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Abstract This paper provides a methodology to assess

the optimal Multi-Agent architecture for collaborative

prognostics in modern fleets of assets. The use of Multi-

Agent Systems has been shown to improve the ability to

predict equipment failures by enabling machines with

communication and collaborative learning capabilities.

Different architectures have been postulated for indus-

trial Multi-Agent Systems in general. A rigorous anal-

ysis of the implications of their implementation for col-

laborative prognostics is essential to guide industrial

deployment. In this paper, we investigate the cost and

reliability implications of using different Multi-Agent

Systems architectures for collaborative failure predic-

tion and maintenance optimization in large fleets of

industrial assets. Results show that purely distributed

architectures are optimal for high-value assets, while hi-
erarchical architectures optimize communication costs

for low-value assets. This enables asset managers to de-

sign and implement Multi-Agent systems for predictive

maintenance that significantly decrease the whole-life

cost of their assets.
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Introduction

The potential of using computational models to enable

real-time machine failure prediction (prognostics) has

been known since the 1980’s (Buchanan, 1986). How-

ever, it wasn’t until recent advances in sensing and

communication technologies that real-time prognostics

became possible. Among these advances were cheaper,

less power-consuming sensors and improved telecom-

munications, that allowed for continuous monitoring of

machines and led to the emergence of the Internet of

Things. In the Internet of Things, a network of con-

nected devices gather and share information about their

surroundings (Atzori et al., 2010; McFarlane, 2018). In

the industrial context, this is referred to as the In-

dustrial Internet of Things (IIoT)(Gilchrist, 2016; Li

et al., 2018), a paradigm that together with improve-

ments in regression techniques and computing power

is set to revolutionize the field of prognostics. In the

IIoT, data gathered through sensors embedded in the

machines can be leveraged to perform real-time fail-

ure detection and prediction for machines in a machine

fleet, thus significantly reducing maintenance cost and

machine downtime (Li et al., 2018; Ning et al., 2016).

The IIoT enables the use of Multi-Agent Systems as

a framework for prognostics and other manufacturing

problems (Brennan et al., 2002; Mař́ık and Lažanskỳ,

2007; Monostori et al., 2006). Multi-Agent Systems (MAS)

are systems of independent software elements that can

be used to aid humans in the process of taking decisions

(Ferber and Weiss, 1999). They have been postulated

as a suitable framework to deal with the complexity of

industrial asset fleets formed by heterogeneous assets

(Leitão and Karnouskos, 2015). Multi-Agent Systems

have been especially successful in aiding humans to take

decisions in complex environments such as traffic man-
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agement, industrial production, etc. (Wooldridge and

Jennings, 1995).

The history of Multi-Agent Systems is intrinsically

linked to our understanding of the meaning of the word

‘agent’, the definition of which has been a long-lasting

topic of debate (Nwana, 1996). This paper conforms

to the definition of agents typically used for industrial

systems: agents as autonomous, problem-solving, and

goal-driven computational entities with social abilities

(Leitão and Karnouskos, 2015). Multi-Agent Systems

remain one of the most prolific frameworks to manage

continuous monitoring systems, and recently they have

been postulated as a way of providing assets with a cer-

tain degree of agency (Palau et al., 2019b). From this

idea, collaborative prognostics has been proposed as a

framework in which agents share information with each

other in order to improve failure predictions, thus opti-

mizing predictive maintenance (Palau et al., 2019a).

A Multi-Agent System is defined by its architec-

ture, that determines the structure and topology of

its agents. Multi-Agent System architectures have been

broadly classified into four types: Centralized, Hierar-

chical, Heterarchical, and Distributed (or peer-to-peer)

(see (Sallez et al., 2010), and (Leitão and Karnouskos,

2015)). In collaborative prognostics, where agents are

often linked with individual assets, the optimal archi-

tecture will be determined by its influence on the overall

cost and reliability of the system. Collaborative prog-

nostics in large fleets of assets comprehends several cost

factors: communication, computational, and maintenance.

Traditionally, maintenance costs were considered cardi-

nal. With the advent of IIoT technologies, communica-

tion and computational costs have become relevant due

to the large amount of data processed and transmitted

through the internet in continuously monitored fleets.

When applied to predictive maintenance, several of

the canonical architectures of Multi-Agent Systems re-

quire dramatically increasing the amount of processing

and communication within the fleet, as real-time peer-

to-peer communication and prognostics are supported.

State of the art prognostics use a plethora of machine

learning algorithms (Khan and Yairi, 2018; Lee et al.,

2014), which are often computation and data intensive

(Konecnỳ et al., 2016). Therefore, it becomes crucial

to quantify how maintenance costs compare to other

costs in order to assess the suitability of different MAS

architectures.

In this paper, we compare several canonical Multi-

Agent architectures for collaborative prognostics on the

basis of different cost balances between communication,

maintenance and computation. Concretely, we study

the effect of varying asset value and communication

costs in the overall cost of the architecture, and we show

that different architectures are optimal for different in-

dustrial scenarios.

Apart of the cost constraints explicitly dealt with

in this paper, the implementation of a Multi-Agent Ar-

chitecture may be limited by other constraints such as

human resources or available capital. This is especially

important in the case of SME’s, or industries operat-

ing in a context of low financial liquidity. This paper

does not deal with such managerial details, but they

must nonetheless be taken into account beforehand by

any Asset Manager wishing to implement the proposed

system in practice.

After an Abstract and an Introduction, a further lit-

erature review is presented in “Pertaining Literature”.

This is followed by a description of Collaborative Prog-

nostics, and of the maintenance policy followed by the

agents in our implementation. Following this, the sec-

tion “Cost analysis” describes how different architec-

tures are benchmarked through their operational cost,

and presents a normalized cost measure. This is fol-

lowed by a description of the agent typologies used in

the system’s architectures in a section called “Agent

typologies and their failure modes”. The Multi-Agent

architectures are presented right after, in a homony-

mous section. This is followed by a brief description

of the implementation of the architectures in a Multi-

Agent System simulation software called Netlogo, and a

description of the distributed clustering algorithm used

in the implementation of the Distributed architecture.

Experiments are described in a section with the same

name, and the results obtained from these experiments

are described in “Results and Discussion”. A method-

ology to select a Multi-Agent Architecture is described

in the section “A methodology for architecture evalua-

tion”. The paper ends with a conclusion, and descrip-

tion of future work.

Pertaining Literature

While the formal definition of the term agent varies

across the literature, there is at least a consensus over

the way MAS function (Weiss, 1999; Wooldridge and

Jennings, 1995; Ferber and Weiss, 1999). In Multi-Agent

Systems, the overall system goal is subdivided into agent-

level goals depending on the knowledge and reason-

ing skills of the agents within the system. Agents per-

ceive their local environment, and have a partial view

of the system by communicating with other agents. It

is through this communication that agents collaborate

with one another, and make decision to reach the overall

system goal. The level of intelligence and relationships

among the agents is defined by the designer of the sys-
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tem, or the final user (Brennan et al., 2002; Mař́ık and

Lažanskỳ, 2007; Monostori et al., 2006).

Multi-Agent System architectures are typically de-

fined in terms of decision-making, and thus vary from

being completely distributed (where all agents are at

the same decision-making level), to being purely cen-

tralized (similar to traditional centralized control sys-

tems) (Andreadis et al., 2014). Additional agents like

mediators, or brokers, may be present in the system

to govern a sub-group of agents, thus generating ar-

chitectures with an intermediate degree of distribution

(Andreadis et al., 2014). In this paper, we focus on

four broad classes of MAS architectures: Distributed,

Heterarchical, Hierarchical, and Centralized. These four

classes correspond to the four classes of decision-making

architectures identified in (Sallez et al., 2010), and (Leitão

and Karnouskos, 2015).

The Hierarchical, Heterarchical, and Distributed MAS

architectures have their origin in traditional control sys-

tems, that by the end of the 20th century evolved to

more distributed frameworks (Trentesaux, 2009). A flex-

ible decision-making approach was preferred over a rigid

one providing optimal solutions under hard constraints,

thus spurring the rise of decentralized architectures

(Leitão, 2009; Trentesaux, 2009).

The earliest type of distributed framework was Hi-

erarchical, where the information flowed from lower lev-

els in the architecture to higher-level agents until a

suitable decision-making level was reached. Decisions

then flowed in the opposite direction (Leitão, 2009).

However, the search for a suitable decision maker, and

the following computations induced lag, compromis-

ing the real-time capabilities of the system. This was

solved by allowing decision makers at the same level

to coordinate. Such ‘heterarchical’ frameworks are re-

configurable, and have substantially improved short-

term optimization (Trentesaux, 2009).

The use of MAS as a framework for decision-making

and control in manufacturing industries has been pro-

posed by several researchers (Vrba, 2013; Shen et al.,

2006). Table 1 shows various examples where the use

MAS has shown to optimise the operations.

In conclusion, the literature presents ample evidence

for the use of MAS as a decision-making framework for

varied applications in the manufacturing industry. one

such application, collaborative prognostics, is consid-

ered in this paper and implemented for different well-

known MAS architectures.

Collaborative prognostics

The concept of collaborative prognostics extends the

concept of collaborative agents into the field of prog-

Reference Year Application Use of MAS

(Duffie and Piper, 1986) 1986 Job scheduling
Represent entities of a shop floor
using agents to enable dynamic
job scheduling

(Djurdjanovic et al., 2003) 2003 Prognosis & diagnosis
Agent analyzes the data for
diagnosis and prognosis

(Wong et al., 2006) 2006 Job scheduling
Agents negotiate and evaluate
cost for optimal job scheduling

(Tang et al., 2006) 2006 Maintenance planning

Optimize a maintenance model
using a reinforcement learning
model implemented over a
MAS framework

(Liu et al., 2007) 2007 Prognostics
Prognostics of
shipboard power systems

(Xiang and Lee, 2008) 2008 Task sequencing
Part and machine agents optimize
the task sequencing operation

(Fasanotti, 2014, 2018) 2014 Maintenance planning
Forecast maintenance
needs of geographically
distributed assets

(Hernández et al., 2014) 2014 Supply chain management
Collaborative learning
in supply chain management

(Wang et al., 2016) 2016 Smart factory
A coordinator agent decides
upon the optimal solution
after lower-level agents negotiate

(Upasani et al., 2017) 2017 Maintenance planning

Agents representing various
departments of a shop floor
collaboratively plan a
maintenance schedule

(Li and Parlikad, 2017) 2017 Workload assignment

Coordinator agent continuously
monitors the asset agents to
assign optimal workload to reduce
the overall operations cost

(Ghita et al., 2018) 2018 Maintenance planning

Maintainer and Producer agents
collaborate to improve
prognostics and production
and maintenance activities

Table 1 Brief overview of research featuring the use of Multi-
Agent Systems in manufacturing industries.

nostics and health management. Collaborative agents

share information with each other in order to jointly

achieve a given objective (Tan, 1993; Nwana, 1996).

In collaborative prognostics, machines (through their

agents) behave like social entities, communicating with

one another and taking their own decisions. In its core,

collaborative prognostics involves formation of clusters

of similar machines, and collaboration among machines

within these clusters to improve failure prediction and

predictive maintenance. This collaboration can either

be in the form of exchanging model parameters or con-

dition data (Palau et al., 2019b).

In contrast to conventional fleet-wide prognostics

methods that rely on a single computer, collaborative

prognostics is distributed, flexible and occurs in real-

time. Moreover, it has been shown that collaborative

prognostics is theoretically more cost-effective compared

to self-learning (prognostics using the machine’s own

data (Palau et al., 2019b)), and whole fleet learning

under certain conditions (Palau et al., 2019a).

So far, the feasibility of collaborative prognostics

has been shown using a modified hierarchical architec-

ture (Bakliwal et al., 2018). This architecture was ap-

plied to a scenario in which a simulated fleet of turbofan

engines was managed using agents. Each engine was as-

signed an agent, a “Digital Twin”, which in turn were

connected to one another via a “Social Platform” agent.

Prediction was done initially using sliding-window clas-

sification (Bakliwal et al., 2018), later expanded to re-

current neural networks (Palau et al., 2018).

In this paper, collaborative prognostics is imple-

mented using four different canonical Multi-Agent ar-
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chitectures. In order to evaluate realistic industrial sce-

narios involving several hundreds of machines commu-

nicating with each other, it is important to reduce the

complexity of the analysis. In prognostics, a standard

way to do this is through a Health Indicator, a syn-

thetic numerical indicator extracted from the asset’s

sensor values that upon reaching a pre-defined thresh-

old is assumed to signify asset failure (see, for example,

(Wang et al., 2008; Yan et al., 2004)).

Similar to (Palau et al., 2019b; Wang et al., 2008),

we choose an inverse exponential Health Indicator:

HIi(tli) = ai

(
1− e−bi(tfi−tli)

)
+ ε0,σ, (1)

in this equation, tli is the local time of the asset: the

time since the last repair or installation. (ai, bi, tfi) are

the parameters that define the behaviour of the Health

Indicator. bi is a curvature parameter (the smaller bi
is, the sharper the deterioration). ai determines the ex-

pected value of HIi at tli = 0. tfi is the average (or ex-

pected) time of failure. ε0,σ is a random term with stan-

dard deviation σ and 0 mean, conforming to a Gaussian

distribution. In this paper, ai is normalised to 1, and

thus σ = 1 represents a level of noise that often reaches

100% of the value of the health indicator. This means

that in realistic situations σ < 0.5. Assets are assumed

to have failed when HIi ≤ 0.

In this paper, collaborative prognostics is imple-

mented by sharing Health Indicator data among similar

agents in the system. The accumulation of data, if be-

longing to an asset with similar (ai, bi, tfi), increases

the accuracy of prediction. On the opposite, if the as-

sets are dissimilar, data sharing decreases it.

Maintenance policy

The agents in the system responsible of prognostics will

propose the following predictive maintenance policy to

human operators:

– Predictive Maintenance: assets should be preven-

tively repaired when their time since installation or

last repair surpasses the predicted time of failure

multiplied by a factor, η: tli > ηtefi, η < 1.

– Corrective Maintenance: assets should be correc-

tively repaired immediately upon failure.

In this policy, tefi is the estimated time of failure of the

asset i in the fleet. Ideally, η can be optimized in real

time by assuming that the agent’s estimated prognos-

tics parameters approximate the true ones, as the prob-

lem reduces to a replacement policy problem (see (Jar-

dine and Tsang, 2005; Palau et al., 2019b)). In this pa-

per, however, we decide to set η into a fixed value of 0.7

in order to satisfy computational constraints and help

comparison across experimental cases (experiments

showed that the value η was not relevant for the com-

parison between architectures as long as η was the same

across experiments).

Cost analysis

An accurate estimation of the cost of a Multi-Agent

System is crucial to choose between different architec-

tures for a given implementation scenario. The cost,

CT incurred by operating the Multi-Agent architec-

tures presented in this paper can be divided in three

main components: maintenance, communication, and

processing (computational) costs,

CT = CM + CC + CP = NCΓ +NPγ + CC + CP, (2)

where CM is the maintenance cost of the assets, CC

is the communication cost, and CP is the processing

cost. The maintenance cost, CM is formed by the pre-

dictive maintenance cost, γ, and the corrective mainte-

nance cost Γ of one asset. NC and NP are the number of

times that corrective and predictive actions have been

taken at any given time.

In normal conditions, the predictive maintenance

cost is a small fraction of the corrective maintenance

cost, γ = αΓ where α � 1. For this paper correc-

tive maintenance is assumed to correspond to the full

replacement of the asset that has failed, which means

that its cost can be assumed to be the proportional to

the acquisition cost of the asset1 Γ ∝ CA. In this pa-

per ‘high value’ assets correspond to assets with a high

value of Γ , and consequently ‘low value’ assets corre-

spond to assets with a low value of Γ . Eq. (2) can be

re-written:

CT = Γ (NC + αNP) + CC + CP. (3)

The precise monetary amount represented by each of

these components necessarily depends on the particu-

larities of the system studied. Notwithstanding, it is

a safe assumption that individualized communication

and processing costs will approximately be the same

across different implementation scenarios. Regardless

of whether the data comes from a smart phone or a

gas turbine, the cost of processing a byte of that data

and sending it through the Internet is the same. It is

then useful to normalize these costs to the corrective

maintenance cost, Γ . Eq. (2) then reads:

Ct = (NC + αNP) +NCoCc +NproCp, (4)

1 Other costs, such as downtime cost, human resources, etc,
should be also considered for the exact mathematical depen-
dency.
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where Cc, Cp, and Ct are normalized to the correc-

tive maintenance cost Γ .NCo is the number of fixed-size

(a pre-set byte amount) communications between any

two agents in the system. Npro is the number of times

a fixed computational resource measure (for example,

one flop) is used in the system. In practical terms, this

means that if in one system the corrective maintenance

cost is £10000, and in another one it is twice that, Cc

will be reduced by half in the simulation (as Cc is nor-

malised to Γ ). Thus, in this paper, costs are pre-set

in three parameters, all normalized to Γ : the fixed-

length communication cost Cc, the fixed computational

resource cost Cp, and the predictive maintenance cost

α.

To further compare across architectures and exper-

imental scenarios, it is important to normalize cost to

the time that the system has been operating and to

the number of assets present in each experiment. This

is needed because experiments with a larger number of

assets, and with a longer operation history will generate

larger costs. For this purpose, we will use the normal-

ized cost K:

K =
1

TN
((NC + αNP) +NCoCc +NproCp) , (5)

where N is the number of assets in the system and T

is the total time of the simulation (the number of steps

since initialization).

Agent typologies and their failure modes

The architectures reviewed in this paper are formed by

four elements: Virtual Assets, Digital Twins, Mediator
Agents, and a Social Platform. Some of these agents

were already described in several publications (Palau

et al., 2019a; Bakliwal et al., 2018; Palau et al., 2018,

2019b), and their description here is inspired in the orig-

inal papers.

The agent’s failure modes have been restricted to af-

fect their deliberative and communicative capabilities.

The experiments are set up under the assumption that

there will be no data loss upon agent failure due to the

widespread nature of backup systems in industry.

Virtual Asset

Virtual Assets are the lowest-level agents employed in

collaborative prognostics. The Virtual Assets’ tasks are

limited to standardizing the data coming from their cor-

responding physical assets, and sending that data to up-

per layers in the architecture. It must be mentioned that

because of the rather simple tasks that they perform,

Virtual Assets fail to satisfy some widely-accepted defi-

nitions of agents (see for example (Nwana, 1996)). How-

ever, they are critical for the functioning of the system

and thus we include them in our analysis.

Virtual Assets act as passive nodes of the architec-

ture, and have no deliberative capabilities. Their data

is divided in three main components: a set of sensor-

produced features, a set of timed failures or warnings,

and a unique identifier. Virtual Assets are formed by

two building blocks: a Standardizer, dedicated to stan-

dardize the data coming from their assigned assets, and

a Communications Manager, that controls the commu-

nications with the upper layers of the architecture.

Failure: Virtual Asset’s failure corresponds to the

severance of communications between a deteriorating

asset and the rest of the architecture, and thus the halt

of prognostics for this particular asset.

Digital Twin

Digital Twins are smart agents with prognostics, com-

munication, and data preprocessing capabilities. When

Digital Twins are employed, each physical asset in the

industrial system is assigned its individual Digital Twin.

Digital Twins are composed of three building blocks:

an Analytics Engine, a Data Repository, and a Com-

munications Manager. The Analytics engine computes

prognostics and the maintenance policy, the Data Repos-

itory manages the data available to the Twin, and the

Communications Manager controls the communication

between the Digital Twin and other elements of the

architecture. This includes the capability of indepen-

dently choosing other Twins to collaborate with.

Failure: The failure of a Digital Twin implies (i)

that its communication with other agents is severed,

(ii) that the system stops providing maintenance recom-

mendations for the physical asset assigned to the faulty

Digital Twin, and (iii) that the Digital Twin cannot

perform any computation.

Mediator Agents

Mediator Agents are intermediate agents able to per-

form prognostics and determine the maintenance policy

for groups of assets. They are also able to receive data

from the Virtual Assets, and send data to upper layers

of the architecture. Mediator Agents can communicate

with each other through the Social Platform.

Mediator agents are composed by the same build-

ing blocks as Digital Twins. However, their Analytic

engine and Communications Manager do not give them

the capacity of choosing which agents to communicate
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with, as their communications are managed by the So-

cial Platform.

Failure: The failure of a Mediator Agent implies

(i) that its communication with other agents is sev-

ered, (ii) that the system stops providing maintenance

recommendations for the physical assets assigned to the

Mediator Agent and (iii) that the Mediator Agent stops

using any computing power.

Social Platform

The Social Platform is the agent serving as a central

node in the Centralized, Hierarchical and Heterarchical

architectures. The main task of the Social Platform is to

run algorithms leveraging information originating from

the whole fleet. These algorithms can be aimed at (1)

forming clusters of collaborating assets, (2) retrieving

and plotting enterprise-level information, or (3) calcu-

lating prognostics and making maintenance decisions.

Note that each of these tasks are optional and depend

on the architecture in which the Social Platform is em-

bedded (see table 2).

The Social Platform uses data received from agents

in lower layers of the hierarchy in order to form clus-

ters of collaborating assets. In the case of a Hierarchical

architecture, the Social Platform acts also as a commu-

nication channel between the lower agents of the archi-

tecture.

The Platform is formed by three building blocks:

a Data Repository, containing clustering information,

and the results of the algorithms run in the platform, an

Analytics Engine where algorithms are computed, and a

Communication Manager, that controls communication

with lower-level agents.

Failure: The failure of the Social Platform implies

the severance of all communications and all computa-

tions managed by it. Additionally, in the Centralized

architecture, failure of the Social Platform implies the

halt of all maintenance recommendations.

Multi-Agent System architectures

In this section, we describe the architectures analyzed

in this paper. These architectures have been chosen

because of their prominence in industrial systems. In

here, we describe them within the context of collab-

orative prognostics, more general descriptions can be

found in (Brennan et al., 2002; Mař́ık and Lažanskỳ,

2007; Monostori et al., 2006; Andreadis et al., 2014;

Leitão and Karnouskos, 2015). Table 2 summarizes the

role that each of the components presented the previous

section play in each architecture.

Centralized

The Centralized architecture is the simplest case con-

sidered in this paper. It consists of a Social Platform

with full control over the decision-making of the sys-

tem, and a set of Virtual Assets that limit themselves

to sending data to the Social Platform. The Social Plat-

form computes the clusters of similar assets, and then

uses the data from the assets belonging to these clusters

to generate maintenance recommendations (see Fig. 1).

A Centralized architecture can technically be ar-

gued to not be a Multi-Agent architecture, as the only

agent that really takes decisions and outputs predic-

tions is the Social Platform. Nevertheless, we decide to

test it against other architectures because of its impor-

tance and widespread use in industrial applications.

Virtual
Asset

Virtual
Asset

Virtual
Asset

Virtual
Asset

Social Platform

Data 
repository

Communications
manager

Analytics
engine

Human
Agents

Asset Asset Asset Asset

Centralised Architecture

Fig. 1 Block diagram of the Centralized architecture. Black
arrows indicate communications between its elements. Hu-
man agents and assets are not considered to be part of the
software architecture, as they are elements in the physical
world. The thicker block, pertaining to the Social Platform,
indicates the element of the architecture performing prognos-
tics.

Hierarchical

A Hierarchical architecture is defined as an architec-

ture in which intermediate agents provide most of the

decision-making in the system, while lower-level agents

are left to perform simpler tasks. In our case, these in-

termediate agents are Mediator Agents. Mediator agents

are assigned groups of Virtual Assets for which they

perform prognostics, and schedule maintenance actions

(see Fig. 2).
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The Social platform is hierarchically superior to the

Mediator Agents and in fact assigns them to groups of

similar assets. The Social platform can also create or

delete Mediator Agents (since the number and mem-

bership of clusters may vary over time), and has full

control of the communications of the system.

V. A. V. A.

V. A. V. A.

V. A. V. A.

V. A. V. A.

V. A. V. A.

V. A. V. A.

Social Platform

Data 
repository

Communications
manager

Analytics
engine

Human
Agents

Asset

Hierarchical Architecture

Mediator Agent

C D A

Mediator Agent

C D A

Mediator Agent

C D A

Asset Asset Asset Asset Asset

Fig. 2 Block diagram of the Hierarchical architecture. Black
arrows indicate communications between its elements. Hu-
man agents and assets are not considered to be part of the
software architecture, as they are elements in the physical
world. The thicker blocks, pertaining to the Mediator Agents,
indicate the element of the architecture performing prognos-
tics for the assets in the industrial fleet. C, D, A are used to
indicate the Communications manager, the Data Repository
and the Analytics engine of the Mediator Agent.

Heterarchical

A Heterarchical architecture differs from the Hierarchi-

cal case presented in last paragraph in that it allows for

peer-to-peer communication between the Digital Twins.

Concretely, in our implementation of this architecture,

Digital Twins perform prognostics, take maintenance

decisions, and communicate with each other.

The Social Platform, at a higher level in the archi-

tecture, decides which Digital Twins will communicate

with each other through its clustering algorithm, and

serves as a communication link with human operators

(see Fig. 3).

Social Platform

Data 
repository

Communications
manager

Analytics
engine

Human
Agents

Heterarchical Architecture

Digital Twin

C D A

Virtual Asset

Asset

Digital Twin

C D A

Virtual Asset

Asset

Digital Twin

C D A

Virtual Asset

Asset

Digital Twin

C D A

Virtual Asset

Asset

Fig. 3 Block diagram of the Heterarchical architecture.
Black arrows indicate communications between its elements.
Human agents and assets are not considered to be part of the
software architecture, as they are elements in the physical
world. The thicker blocks, pertaining to the Digital Twins,
indicate the element of the architecture performing prognos-
tics for the assets in the industrial fleet. C, D, A are used to
indicate the Communications manager, the Data Repository
and the Analytics engine of the Digital twin.

Distributed

A Distributed architecture is one in which all its agents

are in the same level of the hierarchy, and have the

ability to take independent decisions without the su-

pervision of a higher-level agent (see Fig. 4). In this ar-

chitecture, communication consists of peer-to-peer con-

nections between Digital Twins (i.e. the twins are all

connected to one another without any central agent or

mediators present).

As in the architectures described previously, similar

assets are clustered together for collaborative prognos-

tics, and the Digital Twins within the same cluster col-

laborate with one another. There is, however, an impor-

tant difference: the clustering algorithm implemented

here has to be a distributed clustering algorithm, un-

like the previous architectures, where the Social Plat-

form performs this task. The distributed k-mean clus-

tering algorithm implemented here is similar to the one

presented in (Qin et al., 2017), and is detailed in the

section named “Distributed Clustering algorithm”.

Implementation in Netlogo

The architectures explained above were analysed in terms

of their cost components. For this analysis to be done,
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Human
Agents

Distributed Architecture

Digital Twin

C D A

Virtual Asset

Asset Asset Asset Asset

Digital Twin

C D A

Virtual Asset

Digital Twin

C D A

Virtual Asset

Digital Twin

C D A

Virtual Asset

Fig. 4 Block diagram of the Distributed architecture. Black
arrows indicate communications between its elements. Hu-
man agents and assets are not considered to be part of the
software architecture, as they are elements in the physical
world. The thicker blocks, pertaining to the Digital Twins,
indicate the element of the architecture performing prognos-
tics for the assets in the industrial fleet. C, D, A are used to
indicate the Communications manager, the Data Repository
and the Analytics engine of the Digital twin.

Agent Centralized Hierarchical Heterarchical Distributed

Social Network
Platform

-Clustering
-Predictive
Maintenance

-Clustering
-Mediator control

-Clustering -NA-

Mediator -NA-
-Predictive
Maintenance

-NA- -NA-

Digital Twin -NA- -NA-

-Predictive
Maintenance
-Peer to peer
Communications

-Distributed
Clustering
-Peer to peer
Communications
-Predictive
Maintenance

Virtual Asset Standardize the incoming data and pass it on to the higher levels

Table 2 Brief description of the roles different agents play
in each of the architectures.

a set of experiments were performed on Netlogo, with a

Python extension. Netlogo is a MAS simulator, which

has been used to simulate emergent behaviour of com-

plex systems ranging from herd of sheep, to human

behaviour during an emergency (Tisue and Wilensky,

2004). Netlogo allows its agents to run Python scripts

in the backend, through its official Python extension2.

All the architecture types described above were sim-

ulated using the same strategy: Netlogo simulated the

behaviour of the agents (i.e. initiating the fleet of assets,

connecting similar agents together, computing agent

failures, etc), and prognostics / clustering algorithms

were implemented using Python scripts.

The same approach used in (Palau et al., 2019b) for

prognostics is followed in our simulations here. How-

ever, instead of Matlab’s lsqnonlin used in (Palau

et al., 2019b), the least squares fit from Python’s Scikit

learn (Pedregosa et al., 2011) library was used to fit the

2 https://github.com/NetLogo/Python-Extension

ai, bi, and tfi values in the eq. (1). To ensure that the

system scaled well with the number of assets, this fit

was limited to the last 400 data-points available to the

agent.

Agents decided on which other agents to collaborate

with by checking whether their corresponding assets be-

longed to the same asset cluster (information conveyed

by the Social Platform). The clusters of assets were

formed using the k-means clustering Algorithm (Har-

tigan and Wong, 1979) implemented on Python via the

Scikit learn library. This algorithm had as an input the

parameters obtained from the non-linear fit: ai, bi, and

tfi. This excludes the case of the Distributed architec-

ture, in which the distributed clustering algorithm de-

scribed in the next section was used. To measure the

computation cost, we measure the processor’s time us-

ing python’s ‘Time’ module while the program is run.

Thus, Npro is simply the total processing time used by

the Python scripts of each architecture.

Distributed Clustering algorithm

The clustering algorithm implemented for the distributed

architecture differs from the centralized clustering algo-

rithm used for the rest of architectures. The algorithm

used here distributes the computation steps across the

nodes, as there is no central agent left to compute clus-

tering.

The goal of this algorithm is to form ‘k’ clusters

of assets. ‘k’ here equals the number of different types

of assets in the fleet. To initialise the clustering cen-

troids, first, a random agent in the fleet is chosen as

the first centroid. This agent records the distances of

the remaining agents from their corresponding closest

centroid. ‘closeness’ of the agent from the centroid is

calculated using the history of the past health indices,

and the maximum time before failure recorded. The far-

thest agent is then assigned as a new centroid. The pro-

cess of generating new centroids continues until we have

a total ‘k’ centroids, each representing its own cluster of

assets. This way, centroids are initiated as far away from

each other as possible, which is also the rationale be-

hind the distributed k++ means algorithm (Qin et al.,

2017).

Once all centroids have been assigned, each agent

computes the distance to the centroids identified above,

and assigns itself to the cluster corresponding to the

closest centroid. As the simulation time progresses, the

availability of Health Indicator data increases. Since

in our simulations we use a normally distributed noise

term (see eq. (1)), the average difference of the health

indicator per time step for similar assets approaches

zero. The similarity of the assets therefore becomes

https://github.com/NetLogo/Python-Extension
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more and more apparent with every passing time step,

and the clusters eventually converge. This is the only

step different from the distributed k-means clustering

presented in (Qin et al., 2017), where the authors rely

on average-consensus to update the clusters. We in-

stead update the clusters based on increasing data avail-

ability with the time steps. Algorithm 1 describes our

distributed algorithm in pseudo-code (run every time

step).

Select one random agent from the fleet;
while number of centroids <k do

for the agent selected above do
Calculate the distances between the agents
and the centroids;
Record the distances of the agents from their
closest centroid;
Append the farthest agent to the list of
centroids;

end

end
These centroids represent the clusters;
for every other agent in the system do

Calculate the distances from each centroid;
Assign self to the cluster represented by the
closest centroid;

end

Algorithm 1: The distributed k-means clustering al-

gorithm implemented in this paper.

Experiments

Two sets of experiments were designed for this paper:

one in which agent failure was not considered, and an-

other one in which agents were made to fail at different

layers of the architecture.

In the first set of experiments, a large fleet of as-

sets is simulated to undergo deterioration such as de-

termined by eq. (1), and prognostics is performed such

as described in “Implementation in netlogo”. A sepa-

rated experiment is performed for each type of archi-

tecture described in this paper, and prognostics, clus-

tering and maintenance recommendations are executed

such as described in the Multi-Agent System architec-

tures section.

The second set of experiments is essentially a replica

of the first set of experiments in which agents are al-

lowed to randomly fail at all layers of the architec-

ture with a probability of 1/50 each time step. Agent

failure is defined in the section “Agent typologies and

their failure modes”, and typically implies a reduction

on communication and processing cost and an increase

of asset failures due to the halt of prognostic capabil-

ities (and maintenance recommendations). In our ex-

periments, the duration of an agent failure is randomly

assigned between 1 and 50 time-steps.

In both cases, the experiments were set to be as

extensive as possible within our computational con-

straints. Simulating several hundred assets with real-

time prognostics and diagnostics capabilities is a com-

putationally demanding task, and thus we restricted the

number of simulated assets to 500. The experiments

were run eight times and then averaged over to com-

pensate for any effect that the variation of initial pa-

rameters could have on the results. Table 3 includes a

detailed description of the parameters used whilst run-

ning the experiments.

In our experiments, costs are accounted as a se-

ries of additive contributions, adding up to a total nor-

malised cost (see eq. (5)). Each of these contributions

(NP,NC,NCo,Npro) are recorded independently. This al-

lows us to explore all the parameter space of (α, Γ,Cp, Cc)

with a single experiment per each architecture type, as

the dynamics of the simulation are independent of the

cost parameters. Therefore, experiments are run with

(α, Γ,Cp, Cc) = (1, 1, 1, 1), and generalised by multi-

plying (NP,NC,NCo,Npro) by (α, 1, Cp, Cc) across the

parameter range of interest (normalised to Γ ).

The parameters determining each asset’s Health In-

dicator in the population, (ai, bi, tfi) are chosen such

that four distinct classes of assets are present in the

experiment. These four classes of assets are chosen ran-

domly within the following pre-set limits (ai, bi, tfi) =

((0, 1), (0, 0.1), (0, 100)). Assets in the fleet are then ran-

domly assigned to belong to one of the four classes. The

Health Indicator of these assets is generated during the

experiments using eq. (1). Experiments are run until

T = 400 to make sure3 that even in the case of very

long failure times tfi, the asset fleet is able to record

multiple failures for each asset.

Var. Definition Value(s)
η Prev. maintenance factor 0.7
N Number of assets 500
k Number of clusters 4
σ Noise standard deviation [0-0.5]

Table 3 Parameters used in the experiments.

3 Four-hundred time-steps.
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Results and Discussion

The number of times that each cost component con-

tributes to the total cost of the experiment, determined

by the quadruplet (NP,NC,NCo,Npro) is shown in Ta-

bles 4 and 5 (in the Appendix). These tables translate

into specific cost components once these components

are weighted by cost weights (α, 1, Cp, Cc). If there is no

mention of the contrary, in the results presented here

we choose α = 1
100 , which means that the predictive

maintenance cost is one hundred times cheaper than the

corrective maintenance cost. Additionally, Cp = 20Cc is

chosen, as this ensures a significant contribution of the

processing costs (note that Npro � NCo). Due to the

linearity of the cost equations, these assumptions have

no effect on the generalisation of the observed trends.

The following phenomena are clearly observed in

Fig. 5:

1. If agent failures are considered, Distributed

and Heterarchical architectures are optimal

for high-value assets (or low communication

costs). Compare the dashed lines in Fig. 5. In the

Centralised and Hierarchical case, the failure of a

Mediator Agent or the Social Platform leads to a

halt of predictive maintenance operations for hun-

dreds of assets in the system, which then causes a

dramatic increase of corrective maintenance actions

(for example, for σ = 0.1 the difference between cor-

rective maintenance actions in the Centralised and

Heterarchical architectures nearly doubles (see Ta-

bles 4 and 5 in the Appendix). In the Distributed

and Heterarchical cases, maintenance recommenda-

tions are produced by the Digital Twins, and no

agent failure has the potential to compromise main-

tenance for hundreds of assets.

2. Higher costs for low-value assets across the

board: the normalized cost per asset and time step4

in architectures containing low-value assets is orders

of magnitude higher than for the case of high-value

assets (the cost for all architectures increases with
1
CA

in Fig. 5). This means that real-time MAS im-

plementations for prognostics are more cost-effective

the more expensive the replacement cost of the as-

sets is, assuming that prognostics complexity re-

mains constant.

3. When there are no agent failures, Centralized

and Hierarchical architectures are generally

cheaper this is expected, as these two architectures

are also the ones featuring less communication and

computation costs. Only for very noisy experiments,

for very low communication costs or very high asset

4 Recall that this cost has been normalised to the corrective
maintenance cost Γ , proportional to the asset value CA.

values this becomes false, when maintenance costs

dominate over the rest of the costs of the system.

4. When there are no agent failures, cost differ-

ences between architectures minimize as as-

set value increases: note the convergence of solid

lines for low values of 1
CA

in Fig. 5. This is due to

the fact that in high-value assets maintenance costs

dominate over communication and computing costs.

If no agent failures are included in the experiments,

predictive maintenance in the different architectures

has a very similar level of accuracy, and the overall

cost is essentially the same.

5. A high communication cost limit exists: if com-

munication costs are high enough (or asset value low

enough), agent failures (dashed lines) actually mean

lower operational costs. The explanation for this

is simple: agent failure increases operational cost

through more unwanted corrective maintenance ac-

tions, but decreases it by halting computation and

communication actions. If the communication costs

are high enough, agent failure then leads to a less

costly architecture.

Another interesting factor to study from the experimen-

tal results is the dependence with the amount of noise

present in the Health Indicator, σ. Fig. 5 shows that the

difference between architectures in the case of no agent

failures reduces as the communication cost decreases

(and costs are dominated by the maintenance compo-

nent). To check if cost difference also decreases the more

noisy the system is, we measure the normalised index

of dispersion across different values of σ,

Dnorm
σ = 1

maxσ(Dσ)
Var(Kσ

cent,K
σ
hier,K

σ
dist,K

σ
hete)

Mean(Kσ
cent,K

σ
hier,K

σ
dist,K

σ
hete)

. (6)

The reason why we normalise Dσ to its maximum is to

be able to show the dependency with σ across different

values of Cc in the same figure (we already know from

Fig. 5 that the absolute value of dispersion decreases

with Cc).

From Fig. 6, one observes that cost differences be-

tween architectures decrease as noise increases: this is

a direct effect of an increase of un-predicted failures as

the data becomes more noisy, which makes maintenance

costs dominate (see tables 4 and 5). This tendency re-

verts only for unrealistically high communication costs,

or very low asset values (note that a communication

cost of 0.2 corresponds to 20% of the cost of replac-

ing the asset, and that these cost are for a fix number

of bytes sent through the network). This reversion is

given by the difference in clustering between the dis-

tributed architecture and the rest of architectures: the

more noise there is in the system, the more different

cluster results are produced (see tables 7 and 6). Nor-

mally, this does not affect the index of dispersion be-



Multi-Agent System architectures for collaborative prognostics 11

Fig. 5 Normalised cost K for each of the studied architectures, for the case of agent failure (dashed) and no agent failures
(solid lines) with respect to the normalised communication cost Cc. The horizontal axis can be interpreted both as the increase
of the communication cost given a constant asset value, or as the decrease of asset value given a constant communication cost
(1/CA, high-value assets to the left of the chart). The data here is plotted for σ = 0.1, α = 1/100, and Cp = 20Cc.

cause maintenance costs dominate at large values of σ,

but for high enough communication costs, this effect is

observed.

A methodology for architecture evaluation

The approach followed in this paper can be used as a

foundational methodology to assess the optimality of

a given Multi-Agent architecture in a real industrial

application of collaborative prognostics. In this case,

an asset manager should take the following steps:

1. Determine the predictive maintenance γ, and cor-

rective maintenance Γ costs of the fleet’s assets.

2. Determine the approximate cost of processing and

sending through a given unit of data (for example a

byte), and encode it in the Multi-Agent simulation

of the system through Cc and Cp.

3. Estimate the accuracy of real-time prognostics, and

encode it in eq. (1) through its stochastic term.

4. Determine the number of assets N present in the

asset fleet.
5. Choose a maintenance policy, and encode it in the

agent’s decision-making process.

6. Determine the probability of agent failure, and the

maximum time of agent downtime, encode it in the

simulation as described in this paper.

7. Test the different architectures described here with

the real cost parameters of the assets, and compare

the total cost incurred by them.

8. Choose the best suitable architecture from the sim-

ulation outputs.

Conclusion and future work

This paper is a study of the cost consequences of imple-

menting different Multi-Agent System architectures for

collaborative prognostics, a new prognostics approach

based on collaboration between agents that represent

different assets in the fleet. In this paper, four archi-

tectures are analysed, featuring different levels of dis-
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Fig. 6 Normalised index of dispersion Dnorm
σ across the studied architectures, for the case of no agent failures with respect

to the amount of noise in the system σ. Lines are colored depending on the normalised communication cost Cc. The blue line
with markers represents the high communication cost/low asset value limit. This can be interpreted both as the increase of
the communication cost given a constant asset value, or as the decrease of asset value given a constant communication cost
(1/CA). The data here is plotted for σ = 0.1, α = 1/100, and Cp = 20Cc.

tribution: Centralized, Hierarchical, Heterarchical, and

Distributed.

The main conclusion drawn from this study is that

decentralized architectures are not always cost-efficient

for the purpose of collaborative prognostics. If the as-

sets in the system have a low value, communication and

computing costs become relevant, and more centralized

architectures become the best option. However, when

the value of the assets is high enough, the implemen-

tation of distributed architectures can be justified. In

this case, the value of the assets is much larger than

communication and computing costs, and the benefits

of distributed architectures can be leveraged.

This difference between architectures becomes espe-

cially relevant when agent failure is included in the ex-

periments. In this case, architectures where prognostics

and maintenance planning is highly dependent of few

agents are especially susceptible to agent failure. This,

in practice, means that when agent failures are consid-

ered, distributed architectures become more competi-
tive.

A secondary conclusion is that Multi-Agent based

collaborative prognostics architectures are more cost ef-

ficient in general the more expensive the assets of the

system are. This is a common-sense result: there is no

point in enhancing very low value assets with IoT tech-

nologies, as the cost of these technologies outweigh by

far the savings of a predictive maintenance policy.

With regards to future work, there are some para-

metric dependencies that have not been explicitly stud-

ied in this paper. Perhaps the most important is the

number of clusters k (groups of different assets) in the

fleet, which in our experiments has been limited to four.

In the Distributed and Hierarchical architectures, com-

munication costs will be proportional to the square of

the size of each cluster: Cc ∝
(
N
k

)2
(assuming that each

cluster has a similar size). This means that if k is kept

constant but N is increased, the cost of Distributed

and Hierarchical architectures will increase at a higher
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rate than the cost of their Centralised and Heterarchi-

cal counterparts. Studying the optimality of different

architectures with respect to the heterogeneity of the

fleet (given by k), would thus give place to a poten-

tially interesting research study.

Another parametric dependency that has been omit-

ted (kept constant) in the experiments is the depen-

dence of the cost of the architectures with the proba-

bility of agent failure, and its duration. In our exper-

iments, the first parameter is kept constant and the

second is sampled from a pre-determined probability

distribution. We purposely chose both parameters to

be relatively high, to compensate for the fact that we

assumed that there were no costs associated to repair-

ing agent failure. Further research should focus on ex-

ploring this dependency, and placing it within realistic

industrial parameters.

Finally, in the experiments presented here, the main-

tenance threshold η is kept constant. Although this is

a reasonable assumption for the purpose of this paper,

comparing across architectures, studying the effect of

optimizing η in real-time would yield a potentially in-

teresting research study.
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Appendix

Pseudocode description of the agents

In this section, we include in pseudo-code the tasks per-

formed by each of the agents in the architecture. In the

experiments presented in this paper, these tasks were

programmed and performed using the Multi-Agent Sim-

ulation software Netlogo, with a python extension. The

code shown is performed in parallel at each time step

of the simulation by each agent. In our simulations,

the Virtual Assets and the Digital Twins share a single

agent when present at the same time. The particulari-

ties of the transfer of data between Digital Twins varies

depending on the architecture used. For example, in the

distributed architecture, Digital Twins receive data di-

rectly from other Digital Twins, and in Heterarchical

architectures, they do so from the Social Platform.
Extended experimental results

In this section, we include the tables including all quadru-

plets (NP, NC, NCo, Npro) used to obtain the results

presented in the section “Results and Discussion”. We

Virtual Asset

if HIi ≥ 0 then
Set HIi = HIi(tli);
Set tli = tli + 1;
if agent-fault is False then

Update agent connections;
Send HIi to a higher-level agent;

end

end
if HIi < 0 then

Set fault True;
Set HIi = 0;
Set tli = 0;

end

Algorithm 2: Pseudocode of the Virtual Asset.

Digital Twin

Receive HIi from the Virtual Asset;
Receive data from other Digital Twins;
Fit data using python’s least squares algorithm;
if distributed is True then

execute algorithm 1;
end
if fault is False then

Set tefi from fit; if tli > ηtefi then
Preventively maintain;

end

end
if fault is True then

Correctively maintain;
end
Send data to other Digital Twins;
Calculate computation time;

Algorithm 3: Pseudocode of the Digital Twin.

Mediator Agent

Receive HIi from the Virtual Assets;
Fit data using python’s least squares algorithm;
for Assets connected to the agent do

if fault is False then
Set tefi from fit; if tli > ηtefi then

Preventively maintain;
end

end
if fault is True then

Correctively maintain;
end

end
Calculate computation time;

Algorithm 4: Pseudocode of the Mediator Agent.

also include a table showing the purity of the clustering

algorithms for each architecture and standard deviation

(see (Christopher Manning et al., 2008) for a descrip-

tion of purity).
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σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Cent. [6045, 0, 200000, 598] [6266, 21, 200000, 626] [5969, 1056, 200000, 632] [4423, 4028, 199996, 638] [2672, 10201, 199986, 653] [1792, 16321, 199970, 401]
Hier. [6030, 0, 201099, 651] [6505, 32, 201099, 660] [5853, 971, 201099, 704] [4628, 3698, 201099, 696] [2923, 9144, 201099, 715] [1714, 16477, 201099, 483]
Dist. [6000, 0, 12618174, 349] [6249, 27, 13498609, 360] [5363, 1305, 16589558, 343] [3497, 4988, 17319831, 335] [2233, 10595, 17421179, 335] [1379, 16462, 17959496, 317]
Hete. [5962, 0, 12687189, 4111] [6232, 31, 12754968, 5110] [5428, 1320, 12703401, 5980] [4041, 4215, 13107021, 6471] [2358, 9746, 12952249, 6812] [1414, 15560, 13260666, 5414]

Table 4 Table showing results for the case of no agent failure. The lists present in every table position correspond to the
quadruplets [NP,NC,NCo,Npro]. These values have been rounded to the closest integer from the average of eight experiments.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Cent. [3399, 1657, 92718, 424] [3143, 2070, 86102, 400] [2585, 3013, 88106, 408] [1750, 5730, 86550, 421] [1167, 10172, 89391, 432] [769, 16204, 84349, 350]
Hier. [3486, 1674, 77877, 330] [3625, 1721, 81468, 371] [2175, 2861, 60803, 304] [1619, 5045, 68676, 321] [1053, 11082, 74663, 379] [711, 16886, 74001, 276]
Dist. [4537, 918, 7366053, 228] [4484, 1108, 6989799, 223] [3526, 2405, 6646838, 220] [2342, 5282, 7419548, 215] [1488, 10189, 8322924, 215] [919, 17021, 8293278, 167]
Hete. [4504, 924, 5988868, 2587] [4482, 1080, 5786474, 3028] [3738, 2179, 5918000, 3501] [2334, 5431, 5797278, 4099] [1452, 10220, 5851001, 4300] [885, 16856, 5984762, 3553]

Table 5 Table showing results for agent failure The lists present in every table position correspond to the quadruplets
[NP,NC,NCo,Npro]. These values have been rounded to the closest integer from the average of eight experiments.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Centralised 1.0 0.996 0.972 0.954 0.961 0.922
Hierarchical 1.0 0.995 0.982 0.946 0.909 0.946
Distributed 1.0 0.949 0.842 0.749 0.719 0.734
Heterarchical 1.0 1.000 0.982 0.917 0.948 0.928

Table 6 Table showing clustering purity results at t=400 for the case of no agent failure. These values have been averaged
over eight experiments.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Centralised 0.995 0.998 0.999 0.994 0.974 0.934
Hierarchical 0.784 0.801 0.689 0.666 0.748 0.782
Distributed 0.660 0.679 0.655 0.679 0.615 0.608
Heterarchical 0.763 0.769 0.775 0.734 0.740 0.758

Table 7 Table showing clustering purity results at t=400 for the case of agent failure. These values have been averaged over
eight experiments.
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Social Platform

Receive data from the Digital Twins or Mediator
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