46 research outputs found

    Two-out-of-two color matching based visual cryptography schemes

    No full text
    International audienceVisual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view

    On Real-valued Visual Cryptographic Basis Matrices

    Get PDF
    Visual cryptography (VC) encodes an image into noise-like shares, which can be stacked to reveal a reduced quality version of the original. The problem with encrypting colour images is that they must undergo heavy pre-processing to reduce them to binary, entailing significant quality loss. This paper proposes VC that works directly on intermediate grayscale values per colour channel and demonstrates real-valued basis matrices for this purpose. The resulting stacked shares produce a clearer reconstruction than in binary VC, and to the best of the authors’ knowledge, is the first method posing no restrictions on colour values while maintaining the ability to decrypt with human vision. Grayscale and colour images of differing entropies are encrypted using fuzzy OR and XOR, and their PSNR and structural similarities are compared with binary VC to demonstrate improved quality. It is compared with previous research and its advantages highlighted, notably in high quality reconstructions with minimal processing

    Robust Watermarking Schemes for Digital Images

    Get PDF
    With the rapid development of multimedia and the widespread distribution of digital data over the internet networks, it has become easy to obtain the intellectual properties. Consequently, the multimedia owners need more than ever before to protect their data and to prevent their unauthorized use. Digital watermarking has been proposed as an effective method for copyright protection and an unauthorized manipulation of the multimedia. Watermarking refers to the process of embedding an identification code or some other information called watermark into digital multimedia without affecting the visual quality of the host multimedia. Such a watermark can be used for several purposes including copyright protection and fingerprinting of the multimedia for tracing and data authentication. The goal in a watermarking scheme is to embed a watermark that is robust against various types of attacks while preserving the perceptual quality of the cover image. A variety of schemes have been proposed in the literature to achieve these goals for watermarking of images. These schemes either provide good imperceptibility of the watermark without sufficient resilience to certain types of attacks or provide good robustness against attacks at the expense of degraded perceptual quality of the cover images. The objective of this work is to develop image watermarking schemes with performance that is superior to those of existing schemes in terms of their robustness against various types of attacks while preserving the perceptual of the cover image. In this thesis, two new digital image watermarking schemes are proposed. In the first scheme, an Arnold transform integrated DCT-SVD based image watermarking scheme is developed. The main idea in this scheme is to improve the robustness of the watermarking further by scrambling the watermark data using the Arnold transform while still preserving the good perceptibility of the watermarked image furnished by a DCT-SVD based embedding. Also, it is shown that considerable savings in the computation time to recover the original watermark image can be provided by using the anti-Arnold transform in the watermark extraction process. In the second scheme, a DWT-SVD digital image watermarking scheme that makes use of visual cryptography to embed and extract a binary watermark image is developed. The use of visual cryptography in the proposed watermarking scheme is intended to provide improved robustness against attacks along with furnishing security to the content of the embedded data. Extensive experiments are conducted throughout this investigation in order to examine the performance of the proposed watermarking schemes. It is shown that the two proposed watermarking schemes developed in this thesis provide a performance superior to that of the existing schemes in terms of robustness against various types of attacks while preserving the perceptual quality of the cover image

    High-Entropy Visual Identification for Touch Screen Devices

    Get PDF
    We exhibit a system for improving the quality of user-derived keying material on touch-screen devices. We allow a device to recover previously generated, highly entropic data suitable for use as (part of) a strong secret key from a user’s act of identifying to the device. Our system uses visual cryptography [22], using no additional electronics and no memorization on the part of the user. Instead, we require the use of a transparency overlaid on the touch-screen. Our scheme is similar to the identification scheme of [23] but tailored for constrained, touch-screen displays

    CHARAKTERYSTYKA WYBRANYCH TECHNIK UKRYWANIA OBRAZU

    Get PDF
    Considering that different techniques of hiding images are known for a  long time, but have not found wider application, perhaps because of  their shortcomings. In this publication are described some types of techniques secret sharing images that are already in use. The author aims to review these techniques and  summarizes their features.Zważywszy, że różne techniki utajniania obrazów są znane od dawna, lecz nie znalazły szerszego zastosowania, być może ze względu na ich mankamenty, w tej publikacji zostaną opisane niektóre rodzaje technik sekretnego podziału obrazów, które już są. Autor ma na celu przeglądnięcie tych technik i ich podsumowanie

    A real-time neural system for color constancy

    Get PDF
    A neural network approach to the problem of color constancy is presented. Various algorithms based on Land's retinex theory are discussed with respect to neurobiological parallels, computational efficiency, and suitability for VLSI implementation. The efficiency of one algorithm is improved by the application of resistive grids and is tested in computer simulations; the simulations make clear the strengths and weaknesses of the algorithm. A novel extension to the algorithm is developed to address its weaknesses. An electronic system that is based on the original algorithm and that operates at video rates was built using subthreshold analog CMOS VLSI resistive grids. The system displays color constancy abilities and qualitatively mimics aspects of human color perception

    Humanistic Computing: WearComp as a New Framework and Application for Intelligent Signal Processing

    Get PDF
    Humanistic computing is proposed as a new signal processing framework in which the processing apparatus is inextricably intertwined with the natural capabilities of our human body and mind. Rather than trying to emulate human intelligence, humanistic computing recognizes that the human brain is perhaps the best neural network of its kind, and that there are many new signal processing applications (within the domain of personal technologies) that can make use of this excellent but often overlooked processor. The emphasis of this paper is on personal imaging applications of humanistic computing, to take a first step toward an intelligent wearable camera system that can allow us to effortlessly capture our day-to-day experiences, help us remember and see better, provide us with personal safety through crime reduction, and facilitate new forms of communication through collective connected humanistic computing. The author’s wearable signal processing hardware, which began as a cumbersome backpackbased photographic apparatus of the 1970’s and evolved into a clothing-based apparatus in the early 1980’s, currently provides the computational power of a UNIX workstation concealed within ordinary-looking eyeglasses and clothing. Thus it may be worn continuously during all facets of ordinary day-to-day living, so that, through long-term adaptation, it begins to function as a true extension of the mind and body

    A real-time neural system for color constancy

    Get PDF
    A neural network approach to the problem of color constancy is presented. Various algorithms based on Land's retinex theory are discussed with respect to neurobiological parallels, computational efficiency, and suitability for VLSI implementation. The efficiency of one algorithm is improved by the application of resistive grids and is tested in computer simulations; the simulations make clear the strengths and weaknesses of the algorithm. A novel extension to the algorithm is developed to address its weaknesses. An electronic system that is based on the original algorithm and that operates at video rates was built using subthreshold analog CMOS VLSI resistive grids. The system displays color constancy abilities and qualitatively mimics aspects of human color perception
    corecore