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Abstract. We study an algorithmic problem that is motivated by ink minimization for sparse set
visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points
belong exclusively to the blue set, red points belong exclusively to the red set, and purple points belong
to both sets. A red-blue-purple spanning graph (RBP spanning graph) is a set of edges connecting
the points such that the subgraph induced by the red and purple points is connected, and the subgraph
induced by the blue and purple points is connected.
We study the geometric properties of minimum RBP spanning graphs and the algorithmic problems
associated with computing them. Specifically, we show that the general problem can be solved in
polynomial time using matroid techniques. In addition, we discuss more efficient algorithms for the
case in which points are located on a line or a circle, and also describe a fast ( 1

2
ρ+ 1)-approximation

algorithm, where ρ is the Steiner ratio.

In memoriam: Ferran Hurtado (1951–2014)

This paper was initiated during a research visit hosted by Ferran and his group in Barcelona. Following
tradition, hours of research were complemented by relaxing evenings with great food and wine. The authors
would like to thank Ferran for being a supportive mentor, an inspiring colleague, and a great friend.

1 Introduction

Visualizing sets and their elements is a recurring theme in information visualization (see the recent state-
of-the-art report by Alsallakh et al. [5]). Sets arise in many application areas, as varied as social network
analysis (grouping individuals into communities), linguistics (related words), or geography (related places).
Among the oldest representations for sets are Venn diagrams [15] and their generalization, Euler diagrams.
These representations are natural and effective for a small number of elements and sets. However, for larger
numbers of sets and more complicated intersection patterns more intricate solutions are necessary. The last
years have seen a steady stream of developments in this direction, both for the situation where the location
of set elements can be freely chosen and for the important special case that elements have to be drawn at
particular fixed positions (for example, restaurant locations on a city map).

Our paper is motivated by some recent approaches that use very sparse enclosing shapes when depicting
sets. LineSets [4] are the most minimal of all, reducing the geometry to a single continuous line per set
which connects all elements. Both Kelp Diagrams [14] and its successor KelpFusion [22] are based on sparse
spanning graphs, essentially variations of minimal spanning trees for different distance measures. These
methods attempt to reduce visual clutter by reducing the amount of “ink” (see Tufte’s rule [31]) necessary to
connect all elements of a set. However, although the results are visually pleasing, neither method does use

? A preliminary version of this paper appeared in the proceedings of the 21st International Symposium on Graph
Drawing [19].
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the optimal amount of ink. In this paper we explore the algorithmic questions that arise when computing
spanning graphs for set visualization which are optimal with respect to ink usage.
Problem statement. Our input is a set of n points in the plane. Each point is a member of one or more sets.
We mostly consider the case where there are exactly two sets, namely a red and a blue set. A point is red if it
is part only of the red set and it is blue if it is part only of the blue set. A point that is part of both the red and
the blue set is purple.

Fig. 1. A minimum RBP spanning graph.

A red-blue-purple spanning graph (RBP span-
ning graph) for a set of points that are red, blue,
and purple is a set of edges connecting the points
such that the subgraph induced by the red and purple
points is connected, and the subgraph induced by the
blue and purple points is connected (see Figure 1).
A minimum RBP spanning graph for a set of points
that are red, blue, and purple is a red-blue-purple
spanning graph that has minimum weight (total edge
length). In this paper we consider the algorithmic
problems associated with computing minimum RBP spanning graphs.
Results and organization. We first review related work. In Section 2 we describe and prove various useful
properties of (minimum) RBP spanning graphs. Then, in Section 3, we consider the two special cases where
the points are located on a line or on a circle. This setting is meaningful if the elements of the sets are not
associated with a specific location (for example, social networks or software systems). Here visualizations
frequently choose to arrange elements in simple configurations such as lines or circles. We give an O(n)
time algorithm for points on a line, assuming that the input is already sorted. For points on a circle we exploit
a structural result which allows us to use dynamic programming in O(k3 + n) time, where k is the number
of purple points. In Section 5 we turn to approximations. We describe an O(n log n) time algorithm that
computes a ( 12ρ+ 1)-approximation of the minimum RBP spanning graph, where ρ is the Steiner ratio. In
Section 4 we give a general algorithm for computing a minimum RBP spanning graph. The algorithm runs
in O(n6) time and is based on matroid optimization techniques.1 Finally, in Section 6 we discuss various
extensions for situations with more than two sets.
Related work. In recent years a number of papers explored the problem of automatically drawing Euler
diagrams, for example, Simonetto and Auber [28], Stapleton et al. [29], and Henry Riche and Dwyer [18].
These methods assume that the locations of the set elements can be freely chosen. An important variation
is the case that elements have to be drawn at fixed positions. Collins et al. [13] presented Bubble Sets, a
method based on isocontours. A similar approach was suggested by Byelas and Telea [11]. LineSets, by
Alper et al. [4], attempt to improve the overall readability by the minimalist approach of drawing a single
line per set. Dinkla et al. [14] introduced Kelp Diagrams, which use a sparse spanning graph, essentially a
minimum spanning tree with some additional edges. Kelp Diagrams were extended by Meulemans et al. [22]
to a hybrid technique named KelpFusion which uses a mix of hulls and lines to generate fitted boundaries.

Sets defined over points in the plane can be interpreted as an embedding of a hypergraph where the
points are vertices and each set is a hyperedge connecting an arbitrary number of vertices. Drawings of
hypergraphs have been discussed in several papers, for example, by Kaufmann et al. [21], Buchin et al. [10],
and Brandes et al. [8].

Also in the area of discrete and computational geometry many problems on colored point sets have
been studied. Possibly the most famous example is the Ham-Sandwich Theorem: given a set of 2n red
points and 2m blue points so that no three points are aligned, there is always a line ` such that each open
halfplane bounded by ` contains exactly n red points and m blue points. There have been many variations
on this theorem and also many other results on finding configurations or geometric graphs with constraints
depending on colors. We refer the interested reader to the survey by Kaneko and Kano [20], and to Chapter
8 in the collection of research problems [9].

From an algorithmic point of view, many problems have been considered, here we mention only a few
of them. The bichromatic closest pair (e.g., see Preparata and Shamos [26] Section 5.7, Agarwal et al. [2],

1 We note that in the conference version of this paper [19], we claimed that the problem was NP-hard. However, our
NP-hardness reduction turned out to be incorrect.
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and Graf and Hinrichs [17]), the chromatic nearest neighbor search (see Mount et al. [25]), the problems on
finding smallest color-spanning objects (see Abellanas et al. [1]), the colored range searching problems
(see Agarwal et al. [3]), and the group Steiner tree problem where, for a graph with colored vertices, the
objective is to find a minimum weight subtree that covers all colors (see Mitchell [23], Section 7.1). Borgelt
et al. [7] discuss computing planar red-blue minimum spanning trees where edges may connect red and blue
points only, and the tree must be planar. Finally, Tokunaga [30] considers a set of red or blue points in the
plane and computes two geometric spanning trees of the blue and the red points such that they intersect in as
few points as possible.

2 Properties of RBP spanning graphs

For any set S of points, let MST (S) denote a Euclidean minimum spanning tree of S. Given a graph
G on vertex set S, and a set S′ ⊆ S, we denote by G[S′] the subgraph of G induced by S′. Given two
graphs G1 = (S1, E1), and G2 = (S2, E2) with possibly different vertex sets, we define their intersection
as G1 ∩ G2 = (S1 ∩ S2, E1 ∩ E2). Given three sets R, B, and P of respectively red, blue, and purple
points, let G∗(R,B, P ) denote a minimum RBP spanning graph. When the tuple (R,B, P ) is clear from
the context, we simply denote it by G∗.

We say that an edge of G∗ is red if it connects two red points or a red and a purple point. We call an
edge blue if it connects two blue points or a blue and a purple point. We call an edge purple if it connects
two purple points. A minimum RBP spanning graph G∗ does not contain edges between a red and a blue
point. The subgraph induced by the red and purple points in a minimum RBP spanning graph is a spanning
tree (since otherwise we could remove an edge from G∗ and reduce its weight). Naturally, the analogous
statement holds for the blue and purple points. Figure 2 (a) illustrates the trade-off between red, blue, and
purple edges in a minimum RBP spanning graph.

When there are no ties (e.g., if no two edges of the same color have the same length), every red edge in a
minimum RBP spanning graph also occurs in a minimum spanning tree of only the red and purple points
(since otherwise we could replace it by another red edge of smaller weight). The corresponding statement is
true also for the blue edges, but not for the purple edges. That is, there can be purple edges in a minimum
RBP spanning graph that do not occur in a minimum spanning tree of only the purple points. In fact, in the
upcoming Proposition 1 we show something stronger: we give a problem instance whose RBP spanning
graph has a purple edge that crosses several other purple edges.

Just as with standard minimum spanning trees, the degree of the points in a minimum RBP spanning
graph is bounded.

Lemma 1. The maximum degree of a point in a minimum RBP spanning graph is at most 18.

Proof. We now proceed to prove the statement by contradiction. Assume that there exists a problem instance
with a solution G∗ in which a point p is adjacent to more than 18 points. By the pigeonhole principle, we
conclude that p is adjacent to at least 7 points of the same color. LetN be the set of such vertices, and observe
that the edges in G∗[N ∪ {p}] form a star. Thus, if we replace these edges by those in MST (N ∪ {p}) we
obtain a different graph that spans exactly the same vertices and has smaller weight. �

We also note that the above bound is tight: let p be a purple point located in the center of a regular
hexagon with radius 3 and two more regular hexagons with radius 1, one slightly rotated. Place a purple
point on each corner of the large hexagon, place red points on the corners of one of the smaller hexagons,
and blue points on the corners of the other one. Then the star graph with p at the center (with degree 18) is a
minimum RBP spanning graph (see Figure 2 (c)).

It is worth mentioning that the degree-18 vertex in the previous example can be avoided, since the same
point set has other RBP spanning graphs where the maximum degree is 15. In fact, a degree higher than
15 is never necessary: even if we allow degeneracies, there is a way to break ties so that no vertex of a
minimum spanning tree has degree larger than 5 [32]. Thus, if a vertex is adjacent to more than 5 vertices of
the same color, we can remove one of the edges and replace it by one of equal or smaller length, preserving
connectivity. Similarly, we can show that a red or blue point can have degree 6 in a minimum RBP spanning
graph, but for any point set there exists a minimum RBP spanning graph in which no red or blue point has
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(a) (b) (c)

Fig. 2. (a) Two examples of minimum RBP spanning graphs of similar configurations of points. (b) A minimum RBP
spanning graph with a purple edge crossing. (c) A minimum RBP spanning graph with a vertex of degree 18.

Fig. 3. Schematic view of a set of points whose minimum RBP spanning graph has a purple edge crossing a linear
number of other purple edges. The figure is not to scale; see the appendix for details.

degree larger than 5. At the same time, a vertex of degree 15 may be sometimes necessary: if we replace
the hexagons in the previous construction by pentagons, we obtain a similar construction whose unique
minimum RBP spanning graph has a point of degree 15.

It is easy to see that a minimum RBP spanning graph is not necessarily planar. Red and blue edges are
mostly independent and they can easily cross. Moreover, a red and a purple edge can cross, a blue and a
purple edge can cross, and even two purple edges can cross in a minimum RBP spanning graph, as shown in
Figure 2 (b). In fact, a single purple edge can cross arbitrarily many purple edges.

Proposition 1. A purple edge in an optimal RBP spanning graph can cross Θ(n) other purple edges.

The proof of this statement is constructive: we create a problem instance whose (unique) RBP spanning
graph has a purple edge crossed by all other purple edges. Due to its length, the exact details of the
construction and the additional observations necessary to prove this statement are relegated to the appendix.
A sketch of the construction is shown in Figure 3.

3 Points on a line or on a circle

In this section we describe efficient algorithms to find a minimum RBP spanning graph if the points lie on a
line or on a circle. In the circle case, we first present additional geometric observations that allow us to use
dynamic programming.

3.1 Points on a line

We now consider the case in which the points of S lie on a line. We number the purple points p1, . . . , pk
from left to right. For every 1 ≤ i ≤ k − 1, let Si be the set of points between pi and pi+1 (this set will
have both pi and pi+1, and possibly some blue and/or red points). We also define S0 to contain p1 and all
red/blue points to its left, and Sk to contain pk and all red/blue points to its right (see Figure 4). First, we
show that each such subset of points can be treated independently.
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S0 S1 Sk. . .

p1 pk

Fig. 4. A minimum RBP spanning graph of points on a line, and its partition into sets Si (some edges are depicted by
curved arcs for clarity).

Lemma 2. Let S be a set of red, blue, and purple points located on a line, and let G∗ be a minimum RBP
spanning graph of S. Then for every edge qq′ of G∗, the points q and q′ are in Sj , for some j ∈ {0, . . . k}.

Proof. Let qq′ be an edge of G∗ such that q ∈ Si, q′ ∈ Sj , and i 6= j. Then qq′ goes through a purple point
p. It is straightforward to verify that we can replace such edge by the pair qp and pq′. The new construction
has the same weight and also is a RBP spanning graph. Moreover, since it contains one extra edge, it must
contain a cycle. Therefore, there is an edge that can be removed while preserving the RBP spanning property.
This removal will decrease the total weight of the tree, in contradiction with the optimality of G∗. �

Using this lemma it is straightforward to obtain an efficient algorithm.

Theorem 1. Let S be a set of n red, blue, and purple points located on a line, given in sorted order. A
minimum RBP spanning graph of S can be computed in O(n) time.

Proof. Note that each set Si has at most two purple points. Thus, there can be at most one purple edge
connecting points within each set. We consider two cases: either the edge is present or not. For each case,
both the red and blue subproblems can be easily solved in time proportional to the size of Si (if the edge
is not present, pi and pi+1 must be connected both by red and blue paths. Otherwise, the longest edge in
each path could be removed, while preserving connectivity). Out of both possible solutions, we keep the one
with minimum weight and proceed to the next value of i. By Lemma 2, each subproblem Si can be solved
independently, thus the minimality of each Si implies that the resulting RBP spanning graph has minimum
weight. �

3.2 Points on a circle

Recall that, by Proposition 1, when the points are in the plane, a purple edge may cross many other purple
edges. This fact holds even if the points lie in convex position (see an example with a single crossing in
Figure 2 (b); a similar example with more crossings is given in the Appendix). However, below we prove
that for points on a circle the situation is structurally different, and purple edges cannot cross any other
edges.

Lemma 3. Let S be a set of red, blue, and purple points located on a circle. A minimum RBP spanning
graph of S cannot have a purple edge crossing any other edge.

Proof. Let G be a minimum RBP spanning graph in which two edges e1 = vv′ and e2 = ww′ cross. We
will perform a local transformation that will reduce the weight of G, contradicting the minimality of G.

First assume that both e1 and e2 are purple, and consider the four paths in G[R ∪ P ] starting at either v
or v′ and ending at w or w′. Without loss of generality, we can assume that the minimum-link path among
the four (i.e., the path with smallest number of edges) connects v and w (illustrated in Figure 5). Let πR be
such path; note that, by definition of minimum-link path, πR cannot use edge vv′, since then the red path
connecting v′ and w would be one link shorter. Analogously, πR cannot use edge ww′ neither. Let πB be
the minimum-link blue path among those that connect v or v′ with w or w′. We now distinguish three cases
depending on the number of shared endpoints between πR and πB :

Paths πR and πB share both endpoints. This case is depicted in Figure 5, left. We replace edges vv′ and
ww′ with edges vw′ and v′w. Since we replaced two diagonals of a quadrilateral by two sides, the
resulting graph G′ has smaller weight than G. We now prove that G′ is indeed spanning. First consider
the red tree in G′: the removal of edge ww′ creates two connected components. Moreover, points v
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Fig. 5. The three cases in the proof of Lemma 3, local transformations are shown by dashed purple edges. No assumptions
are made on the number of crossings between πR, πB , vv′, and ww′. Note that the red and blue paths are drawn
schematically—in the actual paths all vertices must lie on the circle.

and w′ must belong to different connected components (otherwise, the edge ww′ together with πR and
the path from v to w′ would create a cycle in G). Thus, by adding the edge vw′ we reconnect the two
components again. Likewise, the removal of edge vv′ creates two red connected components that are
reconnected with the edge wv′. That is, graph G′ also spans red. We repeat the same reasoning for blue
and obtain that G′ is a RBP spanning graph with smaller weight than G, a contradiction.

Paths πR and πB share no endpoints. This case is depicted in Figure 5, center. We proceed as in the
previous case, replacing edges vv′ and ww′ by vw′ and v′w. The argumentation is identical to the
previous case.

Paths πR and πB share one endpoint. This case is depicted in Figure 5, right. Without loss of generality,
v is the shared endpoint and the other endpoint of πB is w′. In this case, the red path in G from v′ to
w, and the blue path in G from v′ to w′, both use the edge vv′. We can replace this edge by either v′w
or v′w′ while maintaining the spanning property. Using the fact that the four vertices lie on a circle, it
is easy to see that either ||v′w|| < ||v′v|| or ||v′w′|| < ||v′v|| must hold, thus one of the two resulting
graphs will have smaller weight.

If one of the edges is not purple the situation is easier, since we need to consider only one color. Assume
that edge e2 = ww′ is red, and that the red path from v to w uses neither e1 nor e2. Then we can replace
edge e2 by either vw′ or v′w′ to obtain a graph of smaller weight. Note that, since we are replacing a red
edge by another red edge, the spanning property of blue cannot be altered, and the lemma is proved. �

Next we present another crossing property that will be useful for our algorithm.

Corollary 1. Let S be a set of red, blue, and purple points located on a circle. In a minimum RBP spanning
graph G of S, no red or blue edge of G can cross any segment between two purple points.

Proof. Let p, p′ be any two purple points of S (not necessarily connected by an edge in G), and assume that
a red edge rr′ of G crosses segment pp′. As in the proof of Lemma 3, assume that the red path from p to r
uses neither p′ nor r′. Then, edge rr′ can be replaced by either r′p or r′p′ to obtain a RBP spanning graph
of smaller weight. �

Analogously to the 1-dimensional case of points on a line, we number the purple points p1, . . . , pk
in clockwise order. For any 1 ≤ i ≤ k, let Si be the set of red and blue points between pi and pi+1. We
assume that all indices are taken modulo k, thus pk+1 = p1. As a consequence of Corollary 1, we have the
following.

Corollary 2. Let S be a set of red, blue, and purple points located on a circle, and let G be a minimum
RBP spanning graph of S. No edge of G incident to a point in Si can cross segment pipi+1, for 1 ≤ i ≤ k.

We have proved that each subset Si can be treated independently when computing a minimum RBP
spanning graph of S.
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Lemma 4. Let S be a set of red, blue, and purple points located on a circle, and let G be a minimum RBP
spanning graph of S. For any purple point pi ∈ S, let p∗i be the point on the circle diametrically opposite to
pi, and let C be any of the two closed semicircles containing both pi and p∗i . It holds that pi has at most one
purple neighbor in G ∩ C, and thus at most two purple neighbors in total.

Proof. Assume without loss of generality that C is the semicircle to the right of the oriented segment pip∗i .
Suppose, for the sake of contradiction, that pi has at least two purple neighbors in C. Let p1 and p2 be any
two of them, as encountered in counterclockwise order from pi to p∗i along C. Since pi, p1, p2, and p∗i are
lie in the same semicircle, pip2 is longer than p1p2. Then G can be improved by replacing pip2 by p1p2,
leading to a smaller total length and providing the same connectivity. It follows that pi can have at most one
purple neighbor in C. �

Using these geometric observations we can now present an algorithm to compute a minimum RBP
spanning graph of points on a circle.

Theorem 2. Let S be a set of n red, blue, and purple points located on a circle, and angularly sorted. A
minimum RBP spanning graph of S can be computed in O(k3 + n) time, where k is the number of purple
points.

Proof. Analogous to the 1-dimensional case, we number the purple points p1, . . . , pk in clockwise order.
For any 1 ≤ i ≤ k, let Si be the set of red and blue points between pi and pi+1. We assume that all indices
are taken modulo k, thus pk+1 = p1.

We present an algorithm based on dynamic programming. By Corollary 2, we can find the solution
for each set Si independently. This is a 1-dimensional problem that can be solved in linear time using the
approach of Theorem 1. Thus, we solve all subproblems Si in a preprocessing phase, in overall O(n) time
(assuming the points are circularly sorted).

The algorithm uses four tables indexed by pairs of purple points, of size O(k2), defined as follows:

– PC[i, j] contains the length of a minimum RBP spanning graph for the subproblem defined by all the
points on and to the left of the oriented segment pipj (including pi and pj), assuming that pi and pj
are already connected in both the red and the blue subgraphs using points to the right of the oriented
segment pipj . In other words, the minimum RBP spanning graph whose length is stored in PC[i, j]
does not need to connect pi and pj in neither red nor blue.

– RC[i, j] contains the length of a minimum RBP spanning graph for the subproblem defined by all the
points on and to the left of the oriented segment pipj (including pi and pj), now assuming that pi and pj
are already connected in the red subgraph and disconnected in the blue subgraph. Therefore, the solution
associated with RC[i, j] must connect pi and pj in its blue subgraph (but not in the red subgraph).

– BC[i, j] is analogous to RC[i, j], where the roles of red and blue are exchanged.
– NC[i, j] assumes that pi and pj are not connected in any color. Therefore, the solution associated with
NC[i, j] must connect pi and pj in both red and blue (either using edge pipj or in some other way).

With the tables above we can find the length of an optimal solution as

min
j≤k
{PC[1, j] +NC[j, 1], NC[1, j] + PC[j, 1], RC[1, j] +BC[j, 1], BC[1, j] +RC[j, 1]}. (1)

That is, if an optimal solution contains an edge of the form p1pj (for some j ≤ k), Lemma 3 guarantees that
p1pj cannot be crossed by any other edge, giving rise to two independent subproblems, one to the left of the
oriented segment p1pj , and one to the right, of types PC and NC.

Otherwise, p1 cannot have an adjacency with other purple points in an optimal solution. By Corollary 1,
no segment p1pj can be crossed. Therefore, each value of j gives rise to two independent subproblems,
which now can be of any of the types considered in Formula 1.

Thus, it remains to show how to fill in the four tables. All four tables are filled in a very similar fashion,
so in the following we focus on how to compute ΛC[i, j] (for some Λ ∈ {P,R,B,N}). As is standard in
dynamic programming, we fill in the table entries in order, so that when it is time to compute the value of an
entry (i, j), all the entries corresponding to smaller problems, i.e., corresponding to purple pairs to the left
of the oriented segment pipj , have already been computed.
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pi pj

ph

pi

pi+1

pj

Fig. 6. Proof of Theorem 2: cases that appear when filling in entry ΛC[i, j] (for some Λ ∈ {P,R,B,C}.

The simplest entries are those of the form (i, i + 1). To the left of the oriented edge pipi+1 there are
no purple points, thus only red and blue points may be present. A table entry of this kind can be computed
using the approach of Theorem 1, since each solution is independent of the rest. Note that some entries
may have no solution (e.g., if there are only red points to the left of the oriented edge pipi+1, there cannot
be a solution for subproblem RC[i, i + 1]). Whenever no solution exists, the corresponding entry of the
table can be filled in with +∞. Note that all entries of the form PC[i, i + 1], RC[i, i + 1], BC[i, i + 1],
and NC[i, i+ 1] can be computed in overall O(n) time, since no red or blue point can appear in more than
one set Si.

Without loss of generality, assume 1 ≤ i < j ≤ k. In order to fill in entry ΛC[i, j] we consider the
following cases, and store the one with minimum cost.

– Case I: pi is connected to some purple point in an optimal solution of the subproblem associated to
(i, j). Let h be the largest such index, see Figure 6 (left). Recall that vertices are indexed in clockwise
order. In this case, no purple edge can cross segment phpj : by definition of h, no edge connects pi to a
vertex with index larger than h in any solution. Hence, by Lemma 3, no edge can cross piph. Since pi
and ph are connected in both red and blue, ph and pj must be connected in the same way as pi and pj .
Thus, it follows that in this case ΛC[i, j] = PC[i, h] + ΛC[h, j] + ||piph||.
Since we do not know the value of h, we try all possible candidates for ph, and keep the one minimizing
the cost.

– Case II: pi is not connected to other purple points in any optimal solution of the subproblem associated
to (i, j). By Corollary 2, in an optimal solution no edge can cross pipi+1. In addition, since no purple
edge is incident to pi, segment pi+1pj cannot be crossed either, see Figure 6 (right). Therefore, an
optimal solution can be found by combining the solutions associated to the pairs (i, i+1) and (i+1, j).
The exact cases to consider depend on the value of Λ:
Λ = N In this case it is assumed that pi and pj are not connected in any color. Point pi+1 must then

connect to both pi and pj in each of the subproblems. Thus,NC[i, j] = NC[i, i+1]+NC[i+1, j].
Λ = R In this case pi and pj are assumed to be already connected in red. Thus, pi+1 can only connect

to one of them in red, and must connect to both of them in blue. That is, RC[i, j] = min{NC[i, i+
1] +RC[i+ 1, j], RC[i, i+ 1] +NC[i+ 1, j]}

Λ = B This case is analogous to the previous one:BC[i, j] = min{NC[i, i+1]+BC[i+1, j], BC[i, i+
1] +NC[i+ 1, j]}

Λ = P In this case pi and pj are assumed to be already connected in both colors. Point pi+1 must then
connect to either pi or pj (but not both) in each of the two colors. Thus, PC[i, j] = min{NC[i, i+
1]+PC[i+1, j], PC[i, i+1]+NC[i+1, j], RC[i, i+1]+BC[i+1, j], BC[i, i+1]+RC[i+1, j]}.

Based on the description above, in order to fill in one entry it is necessary to consider up toO(k) possible
subproblems, each taking constant time to evaluate. Therefore, the total running time of the algorithm is
O(k3 + n). �

4 General-case algorithm

In this section we give a polynomial time algorithm for computing a RBP spanning graph, regardless of
the position of the points in the plane. Our solution is based on standard tools from matroid theory [27].
The main result that we use is the existence of an efficient algorithm for the weighted matroid intersection
problem, defined as follows: given two matroids with the same ground set M and independent set families
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Ir and Ib, and a weight function w : M → R, the aim is to find the common independent set Ir ∩ Ib of
maximum weight. The algorithm runs in time polynomial on |M |, and more importantly, does not depend
on the size of Ir or Ib (for more information on the weighted matroid intersection problem see [27, Section
41.3]).

We claim that any minimum RBP spanning graph problem instance can be transformed to a matroid
intersection problem instance, and thus it can be solved in polynomial time on the number of points. In order
to show this, we consider alternative definition of matroids via base families. For more information on the
base families definition of matroids and its equivalence to the independent set formulation see [27]. We start
by viewing the red blue purple spanning tree problem from a graph perspective.

Let R, B, and P denote the sets of red, blue, and purple points, respectively. Let S = R ∪B ∪ P , and
G = (S,E) be the complete undirected graph whose ground set is R ∪B ∪ P . We also define the weight
w(e) of an edge e ∈ E as its Euclidean length.

We denote by Br ⊆ 2E the family of edge sets of trees in G that span R ∪ P . Similarly, we denote by
Bb ⊆ 2E the family of edge sets of trees in G that span B ∪ P . It is well-known that (E,Br) and (E,Bb)
are matroids (known as graphic matroids, see [27, Section 39.4]).

We also define the following “basis supersets”:

Qr = {X ⊆ E | X contains some B ∈ Br},
Qb = {X ⊆ E | X contains some B ∈ Bb}.

Then, the minimum RBP spanning graph problem is formulated as follows:

(P0) Minimize
∑
e∈X

w(e) subject to X ∈ Qr ∩Qb,

This formulation is not exactly a matroid intersection problem, but its complement is. Thus, we define
Qr = {Y ⊆ E | E \Y ∈ Qr} andQb = {Y ⊆ E | E \Y ∈ Qb}, and consider the following maximization
problem:

(P1) Maximize
∑
e∈Y

w(e) subject to Y ∈ Qr ∩Qb.

Since the complement of a solution for (P0) is a solution for (P1) and vice versa, both problems are equivalent.
In this setting, Qr and Qb are independent set families of some matroids:

Proposition 2 ([27, Section 39.2]). For any matroid (E,B) with basis family B ⊆ 2E , define

Q = {X ⊆ E | Xcontains some B ∈ B},
Q = {Y ⊆ E | E \ Y ∈ Q}.

Then, (E,Q) is also a matroid with independent set family Q; such a matroid is called the dual matroid of
(E,B).

In particular, both Qr and Qb are independent set families of dual matroids of (E,Br) and (E,Bb),
respectively. From Proposition 2 it follows that (P1) is an instance of the matroid intersection problem, for
which a polynomial-time algorithm exists.

Theorem 3. Let S be a set of n red, blue, and purple points located in the plane. A minimum RBP spanning
graph of S can be computed in O(n6) time.

Proof. Given set S, we construct the equivalent (P1) problem instance and solve it using the augmenting
algorithm (see [27, Theorem 41.7]). We note that this a is well-known result, thus its correctness is already
established. In the following we present an interpretation of the algorithm in terms of the original problem
(P0) and bound the running time.

Since any RBP spanning graph is connected, it must have at least n− 1 edges. Observe that the addition
of edges maintains the RBP spanning property. Thus, we conclude that for every i ∈ {n − 1, . . . , |E|}
there exists an RBP spanning graph with exactly i edges. Recall that, in our setting, two points are
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connected in E if and only if they have the same color or one of the two is purple. In particular, we have
|E| =

(|R|+|P |
2

)
+
(|B|+|P |

2

)
−
(|P |

2

)
≤
(|S|

2

)
∈ O(n2).

Starting from i = |E| and continuing with smaller values of i, the algorithm finds an RBP connected
subgraph Xi with i edges that minimizes the weight w(Xi) (among those that contain exactly i edges).
Then, the subgraph Xi of overall minimum weight will be a minimum RBP spanning subgraph.

Step 0: Set i = |E| and Xi := E.
Step 1: Take a sequence of edges e1, e2, . . . , e2h+1 (h ≥ 0) such that

e1, e3, . . . , e2h+1 ∈ Xi,

e2, e4, . . . , e2h ∈ E \Xi,

Xi − e1 induces a connected subgraph for the blue and purple points,
Xi − e2j−1 + e2j induces a connected subgraph for the red and purple points j = 1, 2, . . . , h,

Xi + e2j − e2j+1 induces a connected subgraph for the blue and purple points for j = 1, 2, . . . , h,

Xi − e2h+1 induces a connected subgraph for the red and purple points.

Such a sequence will exist provided that i ≥ n (i.e., we can remove an edge in a cycle or add a purple
edge and remove both a red and a blue edge). Among such sequences, take the one with the minimum
value of −∑h

j=0 w(e2j+1) +
∑h

j=1 w(e2j). If there exist many such sequences, then take the one with the
minimum number of edges.
Step 2: Set Xi−1 := Xi \ {e1, e3, . . . , e2h+1} ∪ {e2, e4, . . . , e2h} and i := i− 1. Go to Step 1.

Due to the choice of a sequence in Step 1, we can show that if Xi is an RBP connected subgraph with
|Xi| = i with the minimum weight among those with exactly i edges, then Xi−1 will be an RBP connected
subgraph with i − 1 edges having the minimum weight among those with i − 1 edges (see [27, Section
41.3]). Step 0 initializes with the unique graph with exactly |E| edges. Since it is unique, it has the minimum
weight, and thus each Xi is an RBP connected subgraph with minimum weight among those containing i
edges.

We analyze the time complexity of the algorithm above. Let n = |V | and m = |E|. The number of
iterations of the algorithm is m − (n − 1) ∈ O(n2). The sequence of edges in Step 2 can be computed
by solving a single-source shortest path problem on an auxiliary edge-weighted graph. Thus, overall the
algorithm terminates in O(m · SSP(N,M)) time, , where N (resp., M ) denote the number of vertices (resp.,
edges) in the auxiliary edge-weighted graph, and SSP(n′,m′) denotes the time complexity for solving a
single-source shortest path problem on a graph with n′ vertices and m′ edges.

In our case, m ∈ O(n2), N = O(m) = O(n2), M = O(m2) = O(n4) and we can solve the shortest
path problem using Dijsktra’s algorithm in O(M +N logN) = O(n4) time.2 Thus, the overall running
time is bounded by O(n6), as claimed. �

5 Approximation

Given the high running time of the exact algorithm presented in the previous section, it is worth considering
more efficient approximation algorithms. A simple approximation algorithm determines the red-purple
minimum spanning tree and the blue-purple minimum spanning tree independently, and takes the union of
their edges. It is easy to see that this is a 2-approximation algorithm that requires O(n log n) time.

Another approximation algorithm, A, starts by computing the minimum spanning tree of the purple
edges, and then adds the red and blue points in an optimal manner in the style of Kruskal’s algorithm for
minimum spanning trees. Algorithm A can also be implemented to run in O(n log n) time by computing
the Delaunay triangulation of the red and purple points and of the blue and purple points. It is easy to
argue that A also is a 2-approximation algorithm but interestingly, we can prove a better bound (close
to 1.6) by expressing the approximation factor in the Steiner ratio ρ (the ratio between the length of a

2 Note that in the auxiliary graph some edges may have negative weight. Thus, the straightforwards Dijkstra’s approach
cannot be used. Nevertheless, this difficulty can be avoided by assigning a potential to each node. For more details
see [27].
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minimum spanning tree and the length of a minimum Steiner tree). Gilbert and Pollak [16] conjectured that
ρ = 2√

3
≈ 1.15, but this conjecture has not been proved yet.3 Chung and Graham [12] showed a bound of

≈ 1.21, which is currently the best-known upper bound on ρ.

Theorem 4. Approximation algorithm A is a ( 12ρ+1)-approximation of the minimum RBP spanning graph,
where ρ is the Steiner ratio.

Proof. Let R, B, and P be sets of red, blue, and purple points. Let G∗ be a minimum RBP spanning graph.
Let R∗ be the red edges, B∗ the blue edges, and P ∗ the purple edges in G∗. Recall that A computes a
spanning graph by taking the minimum spanning tree of the purple points, and then adding the red and blue
points optimally. We denote the resulting graph on R ∪B ∪ P by G′, and its red, blue, and purple edges by
R′, B′, and P ′.

Suppose first that G∗ has no purple edges. Then algorithm A gives extra length in terms of purple edges
equal to the MST of the purple points, denoted ||P ′||. The optimal graph G∗ must connect all purple points
through a red spanning tree and through a blue spanning tree whose lengths are ||R∗|| and ||B∗||. Algorithm
A has a total length of red edges of ||R′|| ≤ ||R∗|| and a total length of blue edges of ||B′|| ≤ ||B∗||. Hence
the approximation ratio of A in case of absence of purple edges in the optimal solution is

||P ′||+ ||R′||+ ||B′||
||R∗||+ ||B∗|| ≤ ||P

′||+ ||R∗||+ ||B∗||
||R∗||+ ||B∗|| .

SinceR∗ connects all purple points, ||R∗|| ≥ SMT (P ), and similarly, ||B∗|| ≥ SMT (P ), where SMT (P )
is the length of the Steiner Minimum Tree of P . The ratio is maximized when ||R∗|| and ||B∗|| are as small
as possible, so the ratio is upper-bounded by

MST (P ) + 2 · SMT (P )

2 · SMT (P )
≤ ρ · SMT (P ) + 2 · SMT (P )

2 · SMT (P )
=
ρ+ 2

2
=

1

2
ρ+ 1 ,

where MST (P ) is the length of the Minimum Spanning Tree of P .
Next, suppose that G∗ has a set P ∗ of purple edges, and assume them fixed. We will reason about

sets of red, blue, and purple points for which the algorithm A performs as poorly as possible in terms of
approximation ratio.

If G∗ has any red point r that has a single red edge incident to it in R∗, then this edge will connect r to
the closest red or purple point, otherwise G∗ is not optimal. Algorithm A will choose exactly the same edge
in its solution. Hence, the approximation ratio of A for the points R \ {r}, B, and P is higher than for the
points R, B, and P . The same is true for a blue or purple point that has a single incident edge in G∗. So we
can restrict ourselves to analyzing point sets whose optimal solution does not have any leafs in G∗.

The edges of P ∗ partition the purple points of P into a number of purple components which are
connected by a red spanning forest and a blue spanning forest, and by the observations above, there are no
other red or blue points in G∗. We have

||P ′|| ≤ ||P ∗||+ ρ||R∗|| and ||P ′|| ≤ ||P ∗||+ ρ||B∗|| ,
because in G∗ the red (blue) connections between the purple components cannot be shorter than the
Steiner Minimum Forest of the purple components. We can assume by symmetry that ||R∗|| ≤ ||B∗||. The
approximation ratio then is

||P ′||+ ||R′||+ ||B′||
||P ∗||+ ||R∗||+ ||B∗|| ≤

||P ′||+ ||R∗||+ ||B∗||
||P ∗||+ ||R∗||+ ||B∗|| ≤

||P ′||+ 2||R∗||
||P ∗||+ 2||R∗|| ≤

||P ∗||+ (2 + ρ)||R∗||
||P ∗||+ 2||R∗|| .

This ratio is maximal when ||P ∗|| = 0, in which case we get exactly the same ratio as above, when no
purple edges are present. �

We note that A cannot be a c-approximation for any c < 1 + 1√
3
≈ 1.58 (a counterexample is shown in

Figure 7). Hence our approximation analysis is tight if the Gilbert-Pollak conjecture is true. It is possible
that a PTAS exists for our problem, but it is not clear whether the techniques of Arora [6] or Mitchell [24]
for the Euclidean traveling salesperson problem can be applied, since RBP spanning graphs are not planar,
and the number of crossings of a single edge can be large.

3 A proof of the conjecture by Du and Hwang, “A proof of Gilbert-Pollak Conjecture on the Steiner ratio”, Algorithmica
7:121–135 (1992), turned out to be incorrect.
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Fig. 7. A minimum RBP spanning graph and the RBP spanning graph on the same points obtained by approximation
algorithm A, resulting in an approximation factor that tends to 1 + 1√

3
.

6 Extensions and Future Work

Line drawings. Motivated by LineSets [4], we could extend the ideas of this paper as follows: given the
set of red, blue, and purple points, we now wish to compute a minimum RBP spanning graph such that the
subgraphs induced by the red and blue sets contain a spanning paths. That is, the red and purple edges form
a path connecting all red and purple points, and the blue and purple edges form a path connecting all blue
and purple points (see Figure 8 (a)).

If we are interested in minimizing the total length, the problem becomes NP-hard, since it can be seen as a
generalization of the traveling salesman problem (TSP). Nonetheless, we can obtain a (2+ε)-approximation
by independently computing an approximate TSP for the blue and purple points and for the red and purple
points, and simply taking the union. An approach similar to the spanning tree case seems to fail and hence a
better solution remains an open problem. The question also remains open for points on a line or a circle.
Beyond purple. In this paper we considered the case where there are exactly two types of points, leading to
an input with red, blue, and purple points. In general, we might have k different sets, all denoted by primary
colors. For instance, for k = 3 we could have red, blue, and yellow sets, which leads to three secondary
colors (purple, orange, green) and one tertiary color (black). The objective is again to minimize the total
length of a multi-colored spanning graph that has the property that the subgraphs induced by the red, blue,
and yellow sets are connected (see Figure 8 (b)).

The 2-approximation immediately generalizes to a 3-approximation (or a k-approximation for k primary
colors). We can improve on this by incorporating our (1+ 1

2ρ)-approximation algorithm to obtain a (2+ 1
2ρ)-

approximation for three sets, or more generally a (d 12ke+ b 12kc 12ρ)-approximation for k sets. Interestingly,
our algorithms for points on a line or on a circle are not straightforward to generalize; these problems remain
open.

(a) (b)

Fig. 8. (a) A set of red, blue, and purple points, and a graph that connects all red points in a path and all blue points in a
path. (b) A set of multicolored points representing red, blue, and yellow sets, and a corresponding spanning graph.
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A Proof of Proposition 1

In this section, we present a problem instance for which the optimal solution contains a purple edge that is
crossed by Θ(n) other purple edges. Before giving the exact construction, we present a relation between
MST and RBP spanning trees, which we find interesting on its own. Then we describe the construction, we
argue about parts of it, and finally prove that this construction indeed satisfies our claim.

For simplicity in the exposition, in this section we assume that the points are in general position: we
require that there exist no two distinct pairs of points whose distances are equal (i.e., ∀u, v, u′, v′ ∈ R∪B∪P
it holds that d(u, v) = d(u′, v′)⇔ {u, v} = {u′, v′}). This general position assumption implies uniqueness
of minimum spanning trees, and thus greatly simplifies the statements below. To satisfy the general position
requirement, it suffices to do a symbolic perturbation of the input. Alternatively, the general position
requirement can be dropped if the statement of Lemma 5 is slightly weakened to existence (rather than
universality).

Given a problem instance (R,B, P ), let TR =MST (R ∪ P ), and TB =MST (B ∪ P ). Clearly, not
all edges of TR or TB need to be present in G∗ (see examples in Figure 2). However, in the next lemma we
show that most of them will.

We say that a subset S′ of R ∪ P is red-maximal if the subgraph of TR induced by S′, denoted TR[S′],
satisfies the following properties:

1. TR[S′] is connected,
2. all purple points of S′ are leaves of TR[S′],
3. any leaf of TR[S′] that is not purple is also a leaf of TR.

Intuitively speaking, a red-maximal subset S′ is a maximal subset in which all points are connected in
TR[S

′] through paths that never traverse purple points. The definition of blue-maximal is analogous.

Lemma 5. If S′ is a red-maximal (resp. blue-maximal) subset with k purple points of a problem instance,
then the number of edges of TR[S′] (resp. TB [S′]) that are not in G∗ is less than k.

Proof. We prove the lemma for red-maximal subsets. Let E be the set of edges that are present in TR[S′]
but not in G∗. In the following we give a process to reduce the size of E whenever it has k or more edges.
Since TR[S′] is a tree, the removal of all edges in E will create at least k+1 components. In particular, there
must be a component C that has no purple edge. Let p ∈ C, q ∈ S′ \ C be the two vertices that minimize
the distance between points of C and those in S′ \ C. It is well known [26] that pq ∈ TR[S′]. Moreover, by
definition of q, the edge pq cannot be in G∗, thus pq ∈ E (see Figure 9).

Our aim is to replace some edge of G∗ by the edge pq. Recall that G∗[R ∪ P ] forms a tree, hence there
exists a unique path π = (p = v0, . . . , vm = q) connecting p and q in the red subgraph of G∗. Let i be the

p

q

C

Fig. 9. Proof of Lemma 5: if many edges of TR are missing in G∗, we can replace one edge and obtain a RBP spanning
graph of smaller weight. Edges of G∗ ∩ TR[S

′] are marked in solid, edges of E are dashed, C is the gray region.
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Fig. 10. Schematic view of the construction (left) and its optimal solution (right), with three levels. Note that this is not
to scale. The actual proportions are shown in Figure 11.

smallest index such that vi 6∈ C (note that i < m since pq 6∈ G∗). We claim that replacing edge vi−1vi by
edge pq in G∗, we obtain another RBP spanning graph of smaller weight, giving a contradiction.

By definition of p and q, and using the general position assumption, we have ||pq|| < ||vi−1vi||. Thus,
it remains to prove that this modification indeed preserves the RBP spanning property. Recall that, by
hypothesis, all points of C are red, thus the removal of edge vi−1vi can only affect the spanning property of
the red subgraph of G∗. By removing this edge, p and q must belong to two different components (since
that edge was part of the only path connecting them). Thus, by adding the edge pq we reconnect the two
components as desired. �

Description of the construction. The construction has two parts. At a global level it consists of points
located as illustrated in Figure 10 (left).

Let pN = (x0, y0) be any point in the plane, let C0 be the unit circle centered at pN , and let pc be the
bottom-most point of C0 (i.e., pc = (x0, y0−1)). Now define another unit circle C, with center (x0, y0−ε0),
for a sufficiently small ε0 > 0. We give more details on how to choose ε0 later in this section. Note that the
lower semicircle of C lies outside C0. We place most points on the lower semicircle of C, as shown in the
figure. Let pW and pE be two points with the same y-coordinate on the lower semicircle of C. Their exact
position is not really important, although some remarks about it are given later.

In the construction we place 2(m+ 1) purple points on C, in pairs with the same y-coordinate, for any
odd value of m ≥ 1. On the arc of C going counterclockwise from pW towards pc, purple points are named
pW = q0, q1, . . . , qm, while on the opposite arc, they are named pE = r0, r1, . . . , rm.

Four “consecutive” purple points qi, ri, qi+1, ri+1 form a trapezoid defining what we call a level. There
are m levels in total. For each level, on the circular arc of C going counterclockwise from qi to qi+1 (and,
respectively, from ri+1 to ri) we place a chain of red or blue points, one color per side (see Figure 10). Each
chain has its points very close to each other, so that in any optimal solution they will be connected by edges
of their same color. For the sake of simplicity, it is possible to think of the two chains as having the same
number of points, although this is not necessary for the construction to work. Colors between consecutive
levels alternate sides.

The exact location of qi and ri needs to be chosen carefully to guarantee that the optimal RBP spanning
tree is as needed. The main properties of the construction are the following: (i) pN is closer to qi and ri than
to qi+1 and ri+1, and (ii) edge qiqi+1 is longer than half of the edge qiri. To guarantee the latter, qi+1 is
placed at the intersection of two circles: C and the circle centered at qi with radius half of the length of qiri
plus ε, for a small constant ε > 0. This latter property is essential to argue about the optimal spanning graph
of a single level. Figure 11 shows the construction with proportions that satisfy these requirements. More
precisely, it shows the first level. Additional levels are nested recursively in the bottom side of the trapezoid,
using line segment q1r1 instead of pW pE .

In this way, if ε0 is small enough it holds that pc lies below all the four points of the trapezoids of all
levels.
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pN

A) ||qiqi+1|| > 1
2 ||qiri||

B) ||pNq0||+ ||pSqm|| > ||pNpS ||

pc

C1) ||pNqi|| < ||pNqi+1||, for all i
C2) ||pNri|| < ||pNri+1||, for all i

Main properties:

pW = q0

q1

pE = r0

r1

pS

D1) ||pSpc|| < ||pSqi||, for all i
D2) ||pSpc|| < ||pSri||, for all i
E) ||pNpc|| = ||pSpc||

C

Fig. 11. One single level of the main construction drawn with the right proportions. The key properties of the construction
are shown on the right. More levels can be added recursively below line segment q1r1.

Once the m levels have been added, we insert an additional purple point pS located vertically below pc,
so that ||pcpS || = ||pNpc||, i.e., at position (x0, y0 − 2− 2ε0). By construction of the points qi and ri, we
have ||pNνi||+ ||pSηj || > ||pNpS || for any ν, η ∈ {q, r} and 0 ≤ i, j ≤ m. We complete the construction
with two chains of red and blue points connecting pN to pE , and qm to pS , respectively.

One last technical detail concerns the choice of ε0. The only condition on this value is that it should be
small enough as to guarantee that y(qm) > y(pc). Given that by construction ε0 = 0 always leaves a gap
between y(qm) and y(pc), it is always possible to choose a suitable ε0 > 0 maintaining that condition.

Figure 10 (right) shows a RBP spanning tree that, we claim, is the only optimal solution for this
configuration of points. Note that the vertical purple edge is crossed by all the other horizontal purple edges,
thus proving Proposition 1.

In order to prove Proposition 1, we first argue about the optimal RBP spanning graph for the subproblem
of the points within the levels.

Lemma 6. The optimal solution for all points with y-coordinates between those of pW and qm consists of
all horizontal purple edges qiri plus all chains of short red/blue edges, as shown in Figure 10 (right).

Proof. First we argue about one single level, defined by points qi, ri, qi+1, ri+1. Refer to Figure 10 (right).
One of the properties of the construction is that ||qiqi+1|| > 1

2 ||qiri||, implying ||qiqi+1|| + ||riri+1|| >
||qiri||. It is easy to verify that the shortest RBP spanning tree for one level is as claimed: it uses both
horizontal purple edges and connects all red/blue points on the circular arcs.

To argue about all the levels, we apply an inductive argument bottom-up. Suppose the claimed solution
is optimal from level m up to level i. Now consider the problem from level m up to one more level, i.e.,
i− 1. Assume that the points between qi and qi−1 are blue, and the ones between ri and ri−1 are red.

Let S′ be the set containing qi−1, qi, and all blue points in between. By construction, the MST of S′ is a
path whose endpoints are qi−1 and qi, and in particular S′ is blue-maximal. By Lemma 5, all of the edges of
the path (except for at most one) will be present in any RBP spanning graph. Thus, we can connect qi and
qi−1 in blue by adding at most one edge whose length is arbitrarily small. Likewise, we can assume that ri
and ri−1 are connected through their intermediate red points. If the resulting solution does not need one
of those edges, then we can remove it, but the total cost will only change by an arbitrarily small amount.
Consider an optimal solution G∗ up to level i− 1. We analyze two cases, depending on whether segment
qiri is crossed by some edge in G∗.

If qiri is not crossed in G∗, then we can partition the problem into two independent subproblems: the
trapezoid defined by the four purple points qi, ri, qi−1, ri−1, and the points located on or below the segment
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ri−1

νj

riqi

qi−1

e

Fig. 12. If ri−1 does not connect to qi−1 in G∗, then qi−1 must also be incident to a long edge e that is useful only in
the red tree. Thus, we can replace both edges by qi−1ri−1 and obtain a tree of smaller weight.

qiri. Since in both sub-problems the solution has the desired shape, we derive that the union will also have
the desired shape.

Thus, it remains to consider the case in which segment qiri is indeed crossed in G∗. By Corollary 1, it
can only be crossed by a purple edge, which must connect ri−1 or qi−1 to some purple point below qiri.
Assume without loss of generality that the crossing edge is of the form νjri−1, where ν is either q or r, and
j > i (see Figure 12). Recall that all points in the construction (other than pN and pS) lie on a semicircle.
Thus, by Lemma 4, ri−1 cannot be adjacent to another purple point in G∗. Moreover, by Corollary 1, ri−1
cannot be adjacent to any red points other than those between ri−1 and ri, and cannot be adjacent to any
blue point.

In particular, the path connecting qi−1 with ri−1 must use edge νjri−1 on both red and blue trees of G∗.
Since G∗ is connected in the red subgraph, there must be an edge e in G∗ that connects qi−1 to some other
red vertex. In principle, the other vertex of e could also be purple, but notice that such edge would only be
needed for the red path (since we assumed that qi−1 can connect to qi through the blue points in between).
The nearest possible vertex is qi, thus we conclude that the length of e is at least ||qi−1qi||. Similarly, we
have ||νjri−1|| > ||ri−1ri|| by the way in which points qi and ri were placed.

Recall that one of the key properties of our construction is that ||qi−1qi|| + ||ri−1ri|| > ||qi−1ri−1||.
Hence, if we replace those two edges by qi−1ri−1 we obtain a graph of smaller weight. Moreover, this
change cannot affect the RBP spanning property: after we removed the edge νjri−1, vertices qi−1 and
ri−1 belong to different components in both red and blue subtrees. The new purple edge reintroduces the
connectivity, thus we would obtain a RBP spanning graph of smaller weight (a contradiction with the fact
that the edge qiri is not used in a RBP spanning graph). �

To complete the proof of Proposition 1, we consider now the full construction, including pN , pS , and
the red and blue points between them and pE and qm, respectively.

Proof. (of Proposition 1) Consider the complete construction, as shown in Figure 10 (left). Recall that C is a
unit disk. We show below that the extra points do not affect the optimal solution for the central construction.
Note that in the construction, we can choose the y-coordinates of pW and pE as low as desired provided that
they are above y(pc). Moreover, notice that the cost of the main construction associated with our solution
(i.e. disregarding points pN , pS , and the two paths connecting these points) decreases monotonically as we
lower the y-coordinate of pW and pE . Thus, by placing pW and pE with a sufficiently low y-coordinate, the
cost of our construction can become arbitrarily small.

Now consider the extra points: observe that the cheapest way to connect all red points in the path from
pN to pE is to form a (red) path between them. Likewise, we obtain the same result for the blue points from
pS to qm. The cost of each of these paths is roughly 1 (slightly larger due to ε0). Since we placed all points
on the lower semicircle of C, outside C0, the purple points with highest y-coordinates, pW and pE , are the
ones closest to pN . Therefore pN must be incident to an edge of length at least ||pNpE || (or pN will not be
connected in the blue subgraph). Further, notice that pN must be a leaf in the blue subgraph (and pS in the
red subgraph). This is due to the fact that all other points are at distance less than 1 from each other, thus if
pN had degree two or more, one of the adjacencies could be replaced to obtain a graph of smaller length.

Recall that we placed our purple points so that ||pNν||+ ||pSη|| > ||pNpS || for any two purple points
η, ν, thus the edge pNpS is shorter than any other combination of edges emanating from pN and pS . Any
solution that adds extra edges to pN cannot be of minimal weight, since has extra purple edges. Now we
apply Lemma 5 to the set containing pE , pN , and all red points in between (similarly, to qm, pS , and all

18



blue points in between). These sets are red- and blue-maximal, respectively, hence by Lemma 5 any optimal
solution must connect them in red and blue paths, respectively. As before, at most one edge may be missing
in each of the paths; for simplicity in the explanation, we keep such edge, since this can only create an
arbitrarily small increase in the total cost. That is, pN and pS must have exactly one additional edge (if
the red and blue paths are connected) or two edges (otherwise), and the cheapest way of doing so is by
connecting pN to pS directly. This construction has minimal weight, and is RBP spanning, thus the statement
is shown. �
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