122 research outputs found

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Channel parameter tuning in a hybrid Wi-Fi-Dynamic Spectrum Access Wireless Mesh Network

    Get PDF
    This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wireless Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA) spectrum bands and standards. This scenario poses new challenges because nodes are spread out geographically so may have differing allowed channels and experience different levels of external interference in different channels. A solution must meet two conflicting requirements simultaneously: 1) avoid or minimise interference within the network and from external interference sources, and 2) maintain connectivity within the network. These two requirements must be met while staying within the link constraints and the radio interface constraints, such as only assigning as many channels to a node as it has radios. This work's original contribution to the field is a unified framework for channel optimisation and assignment in a WMN that uses both DSA and traditional Wi-Fi channels for interconnectivity. This contribution is realised by providing and analysing the performance of near-optimal Channel Assignment (CA) solutions using metaheuristic algorithms for the MRMC WMNs using DSA bands. We have created a simulation framework for evaluating the algorithms. The performance of Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms have been analysed and compared for the CA optimisation problem. We introduce a novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate feasible candidate CA solutions. Unlike previous studies, this sensing and CA work takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to get the allowed channels, in addition to using spectrum sensing to identify and estimate the cumulative severity of both internal and external interference sources. External interference may be caused by other secondary users (SUs) in the vicinity or by primary transmitters of the DSA band whose emissions leak into adjacent channels, next-toadjacent, or even into further channels. We use signal-to-interference-plus-noise ratio (SINR) as the optimisation objective. This incorporates any possible source or type of interference and makes our method agnostic to the protocol or technology of the interfering devices while ensuring that the received signal level is high enough for connectivity to be maintained on as many links as possible. To support our assertion that SINR is a reasonable criterion on which to base the optimisation, we have carried out extensive outdoor measurements in both line-of-sight and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz Wi-Fi band. These measurements show that SINR is useful as a performance measure, especially when the interference experienced on a link is high. Our statistical analysis shows that SINR effectively differentiates the performance of different channels and that SINR is well correlated with throughput and is thus a good predictor of end-user experience, despite varying conditions. We also identify and analyse the idle times created by Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC) operations and propose the use of these idle times for spectrum sensing to measure the SINR on possible channels. This means we can perform spectrum sensing with zero spectrum sensing delay experienced by the end user. Unlike previous work, this spectrum sensing is transparent and can be performed without causing any disruption to the normal data transmission of the network. We conduct Markov chain analysis to find the expected length of time of a sensing window. We also derive an efficient minimum variance unbiased estimator of the interference plus noise and show how the SINR can be found using this estimate. Our estimation is more granular, accurate, and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary hypothesis testing methods that are most common in the literature. Furthermore, we construct confidence intervals based on the probability density function derived for the observations. This leads to finding and showing the relationships between the number of sampling windows and sampling time, the interference power, and the achievable confidence interval width. While our results coincide with (and thus are confirmed by) some key previous recommendations, ours are more precise, granular, and accurate and allow for application to a wider range of operating conditions. Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of spectrum sensing results to the fusion or gateway node and algorithms for distributing the Channel Assignment once computed. We analyse the convergence rate of the proposed procedures and find that high network availability can be maintained despite the temporary loss of connectivity caused by the channel switching procedure. This dissertation consolidates the different activities required to improve the channel parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the extension of Internet connectivity to the unconnected or unreliably connected in rural or peri-urban areas in a more cost-effective way, enabling more meaningful and affordable access technologies. It also empowers smaller players to construct better community networks for sharing local content. This technology can have knock-on effects of improved socio-economic conditions for the communities that use it

    A Game-Theoretic Approach to Strategic Resource Allocation Mechanisms in Edge and Fog Computing

    Get PDF
    With the rapid growth of Internet of Things (IoT), cloud-centric application management raises questions related to quality of service for real-time applications. Fog and edge computing (FEC) provide a complement to the cloud by filling the gap between cloud and IoT. Resource management on multiple resources from distributed and administrative FEC nodes is a key challenge to ensure the quality of end-user’s experience. To improve resource utilisation and system performance, researchers have been proposed many fair allocation mechanisms for resource management. Dominant Resource Fairness (DRF), a resource allocation policy for multiple resource types, meets most of the required fair allocation characteristics. However, DRF is suitable for centralised resource allocation without considering the effects (or feedbacks) of large-scale distributed environments like multi-controller software defined networking (SDN). Nash bargaining from micro-economic theory or competitive equilibrium equal incomes (CEEI) are well suited to solving dynamic optimisation problems proposing to ‘proportionately’ share resources among distributed participants. Although CEEI’s decentralised policy guarantees load balancing for performance isolation, they are not faultproof for computation offloading. The thesis aims to propose a hybrid and fair allocation mechanism for rejuvenation of decentralised SDN controller deployment. We apply multi-agent reinforcement learning (MARL) with robustness against adversarial controllers to enable efficient priority scheduling for FEC. Motivated by software cybernetics and homeostasis, weighted DRF is generalised by applying the principles of feedback (positive or/and negative network effects) in reverse game theory (GT) to design hybrid scheduling schemes for joint multi-resource and multitask offloading/forwarding in FEC environments. In the first piece of study, monotonic scheduling for joint offloading at the federated edge is addressed by proposing truthful mechanism (algorithmic) to neutralise harmful negative and positive distributive bargain externalities respectively. The IP-DRF scheme is a MARL approach applying partition form game (PFG) to guarantee second-best Pareto optimality viii | P a g e (SBPO) in allocation of multi-resources from deterministic policy in both population and resource non-monotonicity settings. In the second study, we propose DFog-DRF scheme to address truthful fog scheduling with bottleneck fairness in fault-probable wireless hierarchical networks by applying constrained coalition formation (CCF) games to implement MARL. The multi-objective optimisation problem for fog throughput maximisation is solved via a constraint dimensionality reduction methodology using fairness constraints for efficient gateway and low-level controller’s placement. For evaluation, we develop an agent-based framework to implement fair allocation policies in distributed data centre environments. In empirical results, the deterministic policy of IP-DRF scheme provides SBPO and reduces the average execution and turnaround time by 19% and 11.52% as compared to the Nash bargaining or CEEI deterministic policy for 57,445 cloudlets in population non-monotonic settings. The processing cost of tasks shows significant improvement (6.89% and 9.03% for fixed and variable pricing) for the resource non-monotonic setting - using 38,000 cloudlets. The DFog-DRF scheme when benchmarked against asset fair (MIP) policy shows superior performance (less than 1% in time complexity) for up to 30 FEC nodes. Furthermore, empirical results using 210 mobiles and 420 applications prove the efficacy of our hybrid scheduling scheme for hierarchical clustering considering latency and network usage for throughput maximisation.Abubakar Tafawa Balewa University, Bauchi (Tetfund, Nigeria

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems
    • …
    corecore