71 research outputs found

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE

    Swarm-based planning and control of robotic functions

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Basic issues with a robotic task that requires multiple mobile robots moving in formations are to assemble at an initial point in the work space for establishing a desired formation, to maintain the formation while moving, to avoid obstacles by occasionally splitting/deforming and then re-establishing the formation, and to change the shape of the formation upon requests to accommodate new tasks or safety conditions. In the literature, those issues have been often addressed separately. This research proposes a generic framework that allows for tackling these issues in an integrated manner in the optimal formation planning and control context. Within this proposed framework, a leader robot will be assigned and the path for the leader is obtained by utilising a modified A* search together with a vector approach, and then smoothed out to reduce the number of turns and to satisfy the dynamic and kinematic constraints of mobile robots. Next, a reference trajectory is generated for the leader robot. Based on the formation configuration and the workspace environment, desired trajectories for follower robots in the group are obtained. At the lowest level, each robot tracks its own trajectory using a unified tracking controller. The problem of formation initialisation, in which a group of robots, initially scattering in the workspace, is deployed to get into a desired formation shape, is dealt with by using a Discrete Particle Swarm Optimisation (DPSO) technique incorporated with a behaviour-based strategy. The proposed technique aims to optimally assign desired positions for each robot in the formation by minimisation of a cost function associated with the predefined formation shape. Once each robot has been assigned with a desired position, a search scheme is implemented to obtain a collision free trajectory for each robot to establish the formation. Towards optimal maintenance of the motion patterns, the path that has been obtained for robots in the group by using the modified A* search, is further adjusted. For this, the Particle Swarm Optimisation (PSO) technique is proposed to minimise a cost function involving global motion of the formation, with the main objective of preventing unnecessary changes in the follower robot trajectories when avoiding obstacles. A PSO formation motion planning algorithm is proposed to search for motion commands for each robot. This algorithm can be used to initialise the formation or to navigate the formation to its target. The proposed PSO motion planning method is able to maintain the formation subject to the kinematic and velocity constraints. Analytical work of the thesis is validated by extensive simulation of multiple differential drive wheeled mobile robots based on their kinematic models. The techniques proposed in this thesis are also experimentally tested, in part, on two Amigo mobile robots

    An Approach for Multi-Robot Opportunistic Coexistence in Shared Space

    Get PDF
    This thesis considers a situation in which multiple robots operate in the same environment towards the achievement of different tasks. In this situation, please consider that not only the tasks, but also the robots themselves are likely be heterogeneous, i.e., different from each other in their morphology, dynamics, sensors, capabilities, etc. As an example, think about a "smart hotel": small wheeled robots are likely to be devoted to cleaning floors, whereas a humanoid robot may be devoted to social interaction, e.g., welcoming guests and providing relevant information to them upon request. Under these conditions, robots are required not only to co-exist, but also to coordinate their activity if we want them to exhibit a coherent and effective behavior: this may range from mutual avoidance to avoid collisions, to a more explicit coordinated behavior, e.g., task assignment or cooperative localization. The issues above have been deeply investigated in the Literature. Among the topics that may play a crucial role to design a successful system, this thesis focuses on the following ones: (i) An integrated approach for path following and obstacle avoidance is applied to unicycle type robots, by extending an existing algorithm [1] initially developed for the single robot case to the multi-robot domain. The approach is based on the definition of the path to be followed as a curve f (x;y) in space, while obstacles are modeled as Gaussian functions that modify the original function, generating a resulting safe path. The attractiveness of this methodology which makes it look very simple, is that it neither requires the computation of a projection of the robot position on the path, nor does it need to consider a moving virtual target to be tracked. The performance of the proposed approach is analyzed by means of a series of experiments performed in dynamic environments with unicycle-type robots by integrating and determining the position of robot using odometry and in Motion capturing environment. (ii) We investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper\u2019s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information. Software for implementing the theoretical models described above have been developed in ROS, and validated by performing real experiments with two types of robots, namely: (i) a unicycle wheeled Roomba robot(commercially available all over the world), (ii) Pepper Humanoid robot (commercially available in Japan and B2B model in Europe)

    Cybernetic automata: An approach for the realization of economical cognition for multi-robot systems

    Get PDF
    The multi-agent robotics paradigm has attracted much attention due to the variety of pertinent applications that are well-served by the use of a multiplicity of agents (including space robotics, search and rescue, and mobile sensor networks). The use of this paradigm for most applications, however, demands economical, lightweight agent designs for reasons of longer operational life, lower economic cost, faster and easily-verified designs, etc. An important contributing factor to an agent’s cost is its control architecture. Due to the emergence of novel implementation technologies carrying the promise of economical implementation, we consider the development of a technology-independent specification for computational machinery. To that end, the use of cybernetics toolsets (control and dynamical systems theory) is appropriate, enabling a principled specifi- cation of robotic control architectures in mathematical terms that could be mapped directly to diverse implementation substrates. This dissertation, hence, addresses the problem of developing a technologyindependent specification for lightweight control architectures to enable robotic agents to serve in a multi-agent scheme. We present the principled design of static and dynamical regulators that elicit useful behaviors, and integrate these within an overall architecture for both single and multi-agent control. Since the use of control theory can be limited in unstructured environments, a major focus of the work is on the engineering of emergent behavior. The proposed scheme is highly decentralized, requiring only local sensing and no inter-agent communication. Beyond several simulation-based studies, we provide experimental results for a two-agent system, based on a custom implementation employing field-programmable gate arrays

    Aerial collective systems

    Get PDF
    Deployment of multiple flying robots has attracted the interest of several research groups in the recent times both because such a feat represents many interesting scientific challenges and because aerial collective systems have a huge potential in terms of applications. By working together, multiple robots can perform a given task quicker or more efficiently than a single system. Furthermore, multiple robots can share computing, sensing and communication payloads thus leading to lighter robots that could be safer than a larger system, easier to transport and even disposable in some cases. Deploying a fleet of unmanned aerial vehicles instead of a single aircraft allows rapid coverage of a relatively larger area or volume. Collaborating airborne agents can help each other by relaying communication or by providing navigation means to their neighbours. Flying in formation provides an effective way of decongesting the airspace. Aerial swarms also have an enormous artistic potential because they allow creating physical 3D structures that can dynamically change their shape over time. However, the challenges to actually build and control aerial swarms are numerous. First of all, a flying platform is often more complicated to engineer than a terrestrial robot because of the inherent weight constraints and the absence of mechanical link with any inertial frame that could provide mechanical stability and state reference. In the first section of this chapter, we therefore review this challenges and provide pointers to state-of-the-art methods to solve them. Then as soon as flying robots need to interact with each other, all sorts of problems arise such as wireless communication from and to rapidly moving objects and relative positioning. The aim of section 3 is therefore to review possible approaches to technically enable coordination among flying systems. Finally, section 4 tackles the challenge of designing individual controllers that enable a coherent behavior at the level of the swarm. This challenge is made even more difficult with flying robots because of their 3D nature and their motion constraints that are often related to the specific architectures of the underlying physical platforms. In this third section is complementary to the rest of this book as it focusses only on methods that have been designed for aerial collective systems

    Towards adaptive and autonomous humanoid robots: from vision to actions

    Get PDF
    Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions

    Navigation of Automatic Vehicle using AI Techniques

    Get PDF
    In the field of mobile robot navigation have been studied as important task for the new generation of mobile robot i.e. Corobot. For this mobile robot navigation has been viewed for unknown environment. We consider the 4-wheeled vehicle (Corobot) for Path Planning, an autonomous robot and an obstacle and collision avoidance to be used in sensor based robot. We propose that the predefined distance from the robot to target and make the robot follow the target at this distance and improve the trajectory tracking characteristics. The robot will then navigate among these obstacles without hitting them and reach the specified goal point. For these goal achieving we use different techniques radial basis function and back-propagation algorithm under the study of neural network. In this Corobot a robotic arm are assembled and the kinematic analyses of Corobot arm and help of Phidget Control Panel a wheeled to be moved in both forward and reverse direction by 2-motor controller have to be done. Under kinematic analysis propose the relationships between the positions and orientation of the links of a manipulator. In these studies an artificial techniques and their control strategy are shown with potential applications in the fields of industry, security, defense, investigation, and others. Here finally, the simulation result using the webot neural network has been done and this result is compared with experimental data for different training pattern

    Planning for human robot interaction

    Get PDF
    Les avancées récentes en robotique inspirent des visions de robots domestiques et de service rendant nos vies plus faciles et plus confortables. De tels robots pourront exécuter différentes tâches de manipulation d'objets nécessaires pour des travaux de ménage, de façon autonome ou en coopération avec des humains. Dans ce rôle de compagnon humain, le robot doit répondre à de nombreuses exigences additionnelles comparées aux domaines bien établis de la robotique industrielle. Le but de la planification pour les robots est de parvenir à élaborer un comportement visant à satisfaire un but et qui obtient des résultats désirés et dans de bonnes conditions d'efficacité. Mais dans l'interaction homme-robot (HRI), le comportement robot ne peut pas simplement être jugé en termes de résultats corrects, mais il doit être agréable aux acteurs humains. Cela signifie que le comportement du robot doit obéir à des critères de qualité supplémentaire. Il doit être sûr, confortable pour l'homme, et être intuitivement compris. Il existe des pratiques pour assurer la sécurité et offrir un confort en gardant des distances suffisantes entre le robot et des personnes à proximité. Toutefois fournir un comportement qui est intuitivement compris reste un défi. Ce défi augmente considérablement dans les situations d'interaction homme-robot dynamique, où les actions de la personne sont imprévisibles, le robot devant adapter en permanence ses plans aux changements. Cette thèse propose une approche nouvelle et des méthodes pour améliorer la lisibilité du comportement du robot dans des situations dynamiques. Cette approche ne considère pas seulement la qualité d'un seul plan, mais le comportement du robot qui est parfois le résultat de replanifications répétées au cours d'une interaction. Pour ce qui concerne les tâches de navigation, cette thèse présente des fonctions de coûts directionnels qui évitent les problèmes dans des situations de conflit. Pour la planification d'action en général, cette thèse propose une approche de replanification locale des actions de transport basé sur les coûts de navigation, pour élaborer un comportement opportuniste adaptatif. Les deux approches, complémentaires, facilitent la compréhension, par les acteurs et observateurs humains, des intentions du robot et permettent de réduire leur confusion.The recent advances in robotics inspire visions of household and service robots making our lives easier and more comfortable. Such robots will be able to perform several object manipulation tasks required for household chores, autonomously or in cooperation with humans. In that role of human companion, the robot has to satisfy many additional requirements compared to well established fields of industrial robotics. The purpose of planning for robots is to achieve robot behavior that is goal-directed and establishes correct results. But in human-robot-interaction, robot behavior cannot merely be judged in terms of correct results, but must be agree-able to human stakeholders. This means that the robot behavior must suffice additional quality criteria. It must be safe, comfortable to human, and intuitively be understood. There are established practices to ensure safety and provide comfort by keeping sufficient distances between the robot and nearby persons. However providing behavior that is intuitively understood remains a challenge. This challenge greatly increases in cases of dynamic human-robot interactions, where the actions of the human in the future are unpredictable, and the robot needs to constantly adapt its plans to changes. This thesis provides novel approaches to improve the legibility of robot behavior in such dynamic situations. Key to that approach is not to merely consider the quality of a single plan, but the behavior of the robot as a result of replanning multiple times during an interaction. For navigation planning, this thesis introduces directional cost functions that avoid problems in conflict situations. For action planning, this thesis provides the approach of local replanning of transport actions based on navigational costs, to provide opportunistic behavior. Both measures help human observers understand the robot's beliefs and intentions during interactions and reduce confusion

    Human-aware space sharing and navigation for an interactive robot

    Get PDF
    Les méthodes de planification de mouvements robotiques se sont développées à un rythme accéléré ces dernières années. L'accent a principalement été mis sur le fait de rendre les robots plus efficaces, plus sécurisés et plus rapides à réagir à des situations imprévisibles. En conséquence, nous assistons de plus en plus à l'introduction des robots de service dans notre vie quotidienne, en particulier dans les lieux publics tels que les musées, les centres commerciaux et les aéroports. Tandis qu'un robot de service mobile se déplace dans l'environnement humain, il est important de prendre en compte l'effet de son comportement sur les personnes qu'il croise ou avec lesquelles il interagit. Nous ne les voyons pas comme de simples machines, mais comme des agents sociaux et nous nous attendons à ce qu'ils se comportent de manière similaire à l'homme en suivant les normes sociétales comme des règles. Ceci a créé de nouveaux défis et a ouvert de nouvelles directions de recherche pour concevoir des algorithmes de commande de robot, qui fournissent des comportements de robot acceptables, lisibles et proactifs. Cette thèse propose une méthode coopérative basée sur l'optimisation pour la planification de trajectoire et la navigation du robot avec des contraintes sociales intégrées pour assurer des mouvements de robots prudents, conscients de la présence de l'être humain et prévisibles. La trajectoire du robot est ajustée dynamiquement et continuellement pour satisfaire ces contraintes sociales. Pour ce faire, nous traitons la trajectoire du robot comme une bande élastique (une construction mathématique représentant la trajectoire du robot comme une série de positions et une différence de temps entre ces positions) qui peut être déformée (dans l'espace et dans le temps) par le processus d'optimisation pour respecter les contraintes données. De plus, le robot prédit aussi les trajectoires humaines plausibles dans la même zone d'exploitation en traitant les chemins humains aussi comme des bandes élastiques. Ce système nous permet d'optimiser les trajectoires des robots non seulement pour le moment présent, mais aussi pour l'interaction entière qui se produit lorsque les humains et les robots se croisent les uns les autres. Nous avons réalisé un ensemble d'expériences avec des situations interactives humains-robots qui se produisent dans la vie de tous les jours telles que traverser un couloir, passer par une porte et se croiser sur de grands espaces ouverts. La méthode de planification coopérative proposée se compare favorablement à d'autres schémas de planification de la navigation à la pointe de la technique. Nous avons augmenté le comportement de navigation du robot avec un mouvement synchronisé et réactif de sa tête. Cela permet au robot de regarder où il va et occasionnellement de détourner son regard vers les personnes voisines pour montrer que le robot va éviter toute collision possible avec eux comme prévu par le planificateur. À tout moment, le robot pondère les multiples critères selon le contexte social et décide de ce vers quoi il devrait porter le regard. Grâce à une étude utilisateur en ligne, nous avons montré que ce mécanisme de regard complète efficacement le comportement de navigation ce qui améliore la lisibilité des actions du robot. Enfin, nous avons intégré notre schéma de navigation avec un système de supervision plus large qui peut générer conjointement des comportements du robot standard tel que l'approche d'une personne et l'adaptation de la vitesse du robot selon le groupe de personnes que le robot guide dans des scénarios d'aéroport ou de musée.The methods of robotic movement planning have grown at an accelerated pace in recent years. The emphasis has mainly been on making robots more efficient, safer and react faster to unpredictable situations. As a result we are witnessing more and more service robots introduced in our everyday lives, especially in public places such as museums, shopping malls and airports. While a mobile service robot moves in a human environment, it leaves an innate effect on people about its demeanor. We do not see them as mere machines but as social agents and expect them to behave humanly by following societal norms and rules. This has created new challenges and opened new research avenues for designing robot control algorithms that deliver human-acceptable, legible and proactive robot behaviors. This thesis proposes a optimization-based cooperative method for trajectoryplanning and navigation with in-built social constraints for keeping robot motions safe, human-aware and predictable. The robot trajectory is dynamically and continuously adjusted to satisfy these social constraints. To do so, we treat the robot trajectory as an elastic band (a mathematical construct representing the robot path as a series of poses and time-difference between those poses) which can be deformed (both in space and time) by the optimization process to respect given constraints. Moreover, we also predict plausible human trajectories in the same operating area by treating human paths also as elastic bands. This scheme allows us to optimize the robot trajectories not only for the current moment but for the entire interaction that happens when humans and robot cross each other's paths. We carried out a set of experiments with canonical human-robot interactive situations that happen in our everyday lives such as crossing a hallway, passing through a door and intersecting paths on wide open spaces. The proposed cooperative planning method compares favorably against other stat-of-the-art human-aware navigation planning schemes. We have augmented robot navigation behavior with synchronized and responsive movements of the robot head, making the robot look where it is going and occasionally diverting its gaze towards nearby people to acknowledge that robot will avoid any possible collision with them. At any given moment the robot weighs multiple criteria according to the social context and decides where it should turn its gaze. Through an online user study we have shown that such gazing mechanism effectively complements the navigation behavior and it improves legibility of the robot actions. Finally, we have integrated our navigation scheme with a broader supervision system which can jointly generate normative robot behaviors such as approaching a person and adapting the robot speed according to a group of people who the robot guides in airports or museums

    Formation and organisation in robot swarms.

    Get PDF
    A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents operating in a common environment and seemingly acting in a coherent and coordinated manner. Swarm architectures promote decentralisation and self-organisation which often leads to emergent behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its environment (or fellow agents), but not as a direct result of design. The creation of artificially simulated swarms or practical robot swarms has become an interesting topic of research in the last decade. Even though many studies have been undertaken using a practical approach to swarm construction, there are still many problems need to be addressed. Such problems include the problem of how to control very simple agents to form patterns; the problem of how an attractor will affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting multiple locations. The central goal of this thesis is to develop early novel theories and algorithms to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for understanding how to model, design and control individual units have to be developed. This thesis consists of three independent pieces of research work that address the problem of pattern formation of robot swarms in both a centralised and a decentralised way.The first research contribution proposes algorithms of line formation and cluster formation in a decentralised way for relatively simple homogenous agents with very little memory, limited sensing capabilities and processing power. This research utilises the Finite State Machine approach.In the second research contribution, by extending Wilensky's (1999) work on flocking, three different movement models are modelled by changing the maximum viewing angle each agent possesses during the course of changing its direction. An object which releases an artificial potential field is then introduced in the centre of the arena and the behaviours of the collective movement model are studied.The third research contribution studies the complex formation of agents in a task that requires a formation of agents between two locations. This novel research proposes the use Of L-Systems that are evolved using genetic algorithms so that more complex pattern formations can be represented and achieved. Agents will need to have the ability to interpret short strings of rules that form the basic DNA of the formation
    corecore