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Adrià Salvador Palau ∗∗ Ajith Kumar Parlikad ∗∗

Bhupesh Kumar Lad ∗

∗ Indian Institute of Technology (IIT) Indore, Khandwa Road, Simrol,
Indore 453552 India

∗∗ DIAL, Institute for Manufacturing, 17 Charles Babbage Road,
University of Cambridge, Cambridge CB3 0FS, UK

Abstract:
The ‘Industrial Internet of Things’ aims to connect industrial assets with one another and
subsequently benefit from the data that is generated, and shared, among these assets. In
recent years, the extensive instrumentation of machines and the advancements in Information
Communication Technologies are re-shaping the role of assets in our industrial systems. An
emerging paradigm here is the concept of ‘social assets’: assets that collaborate with each
other in order to improve system performance. Cyber-Physical Systems (CPS) are formed by
embedding the assets with computing capabilities and linking them with their cyber models.
These are known as the ‘Digital Twins’ of the assets, and form the backbone of social assets.
Collaboration among assets, by allowing them to share and analyse data from other assets can
make embedded computing algorithms more accurate, robust and reliable. This paper proposes
a Multi Agent System (MAS) architecture for collaborative learning, and presents the findings
of an implementation of this architecture for a prognostics problem. Collaboration among assets
is performed by calculating inter-asset similarity during operating condition to identify ‘friends’
and sharing operational data within these clusters of friends. The architecture described in this
paper also presents a generic model for the Digital Twins of assets. Prognostics is demonstrated
for the C-MAPSS turbofan engine degradation simulated data-set (Saxena and Goebel (2008)).

Keywords: Cyber-Physical Systems, Industrial Internet of Things, Digital Twins,
Collaborative Learning, Industry Automation, Multi Agent Systems, Distributed Computing.

1. INTRODUCTION

Accuracy, precision and cost-effectiveness of sensing tech-
nologies have improved in recent years, leading to exten-
sive instrumentation of industrial assets and emergence
of Big Data. Computers have become smart, compact,
powerful and capable of operating over cloud servers.
With advancement in communication technologies, low-
cost transfer of significant amount of data over the internet
is now possible (Ganchev et al. (2016)). Integrating all
these developments with the objects of everyday use has
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led to a network of connected objects called the ‘Internet
of Things’ (IoT). (Li et al. (2015))

Thanks to these technological advancements, up to date
industrial assets are able to generate extensive data that
reflects the system performance. Also, technologies such as
RFID, smart cards, embedded systems, Wi-Fi, and Blue-
tooth communication have enabled automatised machine
to machine communications to take place (Unland (2015)).
Such technologies make it possible to harness the benefits
of the data generated in industrial environments. This
extension of the notion of IoT is termed as the ‘Industrial
Internet of Things’ (IIoT) (Evans and Annunziata (2012);
Xu et al. (2014)).

In the IIoT, each asset has a Digital Twin, which is its
cyber model/ replica, containing the asset data acquired
from various sources. This Digital Twin is part of a
network of several other twins with their corresponding
assets, together forming a network of industrial assets.
The streams of data flowing into the twins are analysed
by human experts or computational algorithms to get
a perception about the surroundings, performance, and
the health conditions of the assets (GE Digital (2017)).
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Embedded computers monitor and control the physical
processes, usually with feedback loops. This way, physical
processes shape the computations and vice-versa (Lee
(2008)). The integration of computation with physical
processes described above forms a Cyber-Physical System
(CPS) (Jeschke et al. (2017)).

Further benefits can be harnessed by integrating human-
like social networking capabilities into IoT. This notion
of SIoT (Social Internet of Things), has been gaining
momentum in the areas of product life-cycle management,
traffic routing, and workplace help and support. The
integration of social networks and IoT can be extended
to improve system-level performance in an asset fleet. In
this paper, we propose a quantitative method to identify
groups of similar assets, or friends. Subsequently, condition
data, and the diagnostics or the prognostics knowledge
shared among these assets can improve the accuracy of the
asset’s computations (Li et al. (2018)). Several projects
like the Toyota Friend, Nike+, Xlively, Social Web of
Things, Evrythng, etc. have aimed at integrating IoT with
a social-networking framework (Atzori et al. (2014)).

This paper describes a Multi Agent System (MAS) ar-
chitecture for collaborative learning among social indus-
trial assets. An implementation is shown for a prognos-
tics problem using Saxena and Goebel (2008)’s turbofan
engines degradation data-set (C-MAPSS). The presented
architecture comprises three layers: Virtual Assets, Digital
Twins, and a Social Platform. In the Virtual Asset layer,
the data originating from different assets is standardised
for its further analysis by a generic Digital Twin. Digital
Twins are asset (type)-independent software components
capable of adapting to a variety of assets. The proposed
Digital Twin, once assigned to an asset generates asset-
specific models using data from other assets in the fleet
and the asset itself. The third layer comprises a Social
Platform, with a role limited to enterprise level analysis,
such as clustering similar assets or analysing machine
data to generate fleet analytics. To enable collaboration
between similar assets, the distances (similarities) among
assets in the industrial system are evaluated and the data
originating from similar assets is prioritised.

Section 2 reviews the literature. MAS and HMS ap-
proaches are covered in section 2.1, which also discusses
existing architectures and frameworks based on collabora-
tive learning or distributed decision-making. The benefits
of collaborative learning and the SIoT paradigm are dis-
cussed in the subsection 2.2. The proposed architecture is
explained in detail in section 3. An illustrative example of
this architecture makes up the final section 4. The paper
ends with conclusions (section 5).

2. LITERATURE REVIEW

2.1 Multi Agent Systems and Holonic Manufacturing
Systems

Many paradigms have emerged to satisfy the requirements,
and the challenges, of “new manufacturing” practices.
Among which, agent-based manufacturing systems (Multi
Agent Systems (MAS)), and Holonic Manufacturing Sys-
tems (HMSs) have received a lot of attention in academia
and industry. MASs enable social behaviour of intelligent

entities, through the capabilities of the agents forming
the System. They are a broad software approach, unlike
the manufacturing-specific approach of HMSs, focused on
distributed control (Giret and Botti (2004)).

Decentralised architectures allow complex tasks to be di-
vided into sub-tasks, allotted to the best suited agents.
Decentralisation presents advantages like system robust-
ness and agility, and elimination of data transfer lags.
Enabled by MAS, these architectures have been used to
tackle industrial problems. For example, Giordani et al.
(2013) make use of a MAS approach to tackle the problem
of production planning and scheduling. A two-layer hierar-
chical approach is employed by Mönch and Drießel (2005)
to decompose the scheduling problem into simpler sub-
problems. Christensen (2003) proposed an architecture
where agents focus on deliberative tasks on a higher level,
while lower-level agents focus on real-time constrained
control tasks.

Bagheri et al. (2015) presented a step-wise approach to
design a CPS architecture for an Industry 4.0 environ-
ment, and an adaptive clustering method for self-aware
machines. Bagheri et al. (2015) discussed how one should
progress from the smart-connection level to the configura-
tion level while designing an architecture. Drawing from
Bagheri’s ideas, in this paper we present an architecture
which can be implemented for any industrial system in-
spired by the Social Internet of Things paradigm. We also
introduce the concept of ‘Virtual Assets’, an additional
agent layer aimed to standardise the data flowing into the
asset’s Digital Twins. This standardisation of data makes
it possible for us to have a generic model of Digital Twins,
thus eradicating the need to tailor different Twins for every
other asset in the industrial system.

2.2 Learning in Multi Agent Systems and the Social
Internet of Things

Agents in an MAS need to keep learning in order to adapt
to a dynamic environment. It has been shown that multi-
agent learning can be reduced to single agent learning by
considering the other agents in the system as part of the
agent’s environment. However, this may not always lead to
an optimal solution and coordinated machine multi-agent
learning becomes more important (Alonso et al. (2001)).
An efficient way to achieve collaboration is to integrate
social networking concepts into the Internet of Things.
The assets in such a “Social Internet of Things” behave
like social entities, sharing data and collaborating with one
another to generate an optimal enterprise level solution.
This paradigm, achieved by developing trust among assets
which are “friends” with one another, permits navigability
even after the point when number of nodes increase
above those encountered in the traditional internet (Atzori
et al. (2014)). Collaboration among assets in a system
not only increases the responsiveness of the system, but
also allows unseen events of importance to be broadcasted
within a group of friends. This improves the accuracy
of underlying algorithms by making a richer data-set
available for training and prediction purposes. Ning and
Wang (2011) describe an analogy of such systems with
the social organisation of humans as: “each ‘unit’ human
has its nervous systems made up of the same physical



Fig. 1. Schematic layout of the MAS architecture.

components and operating laws, but individuals possess
their own sophisticated and unique consciousness and
behaviour”.

Multi-agent collaborative learning can be implemented
through several kinds of algorithms: social algorithms,
swarm intelligence, etc. An example of social algorithms
is evolutionary computation, a kind of Stochastic Search
method among reward-based learning techniques (Alonso
et al. (2001)). Other approaches that incorporate collab-
oration between agents are swarm intelligence techniques,
that try to emulate the efficiency of foraging seen in
natural systems such as those of bees or ant colonies. A
relevant part of current research focuses on harnessing the
technology capabilities by merging collaborative learning
and Multi Agent Systems for the IIoT. However promising
this idea may seem, there is a lack of an industrial-system
architecture capable of integrating the social networking
concepts with the IIoT. Our architecture addresses this
gap by providing clearly organised levels, each suited for
different analytics algorithms. Ours is a MAS architecture
based on the SIoT paradigm, capable of being imple-
mented on various industrial systems.

3. AN ARCHITECTURE TO IMPLEMENT
COLLABORATIVE LEARNING FOR SOCIAL

INDUSTRIAL ASSETS

The objective of the MAS architecture proposed here,
which consists of three layers, is to implement Collabora-
tive Learning for social industrial assets. The first layer
is formed by Virtual Assets, software components that
ensure that the data originating from machines is pushed
to digital agents in a standardised format, and at regular
intervals. The second layer consists of Digital Twins, digi-
tal agents that run the algorithms of interest for the asset
manager using the standardised data from the Virtual
Assets. The third layer of our architecture is the Social
Platform, that can be hosted in a central server or in the
cloud. All the communications to/ from an agent, and the
interactions with the external world, happen via the Social
Platform (see figure 1).

3.1 First Layer: assets, Virtual Assets and standardisation
of data

In our architecture, the data originating from a physical
asset is standardised by a Virtual Asset before being sent
to the Digital Twin.

The motivation for the introduction of Virtual Assets
is the heterogeneous nature of industrial asset fleets. A
manufacturing facility, for instance, may have a milling
machine, a packaging machine, and a lathe among many
other kinds of machines. They might also come from
different manufacturers, serve different purposes, and have
different specifications. In another example, an automobile
company produces different models of vehicles, which are
suitable for different terrains or performances required.
The number and types of sensors, or operating conditions,
may vary among the vehicles. Virtual Assets are designed
to standardise the data coming from these vehicles in a
format that is conducive to a generic Digital Twin.

Virtual Assets A Virtual Asset is a software component
present for each corresponding physical machine. It is
responsible for standardising the asset data before it
reaches the Digital Twin. The data from Virtual Assets
consists of three main parameters: the Machine Identifier,
the Features (with time at which they were recorded),
and the Events (kind of event, and time of event). The
‘Machine Identifier’ gives the asset a specific identity
in the asset fleet, and includes information of the asset
make, location and operator. ‘Features’ here refer to sensor
generated values. ‘Events’ can be failures, warnings, user
messages, etc. figure 2 describes how the data is made
into a standardised format after passing through a Virtual
Asset.

Similar enterprise-level solutions exist. For example, MT-
Connect (Vijayaraghavan et al. (2008)), which standard-
ises the data being transferred across the entire system.
Our approach differs from MTConnect, as here the data
from each asset is standardised individually by the Virtual
Assets and not at fleet-level.

3.2 Second Layer: generic Digital Twins

Extensive instrumentation, increased digitisation and the
heterogeneity of manufacturing systems make the design
of industrial agents a difficult task. Even in relatively
homogeneous asset fleets the make of the assets vary, and
so does the nature of the asset’s data. Addressing this
challenge, the concept of a Virtual Asset presented in
section 3.1 enables the development of a generic Digital
Twin. These generic Twins are capable of working with
standardised data provided from a variety of assets. This is
aimed to free the asset manager from the cumbersome task
of designing a specific Digital Twin for each of the many
kinds of asset present in a typical industrial environment.

A generic Digital Twin The layout of the Digital Twin
proposed here is generic, which means, it can be adapted
to virtually every type of asset and industrial problem.
Figure 1 shows the layout of the proposed Digital Twin.
Data flows into the Digital Twin from two sources: its
corresponding asset, and the Social Platform; and is stored
in a data repository. This data is then used to run a



Fig. 2. Virtual Assets are the software components that
standardise the data arising from the assets before
it is sent to the Digital Twins. Shown in the figure
are the three components of standardised data, which
enable the Digital Twins to implement the correct
algorithms. The figure showcases examples for three
different machines of two different kinds, the machine
type is specified in the Machine Identifier. In this case
the first number in the identifier indicates the machine
type and the second the machine ID within this type.

Fig. 3. The analytics engine of a generic Digital Twin
model employs different algorithms, depending on the
asset it is associated with. The figure describes this
for the case of a transportation asset and two other
manufacturing machines in an industry.

diverse set of analytic algorithms. These form the Analytic
Engine of the Digital Twin. Typically for each kind of
asset, their associated Digital Twins may run different
kind of algorithms. Which algorithms will the Twins run
is determined by the needs of the asset manager and
conveyed by the Social Platform. An output manager
monitors the streams of data flowing out of the twin, and
is thus responsible for data sharing and collaboration with
its friends in the asset fleet.

The algorithms run by the analytic engine of the Digital
Twin may address tasks like health management, perfor-
mance optimisation, and other optional features which

may be particular to that asset type. The figure 3 shows
how prognostics and diagnostics are performed for all the
assets, but certain tasks like load management and path
determination are performed for the transportation assets
only. Additionally, algorithms supporting a hypothetical
centralised clustering performed by the Social Platform
can be implemented in the analytics engine here. For
example, a secondary hand-shake distributed clustering
algorithm can be implemented on agents to reinforce cen-
tralised clustering.

The computing capabilities of the agents allow for a
flexible heterarchy of the system. For instance, when
a system is in operating state, the algorithms in the
Digital Twins keep processing data both from themselves
and from collaborating assets. This allows the algorithms
(often designed to infer empirically-based models) to learn
in real-time. This automatised heterarchy can be stopped
at any time by request of the Social Platform.

3.3 Third Layer: the Social Platform

The Social Platform forms the third layer of the proposed
architecture. Hosted in a single or multiple servers in the
cloud, the Social Platform is both a gateway for human-
Digital Twin interaction, and also an enabler for asset
to asset communications. The primary capabilities of the
Platform are shown in figure 1. These are running enter-
prise level algorithms which are implemented using data
provided by the whole asset network, and storing the rele-
vant system data in a repository. Algorithms implemented
on the Platform are focused on performing enterprise level
optimisation, and extracting fleet performance trends.

Collaboration among assets becomes efficient when an as-
set prioritises the data originating from its friends (similar
assets). To enable this in our architecture, a matrix com-
prising of distances (similarities) between assets is formed
and stored in the Social Platform. We call it the ‘friendship
matrix. As the system operates, inter-asset similarities are
calculated at regular intervals, subsequently updating the
friendship matrix. Similarity may be calculated based on
a variety of indicators such as feature data, machine type,
environmental data, etc. Since it is a common channel for
the data flowing in the MAS, the Platform theoretically
is best informed to calculate similarity metrics. This is
done through Enterprise level algorithms such as k-means
clustering. Otherwise, decentralised clustering can also
be run in the analytics engine of the Digital Twin. The
information regarding the asset’s clusters will in any case
be in stored in the Platform’s data repository, in form of
a friendship matrix.

For each asset, its cohort of collaborating assets is given by
the N closest assets in the friendship matrix. Collaborative
learning is then implemented by sharing data between
pairs of “friends”. The data received by an asset from a
friend may be weighted in the algorithms running in the
analytics engine of the Digital Twin according to their
estimated similarity.

3.4 Collaborative Learning

In a fleet of assets a rare catastrophic failure may occur
only to a small subset of assets. In this case, it would



be beneficial to convey the information regarding this
failure to the other similar assets in the fleet. If this is not
done, we might face a scenario where an event, although
already known to the fleet, would be unknown to machines
which have not encountered it yet. Thus their algorithms
will fail to predict it. This example becomes especially
relevant for new machines being added to a fleet of old
ones. In a collaborative MAS architecture, the trajectories
corresponding to a newly registered event can be shared
among similar assets and other agents can thus be made
aware of such circumstances in future.

To make this inter-asset collaboration efficient, it is crucial
to ensure that the data being shared covers all relevant
information, and at the same time, is not bulky. To
achieve this, the assets keep sharing certain pre-defined
performance parameters at regular intervals while the
asset is in normal condition. As soon as an asset encounters
a certain new event of interest, the data corresponding to
that time frame, i.e. a trajectory to that event, is shared
as a ‘new training data-set’ for other assets. Subsequently,
specific causes and analysis of the event are shared among
Digital Twins too.

Apart from making the system more robust, collaborative
learning makes a system agile and more efficient. For
instance, through collaboration, machines of a manufac-
turing unit can actively manage their load, by continuously
evaluating their health condition and comparing with that
of other similar machines. A healthy machine is capable of
producing more output, thus reducing the production load
of deteriorated machines and the maintenance downtime.

4. AN ILLUSTRATIVE EXAMPLE: CLUSTERING
AND PROGNOSTICS IN THE C-MAPPS DATA-SET

We demonstrate the use of the above described architec-
ture to determine the Remaining Useful Life (RUL) for
a fleet of turbofan engines. Due to its link to Condition
Monitoring, calculating an asset’s RUL is a problem that
combines asset management and IIoT technologies. Here,
we use the C-MAPSS (Saxena and Goebel (2008)) data-
set to showcase collaborative RUL estimation. The data-
set consists of four fleets of engines, which are labelled as
FD001-4. For our example we’ll be using fleets FD001 and
FD003 only. Engines within FD001 and FD003 share the
same operating conditions, with the difference being that
engines in FD003 fail due to High Pressure Compressor
degradation and fan degradation while engines in FD001
only present the first kind of failure. The data-set em-
ployed here consist of multi variate time-series in the form
of rows of sensor data recorded after fixed time-steps. Each
machine starts normally, develops fault during operation,
this fault grows in magnitude and the machine eventually
fails. Both FD001 and FD003 feature 100 independent
trajectories to failure. We group 20 trajectories to failure
together, in each fleet, to simulate multiple machines. This
is not ideal, but since all the machines in a fleet are identi-
cal, it is sufficient to serve as an example. Collaboration is
implemented simply by sharing failure trajectories among
clusters of machine ‘friends’.

In our example, the architecture is implemented using the
python programming environment. For our case, Virtual
Machines directly read the data of their corresponding

engines from csv sheets, instead of receiving data from
a real asset. To simulate real-time operation, the VMs
read the data at fix time intervals, and are unaware of
what lies ahead. The data, after being pushed to the
Digital Twins using the ‘socket’ library, is processed by
a naive prognostics algorithm, based on a fixed window
K-Neighbors classifier from the ‘sklearn’ machine learning
library. In short, the data coming from the asset’s sensors
is classified according to its known remaining useful life
based on the width of a predefined time window (see
Table 1). This classification algorithm is then used to
make approximate predictions about the RUL of new
trajectories.

Table 1. Example of a fixed-window classifica-
tion, after normalisation of the sensor values,
a class is assigned to each data point with
regards to its remaining useful life. In green,
classes assigned a posteriori of the known fail-
ure (marked in red). In blue, classes predicted

by the classification algorithm.

Sensor1 0.9 0.7 0.55 0.99 1 0.3 0.9 0.71

Sensor2 0.87 0.77 0.99 1 1 0.2 0.88 0.77

Sensor3 1 0.2 1 0 1 0.1 1 0

RUL 5 4 3 2 1 0 ? ?

Class 2 2 1 1 0 0 2 2

Apart from the prognostics algorithm implemented in the
Digital Twins, a basic K-Means clustering algorithm is
implemented on the Social Platform, aimed to determine
the friendship matrix. This algorithm, identifies and clus-
ters similar engines based on Euclidean distances between
the sensor values. This has been implemented to illustrate
the role of the Social Platform and the Digital Twin’s
output manager. The output managers share the average
of the data points received from their corresponding VMs
in a time-step, with the Social Platform, which serves as
a statistical indicator of the status of the asset. Then,
the Social Platform uses these points to determine the
Friendship Matrix of the assets using the centroid based
clustering approach (figure 4). Once the clusters are stable,
in each time step, the Social Platform then shares every
asset’s data with its friends, enabling every asset with large
amount of data from its cluster.

After implementing the example described above and
quantifying the results obtained for collaborative and non-
collaborative approaches, we find the significantly higher
accuracy of Collaborative approach as evidence for the
efficiency of our architecture and proof of the advantages
of collaborative learning (figure 5).

5. CONCLUSION

We propose a Multi Agent System architecture specially
designed to implement collaborative learning in social
industrial assets. The proposed architecture is envisaged
within the paradigm of the Social Internet of Industrial
Things (SIoT), and allows assets within an industrial sys-
tem to self-assemble in networks of collaborating assets.
The architecture allows for any kind of collaboration stem-
ming from data sharing among similar machines. We im-
plement the proposed architecture for collaborative prog-
nostics, using a näıve fixed-window prognostics algorithm



Fig. 4. The Social Platform is responsible for forming
clusters of similar assets. In our example, we form
two machines from FD001 (cluster 1) and three from
FD003 (cluster 2). This plot displays the convergence
and formation of stable clusters after 5 iterations, with
the machines being grouped correctly based on the
example.

Fig. 5. Accuracy of the fixed-window predictive algorithm
for a machine of Cluster 1 in the Collaborative (red)
and Non-collaborative (blue) cases.

to predict RULs in the C-MAPPS data-set. We show how
assets cluster in stable groups of friends that then exchange
data to improve the prognostics algorithm. The distributed
nature of the Digital Twins is replicated by using different
computers to represent different assets. Initial results show
that continuous exchange of data between similar assets
significantly improves prediction accuracy. Future work
will consist on a real-case implementation with multiple
failure modes, asset kinds and analytic engines in the
Digital Twins.
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