776 research outputs found

    Hacia el modelado 3d de tumores cerebrales mediante endoneurosonografĂ­a y redes neuronales

    Get PDF
    Las cirugĂ­as mĂ­nimamente invasivas se han vuelto populares debido a que implican menos riesgos con respecto a las intervenciones tradicionales. En neurocirugĂ­a, las tendencias recientes sugieren el uso conjunto de la endoscopia y el ultrasonido, tĂ©cnica llamada endoneurosonografĂ­a (ENS), para la virtualizaciĂłn 3D de las estructuras del cerebro en tiempo real. La informaciĂłn ENS se puede utilizar para generar modelos 3D de los tumores del cerebro durante la cirugĂ­a. En este trabajo, presentamos una metodologĂ­a para el modelado 3D de tumores cerebrales con ENS y redes neuronales. EspecĂ­ficamente, se estudiĂł el uso de mapas auto-organizados (SOM) y de redes neuronales tipo gas (NGN). En comparaciĂłn con otras tĂ©cnicas, el modelado 3D usando redes neuronales ofrece ventajas debido a que la morfologĂ­a del tumor se codifica directamente sobre los pesos sinĂĄpticos de la red, no requiere ningĂșn conocimiento a priori y la representaciĂłn puede ser desarrollada en dos etapas: entrenamiento fuera de lĂ­nea y adaptaciĂłn en lĂ­nea. Se realizan pruebas experimentales con maniquĂ­es mĂ©dicos de tumores cerebrales. Al final del documento, se presentan los resultados del modelado 3D a partir de una base de datos ENS.Minimally invasive surgeries have become popular because they reduce the typical risks of traditional interventions. In neurosurgery, recent trends suggest the combined use of endoscopy and ultrasound (endoneurosonography or ENS) for 3D virtualization of brain structures in real time. The ENS information can be used to generate 3D models of brain tumors during a surgery. This paper introduces a methodology for 3D modeling of brain tumors using ENS and unsupervised neural networks. The use of self-organizing maps (SOM) and neural gas networks (NGN) is particularly studied. Compared to other techniques, 3D modeling using neural networks offers advantages, since tumor morphology is directly encoded in synaptic weights of the network, no a priori knowledge is required, and the representation can be developed in two stages: off-line training and on-line adaptation. Experimental tests were performed using virtualized phantom brain tumors. At the end of the paper, the results of 3D modeling from an ENS database are presented

    Unsupervised classification of remote sensing images combining Self Organizing Maps and segmentation techniques

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.This study aimed a procedure of unsupervised classification for remote sensing images based on a combination of Self-Organizing maps (SOM) and segmentation. The integration is conceived first obtaining clusters of the spectral behavior of the satellite image using Self-Organizing Maps. As visualization technique for the SOM is used the U-matrix. Subsequently is used seeded region growing segmentation technique to obtain a delimitation of the clusters in the data. Finally, from the regions of neurons in the U-matrix are deduced the clusters in the original pixels of the image. To evaluate the proposed methodology it was considered a subset of a satellite image as use case. The results were measured through accuracy assessment of the case and comparing definition of the obtained clusters against each technique separately. Cramers'V was used to evaluate the association between clustering obtained each method separately and reference data for the specific use case

    Automatic Building Change Detection in Wide Area Surveillance

    Get PDF
    We present an automated mechanism that can detect and characterize the building changes by analyzing airborne or satellite imagery. The proposed framework can be categorized into three stages: building detection, boundary extraction and change identification. To detect the buildings, we utilize local phase and local amplitude from monogenic signal to extract building features for addressing issues of varying illumination. Then a support vector machine with Radial basis kernel is used for classification. In the boundary extraction stage, a level-set function with self-organizing map based segmentation method is used to find the building boundary and compute physical area of the building segments. In the last stage, the change of the detected building is identified by computing the area differences of the same building that captured at different times. The experiments are conducted on a set of real-life aerial imagery to show the effectiveness of the proposed method

    Acne Segmentation and Classification using Region Growing and Self-Organizing Map

    Get PDF
    Acne vulgaris is a common skin disease found in human of all ages and genders. Acnes have different types according to their severity. In this research, an application was developed to segment and process the classification an acne object in humans face. The process begins with the insertion of several seed points on a picture. Each of those seed points were developed further into a region that mask the whole acne using region growing method. Afterward, the regions were grouped together with other acne of similar features using self-organizing map. According to the experimental result, the region growing method gives a satisfying result to do segmentation on an acne object. But it should be pointed out that every different acne object requires different threshold to achieve an ideal result. Self-organizing map gives an undesirable result, as the input picture with different skin colors and lighting conditions affect the accuracy of the result

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisiĂłn del estado del arte sobre la segmentaciĂłn de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    Efficient Thermal Image Segmentation through Integration of Nonlinear Enhancement with Unsupervised Active Contour Model

    Get PDF
    Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity enhancement technique and Unsupervised Active Contour Models (UACM). The nonlinear intensity enhancement improves visual quality by combining dynamic range compression and contrast enhancement, while the UACM incorporates active contour evolutional function and neural networks. The algorithm is tested on segmenting different objects in thermal images and it is observed that the nonlinear enhancement has significantly improved the segmentation performance
    • 

    corecore