2,705 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics

    Full text link
    We revisit the color-diffusion algorithm [P. C. Aeberhard et al., Phys. Rev. Lett. 108, 095901 (2012)] in nonequilibrium ab initio molecular dynamics (NE-AIMD), and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored-atom) is accelerated toward the neighboring defect-site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate k_{NE} increases exponentially with the force intensity F, up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed k_{NE}(F) dependence on F. Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures, and reaches a factor of four orders of magnitude at the lowest temperature considered in the present study

    Color and Spectral Mixings in Printed Surfaces

    No full text
    International audienceThe present paper discusses the concept of subtractive color mixing widely used in color hardcopy applications and shows that a more realistic concept would be " spectral mixing " : the physical description of the coloration of light by printed surfaces comes from the mixing of light components selectively absorbed by inks or dyes during their patch within the printing materials. Some classical reflectance equations for continuous tone and halftone prints are reviewed and considered as spectral mixing laws. The challenge of extending these models to new inkless printing processes based on laser radiation is also addressed. Color mixing is a key-concept in color reproduction, either by painting, printing, or displaying. It refers to the observation that a large panel of colors (the color gamut) can be achieved by varying the amount of a limited set of base colors, called primaries. With light emitting systems, the primaries are light sources, often with red, green and blue color, that are either superposed or juxtaposed with a shorter period than the visual acuity. Since the tristimulus values of the produced colors is a linear, additive combination of the tristimulus values of the three primaries, this type of color mixing has been called additive color mixing. This concept, based on Grassman's additivity law, enabled the color matching experiments at the basis of colorimetry [1]. In opposition to the light emitting systems, paintings and printed hardcopies selectively attenuate the incident white light in different proportions according to the wavelength. Layers of primaries, paints or inks, are coated on a reflecting support and play a role of spectral filtering of light. This type of color mixing is improperly called subtractive color mixing [2], by reference to the fact that part of the incident light is removed by filtering, but the tristimulus values of paint or ink mixtures cannot be obtained by combining the tristimulus values of the primaries; it is therefore not a color mixing in the sense of colorimetry. However, the subtractive color mixing is also related to a physical experience, which consists in producing many colors by mixing nonscattering dyes, usually of cyan, magenta and yellow color. According to the Beer-Lambert-Bouguer law [1], the spectral absorption coefficient of the dye mixture, () K λ , is a linear, additive combi-The final publication is available at http://link.springer.co

    On the Origin of the Slow Speed Solar Wind: Helium Abundance Variations

    Full text link
    The First Ionization Potential (FIP) effect is the by now well known enhancement in abundance over photospheric values of Fe and other elements with first ionization potential below about 10 eV observed in the solar corona and slow speed solar wind. In our model, this fractionation is achieved by means of the ponderomotive force, arising as Alfv\'en waves propagate through or reflect from steep density gradients in the solar chromosphere. This is also the region where low FIP elements are ionized, and high FIP elements are largely neutral leading to the fractionation as ions interact with the waves but neutrals do not. Helium, the element with the highest FIP and consequently the last to remain neutral as one moves upwards can be depleted in such models. Here, we investigate this depletion for varying loop lengths and magnetic field strengths. Variations in this depletion arise as the concentration of the ponderomotive force at the top of the chromosphere varies in response to Alfv\'en wave frequency with respect to the resonant frequency of the overlying coronal loop, the magnetic field, and possibly also the loop length. We find that stronger depletions of He are obtained for weaker magnetic field, at frequencies close to or just above the loop resonance. These results may have relevance to observed variations of the slow wind solar He abundance with wind speed, with slower slow speed solar wind having a stronger depletion of He.Comment: 28 pages, 12 figures, accepted to Ap

    An Abundance Analysis for Five Red Horizontal Branch Stars in the Extremely Metal Rich Globular Cluster NGC 6553

    Get PDF
    We provide a high dispersion line-by-line abundance analysis of five red HB stars in the extremely metal rich galactic globular cluster NGC 6553. These red HB stars are significantly hotter than the very cool stars near the tip of the giant branch in such a metal rich globular cluster and hence their spectra are much more amenable to an abundance analysis than would be the case for red giants. We find that the mean [Fe/H] for NGC 6553 is -0.16 dex, comparable to the mean abundance in the galactic bulge found by McWilliam & Rich (1994) and considerably higher than that obtained from an analysis of two red giants in this cluster by Barbuy etal (1999). The relative abundance for the best determined alpha process element (Ca) indicates an excess of alpha process elements of about a factor of two. The metallicity of NGC 6553 reaches the average of the Galactic bulge and of the solar neighborhood.Comment: 29 pages, 6 figures, accepted for publication in the Ap

    Ab-initio simulation and experimental validation of beta-titanium alloys

    Full text link
    In this progress report we present a new approach to the ab-initio guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical simulation method in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys with respect to three constraints: (i) the use of non-toxic alloy elements; (ii) the stabilization of the body centered cubic beta phase at room temperature; (iii) the reduction of the elastic stiffness compared to existing Ti-based alloys. Following the theoretical predictions, the alloys of interest are cast and characterized with respect to their crystallographic structure, microstructure, texture, and elastic stiffness. Due to the complexity of the ab initio calculations, the simulations have been focused on a set of binary systems of Ti with two different high melting bcc metals, namely, Nb and Mo. Various levels of model approximations to describe mechanical and thermodynamic properties are tested and critically evaluated. The experiments are conducted both, on some of the binary alloys and on two more complex engineering alloy variants, namely, Ti-35wt.%Nb-7wt.%Zr-5wt.%Ta and a Ti-20wt.%Mo-7wt.%Zr-5wt.%Ta.Comment: 23 pages, progress report on ab initio alloy desig

    Crustal evolution inferred from Apollo magnetic measurements

    Get PDF
    Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments

    On acceleration and motion of ions in corona and solar wind

    Get PDF
    Equations of motion for ions in corona and solar win

    Spectral modeling of a six-color inkjet printer

    Get PDF
    After customizing an Epson Stylus Photo 1200 by adding a continuous-feed ink system and a cyan, magenta, yellow, black, orange and green ink set, a series of research tasks were carried out to build a full spectral model of the printers output. First, various forward printer models were tested using the fifteen two color combinations of the printer. Yule- Nielsen-spectral-Neugebauer (YNSN) was selected as the forward model and its accuracy tested throughout the colorant space. It was found to be highly accurate, performing as well as a more complex local, cellular version. Next, the performance of nonlinear optimization-routine algorithms were evaluated for their ability to efficiently invert the YNSN model. A quasi-Newton based algorithm designed by Davidon, Fletcher and Powell (DFP) was found to give the best performance when combined with starting values produced from the non-negative least squares fit of single-constant Kubelka- Munk. The accuracy of the inverse model was tested and different optimization objective functions were evaluated. A multistage objective function based on minimizing spectral RMS error and then colorimetric error was found to give highly accurate matches with low metameric potential. Finally, the relationship between the number of printing inks and the ability to eliminate metamerism was explored
    corecore