
Recurrent Neural Networks for real-time distributed
collaborative prognostics

Adrià Salvador Palau∗, Kshitij Bakliwal†, Maharshi Harshadbhai Dhada†, Tim Pearce∗, and Ajith Kumar Parlikad∗
∗Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge, CB3 0FS, UK

Email: as2636@cam.ac.uk, aknp2@cam.ac.uk
†Indian Institute of Technology (IIT) Indore, Khandwa Road, Simrol, Indore 453552 India

Email: ee140002018@iiti.ac.in, me140003015@iiti.ac.in

Abstract—We present the first steps towards real-time dis-
tributed collaborative prognostics enabled by an implementation
of the Weibull Time To Event - Recurrent Neural Network
(WTTE-RNN) algorithm. In our system, assets determine their
time to failure (TTF) in real-time according to an asset-specific
model that is obtained in collaboration with other similar
assets in the asset fleet. The presented approach builds on the
emergent field of similarity analysis in asset management, and
extends it to distributed collaborative prognostics. We show how
through collaboration between assets and distributed prognostics,
competitive time to failure estimates can be obtained. 1

I. INTRODUCTION

The earth’s biosphere is formed by trillions of interdepen-
dent beings that continuously compete, cooperate and learn
from each other. In the animal kingdom animals often live
clustered in smaller groups, such as cultures, pods, hives,
packs etc. Animals from the same species can learn completely
different strategies in order to thrive in different environments
and situations. For example, different pods of killer whales
hunt in many distinct ways, and teach other members in the
pod these diverse hunting strategies [1]. Humans do similarly:
the typical life of a coal miner from central North America
has very little to do with the life of a journalist in the East
coast. Humans have thrived as a species within other reasons
because they excel in adapting and learning the best strategies
conducive to their living environment. These strategies are
not only group specific, but also individually adapted to the
potential of each human given by its health, intellectual ability
etc.

In the recent decades, industrial assets have acquired some
of the capabilities that until now were exclusive to the animal
kingdom. With the spread of IoT technologies, assets are now
able to communicate, process data, act over and sense from the
medium [2]. These animal-like properties have fuelled research
aimed to provide assets with a certain degree of agency, setting
the basis for concepts such as intelligent industrial assets [3].

1Sponsors: Adrià Salvador work was sponsored by a Doctoral Scholarship
provided by “Fundació la Caixa". This research was also supported by Sus-
tainOwner (Sustainable Design and Management of Industrial Assets through
Total Value and Cost of Ownership), a project sponsored by the EU Frame-
work Programme Horizon 2020, MSCA- RISE-2014: Marie Skodowska-Curie
Research and Innovation Staff Exchange (Rise) (grant agreement number
645733 Sustain-owner H2020-MSCA-RISE-2014) . Copyright: 978-1-5090-
0382-2/16/$31.00 ©2018 IEEE

Despite the declared intelligence of these industrial agents,
collaboration in asset fleets has been largely unexplored. How-
ever, a rich field of algorithmic solutions based on biological
learning strategies has existed for years, these include compu-
tational frameworks such as reinforcement learning and swarm
intelligence in Multi Agent Systems [4]. In swarm intelligence,
approaches such as Particle Swarm Optimization [5], [6] and
the artificial bee and ant colony algorithms have obtained
remarkable success in solving problems using biologically-
inspired distributed, cooperative architectures [7], [8].

The algorithmic approaches described before have suc-
ceeded to artificially replicate the diverse, adaptable, dis-
tributed, flexible, resilient and scalable nature of biological
Multi Agent Systems up to a reasonable extent [9]. How-
ever, these approaches often do not refer to truly distributed
scenarios, because the agents in such systems are usually
not linked to real assets in the physical world. Instead, the
agents in these approaches are often positions in the solution
space (Particle Swarm Optimisation) or theoretical constructs
aimed to approximate these solutions (artificial bee algorithm).
Ideally, one would like the agents in an industrial Multi Agent
System to be assigned to truly physically distributed assets
(typically industrial machines). Architectures to bridge this gap
have for long existed, and much of the theoretical framework
has been proposed in the fields of Holonic Manufacturing
systems and Multi Agent Systems applied to manufacturing
[9], [10].

Despite existing multi agent architectures claiming their
employability for all kinds of asset management scenarios,
very few examples exist to day where collaborative learning
is used to improve asset prognostics in a distributed real-time
Multi Agent System. Some of the closest proposed approaches
are federated learning [11], cohort analysis [12], and similarity
analysis [13], although only the later has been used in asset
prognostics. Federated learning is a technique introduced in
2017 that enables deep neural networks to train locally in
smart-phones in order to update a general model in the cloud
without the need of sharing private agent data [11]. Federated
learning, however, does not consider similarity between clients
and does not necessarily produce a client-specific model. Co-
hort analysis is an old concept, based on clustering individuals
in a population according to their similarity in behaviour at a

given time period. Although extensively applied in fields such
as the social sciences and medicine, to our best knowledge
cohort analysis has not yet been explicitly used in the field of
asset management.

In this paper, we present the first implementation of dis-
tributed collaborative prognostics using a combination of state-
of-the-art prognostics algorithms and an ad-hoc architecture
extracted from [14]. In the proposed implementation, each
asset is assigned a Digital Twin that processes asset data
and performs prognostics. This Digital Twin is also able to
connect to a Social Platform that collects data from it and
other Digital Twins and enables inter-asset communication,
and thus cooperation.

The prognostics algorithm implemented in the Digital Twins
is based on the Weibull Time To Event Recurrent Neural
Networks (WTTE-RNN) algorithm [15]. Proposed in 2016,
the WTTE-RNN approach combines survival analysis theory
with Recurrent Neural Networks in order to train a Weibull
probability distribution of the remaining time to event for
censored and uncensored sensor data. The algorithm is chosen
for its simplicity and versatility, and because it is fit for the
purpose of discrete event prediction.

Following the Abstract and the Introduction, this paper
commences by describing the system proposed to enable
distributed collaborative prognostics (Sec. II). The description
of the system is divided in two parts: a sketch of the employed
architecture (Sec. II-A), and a description of the methodology
proposed to implement collaborative prognostics (Sec. III).
After the system description, its implementation for the case
of the C-MAPPS turbine degradation data set is presented in
detail in Sec. III. Firstly, the process of data preparation is
discussed (Sec. III-A), this is followed by a description of
the employed algorithms (Sec. III-B). The section concludes
with a presentation and discussion of the results obtained in
the C-MAPPS data set (Sec. III-C). The paper concludes with
a discussion and a summary of future work proposed by the
authors (Sec. IV), followed by a discussion of computational
time constraints (Sec. III-D).

II. SYSTEM DESCRIPTION

A. Architecture

The architecture used in this paper is a modified hierarchical
architecture with three layers: Virtual Assets, Digital Twins,
and a Social Platform (see Figure 1) [9], [14]. Such kind of
architecture is a modification of a purely hierarchical architec-
ture, featuring also horizontal communication between agents
on the same level [9]. In the lower layer of the architecture,
each asset is assigned a Virtual Asset, which is simply a
piece of code that standardizes the asset’s data and sends it
to the asset’s Digital Twin. This design is chosen in order
to allow a unique Digital Twin design for a wide range of
industrial assets. The Digital Twin processes the data from the
Virtual Assets, and from other assets in the fleet to perform
asset management tasks using its analytics engine. Apart of
receiving data from the Virtual Asset, the Digital Twin can
also communicate with the Social Platform, which forms the

uppermost layer of the system’s architecture. The Platform can
perform different tasks, from collecting and presenting system-
level data to running clustering algorithms to form groups of
collaborating assets.

In the sections that follow, we describe how we have
designed the Virtual Assets, Digital Twins and Social Platform
in order to adapt them to perform distributed collaborative
prognostics. The original architecture, designed to facilitate
collaborative learning, is described in more detail in [14].

Virtual

Asset

Virtual

Asset

Virtual

Asset

Virtual

Asset

Digital

Twin

Digital

Twin
Digital

Twin

Digital

Twin

Digital Twin

Asset Asset Asset Asset

Social Platform

Human

Agents

Enterprise

level

algorithms

Friendship

matrix

Data repository

Output

manager
Analytics

engine

Fig. 1. Sketch of the architecture used in this paper. Black arrows indicate
communications between its elements. Human agents and assets are not
considered to be part of the software architecture, as they are elements in
the physical world. The architecture is directly extracted from [14].

1) Virtual Asset: as the lowest-level blocks of the system’s
architecture, the Virtual Assets are originally designed to
standardize the data coming from their corresponding assets.
However, another function from these architectural elements
can be to simulate machines working in real time from an
existing prognostics data set [14]. In the later case, the Virtual
Assets load the data from a data file, convert it into the
system’s standard format and send it at fixed time intervals
to their assigned Digital Twins. This task can, of course, be
omitted in case of dealing with real-time machines. In all cases
the data is divided in three main components: a set of features
(sensor values together with the time at which they have been
recorded), a set of timed events (related to machine failures
or warnings), and a machine identifier. The machine identifier
must be designed so that it contains all the information related
to the asset not featured directly in the feature and event data
(for example, machine make, country of deployment, etc).

2) Digital Twin: each Virtual Asset has its assigned Digital
Twin, a software element consisting of three building blocks: a
Data Repository, an Output Manager, and an Analytics Engine.
The Analytics Engine of the Digital Twin is responsible for

performing prognostics, and separating the events received
from the Virtual Asset to discern between failure events and
other events unrelated to machine prognostics. The Output
Manager is responsible for managing the communication be-
tween the Digital Twin and the Virtual Asset, and between
the Digital Twin and the Social Platform (the higher layer
of the system’s architecture). Finally, the Data Repository
stores and manages the data generated by the Analytics engine
and the Output Manager. This data is divided in five main
sets: the three sets of data generated by the Virtual Assets
mentioned in the previous paragraph, a set of variables defined
by the Social Platform, and a set of variables generated by
the Prognostics algorithm. It is important to mention that
collaborative prognostics will involve data sharing between
assets. Therefore, the data used in the Analytics Engine of
the Digital Twins consists not only of the data coming from
the Virtual Asset assigned to each Digital Twin, but of data
coming from other collaborating Digital Twins.

Only a subset of the data generated by the prognostics
algorithm is kept permanently in the Data Repository: the
information determining the prognostics model at each time
step and the model prediction or predictions. These parameters
are then used to estimate the performance of the prognostics
algorithm. The variables defined by the Social Platform stored
in the Digital Twin’s Data Repository are parameters such as
information on the events of interest for a particular Digital
Twin, the similarity distances between the twin’s asset and
each other asset in his groups of collaborating assets, and
information regarding the features to be used in the prognostics
algorithm.

3) Social Platform: as the highest-level layer of the sys-
tem’s architecture, the Social Platform is responsible for en-
abling and regulating communication between Digital Twins.
Additionally, the Social Platform runs enterprise-level algo-
rithms. These algorithms are aimed at (1) forming groups of
collaborating Assets, and (2) retrieving and plotting enterprise-
level information, specifically measures of the accuracy of the
prognostics computed in the Digital Twins.

The Social Platform uses features, event information and
machine identifiers from the Digital Twins in order to form
groups of collaborating assets. The information about which
assets will collaborate with each other is saved in a matrix,
featuring also scalar distances between assets. This is known
as the Friendship Matrix. These distances can be calculated
as per definition of the Asset Manager, from simple euclidean
distances including only continuous attributes, or from hetero-
geneous distances including also discrete asset attributes such
as the asset identifier.

B. Real-time collaborative prognostics

1) Prognostics: In order to perform real-time prognostics,
we choose to implement a novel machine learning approach
known as Weibull Time To Event - Recurrent Neural Networks
(WTTE-RNN) proposed in 2016 [15]. This approach has the
benefit that it is designed to solve multivariate time to event
prediction problems using both censored and uncensored data

in the training of the Recurrent Neural Network. For the sake
of completeness we provide a brief description here. The
reader is referred to [15] for full details.

The WTTE-RNN approach combines techniques from sur-
vival analysis and Recurrent Neural Networks. In WTTE-
RNN, a log-likelihood loss function is proposed that allows
training a Recurrent Neural Network to provide the two
determining parameters of a Weibull probability distribution
of the Time To Event for a vector of multi-sensor feature data.
The proposed log-likelihood function to be maximized by the
Recurrent Neural Network is:

log(L) =

N∑
n=1

Tn∑
t=0

unt log [Pr (Y nt = ynt |xn0:t)] +

(1− unt) log [Pr (Y nt > ynt |xn0:t)] . (1)

Where unt indicates whether the observation at time t is
censored (the real failure time, unt = 0 has not yet been
observed). The first term in the right hand side of the equation
is unt log [Pr (Y nt = ynt |xn0:t)], which simply means: in case
that the real time to failure (unt = 1, uncensored) has been
observed, maximise the probability of the predicted time to
failure Y nt being equal to the real time to failure ynt given the
known values of the sensor value time series before time t, xn0:t.
The second term, (1− unt) log [Pr (Y nt > ynt |xn0:t)] means: if
the real time to failure (unt = 0, censored) has not been
observed, maximise instead the probability of the predicted
time to failure Y nt being bigger than time left until the time
at which we know that there has been no failure yet (ynt). The
summations

∑N
n=1

∑Tn

t=0 account for the summation over all
the recorded failure trajectories (N) and over all the time-steps
of each trajectory (Tn). In order to clarify what do we mean
by trajectory, we have included a sketch of the matrix fed to
the Recurrent Neural Network (see Figure 2) The probabilities

time

sensor

value

e1 e2 e3

{ { { {
current

time

I II III IV

Samples

(Trajectories)
current

time

I

II

III

IV

{
{
{
{

Features

(Sensors)

TimeTimeTimeTime

Masked

data

Fig. 2. Sketch showing the training data matrix fed to the asset’s Recurrent
Neural Network for the case of no collaboration. For the case of collaboration,
additional trajectories from different assets in the fleet will be added to the
training data matrix. Masked data refers to a fill-in number used to let the
algotihm know that the values attached are not to be taken in account when
training the Recurrent Neural Network.

appearing in Eq. (1) can be obtained by means of survival

analysis, in essence for the discrete case it can be shown that:

log(L) = u log
(
ed(t) − 1

)
− Λ(t+ 1). (2)

Where Λ(t) is known as the cumulative hazard function and
d(t) = Λ(t+1)−Λ(t) is the step cumulative hazard function.
Λ(t) is defined as the integral of the hazard function (λ(t)):

Λ(t) =

∫ t

0

λ(w)dw; λ(t) = lim
ε→0

Pr(t < T ≤ t+ ε|T > t)

ε
(3)

Where T is a positive random variable. If one assumes that T
follows a Weibull distribution2, the cumulative hazard is:

Λ(t) =

(
t

α

)β
. (4)

Where α is the scale parameter and β is the shape parameter.
Combining Eqs. (2) and (4) the discrete log-likelihood (added
over all trajectories and all time-steps, and using the concept
of Recurrent Cumulative Hazard Function as shown in [15])
can be shown to be:

log(Ld) =
N∑
n=1

Tn∑
t=0

(
unt log

{
exp

[(
ynt + 1

αnt

)βn
t

−
(
ynt
αnt

)βn
t

]
− 1

}

−
(
ynt + 1

αnt

)βn
t

)
. (5)

Where αnt , βnt are the parameters of the Weibull distribution
and ynt is the time to event or failure at each time-step t and
trajectory n. Note that the left term will appear when there
is no censoring, and for βnt → ∞, the Weibull distribution
corresponds to the Dirac delta function at t = αnt . This is
the expected behaviour as the ideal prediction is a probability
distribution centred at the real time to event with zero variance.

The unconstrained optimization problem to be solved by the
Recurrent Neural Network can be then summarized in finding
the weights w that maximize log(Ld). A comprehensive
description can be found in the original source [15].

The dependency of the shape of a Weibull distribution
(and more specifically its variance) with its defining pa-
rameters, α and β, make solving this optimization problem
often numerically difficult. Eq. (5) features some opportunities
for numerical instabilities: negative values of the logarithm’s
argument and exploding gradients being the most common. In
solving this, we followed the suggestions in [15], which can
be summarized as:

1) Setting up a maximum for allowed βnt . If not capped
by a superior limit, the optimization algorithm has a
tendency to drive βnt to very large values, as this
corresponds to a nearly perfect prediction. This tends to
cause exploding gradients or over-fitting. An effect of
setting such a maximum value for the shape parameter
is that predictions close to failure tend to converge to

2With the following parametrization: f(t) = β
α

(
t
α

)β−1
exp

[
−
(
t
α

)β].

low values of beta, as this is the most effective way that
the optimization algorithm has to reduce the variance of
the predicted distribution for low values of αnt .

2) Initialization of αnt , and βnt . The values at which the
parameters of the Weibull distribution are initialized
have been observed to have a big influence on numerical
stability and on convergence to a desirable solution. In
this paper, we follow the suggestion by [15] and ini-
tialize our parameters as a geometric initialization. This
corresponds to βnt = 1, and αnt = − 1

log
(
1− 1

1+ȳi

) , where

ȳi is the mean time to failure at t = 0, ȳi = 1
n

∑
yn0 .

Each Digital Twin in the asset fleet implements a Recurrent
Neural Network training algorithm in order to maximise
Eq. (5), and predict further failures. While prognostics are
performed in real-time, the Recurrent Neural Network can be
trained at fixed time periods TT in order to reduce computa-
tional costs. This is known as the system time period.

2) Collaboration: In this work, inter-asset collaboration is
defined as the sharing of information between similar assets.
This shared data is then weighted according to a measure of
similarity and used to train asset-specific prognostics algo-
rithms. In order to allow collaboration, the assets in the fleet
must be clustered according to a method that incorporates an
inter-asset difference metric dij, where i and j are indexes
of the assets i and j within the fleet. For non-trivial cases, a
measure of clustering tendency should be calculated first in
order to assess whether the asset population has any grouping
structure [16]. Measures such as the multidimensional Cox-
Lewis and Hopkins statistics are good examples of metrics
allowing for efficient estimation of the clustering tendency. If
this tendency is found to be strong, the number of clusters
in the fleet should be determined by a combination of expert
input and one or more of the existing methods such as the
Minimum Description Length, Aikaike Information Criterion,
Bayes Information Criterion etc.

Once the clusters are set, the collaborative aspect of the
presented approach comes from the data used in each Digital
Twin to train its Recurrent Neural Network. Each Digital
Twin obtains feature and event data from other Digital Twins
in the asset fleet through communication with the Social
Platform. This data is then used in the training of the Recurrent
Neural Network to improve its accuracy. The data can be
incorporated in the neural network’s training either weighting
the trajectories according to the inter-asset difference metric
dij, or directly without modification (see Figure 2).

A straightforward way to perform such weighting is through
ensuring that the number of trajectories to failure in each Dig-
ital Twin is in proportion to the distance of its corresponding
asset with all the other different assets in the cluster. Take
that dmax

i is the maximum inter-asset distance in a cluster
calculated from asset i. The proportion of each other asset’s
trajectories to failures to be weighted in its Digital Twin’s
prognostics algorithm is then given by:

pj = 1− dij∑
j dij

. (6)

Assuming that all assets must be at least represented by one
trajectory, the minimal number of trajectories to be incorpo-
rated in the Recurrent Neural Network’s training from each
asset in the cluster is:

nj =
pj

min(pj)
. (7)

III. IMPLEMENTATION IN THE C-MAPPS DATA SET

A. Data preparation

In order to implement the proposed approach, we use
the Turbofan Engine Degradation Simulation Data Set [17]
(from now on, referred as C-MAPPS data set, in reference
to the code used to generate it). The proposed framework
is specially relevant for machines that experience recursive
failures. Instead, the C-MAPPS data set features trajectories
to failure unique to every machine in the data set. In order
to use this data for our approach, we must treat several
trajectories to failure as if corresponding to the same asset.
To do so, we only use trajectories known to belong to similar
environmental conditions (corresponding to turbines operating
at sea level), and divide them in 5 sets of 20 trajectories, each
set representing a virtual machine, linked to a Virtual Asset.
Clustering in the data set is made possible by the fact that some
of there machines include failures due to fan degradation, and
some other feature failures due to High Pressure Compressor
degradation (see Figure 3).

C-MAPSS

FD001 FD002 FD003 FD004

M1A M1B

M1D M3DM3C

M3E

M3A M3B

M1C

M1E

{ {

Fig. 3. Sketch of the re-structuring to the C-MAPPS data set in order to
represent a subset of different assets enduring recursive failures. Each different
background colour represents a different environmental condition. Note how
the trajectories contained in FD002 and FD004 are not used due to the varied
environmental conditions contained in these data sets, which make it harder
to cluster these trajectories to consistently represent different assets. Each
square represents a failure trajectory. Filled squares represent a machine failing
due to fan degradation and empty squares due to High Pressure Compressor
degradation.

B. Real-time collaborative prognostics algorithm

In this section, we present our algorithm written in pseu-
docode. In practice, the implementation has been done using
Python. Concretely, we use Keras, Tensorflow and the wtte-rnn
python package [18] for the machine learning implementation.
The Socket library to enable communication between the

elements of the architecture. A bash script has also been
programmed to enable running the presented approach in
a single machine or a cluster. For simplicity and control,
the tasks performed by the Digital Twin are chosen to be
consecutive in order to ensure control over the data flow.
These tasks correspond to (1) receiving the data from the
Virtual Asset, (2) sharing the data with the Social Platform,
and (3) computing the asset’s prognostics using the WTTE-
RNN algorithm (see Figure 4). In our architecture, (1) and (2)
are performed by the output manager of the Digital Twins and
(3) is performed by their Analytics Engine (see Figure 1).

Our implementation presents a simplified version of the
collaborative learning approach proposed in Section II-B2.
Concretely, the trajectories shared among groups of similar
assets are not weighted according to their difference in the
clustering algorithm, but directly incorporated. In addition,
censored trajectories are not included in the training of the
Recurrent Neural Network. This has been done to allow for
faster computation, as it reduces the number of trajectories
included in the training matrix.

Virtual Asset Digital Twin

Social Platform

1. Load C-MAPPS data

2. Receive ready signal

3. Send initial

 trajectories

4. Receive con�rmation

5. While d_end==False

 5.1. Send data

 5.2. Rec. con�rm.

6. Send END signal

7. Terminate V. A

1) recv_data

2) social_connect

3) run_model

1. Send ready signal

2. Receive initial

 trajectories

3. Send con�rmation

4. While done==False

 4.1. Receive data

 4.2. Send con�rm

 4.3. done=END

 4.4. share=True

 4.5. recv=False
0. Listen to connected

 Digital Twins

1. While clustered ==False

 1.1. for connected_DT’s

 1.2. Receive <data>

 1.3. Calculate clusters

 1.4. Ask the DT for

 more <data>

 1.5. Send clustered

 1.6. Update clustered

2. While end_all==False

 2.1. for alive_DTs

 2.2. Receive [data]

 2.3. Update alive_DTs

 2.4. Plot, save, global vars

 2.5. for alive_DTs

 2.6. Share f_data to

 DTs in the same

 cluster.

3. Save global variables

1. if clustered==False

 1.1. calculate mean

 of data

 1.2. send <data>

 1.3. Receive

 clustered

2. elif clustered

 2.1. Send [data] to

 platform

 2.2. Receive friends

 f_data

 2.3. Append f_data

 to data

 2.4. share=False

 2.5. run=True

1. Train the RNN for

 the �rst trajectories

2. While True

 2.3. forecast_rnn

 2.4. append

 predictions

 2.5. �t_rnn

 2.6. run=False

 recv=True

Legend

data = {Features,

 Events,

 Machine ID}

f_data = data from other

 DTs in the cluster

<data> = mean of feature

 data

[data] = {data, predictions

 of the RNN}

run,recv,share = control

 variables.

d_end = True if the VA has

 stopped sending

 data.

forecast_rnn = predict

 failures using

 the rnn model.

�t_rnn = �t the rnn model

 using the data.

global_vars = global

 variables

alive_DTs = Digital Twins

 connected to

 the Platform

Fig. 4. Sketch of the system’s algorithms, including the major tasks
performed by each block of the architecture (see Figure 1). Black arrows
are used to signify communication using the socket library. Both the Virtual
Assets and the Digital Twins are drawn over stacked rectangles to signify
their multiplicity in the architecture.

C. Results and discussion
We run the algorithm shown in Figure 4 with the following

initial parameters: 5 initial trajectories, a system time period
of TT = 50 and a total of 4 Virtual Assets, 2 formed from data
extracted from the FD001 data set and 2 from the FD003 data
set. The Recurrent Neural Network has a LSTM architecture
of 26× 24× 10× 2 being the layer with 24 neurons the only
recurrent layer. We use tanh as activation function for all layers
except for the last two-neurons custom output layer. This last
layer was proposed in [15] and converted the output of the
last two neurons into α and β. No Dropout, or regularisation
are used.

The Recurrent Neural Network is trained for 50 epochs (a
value chosen due to computation constraints (see Sec. III-D).
The Social Platform’s clustering algorithm is set to separate the
Virtual Assets in two clusters. Cluster convergence is defined
as the time when Virtual Asset’s have been determined to
belong to the same cluster for a total of three consecutive time-
steps. Cluster convergence is observed relatively fast, typically
upon completion of six time-steps in any of the Virtual Assets.
In order to asses the accuracy of our prognostics algorithm,
we use the same score as suggested during the PHM08
Prognostics Data Challenge, when this data set was introduced,
but we normalise to the amount of predictions in the test
dataset (Np).

S =
1

NP

I∑
i

[
θ(yi − ŷi)(e

yi−ŷi
13 − 1) + θ(ŷi − yi)(e

ŷi−yi
10 − 1)

]
,

(8)
Where

∑
i indicates summation over test samples (there is

a single prediction for each sample). θ is the heaviside step
function. ŷi is the predicted time to failure and ŷ is the
real time to failure. This score penalises late predictions as
corrective repair is assumed to be less benecial than preventive
repair.

Initial results point at collaborative learning outperforming
learning from the rest of the assets in the fleet (see Figure 5).
In order to calculate the score in a real time environment,
we use the predicted time to failure point by point. This
means that predictions very far from failure are incorporated
into the score calculation in a much larger extent than in
the case of the PHM08 Prognostics Data Challenge, where
a single prediction was obtained for every censored trajectory
to failure. In Figure 5 we see how the difference between
collaborative learning and learning from all the assets in the
fleet becomes increasingly noticeable as the simulation moves
forward (higher step values). In both cases the values of the
score S increase with the Step of the simulation because the
likelihood of encountering larger time to failure trajectories
(and thereby larger values of S) also increases. Figure 6 shows
an example of the real-time output of the presented system for
a particular asset in the asset fleet, showing the real time to
failure (red) together with predictions for the collaborative case
(green) and the non-collaborative case (blue).

The difference between collaborative an non-collaborative
approaches observed in the initial experiment presented in this

(1
/N

p
)

Fig. 5. Score according to Eq. (8). The green colour indicates the score
when assets are collaborating with eachother, and the red color shows the
score for the case when there is no collaboration. Lower values of the score
correspond to more accurate predictions. In this case, the horizontal axis (Step)
corresponds to a total simulation time of Step ∗TT (in this case TT = 50).

paper must be taken with caution due to the effect of the
small sample size: the number of recurrent events treated in
each agent is low (from 5 to 40 trajectories), and it is likely
that the samples used to train the Recurrent Neural Network
are not representative of the population. This would mean
that extending the sample size to dissimilar assets, like in the
case of learning from all assets, might increase the accuracy
of the predictions in an early stage of the assets life cycle
[19]. Therefore, the non-collaborative score shown in Figure
6 (red) is aided by these effects, and in a case where enough
trajectories are available for each asset, or where the number
of assets in the fleet is larger, collaboration is expected to
outperform non-collaboration by larger differences.

D. On real-time computational constraints

Despite recent advances in computational efficiency, train-
ing recurrent neural networks is still known to require a
significant amount of processing time and power consumption.
Empowering industrial assets with agents incorporating real-
time deep-learning computing capabilities is then likely to be
met with reasonable scepticism. In this section, we present
some basic estimates of the computation time required by
our approach and demonstrate its feasibility to run in real
time for a realistic industrial scenario. We base our estimates
on a Recurrent Neural Network running on a Intel Core
i5-760 2.8GHz Quad-Core (that is, without the increased
performance expected from a GPU processor). A relatively
modest processor, priced at the range of $150 for private
customers.

In the C-MAPPS data set the units of time are cycles,
without a direct conversion to standard time measures. We
take a conservative approach by assuming that the industrial
agent should be able to train a Recurrent Neural Network
considering the whole dataset (FD001 and FD003), and predict

(Cycles)

(C
yc

le
s)

Fig. 6. Plot showing the typical output of the presented system for one
of the assets in the asset fleet. The green lines show the predictions for the
collaborative case, and the blue lines show the case of learning from all other
assets in the fleet. The quartiles of the Weibull distribution are also shown in
the 25 and 75 % bands. The actual time to event is shown as a descending
line. This particular example was stopped in the middle of a trajectory (around
t = 1600) to showcase the real-time nature of the presented system.

future failures in less than 30 minutes with reasonable accu-
racy. We argue that re-evaluating predictions every 30 minutes
is more than sufficient for most real-life prognostics scenarios,
where predictive maintenance is typically scheduled with at
least several hours in advance. In Figure 7 we observe this
to be the case, with the WTTE-RNN algorithm producing a
score of less than 420000, which corresponds to a Pearson
coefficient of 0.912 between predicted and true failures

In Figure 7, we show how computational times scale well
with the decrease of the log-likelihood for up to 600 epochs.
The difference between this value and the number of epochs
run in the Digital Twins (50) presented in the results section
III-C is due to our need to 1) run several Digital Twins
within the same processor, and 2) re-train the Recurrent Neural
Network in each twin several times. Therefore, we decided to
compromise in the number of training epochs as our main
aim was to demonstrate distributed collaborative learning for
prognostics, and not so much to demonstrate the accuracy of
the WTTE-RNN algorithm.

Compared with training the agent’s Recurrent Neural Net-
work, the other time constraints of the system (such as
communication, data extraction, platform operation) have a
vanishing contribution within a real industrial scenario.

IV. CONCLUSIONS AND FUTURE WORK

We present the first steps towards the implementation of
distributed real-time collaborative prognostics. In order to do
so, we assign each asset in the asset fleet a Digital Twin,
endowed with an Analytics Engine. Using their Analytics
Engine the Digital Twins estimate their corresponding Asset’s
Time To Failure by means of a Recurrent Neural Network
algorithm. Collaboration is achieved by sharing feature and

0 100 200 300 400 500 600 700 80050
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
ize

d
lo

g-
lik

el
ih

oo
d 10 minutes 20 minutes 30 minutes

train
test

Fig. 7. Plot showing normalized training and test log-likelihood for the case
of the whole dataset with respect to the number of epochs used to train the
Recurrent Neural Network. The background shades of red show the timescales
associated, and the blue line shows the number of epochs chosed for the
example presented in this paper.

event data between pairs of Digital Twins and weighting this
data in the training of the prognostics algorithm. Such an
approach is specially suitable in fleets formed by assets with
recursive events, as these recursive events can be used to refine
each asset’s prognostics algorithms.

This paper demonstrates a basic implementation of real-time
distributed collaborative learning, with collaboration limited to
sharing trajectories to failure in real time among clusters of
similar assets. Initial findings show that the presented approach
outperforms learning from the whole asset fleet. However,
these findings have to be refined by increasing the number
of experiments, assets in the asset fleet and epochs used in the
training of the recurrent neural networks. The presented results
should thus be considered as an initial proof of concept.

The C-MAPPS data set used in this paper includes only
trajectories to failure obtained from identical machines. We try
to avoid this pitfall by generating our own virtual machines
from subsets of trajectories known to experience different
failures and. Testing the proposed approach with a data set
where the differences between assets are defined clearly will
form the future work of the presented research.

REFERENCES

[1] “Killer whale: Hebridean Whale and Dolphin Trust.” [Online].
Available: https://hwdt.org/killer-whale/

[2] I. Mezei, V. Malbasa, and I. Stojmenovic, “Robot to robot,” IEEE
Robotics and Automation Magazine, vol. 17, no. 4, pp. 63–69, 2010.

[3] A. Brintrup, D. McFarlane, D. Ranasinghe, T. Sánchez López, and
K. Owens, “Will intelligent assets take off? Toward self-serving aircraft,”
IEEE Intelligent Systems, vol. 26, no. 3, pp. 66–75, 2011.

[4] K. Tuyls and G. Weiss, “Multiagent learning: Basics, challenges, and
prospects,” AI Magazine, vol. 33, no. 3, pp. 41–52, 2012.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings
of the 1995 IEEE International Conference on Neural Networks, vol. 4,
pp. 1942–1948, 1995.

[6] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. G. Harley, “Particle Swarm Optimization: Basic Concepts,
Variants and Applications in Power Systems,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 2, pp. 171–195, 2008.

[7] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for nu-
merical function optimization: Artificial bee colony (ABC) algorithm,”
Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[8] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant Algorithms for
Discrete Optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[9] P. Leitão and S. Karnouskos, Industrial Agents Emerging Applications
of Software Agents in Industry, M. Kaufmann, Ed., 2015.

[10] J. Barbosa, P. Leitão, E. Adam, and D. Trentesaux, “Dynamic self-
organization in holonic multi-agent manufacturing systems: The ADA-
COR evolution,” Computers in Industry, vol. 66, pp. 99–111, 2015.

[11] H. B. Mcmahan and D. Ramage, “Communication-Efficient Learning of
Deep Networks from Decentralized Data,” vol. 54, 2017.

[12] N. D. Glenn, Cohort Analysis, 2nd ed. Thousand Oaks, California:
Sage Publications, Inc., 2005.

[13] T. Wang, J. Yu, D. Siegel, and J. Lee, “A similarity-based prognostics
approach for remaining useful life estimation of engineered systems,”
2008 International Conference on Prognostics and Health Management,
PHM 2008, no. November, 2008.

[14] K. Bakliwal and M. Harshadbhai, “A Multi Agent System architecture
to implement Collaborative Learning for social industrial assets,” in
INCOM 2018, 2017.

[15] E. Martinsson, “WTTE-RNN : Weibull Time To Event Recurrent Neural
Network,” Ph.D. dissertation, Chalmers University Of Technology, 2016.

[16] E. R. Lapira, “Fault detection in a network of similar machines using
clustering approach,” Journal of Chemical Information and Modeling,
vol. 53, no. 9, pp. 1689–1699, 2013.

[17] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in 2008 Interna-
tional Conference on Prognostics and Health Management, PHM 2008,
2008.

[18] “Wtte-rnn.” [Online]. Available: https://github.com/ragulpr/wtte-rnn
[19] A. S. Palau, Z. Liang, D. Lütgehetmann, and A. K. Parlikad, “Collabora-

tive prognostics in Social Asset Networks,” Future Generation Computer
Systems, 2018.

