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The key property used to construct visual cryptography schemes for black
and white images is the following: if we superpose transparencies with black
and white pixels, the resulting pixel that our eyes see is black if at least one
of the superposed pixels is black and is white if all the superposed pixels are
white. Such a property can be rephrased as follows: the possible “state” for
the pixels can be represented with a bit, using 0 for white and 1 for black,
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30 Visual Cryptography and Secret Image Sharing

and the human visual systems performs an OR of the input pixels in order to
reconstruct the secret pixels.

This key property does not easily extend to colored pixels. With colored
pixels the state of each pixel cannot be represented anymore with a single
bit and the “reconstruction” operation performed by our eyes is much more
complicated than a simple OR.

In this chapter we will first describe the difficulties that arise from the
superposition of colored pixels and then we review the work on visual cryp-
tography for colored images.

We assume that the reader is familiar with (at least the basics of) black
and white visual cryptography.

2.1 Color superposition

What happens when we stack together two transparencies so that two pixels
get superposed? What is the color that the human eyes see as the result of
this superposition? Figure 2.1 illustrates the superposition operation with two
examples. In the first one we are using black and white pixels: the superpo-
sition of a black pixel with a white pixel yields a black pixel. In the second
example, we are using colored pixels: the superposition of a yellow pixel with
a magenta pixel yields a red pixels.

FIGURE 2.1
Pixels superposition: black and white (left) and colored (right).

Using only black and white images the result of the superposition of pixels
printed on transparencies is straightforward: it is black if and only if at least
one of the pixels is black.

The answer to the same question gets much more complicated when we use
colors. In order to understand what happens when we superpose transparen-
cies with colored pixels we have to talk a bit about light and color theory.
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2.1.1 Color vision and color models

Modern understanding of light and color vision is based upon the advances
of several great scientists, such as the ones due to Newton. Thanks to them
today we have a good understanding of light and colors; the topic is quite
complex and a rigorous and detailed explanation goes beyond the scope of
this chapter. However we will try to explain the basic properties of light and
colors because they are crucial for any visual cryptography scheme that deals
with color images.

Roughly speaking, light consists of electromagnetic energy with wave-
lengths in the approximate range of 350-750nm, as shown in Figure 2.2. The
visible range represents only a small fraction of the full electromagnetic spec-
trum.

FIGURE 2.2
Electromagnetic spectrum.

When a particular wavelength in such a range hits the retina in our eyes, it
is perceived as a color. In the visible range, shorter wavelengths are perceived
as bluish colors, middle wavelengths as greenish colors and higher wavelengths
as reddish colors. When our eyes are hit by several wavelengths we perceive a
color that is a sort of “sum” of the wavelengths. If the eyes are hit by all the
visible wavelengths, the perceived color is white. That is, a (pure) white light
consists of all the visible wavelengths.

The expressions “red light”, “yellow light”, etc., are technically incorrect,
but we will often use them to mean a light whose wavelength is perceived
as red, yellow, etc. Since each wavelength corresponds to a color, there are
infinite colors, one for each possible wavelength.

An object appears of a particular color because when light hits the object
some light is absorbed, that is some wavelengths are absorbed; the remaining
wavelengths are perceived by our eyes. When light hits an object it can also
be reflected (or pass through the object). An object of a particular color χ,
has strong absorption properties for the wavelengths that do not correspond
to χ while it reflects the light with color χ. For example, an object appears
yellow (when hit by a white light) because it reflects the yellow light and
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absorbs most strongly in the other parts of the spectrum. In the case of a
transparency, the light that is not absorbed instead of getting reflected passes
through the transparency.

A color model is a formal model that allows us to represent all (or some
of) the possible colors. One of the most used color model is the one called
“additive color model”. With this method three primary colors (usually red,
green and blue) are mixed to obtain other colors. Figure 2.3 shows this model
with the primaries red, green blue; the colors yellow, cyan and magenta are
produced when two of these primaries overlap. Varying the “intensity” of each
primary in the mixing we can obtain many other colors.

FIGURE 2.3
Additive color model with primaries red, green and blue.

The set of all possible colors that we can obtain depends on the three
primary colors that we use. Any three colors can be used as primaries; the
range of colors that we obtain is the gamut of those primaries. Unfortunately
no three primary colors exist so that their gamut corresponds to the set of
all possible colors; however by choosing red, green and blue as primaries we
obtain a very large number of colors in their gamut. This is why these three
colors have been chosen for the additive color model and the model is often
called RGB. Most displays use this model.

Another color model is the “subtractive color model”, also called the CMY
model. In this case the colors are obtained with a subtractive technique that
starts from a white light and subtracts wavelengths corresponding to the three
colors cyan, magenta and yellow. Figure 2.4 shows the CMY model.

Most modern printers use this model often exploiting also an additional
black ink; an additional K in the name CMYK indicates the use of the extra
black ink. Notice that we can obtain black by using all three inks (cyan,
magenta, yellow) together; however it is more efficient to cover a pixel with
just black ink, rather covering it with the three inks cyan, magenta and yellow.

In the additive model we start from the absence of light, which gives the
black color, and we add light to obtain other colors with the extreme case
being the white color obtained when we add all possible wavelengths. In the



Visual Cryptography for Color Images 33

FIGURE 2.4
Subtractive color model with primaries cyan, magenta and yellow.

subtractive model we start from a white light and we subtract wavelengths
to obtain other colors with the extreme case being the color black obtained
when we take out all possible wavelengths.

If we are not very picky, and a discussion about this aspect goes beyond
the scope of this chapter, we can say that the RGB and the CMY models
are equivalent and complementary. Indeed an ink with color cyan absorbs the
light corresponding to the red color, an ink with color magenta absorbs the
light corresponding to the green color and an ink with color yellow absorbs the
light corresponding to the blue color. Because of this, for both models, we will
formally represent a color χ as a triple (x, y, z), where x, y and z denote the
amount of red, green and blue, respectively, that χ consists of. The amount
of each type of light (red, green, blue) is described by an integer in the range
[0, L]. With this setting, we can produce (L + 1)3 different colors, which, for
L sufficiently large, are enough to approximate all colors that the human eyes
are able to distinguish. Typically, for computers, we have L = 255; To make
things easier, throughout this chapter, we use L = 100.

Each of the components x, y and z can be seen as a filter that let pass
through only some light. The color (0, 0, 0), which we will denote also with the
symbol “•”, is the black color: indeed all filters are 0 meaning that there is no
light left. The color (100, 100, 100), which we will denote also with the symbol
“◦”, is white because no light is absorbed by the filters. The colors red, green
and blue are represented, respectively, by (100, 0, 0), (0, 100, 0) and (0, 0, 100);
we will refer to these colors also as R, G and B, respectively. The colors cyan,
magenta and yellow are represented, respectively, by (0, 100, 100), (100, 0, 100)
and (100, 100, 0); we will refer to these colors also as C, M and Y, respectively.
The color (50, 0, 0) is also a red, because that is the only component present,
but it is darker since some red light has been absorbed. The higher is the
value of the component the lighter is the color. If all components are equal,
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i.e. (x, x, x), then the resulting color is a gray whose intensity depends on x:
the smaller is x, the darker is the gray.

Recall that this representation works fine both for the additive model and
for the subtractive model. In the additive model we start from (0, 0, 0) and add
light while in the subtractive model we start from (100, 100, 000) and subtract
light.

In the context of visual cryptography we can think of the transparencies as
filters; starting from a white light we “subtract” some light applying filters (the
transparencies). The remaining light determines the color that we see when
superposing several transparencies. At this point it is worth to emphasize that
“white” on a transparency is actually “transparent”. We assume to start with
a pure white light; if the transparency does not have any ink on it, then the
white light just passes through the transparency and we see white.

What is the color of the pixel resulting from the superposition of one or
more transparencies?

When we drop some ink on the transparency and hold the transparency
to the light we see the color that the ink let pass through. When more trans-
parencies get stacked together, the color of the resulting pixel depends on the
absorption properties of the inks on all the transparencies.

Let χ1 = (x1, y1, z1) and χ2 = (x2, y2, z2) be two colors and assume that
two pixels of color χ1 and of color χ2 are printed on two different transparen-
cies.

The following operator add describes the color superposition operation:

add(χ1, χ2) =
(

int

(x1x2

L

)

, int
(y1y2

L

)

, int
(z1z2

L

))

.

Notice that taking into account only the inks that we have used for each
transparency is a simplification: the perception of the final color depends also
on the material of the transparencies and the aberrations that the stack of
transparencies produces. Moreover it is likely that the initial light we start
with is not a pure white light and that there are also other sources of light in
the environment. However the add operator is a quite good approximation.

The add operation is commutative and thus the order in which we su-
perpose the colors is irrelevant. As expected, it results that add(Y, M) = R,
add(R, G) = Y, add(Y, M, C) = •. Figure 2.5 shows some other examples of
superposition of colored pixels.

The add operator can be easily extended to any number of pixels. Indeed
since the operation is commutative it is enough to add any two pixels each
time until we get to one pixel. Let χ1 = (x1, y1, z1), χ2 = (x2, y2, z2), . . . , χn =
(xn, yn, zn) be the colors of the pixels. The color of the pixel that results from
the superposition is:

add(χ1, χ2, . . . , χn) = (X, Y, Z)

where

X = int

(x1x2 . . . xn

Ln−1

)

, Y = int

(y1y2 . . . yn

Ln−1

)

, Z = int

(z1z2 . . . zn

Ln−1

)

.
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FIGURE 2.5
Examples of pixels superposition.

Figure 2.6 shows examples of superpositions with 3 pixels.

FIGURE 2.6
More examples of pixels superposition.

2.1.2 Lattices

Some papers (e.g. [7]) use finite lattices to formalize the properties of the
superposition of colored pixels. A finite lattice is a partially ordered set for
which any two elements of the set have a least upper bound and a greatest
lower bound. We can use a lattice to describe a color model.

In the additive model the superposition of two colored pixels corresponds to
the greatest lower bound while in the subtractive color model the superposition
corresponds to the least upper bound. The choice of a particular lattice is
equivalent to the choice of a color model. For example the lattice in Figure 2.7
is equivalent to the color model that uses the following 8 colors: black, white,
R, G, B, C, M and Y. Notice that this particular set of colors is closed under
the superposition operation. It is worth to emphasize that this lattice is not
equivalent to the RGB and CMY models: it only considers the 8 colors with
zero or full intensity while the RGB and CMY models have many more colors.
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FIGURE 2.7
Lattice for the RGB and CMY color models.

2.1.3 The darkening problem

When we superpose pixels having the same color, unless we have zero or full
intensity components, the resulting pixel is a darker version of the original
color. This is because each transparency is a filter that absorbs some light,
except when the transparency is white, and thus the resulting pixel is darker.
Figure 2.8 shows examples of superposition of pixels with the same color, a
light grey. As can be noticed in the figure, as we add more pixels the resulting
color becomes darker, with the limit being a full black.

We will refer to this problem as the darkening problem. Some of the schemes
that we will describe later superpose pixels with the same color, but ignore
the darkening problem.

2.1.4 The annihilator color

Since for any color χ we have that add(χ, •) = •, in many visual cryptography
schemes for color images the black color is often used to “cover up” other
colors so that they don’t show up in the reconstructed image. For this reason
we call the black color the “annihilator” color. The presence of the annihilator
color in the reconstructed image has no meaning and thus the observer has to
ignore it. The use of the annihilator color is not a problem from a formal point
of view but the visual effect is not good: in many cases the presence of the
annihilator color in the reconstructed image is overwhelming (e.g., 90% of the
image) and thus it is not reasonable to assume that the observer can recognize
the secret image. This is clearly a problem if we want to share images, but it
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FIGURE 2.8
The darkening problem

doesn’t rule out some applications as we will see in later sections. We remark
that the annihilator color, has nothing special: it is just the black color! If
the secret image contains black pixels, then we will not be able to distinguish
amongst the black pixels in the reconstructed image which ones were originally
black and which ones were annihilated.

2.1.5 The identity color

Color ◦ is the “identity” color, in the sense that for any color χ we have that
add(χ, ◦) = χ. In some schemes the identity color is used, together with the
annihilator color, as a special color. Recall that that in the context of visual
cryptography white is actually transparent.

2.2 Formal models for Colored VCS

In this section we discuss about the formal model for color visual cryptography,
or color-vc for short. We first recall the basic properties of the formal model
for black and white visual cryptography, b&w-vc for short, that will be needed
also for the case of color images and then we dwell upon the problems that
need to be tackled in order to define a formal model for color-vc.
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2.2.1 The models for b&w-vc

For b&w-vc the formal models used in the literature are all equivalent (with
variations on the metrics used for evaluation, like for example the contrast of
the scheme). The two key properties, that will be needed also for color images,
are:

• the safety property, which guarantees that non-qualified sets of participants
are not able to reconstruct the secret image;

• the contrast property, which guarantees that qualified sets of participants
are able to reconstruct the secret image.

To evaluate visual cryptography schemes the most important metric is the
pixel expansion, that is the number of subpixels used in the reconstructed
image for each pixel of the secret image.

Another important measure for the evaluation of b&w-vc schemes is the
contrast of the reconstructed image which can be defined as a function of the
contrast property. Several contrast properties and metrics can be found in
literature for b&w-vc. We refer the reader to the relevant papers about the
contrast (see for example [5]).

With the exception of the definition of the contrast, the formal model for
b&w-vc is pretty standard.

2.2.2 The models for color-vc

For color images even the model becomes difficult to define. Do we start
with a pre-specified palette, perhaps the one used in the secret image, or do
we consider all possible colors? What color model do we consider? Do we
consider the darkening problem? Is the palette closed under the superposition
operation? That is, if we start with a pre-specified palette, do we consider the
possibility that the reconstructed image contains colors that are not in the
original palette? How do we define the contrast property for color images and
what is the contrast metric? Do we allow the use of the annihilator color?
How do we account for it in the contrast property?

In the following we discuss about all these issues. We start by defining the
secret and the shares palettes as follows:

• Secret palette: this is the set of colors used in the secret image. This is a
finite set of c colors (we can have at most one color per pixel). To make
notation easier we will denote these colors simply with the set of integers
{1, 2, . . . , c}. For the colors white, black, red, green, blue, cyan, magenta and
yellow we will also use the corresponding symbol (◦, •, R, G, B, C, M, Y) instead
of the palette index.

• Shares palette: this is the set of colors that we can print on the shares or
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obtain by superposing printed shares. The shares palette might be the same
as the original palette, or it might be augmented with some (or even many)
other colors. Most of the schemes used in the literature augment the share
palette with the colors ◦ and •. We denote the colors in the shares palette
with the set of integers {1, 2, . . . , d}. When the shares palette is a superset
of the secret palette (this is the case in almost all of the scheme presented
in this chapter) we have that d ≥ c and to simplify the notation we assume,
without loss of generality, that the first c colors of the shares palette are
exactly those in the secret palette.

The secret image consists of a collection of pixels, each one with a color of
the secret palette. As for b&w-vc, each pixel of the secret image is encoded
in the shares into a certain number m of subpixels. Such an integer m is the
pixel expansion of the scheme.

In order to define a scheme we need to specify the qualified and the non-
qualified set of participants. There are n participants. For simplicity we con-
sider only the case of threshold schemes: Any set of at least k participants is
a qualified set, while any set with less than k participant is a non-qualified set
of participants.

In order to share each pixel of the secret image a trusted third party has to
create and distribute shares to the n participants. The creation of the shares
is defined using distribution matrices. These are c collections (multisets) of
n×m matrices C1, C2, ..., Cc, whose elements are in the shares palette.

To share a secret pixel of color i, the dealer randomly chooses one of the
matrices in Ci and distributes row j to participant j. Thus, the chosen matrix
defines the m subpixels in each of the n transparencies.

An example of distribution matrix is the following:

D =









1 • 1 M 1
R 1 1 ◦ 2
2 1 1 • 3
◦ M 1 G B









In this case the are n = 4 participants (number of rows in the distribution
matrices) and the pixel expansion of the scheme is m = 5 (number of columns
in the distribution matrices). If D is the matrix selected for the distribution
of the shares then the 5 subpixels in the first share will have colors 1•1M1,
while those in the second share will have colors R11◦2.

Given a distribution matrix M and a set of participants X, we denote
with M |X the submatrix of M obtained by considering only the rows of M
corresponding to the participants in X.

As for the black and white case, the definition of a scheme must satisfy
the security and the contrast properties:

Security property: Given a forbidden set X, |X| < k, the c collections of
|X|×m matrices, Di, i = 1, 2, ..., c, consisting of M |X for each M ∈ Ci, contain
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the same matrices with the same frequencies. This property guarantees that
a forbidden set of participants has no information on the secret image.

Contrast property: The contrast property has to guarantee that the secret
image will be visible for a qualified set of participants. For b&w-vc this
property uses two thresholds ℓ and h, with ℓ < h, and requires that when the
secret pixel is white, the number of black subpixels in the reconstruction is at
most ℓ and when the secret pixels is black, the number of black subpixels is
at least h. Many papers that deal with color images generalize this definition
requiring that in the reconstructed pixel there are at least h subpixel of color
i, where i is the color of the secret pixel, and for any other color j 6= i there
are at most ℓ subpixels with color j. Notice that this definition can be used
only if the shares palette is equal to the secret palette. Moreover it allows
the possibility that the reconstructed pixel is made up of an overwhelming
majority of subpixels with a wrong color. For example if h = 4, l = 3 and
c = 10 it is possible to have in the reconstructed pixel only 4 subpixels with the
right color while other 27 = 3 · 9 have (mixed) wrong colors. The annihilator
color • can be present without any restriction.

Probably a better definition of the contrast property should require that
in the reconstructed image there be at least h subpixels with the right color
and at most ℓ subpixels with wrong colors. That is, the number of subpixels
with the right color should be greater than the number of subpixels with a
wrong color (counting all the subpixels with wrong colors).

We will refer to the first property as the weak contrast property and to the
second one as the strong contrast property.

Next we provide a formalization of such properties. Define the add(M) for
a distribution matrix M to be the vector whose jth component is the add of
column j in M and define wi(v) for a vector v to be the number of elements
equal to color i, for i = 1, 2, . . . , c, that is for any color in the secret palette.
Moreover we define w̄i(v) to be the number of elements in v different from
color i and from the annihilator color.

Weak contrast property: There must exist h and ℓ, integers 0 ≤ ℓ < h ≤ m,
such that given a qualified set X, |X| = k, for any M ∈ Ci, it holds that
wi(add(M |X)) ≥ h and wj(add(M |X)) ≤ ℓ for any j in the shares palette
and j 6= i. Note that the annihilator color is not considered, that is, it is
allowed that many pixels be •.

Strong contrast property: There must exist h and ℓ, integers 0 ≤ ℓ < h ≤ m,
such that given a qualified set X, |X| = k, for any M ∈ Ci, it holds that
wi(add(M |X)) ≥ h and w̄i(add(M |X)) ≤ ℓ. Also in this case the annihilator
color can be present without restriction.

In the black and white case the thresholds ℓ and h, together with the pixel
expansion m have been used to define several variants of the contrast metric,
such as α = h−ℓ, α = (h−ℓ)/m and α = (h−ℓ)/(h+ℓ). Similar measures have
been used for color schemes and we will specify the definition of the contrast
when presenting the schemes. However for color-vc schemes we need to
account for the presence of the annihilator color in the reconstructed image



Visual Cryptography for Color Images 41

and this makes the contrast less important. We will evaluate the annihilator
presence which we can define as β = b/m, where b is the number of pixels that
get annihilated in the reconstruction process.

2.2.3 The sc, nd and general models

The schemes that we will review in the rest of the chapter can be classified,
based on the formal model that they use, into three classes. In the next para-
graph we define three formal models for color-vc.

The sc (same color) model.

The sc model does not allow the superposition of pixels with different colors,
with the exception of the identity (◦) and the annihilator (•) colors. Hence
the shares have to be constructed in such a way that each column in the
distribution matrices have elements taken from the set {i, ◦, •}, for some color
i. Thus, when we superpose several transparencies, we never have a pixel of
color i superposed with a pixel of color j.

Moreover the darkening problem is ignored. That is, it is assumed that
superposing several pixels with color i, the resulting color is still i.

An example of distribution matrix for such kind of schemes is the following
(we have used three colors, denoted with the numbers 1, 2 and 3):

D =









3 1 1 1 • 2 2 2 ◦ • 3 3 • 3 ◦ • • ◦ 1 • ◦ • 2
3 1 1 • 1 2 2 • 2 • 3 • 3 ◦ 3 • • 1 • ◦ ◦ 2 •
3 1 • 1 1 2 • 2 2 3 ◦ 3 • • 3 • 1 • • • 2 • •
3 ◦ 1 1 1 • 2 2 2 3 • • 3 3 • 1 • • • 2 ◦ ◦ ◦









As can be noted, in each column, we either have colors ◦, • or pixels with
a color χ = 1, 2 or 3. We never have a column that mixes two different colors
in the set {1, 2, 3}.

This restriction and the fact that the darkening problem is ignored allows
to avoid the complications that derive from color superposition.

The nd (no darkening) model.

The nd model is as the sc model but it considers the darkening problem. Thus
again we cannot superpose pixels with different colors, but if we superpose
several pixels with the same color we get a darker version of that color.

The general model.

In the general model there are no restrictions about the superposition of
pixels and the superposition operation satisfies the real properties of color
superposition. This means the the darkening problem is considered. Very few
schemes have been defined for this model.
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2.2.4 Base matrices

Given a matrix B we denote by C(B) the set of matrices obtained by permuting
in all possible ways the columns of B. In most schemes, the c collections Ci

are obtained by fixing c matrices Bi, i = 1, 2, . . . , c, and letting Ci = C(Bi).
The matrices Bi are called the “base matrices”. Base matrices constitute an
efficient representation of a scheme. Indeed, the dealer has to store only the
base matrices and in order to randomly choose a matrix from C(Bi) it has to
randomly choose a permutation of the columns of the base matrix Bi.

Notice that the security property for a base matrices scheme is equivalent
to: Given a forbidden set X, the matrices Bi|X, for i = 1, 2, . . . , c are the
same up to a permutation of the columns.

2.3 Schemes for the sc model

In this section we review the known schemes for the sc model. Verheul and
van Tilborg [10] were the first to consider visual cryptography schemes for
color images. Their model is equivalent to the sc one; as we will see shortly
their model requires a special property, which can be easily implemented us-
ing the sc model. The schemes of [10] were improved first by [2] and then
by [7, 11]. Paper [3] provides a lower bound on the pixel expansion and also
the construction of (n, n)-threshold schemes that achieve the lower bound.
It turns out that the (n, n)-threshold schemes of [7, 11] also have optimal
pixel expansion, which means that the schemes of [3] and those of [7, 11] are
equivalent.

2.3.1 The vv schemes

The model considered in [10], which we will call the vv model, requires a
special property: if we superpose pixels with different colors then the resulting
pixel is black. As we have explained earlier, this property is not natural.
When we superpose two pixels with different colors, we get a third color which
depends on the colors of the two superposed pixels. In some particular cases
the resulting color is actually black, but it is not black in most cases.

Verheul and van Tilborg propose a trick that “implements” such a prop-
erty. The trick works as follows: each pixel is divided into c subpixels, where
c is the number of colors in the secret image, subpixels i gets color number i,
while all other subpixels get painted with black, as shown in Figure 2.9.

This trick implements the required property and makes the vv model
equivalent to the sc model because in the resulting scheme subpixels with
different colors are never superposed. However, to implement the trick, we
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FIGURE 2.9
The vv trick for the case of 4 colors. Subpixels with different colors are never
superposed.

have to pay an extra pixel expansion factor of c and a considerable fraction
of the original pixel gets annihilated in the reconstruction.

The schemes of [10] are constructed using finite fields that satisfy certain
conditions. We refer the reader to the original paper for a detailed description
of the construction.

Assuming that c > 2 is a prime power, the construction produces

• (k, k)-threshold schemes with c colors for any k;

• (k, c− 1)-threshold schemes with c colors for k < c;

• (k, c)-threshold schemes with c colors for k < c, if k − 1 and c − 1 are not
relatively prime.

The pixel expansion of the schemes is m = ck; this includes the pixel
expansion m = ck−1 due to the construction of the scheme and the extra c
factor due to implementation of the special property of the vv model.

The reconstruction guarantees that there is at least one pixel of the original
color and no pixels with other colors, that is h = 1 and ℓ = 0. The contrast
property property considered is the weak one. However we note that when ℓ =
0 the weak and the strong contrast property are equivalent. The annihilator
presence β = (m−1)/m, that is only one out of the m pixels is of the original
color, while the remaining m− 1 are annihilated.

As an example, we report the (3, 3)-threshold 3-color scheme. Here are the
three base matrices.

B1 =





1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2





B2 =





1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
3 1 2 1 2 3 2 3 1





B3 =





1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
2 3 1 3 1 2 1 2 3
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The pixel expansion, that corresponds to the number of columns in the
base matrices, is m = ck−1 = 32 = 9. The above base matrices work only in
the vv model. Although the annihilator color is not explicitly used, it appears
because of the special property. Indeed, implementing the special property
using the trick suggested earlier, the base matrices become the following:

B1 =





1 • • 1 • • 1 • • • 2 • • 2 • • 2 • • • 3 • • 3 • • 3
1 • • • 2 • • • 3 1 • • • 2 • • • 3 1 • • • 2 • • • 3
1 • • • 2 • • • 3 • 2 • • • 3 1 • • • • 3 1 • • • 2 •





B2 =





1 • • 1 • • 1 • • • 2 • • 2 • • 2 • • • 3 • • 3 • • 3
1 • • • 2 • • • 3 1 • • • 2 • • • 3 1 • • • 2 • • • 3
• • 3 1 • • • 2 • 1 • • • 2 • • • 3 • 2 • • • 3 1 • •





B3 =





1 • • 1 • • 1 • • • 2 • • 2 • • 2 • • • 3 • • 3 • • 3
1 • • • 2 • • • 3 1 • • • 2 • • • 3 1 • • • 2 • • • 3
• 2 • • • 3 1 • • • • 3 1 • • • 2 • 1 • • • 2 • • • 3





Hence the real pixel expansion is m = ck = 33 = 27. In this particular case
superposing 3 shares we get 26 black pixels out of 27 and just 1 colored pixel.
That is, the annihilator presence is β = 26/27 (about 96%).

This approach doesn’t seem practicable for images, but it can be used for
other applications, like sharing passwords associating, for example, a digit to
each color. For example, as reported in [10], if we use pixels of diameter 0.5cm
with 9 colors we can build a (3, 9)-threshold visual scheme with 9 colors using
92 = 81 pixels for each color of the password; on a standard A4 page there is
room for a 90 digit password.

2.3.2 The bdd schemes

Blundo et al. [2] focus on schemes with maximal contrast. They consider the
weak contrast property and define the contrast as α = (h − ℓ)/(h + ℓ). The
following results are provided in [2]:

• A first construction of c-color (2, n)-threshold color-vc schemes with max-
imal contrast. The construction requires c > n.

• A proof that the above condition c > n is necessary to have a maximal
contrast scheme. It turns also out that, among the schemes with maximal
contrast, the schemes provided by the first construction are also with optimal
pixel expansion.

• A second construction of c-color (2, n)-threshold color-vc schemes. Such
a construction gives a better pixel expansion with respect to the first one
but the schemes are not with maximal contrast.

• A construction of maximal contrast c-color (n, n)-threshold color-vc

schemes with improved pixel expansion with respect to those provided
in [10].
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We refer the interested reader to [2] for details about the constructions
and the lower bound cited in this section.

2.3.3 The ky and yl schemes

Koga and Yamamoto [7] and independently, Yang and Laih [11] provide (k, n)-
threshold c-color schemes that improve on the pixel expansion of the schemes
in [10, 2]. Here we report the construction provided in [11], but the one in [7]
is equivalent.

Construction 1 The construction exploits as a building block the base ma-
trices B◦ and B• of a scheme for black and white images. In order to obtain
the base matrix Bi for color i we can concatenate one modified copy of B◦
with c− 1 modified copies of B•. The required modifications are the following:
in B◦ we substitute ◦ with color i while in the c− 1 copies of B• we substitute
◦ with the remaining c − 1 colors (one color per copy). The pixel expansion
of the c-color scheme is c times the pixel expansion of the original black and
white scheme.

As an example, consider the following (3, 3)-threshold 3-color scheme. We
start with the base matrices of a (3, 3)-threshold scheme for black and white
images as defined in the paper by Naor and Shamir [8] (however the construc-
tion works with any other choice of the black and white base matrices):

B◦ =





◦ • ◦ •
◦ • • ◦
◦ ◦ • •



 B• =





• ◦ ◦ •
◦ • ◦ •
◦ ◦ • •





Then we construct the base matrices for the 3-color scheme as follows:

B1 = [B◦→1
◦ |B◦→2

• |B◦→3
• ] =





1 • 1 • • 2 2 • • 3 3 •
1 • • 1 2 • 2 • 3 • 3 •
1 1 • • 2 2 • • 3 3 • •





B2 = [B◦→1
• |B◦→2

◦ |B◦→3
• ] =





• 1 1 • 2 • 2 • • 3 3 •
1 • 1 • 2 • • 2 3 • 3 •
1 1 • • 2 2 • • 3 3 • •





B3 = [B◦→1
• |B◦→2

• |B◦→3
◦ ] =





• 1 1 • • 2 2 • 3 • 3 •
1 • 1 • 2 • 2 • 3 • • 3
1 1 • • 2 2 • • 3 3 • •





Using as building block the original (k, n)-threshold scheme provided in
the paper by Naor and Shamir [8], whose pixel expansion is 2k−1, the c-color
schemes so obtained have pixel expansion m = c×2k−1. This greatly improves
on the pixel expansion of [2, 10].

Finally, as observed, also in [11], we can delete from the base matrices the
columns which have all pixels with color •. Using the base matrices provided in
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the paper by Naor and Shamir [8], for n even we always have one such column
in each base matrix, while for n odd we always have c − 1 such columns
in each base matrix. Hence the pixel expansion can be further improved to
m = c × 2k−1 − 1 for n even and to m = c × 2k−1 − c + 1 for n odd. This is
important as we will see that for k = n this improved pixel expansion matches
a lower bound proved in [3].

The contrast property considered is the weak one. The scheme have pa-
rameters h = 1 and ℓ = 0 (recall that for the special case of ℓ = 0 the weak
contrast property is equivalent to the strong one). The annihilator presence is
β = (m− 1)/m.

The same idea used for the construction of c-color (k, n)-threshold schemes
starting from black and white (k, n)-threshold schemes, can be used also for
general access structure schemes. The pixel expansion of the c-color scheme is
c times the pixel expansion of the black and white scheme that we start with.

2.3.4 The cdd schemes and a lower bound

Paper [3] defines the contrast as α = (h−ℓ)/m and considers the weak contrast
property. The following theorems are proved in [3]:

Theorem 1 In the sc model, the optimal contrast of a c-color (n, n)-threshold
scheme is

αopt =

{

1

c·2n−1−1
, if n is even

1

c·2n−1−c+1
, if n is odd.

Theorem 2 In the sc model, the pixel expansion of a c-color (n, n)-threshold
scheme, for any c, n ≥ 2, is lower bounded by

m ≥

{

c · 2n−1 − 1, if n is even

c · 2n−1 − c + 1, if n is odd.

Note that the above lower bound implies that the schemes of [7, 11] have
optimal pixel expansion. In [3] an alternative construction of c-color (n, n)-
threshold schemes with optimal pixel expansion is provided. The construction
is the following:

Construction 2 Fix any color i; base matrix Ci consists of the following
columns:

1. for r = 0, 1, . . . , ⌈n/2⌉ − 1 include the
(

n
2r

)

columns, having 2r
entries equal to • and the remaining ones of color i;

2. for any color j 6= i, for r = 0, 1, . . . , ⌈n−1

2
⌉−1 include the

(

n
2r−1

)

columns having 2r− 1 entries equal to • and the remaining ones of
color j;



Visual Cryptography for Color Images 47

Below is an example for c = 3 and n = 4. For such a scheme m = 23 and
α = 1/23.

C1 =









1 2 2 2 • 3 3 3 • • 1 1 • 1 • • • • 2 • • • 3
1 2 2 • 2 3 3 • 3 • 1 • 1 • 1 • • 2 • • • 3 •
1 2 • 2 2 3 • 3 3 1 • 1 • • 1 • 2 • • • 3 • •
1 • 2 2 2 • 3 3 3 1 • • 1 1 • 2 • • • 3 • • •









C2 =









2 1 1 1 • 3 3 3 • • 2 2 • 2 • • • • 1 • • • 3
2 1 1 • 1 3 3 • 3 • 2 • 2 • 2 • • 1 • • • 3 •
2 1 • 1 1 3 • 3 3 2 • 2 • • 2 • 1 • • • 3 • •
2 • 1 1 1 • 3 3 3 2 • • 2 2 • 1 • • • 3 • • •









C3 =









3 1 1 1 • 2 2 2 • • 3 3 • 3 • • • • 1 • • • 2
3 1 1 • 1 2 2 • 2 • 3 • 3 • 3 • • 1 • • • 2 •
3 1 • 1 1 2 • 2 2 3 • 3 • • 3 • 1 • • • 2 • •
3 • 1 1 1 • 2 2 2 3 • • 3 3 • 1 • • • 2 • • •









Other results of [3] are

• A characterization of maximal contrast (k, n)-thresholds schemes. The char-
acterization describes the schemes with a linear programming problem.

• A construction of c-color (2, n)-threshold schemes with improved pixel ex-
pansion with respect to [10, 11].

2.4 Schemes for the nd model

In this section we describes schemes that work for the nd model. This model
has been considered only in [4] where a construction for c-color (k, n)-threshold
schemes is presented.

In order to have pixels with exactly the same color as the original one the
schemes of [4] have the property that in any shares superposition at most one
pixel is colored; all other pixels have one of the two special colors ◦ or •.

The construction uses as a building block a black and white (k− 1, k− 1)-
threshold scheme.

Construction 3 Let S◦k−1
and S•k−1

be the basis matrices of a (k− 1, k− 1)-
threshold scheme and let m′ be the pixel expansion of such a scheme. Denote
the rows of S◦k−1

and S•k−1
with wi and bi, respectively:

S◦k−1 =













w1

w2

...

...
wk−1













, S•k−1 =













b1

b2

...

...
bk−1













.
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Let S•1 = [•] and S◦1 = [◦]. Then let Fk,n(i, Sφ
k−1

), where i ∈ {1, 2, ..., c}

and φ ∈ {◦, •} be the n×
(

n
k

)

m′ matrix constructed by
(

n
k

)

submatrices, called
“blocks”, with dimension n×m′ each consisting of the following rows: n− k
(“black”) rows of m′ elements •; Each block differs from the others in the
choice of the n−k “black” rows; The remaining k rows are filled with one row
of elements equal to i followed in order by the k − 1 rows of Sφ

k−1
.

Base matrix for color i, for i ∈ {1, 2, ..., c}, is given by:

Bi = Fk,n(1, S•k−1) + . . . + Fk,n(i− 1, S•k−1) + Fk,n(i, S◦k−1) +

Fk,n(i + 1, S•k−1) + . . . + Fk,n(c, S•k−1)

where + denotes the concatenation of the matrices.

An example will clarify the above construction. Let k = 3 and n = 4 and
consider the matrices S◦k−1

and S•k−1
given by the Naor and Shamir (2, 2)-

threshold scheme [8], that is

S◦2 =

[

◦ •
◦ •

]

, S•2 =

[

◦ •
• ◦

]

.

The F matrices will have
(

n
k

)

= 4 blocks, since we have to place 1 black row
in each of 4 possible positions. Hence we have:

F3,4(i, S
◦
2 ) =









i i i i i i • •
◦ • ◦ • • • i i
◦ • • • ◦ • ◦ •
• • ◦ • ◦ • ◦ •









, F3,4(i, S
•
2 ) =









i i i i i i • •
◦ • ◦ • • • i i
• ◦ • • ◦ • ◦ •
• • • ◦ • ◦ • ◦









.

The vertical bars identify the 4 blocks. As can be seen each block is given by
1 black row, and the remaining rows filled, in this order, by one row of i’s and
the rows of S◦2 (or S•2 ), from the first to the last. Using the above F matrices
we can build the following 3-color (3, 4)-threshold scheme.

B1 =









1 1 1 1 1 1 • • 2 2 2 2 2 2 • • 3 3 3 3 3 3 • •
◦ • ◦ • • • 1 1 ◦ • ◦ • • • 2 2 ◦ • ◦ • • • 3 3
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦









,

B2 =









2 2 2 2 2 2 • • 1 1 1 1 1 1 • • 3 3 3 3 3 3 • •
◦ • ◦ • • • 2 2 ◦ • ◦ • • • 1 1 ◦ • ◦ • • • 3 3
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦









,

B3 =









3 3 3 3 3 3 • • 1 1 1 1 1 1 • • 2 2 2 2 2 2 • •
◦ • ◦ • • • 3 3 ◦ • ◦ • • • 1 1 ◦ • ◦ • • • 2 2
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦









.
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Construction 3 builds a c-color (k, n)-threshold scheme with pixel expan-
sion m = c

(

n
k

)

m′, where m′ is the pixel expansion of the black and white
scheme used as building block. The thresholds ℓ and h depend on the b&w
scheme used as building block, If such a scheme is with perfect reconstruction
of black pixels the resulting scheme has ℓ = 0, h ≥ 1. Notice that the contrast
property satisfied is the weak one.

Using as a building block the best, with respect to the pixel expansion,
b&w (k − 1, k − 1)-threshold scheme, provided in [8], whose pixel expansion
is m′ = 2k−2, the resulting scheme has pixel expansion

m = c

(

n

k

)

2k−2.

For k = n the pixels expansion is m = c2n−2. The model assumes the weak
contrast property. The parameters h and ℓ are h = 1 and ℓ = 0 and the
annihilator presence is β = (m− 1)/m.

We remark that the schemes of [4] are constructed with the restriction that
the shares have only one colored pixel. This is not a restriction on the model
but just on the kind of schemes that can be constructed. Although this limits
the search space for good schemes, it guarantees that the reconstructed pixels
are exactly of the same original color (and not a darker version of it).

If we consider a model that requires this special property the c-color (n, n)-
threshold schemes of [4] are optimal with respect to the pixel expansion:

Theorem 3 [4] If the shares are restricted to be such that for any superposi-
tion it is possible to have at most one colored pixel, any c-color (n, n)-threshold
scheme has pixel expansion m ≥ c2n−2.

Other results presented in [4]:

• A construction of c-color (2, n)-threshold with pixel expansion m = c(n−1).

• A matching lower bound m ≥ c(n− 1).

• A construction of c-color (2, n)-threshold with contrast α = 2

cn . The contrast
is defined as α = (h − ℓ)/m and the thresholds h and ℓ satisfy the weak
contrast property.

• An upper bound on the contrast α ≤ k
cn . This matches the construction for

k = 2.

2.5 Schemes for the general model

In this last section we finally describe schemes for color-vc that consider
the general model, that is we consider schemes that superimpose pixels with
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different colors. In the rest of the section we present several (2, 2)-threshold
schemes from [7, 1] and a construction for (2, n)-threshold schemes from [1].

2.5.1 (2, 2)-threshold schemes

In this section we present schemes for the particular case of k = n = 2.

Scheme 1 [7] The secret palette is {Y, C, G} while the shares palette is
{Y, C, G, ◦, •}. The base matrices are:

SY =

[

Y ◦ • C
◦ Y C •

]

SC =

[

C ◦ • Y
◦ C Y •

]

SG =

[

Y C ◦ •
C Y • ◦

]

It is easy to see that for this scheme the pixel expansion is m = 4 and we
have h = 2, ℓ = 0. The annihilator presence is β = 1/2 because 2 out of 4
pixels are annihilated.

Scheme 2 [7] Both the secret palette and the shares palette are {◦, Y, M, C, R, G, B, •}.
The base matrices are:

S◦ =

[

◦ Y M C • • • •
◦ • • • Y M C •

]

SY =

[

Y ◦ M C • • • •
◦ Y • • M C • •

]

SM =

[

M ◦ C Y • • • •
◦ M • • C Y • •

]

SC =

[

C ◦ Y M • • • •
◦ C • • Y M • •

]

SR =

[

Y M C ◦ • • • •
M Y • • C ◦ • •

]

SG =

[

C Y M ◦ • • • •
Y C • • M ◦ • •

]

SB =

[

M C Y ◦ • • • •
C M • • Y ◦ • •

]

S• =

[

Y M C ◦ • • • •
• • • • Y M C ◦

]

For this scheme the pixel expansion is m = 8 and we have h = 1, ℓ = 0.
The annihilator presence is β = 7/8 because in most cases 6 out of 8 pixels are
annihilated and for the color white 7 out of 8 pixels are annihilated. Because
of this, if we restrict the secret palette to {Y, M, C, R, G, B, •} and add ◦ for the
shares palette the resulting scheme has h = 2 improving the contrast.

Scheme 3 [7] Both the secret palette and the shares color palette are
{◦, Y, M, C, R, G, B, •}. The base matrices are:

S◦ =

[

◦ Y M C •
◦ B G R •

]

SY =

[

Y M C • ◦
◦ G R B •

]

SM =

[

M C Y • ◦
◦ R B G •

]

SC =

[

C Y M • ◦
◦ B G R •

]
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SR =

[

◦ Y M C •
R B G • ◦

]

SG =

[

◦ C Y M •
G R B • ◦

]

SB =

[

◦ M C Y •
B G R • ◦

]

S• =

[

• ◦ Y M C
◦ • B G R

]

It is easy to see that for this scheme the pixel expansion is m = 5 and we
have h = 1, ℓ = 0. The annihilator presence β = 4/5 because 4 out of 5 pixels
are annihilated.

Scheme 4 [1] The secret and shares palette are {R, G, B, C, M, Y}. The base ma-
trices are:

SR =

[

Y M C • • ◦
M Y • C ◦ •

]

SG =

[

Y C M • • ◦
C Y • M ◦ •

]

SB =

[

M C Y • • ◦
C M • Y ◦ •

]

SC =

[

C ◦ M Y • •
◦ C • • M Y

]

SM =

[

M ◦ Y C • •
◦ M • • Y C

]

SY =

[

Y ◦ C M • •
◦ Y • • C M

]

It is easy to see that for this scheme the pixel expansion is m = 6 and we
have h = 2, ℓ = 0. The annihilator presence β = 2/3 because 4 out of 6 pixels
are annihilated.

2.5.2 The (2, n)-threshold as schemes

In [1] a constructions of (2, n)-threshold schemes is provided. The construc-
tion use as a building block the base matrix S• for the black color of the
(2, n)-threshold scheme for black and white images defined in [2]. Matrix S•

is defined as all the binary column-vector with weight
(

n
⌊n/2⌋

)

, with the sub-

stitutions 1↔ • and 0↔ ◦. For example, for n = 4, we have

S•4 =









1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1









=









• ◦ ◦ • ◦ •
• • ◦ ◦ • ◦
◦ • • • ◦ ◦
◦ ◦ • ◦ • •









Then to obtain the color scheme the black and white pixels are substituted
with the rows of a specific (2, 2)-threshold color scheme. For example using the
ky scheme for the set of colors {C, Y, G} with m = 4 provided in the previous
section and substituting • with the first row of the base matrix for a given
color and ◦ with the second row of the base matrix we get the base matrix
for that color. For example to get the base matrix for color Y for the (2, 4)-
threshold scheme we substitute in S◦4 the symbol • with Y◦•C and the symbol
◦ with ◦YC•.

The scheme that we obtain is:
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SC =









◦ C • Y C ◦ Y • C ◦ Y • ◦ C • Y C ◦ Y • ◦ C • Y
◦ C • Y ◦ C • Y C ◦ Y • C ◦ Y • ◦ C Y • ◦ C • Y
C ◦ Y • ◦ C • Y ◦ C • Y ◦ C • Y C ◦ Y • C ◦ Y •
C ◦ Y • C ◦ Y • ◦ C • Y C ◦ Y • ◦ C • Y ◦ C • Y









SY =









◦ Y • C Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C
◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C • ◦ Y C • ◦ Y • C
Y ◦ C • ◦ Y • C ◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C •
Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C ◦ Y • C









SY =









◦ Y • C Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C
◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C • ◦ Y C • ◦ Y • C
Y ◦ C • ◦ Y • C ◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C •
Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C ◦ Y • C









2.6 Other schemes

In [9] Shyu proposes a construction which is very similar to the one used
in [7, 11]. However the model, although for many aspects equal to the sc

model, has a crucial difference: the author assumes that the color perceived
by the human eyes is an “average” of the colors present in the subpixels of
the reconstructed pixels. For example if a given surface is evenly covered with
red and green we should see yellow as result. Although this is in principle
true in practice it works only if the pixels are so tiny and evenly distributed
that our eyes is not able to distinguish the single pixels and perceives an
average color mixing the two primary colors. What really happens is that
our eyes perceive the mixture of red and green. However this does not mean
that we cannot use this model. We have to accept the fact that a secret color
(yellow for example) is reconstructed as a mixture of other colors (red and
green for example). This model allows to build schemes with a better pixel
expansion, namely m = ⌈log c⌉ × 2n−1. The contrast properties that we have
used throughout this paper are not applicable to this model.

In [6] Hou proposes a method that first splits the secret image into the cyan,
magenta and yellow components and then uses ad-hoc (2, 2)-threshold schemes
to share those components. Although the paper claims that this method is
easily extensible to (k, n)-threshold scheme it is not clear how to use the ad-
hoc (2, 2)-threshold schemes for the general case of (k, n)-threshold scheme.
A proof of the security property is also missing.
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2.7 Conclusions

Stepping from visual cryptography for black and white images to visual cryp-
tography for color images is not immediate. The color model poses some tricky
questions that arise from the complex behavior of colors superposition. Many
visual cryptography schemes for color images avoid the problem by not super-
posing pixels with different colors. Very few known schemes do actually exploit
color superposition. In this chapter we have first emphasized the difficulties
that arise from the superposition of colored pixels; then we have provided a
survey of the models of visual cryptography for color images that have been
considered in the literature and a survey of the schemes that have been pro-
posed for such models.

Visual cryptography for black and white images has been thoroughly stud-
ied. The case of color images is still pretty much unexplored. A first direction
of research concerns the definition of a reference model. We believe that the
general model is the one that best represents the real world. All the models
proposed in the literature lack a well defined notion of contrast, which is a
very important measure for the evaluation of the schemes. A second direction
of research concerns the search for schemes that do use the properties of color
superposition. The construction of schemes for color images seems to be much
more difficult than for black and white images.
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