562 research outputs found

    Collaborative prognostics in Social Asset Networks

    Get PDF
    With the spread of Internet of Things (IoT) technologies, assets have acquired communication, processing and sensing capabilities. In response, the fi eld of Asset Management has moved from fleet-wide failure models to individualised asset prognostics. Individualised models are seldom truly distributed, and often fail to capitalise the processing power of the asset fleet. This leads to hardly scalable machine learning centralised models that often must nd a compromise between accuracy and computational power. In order to overcome this, we present a novel theoretical approach to collaborative prognostics within the Social Internet of Things. We introduce the concept of Social Asset Networks, de ned as networks of cooperating assets with sensing, communicating and computing capabilities. In the proposed approach, the information obtained from the medium by means of sensors is synthesised into a Health Indicator, which determines the state of the asset. The Health Indicator of each asset evolves according to an equation determined by a triplet of parameters. Assets are given the form of the equation but they ignore their parametric values. To obtain these values, assets use the equation in order to perform a non-linear least squares t of their Health Indicator data. Using these estimated parameters, they are interconnected to a subset of collaborating assets by means of a similarity metric. We show how by simply interchanging their estimates, networked assets are able to precisely determine their Health Indicator dynamics and reduce maintenance costs. This is done in real time, with no centralised library, and without the need for extensive historical data. We compare Social Asset Networks with the typical self-learning and fleet-wide approaches, and show that Social Asset Networks have a faster convergence and lower cost. This study serves as a conceptual proof for the potential of collaborative prognostics for solving maintenance problems, and can be used to justify the implementation of such a system in a real industrial fleet.EU H202

    Recurrent Neural Networks for real-time distributed collaborative prognostics

    Get PDF
    We present the first steps towards real-time distributed collaborative prognostics enabled by an implementation of the Weibull Time To Event - Recurrent Neural Network (WTTE-RNN) algorithm. In our system, assets determine their time to failure (TTF) in real-time according to an asset-specific model that is obtained in collaboration with other similar assets in the asset fleet. The presented approach builds on the emergent field of similarity analysis in asset management, and extends it to distributed collaborative prognostics. We show how through collaboration between assets and distributed prognostics, competitive time to failure estimates can be obtained

    Secure and communications-efficient collaborative prognosis

    Get PDF
    Collaborative prognosis is a technique that is used to enable assets to improve their ability to predict failures by learning from the failures of similar other assets. This is typically made possible by enabling the assets to communicate with each other. The key enabler of current collaborative prognosis techniques is that they require assets to share their sensor data and failure information between each other, which might be a major constraint due to commercial sensitivities, especially when the assets belong to different companies. This paper uses Federated Learning to address this issue, and examines whether this technique will enable collaborative prognosis while ensuring sensitive operational data is not shared between organisational boundaries. An example implementation is demonstrated for prognosis of a simulated turbofan fleet, where Federated Averaging algorithm is used as an alternative for the data exchange step. Its performance is compared with conventional collaborative prognosis that involves failure data exchange. The results confirm that Federated Averaging retains the performance of conventional collaborative prognosis, while eliminating the exchange of failure data within assets. This removes a critical hinderance in industrial adoption of collaborative prognosis, thus enhancing the potential of predictive maintenance
    • …
    corecore