614 research outputs found

    Collaboratively assessing urban alerts in ad hoc participatory sensing

    Full text link
    Ad hoc architectures have emerged as a valuable alternative to centralized participatory sensing systems due to their infrastructureless nature, which ensures good availability, easy maintenance and direct user communication. As a result, they need to incorporate content-aware assessment mechanisms to deal with a common problem in participatory sensing: information assessment. Easy contribution encourages users participation and improves the sensing task but may result in large amounts of data, which may not be valid or relevant. Currently, prioritization is the only totally ad hoc scheme to assess user-generated alerts. This strategy prevents duplicates from congesting the network. However, it does not include the assessment of every generated alert and does not deal with low-quality or irrelevant alerts. In order to ensure users receive only interesting alerts and the network is not compromised, we propose two collaborative alert assessment mechanisms that, while keeping the network flat, provide an effective message filter. Both of them rely on opportunistic collaboration with nearby peers. By simulating their behavior in a real urban area, we have proved them able to decrease network load while maintaining alert delivery ratio

    Fog Architectures and Sensor Location Certification in Distributed Event-Based Systems

    Full text link
    Since smart cities aim at becoming self-monitoring and self-response systems, their deployment relies on close resource monitoring through large-scale urban sensing. The subsequent gathering of massive amounts of data makes essential the development of event-filtering mechanisms that enable the selection of what is relevant and trustworthy. Due to the rise of mobile event producers, location information has become a valuable filtering criterion, as it not only offers extra information on the described event, but also enhances trust in the producer. Implementing mechanisms that validate the quality of location information becomes then imperative. The lack of such strategies in cloud architectures compels the adoption of new communication schemes for Internet of Things (IoT)-based urban services. To serve the demand for location verification in urban event-based systems (DEBS), we have designed three different fog architectures that combine proximity and cloud communication. We have used network simulations with realistic urban traces to prove that the three of them can correctly identify between 73% and 100% of false location claims

    INRISCO: INcident monitoRing in Smart COmmunities

    Get PDF
    Major advances in information and communication technologies (ICTs) make citizens to be considered as sensors in motion. Carrying their mobile devices, moving in their connected vehicles or actively participating in social networks, citizens provide a wealth of information that, after properly processing, can support numerous applications for the benefit of the community. In the context of smart communities, the INRISCO [1] proposal intends for (i) the early detection of abnormal situations in cities (i.e., incidents), (ii) the analysis of whether, according to their impact, those incidents are really adverse for the community; and (iii) the automatic actuation by dissemination of appropriate information to citizens and authorities. Thus, INRISCO will identify and report on incidents in traffic (jam, accident) or public infrastructure (e.g., works, street cut), the occurrence of specific events that affect other citizens' life (e.g., demonstrations, concerts), or environmental problems (e.g., pollution, bad weather). It is of particular interest to this proposal the identification of incidents with a social and economic impact, which affects the quality of life of citizens.This work was supported in part by the Spanish Government through the projects INRISCO under Grant TEC2014-54335-C4-1-R, Grant TEC2014-54335-C4-2-R, Grant TEC2014-54335-C4-3-R, and Grant TEC2014-54335-C4-4-R, in part by the MAGOS under Grant TEC2017-84197-C4-1-R, Grant TEC2017-84197-C4-2-R, and Grant TEC2017-84197-C4-3-R, in part by the European Regional Development Fund (ERDF), and in part by the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC)

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Understanding citizen science and environmental monitoring: final report on behalf of UK Environmental Observation Framework

    Get PDF
    Citizen science can broadly be defined as the involvement of volunteers in science. Over the past decade there has been a rapid increase in the number of citizen science initiatives. The breadth of environmental-based citizen science is immense. Citizen scientists have surveyed for and monitored a broad range of taxa, and also contributed data on weather and habitats reflecting an increase in engagement with a diverse range of observational science. Citizen science has taken many varied approaches from citizen-led (co-created) projects with local community groups to, more commonly, scientist-led mass participation initiatives that are open to all sectors of society. Citizen science provides an indispensable means of combining environmental research with environmental education and wildlife recording. Here we provide a synthesis of extant citizen science projects using a novel cross-cutting approach to objectively assess understanding of citizen science and environmental monitoring including: 1. Brief overview of knowledge on the motivations of volunteers. 2. Semi-systematic review of environmental citizen science projects in order to understand the variety of extant citizen science projects. 3. Collation of detailed case studies on a selection of projects to complement the semi-systematic review. 4. Structured interviews with users of citizen science and environmental monitoring data focussing on policy, in order to more fully understand how citizen science can fit into policy needs. 5. Review of technology in citizen science and an exploration of future opportunities

    Re-evaluating participatory catchment management: Integrating mapping, modelling, and participatory action to deliver more effective risk management

    Get PDF
    Recent policy changes, such as the EU Water Framework Directive, have transformed catchment management to consider connected socio-ecological systems at the catchment scale, and integrate concept of public participation. However, there is relatively little research exploring how effective these changes have been in altering existing practices of management. Adopting a transdisciplinary approach, this thesis investigates a range of perspectives to explore existing participatory practices in current catchment management, and understand how we can integrate alternative knowledges and perspectives. The research employs diverse social and physical science methods, including participant led interviews and participatory mapping, numerical flood modelling, and the creation of a participatory competency group. The research finds that, despite the participatory policy turn, established supracatchment scale drivers continue to dictate top-down practices of everyday catchment management, excluding local communities from decision-making power. In contrast, participation in managing extreme events is actively encouraged, with the development of community resilience a key objective for management agencies. However, the research findings suggest that a similar lack of meaningful participation in knowledge creation and decision-making restricts resilience building. Based on these findings, the research explores practical ways in which participation and resilience can be embedded in ICM, using the typically expert-led practice of numerical flood modelling to show how existing practices of knowledge creation can be enhanced. The thesis also demonstrates how new practices of knowledge creation, based on social learning, can be used to develop new, more effective ways of communicating flood risk and building local resilience. The thesis proposes a new framework for the management of connected socio-ecological catchment systems, embedding evolutionary resilience as a practical mechanism by which public participation and the management of everyday and extreme events could be unified to develop more effective and sustainable catchment management and more resilient communities

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    • 

    corecore