50,794 research outputs found

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Observation Centric Sensor Data Model

    Get PDF
    Management of sensor data requires metadata to understand the semantics of observations. While e-science researchers have high demands on metadata, they are selective in entering metadata. The claim in this paper is to focus on the essentials, i.e., the actual observations being described by location, time, owner, instrument, and measurement. The applicability of this approach is demonstrated in two very different case studies

    The lifecycle of provenance metadata and its associated challenges and opportunities

    Full text link
    This chapter outlines some of the challenges and opportunities associated with adopting provenance principles and standards in a variety of disciplines, including data publication and reuse, and information sciences

    Semantic Compression for Edge-Assisted Systems

    Full text link
    A novel semantic approach to data selection and compression is presented for the dynamic adaptation of IoT data processing and transmission within "wireless islands", where a set of sensing devices (sensors) are interconnected through one-hop wireless links to a computational resource via a local access point. The core of the proposed technique is a cooperative framework where local classifiers at the mobile nodes are dynamically crafted and updated based on the current state of the observed system, the global processing objective and the characteristics of the sensors and data streams. The edge processor plays a key role by establishing a link between content and operations within the distributed system. The local classifiers are designed to filter the data streams and provide only the needed information to the global classifier at the edge processor, thus minimizing bandwidth usage. However, the better the accuracy of these local classifiers, the larger the energy necessary to run them at the individual sensors. A formulation of the optimization problem for the dynamic construction of the classifiers under bandwidth and energy constraints is proposed and demonstrated on a synthetic example.Comment: Presented at the Information Theory and Applications Workshop (ITA), February 17, 201

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions
    • 

    corecore