purple points is connected. We study the geometric properties of minimum RBP spanning graphs and the algorithmic problems associated with computing them. Specifically, we show that the general problem can be solved in polynomial time using matroid techniques. In addition, we discuss more efficient algorithms for the case in which points are located on a line or a circle, and also describe a fast ([Formula presented]ρ+1)-approximation algorithm, where ρ is the Steiner ratio.\u3c/p\u3
    corecore