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Abstract: Collaborative prognosis is a technique that is used to enable assets to improve their ability to predict failures by learning
from the failures of similar other assets. This is typically made possible by enabling the assets to communicate with each other.
The key enabler of current collaborative prognosis techniques is that they require assets to share their sensor data and failure
information between each other, which might be a major constraint due to commercial sensitivities, especially when the assets
belong to different companies. This paper uses Federated Learning to address this issue, and examines whether this technique
will enable collaborative prognosis while ensuring sensitive operational data is not shared between organisational boundaries.
An example implementation is demonstrated for prognosis of a simulated turbofan fleet, where Federated Averaging algorithm
is used as an alternative for the data exchange step. Its performance is compared with conventional collaborative prognosis that
involves failure data exchange. The results confirm that Federated Averaging retains the performance of conventional collaborative
prognosis, while eliminating the exchange of failure data within assets. This removes a critical hinderance in industrial adoption of
collaborative prognosis, thus enhancing the potential of predictive maintenance.

1 Introduction

Advances in sensor, communication, and computing technologies
over the past decades have propelled extensive automation of the
industrial systems [1]. Manufacturing industries have also moved
towards servitisation, where the customers pay for the services rather
than the assets. The original equipment manufacturers therefore need
to bear the associated costs for asset upkeep and maintenance [2].

Industrial automation has been amongst the key enablers for servi-
tisation. As a result of the technological advances, the industries are
capable of monitoring their assets in real time via embedded sen-
sors [1]. The sensor data enables the operators to closely monitor
an asset’s health and implement state-of-the-art predictive mainte-
nance strategies, based on the asset’s predicted remaining useful life.
An asset’s remaining useful life refers to the remaining time before
an impending failure, after which the asset would be deemed not
capable of operating satisfactorily [3].

Prognosis, or prediction of impending failures, particularly has
moved from traditional physics based formulations to data driven
techniques [3, 4]. As a critical precursor to the modern mainte-
nance planning strategies, accurate prognosis can significantly boost
the efficiency of an industrial system [5, 6]. Data driven progno-
sis involves Machine Learning (ML) techniques to learn a failure
prediction model using historical failure data. This model is then
expected to predict similar impending failures in real time. Data
driven prognosis is advantageous for those failure types whose math-
ematical formulations based on the physical failure laws are not
straightforward [3].

Primary sources of failure data are the sensors embedded at
various internal locations across an industrial asset. Measurements
recorded by these sensors over a period constitute time series data
indicating the asset health at corresponding instances. Time series
data ranging from an asset’s healthy condition until its failure is
called a failure trajectory. ML algorithms rely heavily on historical
failure trajectories to train a prediction model for that failure type
[3]. The analytics pipeline for data driven prognosis involves (1)
identifying a failure type for given operating conditions of assets,
(2) training prediction model using historical trajectories of that fail-
ure, and (3) implementing the trained prediction model in real time
[3, 5].

However assets, especially those with high reliability, might
not posses sufficient failure trajectories necessary for training a
prediction model. [7].

In this context, collaborative prognosis is a technique that enables
a network of assets, comprising a fleet, to learn from one another [7–
11]. It involves identifying clusters of assets that operate in similar
conditions and have encountered same failures, followed by sharing
failure trajectories within these asset clusters. As a result, any given
asset’s data repository is enriched with failure trajectories originat-
ing from other assets. Prediction models are then trained using the
enriched dataset [9]. Other such similarity-based prognosis have also
been proposed by researchers [12–14].

While in early 2000s prediction models were trained in remote
cloud servers, Internet of Things and increasing power of edge
computing resources have enabled localising data analytics at the
asset level. Advantages of such distributed computing frameworks
for industrial systems can be found in [15, 16]. Several distributed
system architectures and protocols have also been postulated for
various industrial systems [16–18]. As such, authors believe that
infrastructural support and benefits of distributed data driven progno-
sis techniques, like collaborative prognosis, are sufficiently present.
However, certain practical challenges hinder their practical imple-
mentation.

This paper targets challenges caused specifically due to sharing
failure trajectories across assets. While collaborative prognosis is
lucrative for the original equipment manufacturer, it is risky from
an operator’s perspective. This is because many real world operators
would not want their asset data to be shared with their competitors
[19, 20]. Exchanging failure trajectories also increases avoidable net-
work communication costs [11]. Such practical challenges hinder
practical implementation of collaborative prognosis in industry.

Federated Learning [21] is proposed in this paper as a solution
to address above described challenges. Federated learning methods
aim at shifting model training to nodes of a networked system. It
has gained immense popularity across various applications in recent
years due to rise of awareness about data privacy [22, 23]. Federated
Averaging (FedAvg) is a primitive and widely analysed Federated
Learning algorithm for domains like healthcare, mobile devices,
home security systems, etc [23]. This paper describes the applica-
tion of FedAvg for training recurrent neural networks for prognosis
of failures in a fleet of industrial assets.
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The outline for the rest of the paper is as follows: Section 2
discusses collaborative prognosis, state-of-the-art literature in Feder-
ated Learning, and FedAvg in the context of asset prognosis. In order
to demonstrate an example application of FedAvg for asset progno-
sis, simulated failure trajectories were used to replicate real world
fleets with failures distributed across several assets. The simulated
dataset and underlying computational framework used for experi-
ments are explained in Section 3. Section 4 describes the experiment
cases that were conducted as a part of analysis. Experimental results
are presented and discussed in Section 5. Lastly, important conclu-
sions and future research directions are summarised in Section 6 and
7 respectively.

2 Background

This section discusses the state-of-the-art research in collaborative
prognosis techniques, Federated Learning, and also describes the
FedAvg algorithm in the context of prognosis.

2.1 Collaborative Prognosis Techniques

The performance of data driven prognosis relies heavily on the his-
torical failure data used for training the prediction models [24]. For
prognosis, just like other machine learning applications, the predic-
tion models tend to learn faster and be more accurate if its training
data is statistically homogeneous i.e. Independent and Identically
Distributed (IID). IID data refers to those cases where the individual
data points can be considered independently sampled from a com-
mon underlying probability distribution. In the context of prognosis,
IID data refers to same failures occurring in machines operating
under similar conditions [3, 7]. However, an industrial system of
assets is often characterised by widespread heterogeneity, due to
assets operating in varied conditions and presence of multiple failure
modes. It has been shown that in such settings, it is beneficial to have
separate prediction models catering to subsets of asset populations,
identified based on some sense of homogeneity [7, 9].

It has been shown that the failure predictions are most accurate
if the model learns from a single asset only [7]. Recently pop-
ularised distributed computing architectures for industrial systems
enable every asset in the fleet to have its own corresponding predic-
tion model [8, 9, 11, 16]. However, the individualised models would
require assets to fail a certain number of times so that necessary
training data is available [7, 24]. Collaborative prognosis technique
aims at reducing these asset failures, by enabling assets to identify
other similar assets in the fleet and learn from their failures as well
[7]. This is made possible by identifying clusters of similar assets
and exchanging failure data across assets comprising these clus-
ters [7, 9]. Collaborative prognosis is most suitable for assets with
high reliability, like flight engines, where individual assets would not
experience enough failures to generate sufficient training data [10].

Identifying clusters of similar assets/ failures has also been the
basis of many data driven prognosis techniques presented in litera-
ture. [12] showed that in a system comprising of multiple assets and
historical failures, prediction of a given asset is improved by identi-
fying similar historical behaviours from a library of past failure data,
and evaluating the best fit for the current failure’s degradation curve.
[14] used genetic algorithm to identify clusters of the most similar
historical failure trajectories, which in turn improved the prediction
accuracy of models corresponding to each of those identified clus-
ters. Example implementation of this was shown for fatigue crack
growth, drilling bit degradation, and degradation of a turnout system
applications. [13] relied on collaborative learning to tackle the lack
of sensing resources for the overall cohort of units, for the cases of
both medical patients and industrial assets. Collaborative learning
in this case was based on Markov models and selective sensing to
address the problem of incomplete data per individual units.

The most recent collaborative prognosis implementation involves
distributed deployment of all constituting steps, ranging from iden-
tification of similar assets, training the models, and real time failure
prediction. It has been shown that distributed collaborative progno-
sis is more adaptable, scalable, resilient, flexible, and lean than the

former techniques which were deployed on centralised cloud servers
[9].

This paper focuses on distributed collaborative prognosis pre-
sented in [9], which involves exchanging failure trajectories across
assets comprising the clusters. Failure data exchange step of dis-
tributed collaborative prognosis is identified as a major impediment
for realising distributed collaborative prognosis in industries.

2.2 Federated Learning

As their computing capabilities improved, it is now possible for
the user devices like mobile phones to participate in data analyt-
ics and therefore reduce computational burden on a central cloud
server. Shifting computation to devices is referred to as edge, or fog
computing across diverse applications [23]. For physical industrial
assets, embedded microprocessors enhance their digital capabilities
and make them "smart" enough to perform analytics locally [15].

However, distributed systems pose different algorithmic require-
ments than cloud computing. In contrast to cloud computing, com-
puting on end user devices involves increased communications.
Communication is key to analytic performance because data are
stored at distant nodes across the system. Ideally computing on a
network of nodes is equivalent to computing on multiple proces-
sors housed in a single server. But inefficiencies of the network
connections, differences in the technical capabilities of individual
nodes, and statistical heterogeneity of data across nodes cause syn-
chronisation issues, presence of straggler and dropout nodes, and
several other data handling related issues [25]. Distributed optimisa-
tion challenges can be summarised as (1) expensive communication,
(2) systems heterogeneity, (3) statistical heterogeneity, and (4) data
security [23]. The majority of research in distributed ML is focused
on achieving improved model performance in the presence of these
challenges.

Federated Learning (FL) refers to those learning techniques which
focus their application specifically for distributed systems where the
communication costs and the data security hold prime importance.
It is called "Federated" because only a federation of network nodes
participate in the learning process at a given instance. Target appli-
cations of FL are characterised by local computations being orders
of magnitudes faster than communications due to network size, or
where data must not leave the nodes [21]. Both these constraints
hold for asset prognosis [11, 19].

FL involves storing and processing the data at its origin, and shar-
ing only certain updates with a central server. FL methods have
been deployed by major service providers and proposed as a critical
enabler of several data-sensitive applications including [26–28].

Basic FL problem formulation involves learning a single global
statistical model representing data stored across the nodes. This
model is learnt by optimising a global objective function for the
entire network, which in turn involves jointly optimising local objec-
tive functions at the nodes [21]. The local objective functions might
as well be different from the global objective function. The global
objective function F (w) for a network ofm nodes is mathematically
represented in (1). Here, the local objective functions are denoted by
Fk for kth node, with w being their corresponding model parame-
ters. pk is weight associated with the kth node. Choice of pk varies
across applications but popular choices are pk = nk

n or pk = 1
m ,

where nk is the data at kth node and n is the total data across the
entire network.

min
w

F (w), where F (w) :=
m∑

k=1

pkFk(w) (1)

While (1) is the generic mathematical formulation, FL literature
has instances where multiple objective functions have been proposed
for catering to underlying statistical heterogeneities [29].

FedAvg is an FL technique which enables learning a single Arti-
ficial Neural Network (ANN) model for data distributed across
network nodes. The reader must not be confused with two usages of
"network", which in its former instance in previous statement refers
to the network of neurons constituting the ANN, while in the later
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Fig. 1: Schematic representation of steps involved in a single communication round of FedAvg.

usage it refers to the physical network of computing nodes. ANNs
are a family of ML techniques, which are based on underlying prin-
ciple similar to biological brains. More information about ANNs can
be found in [30].

2.3 FedAvg in the Context of Asset Prognosis

Federated Averaging (FedAvg) is a primitive, and amongst widely
analysed FL methods, especially suited for training ANNs for data
distributed across nodes. FedAvg enables the network nodes to train
a global ANN model using their individual data, and share only the
parameters of the trained model with the server. The server accu-
mulates parameters from all participating nodes and updates the
global model which, after complete training, represents the general
statistical behaviour of data across nodes [21].

The loss surfaces of sufficiently over-parameterised artificial
ANNs are well behaved and escape bad local minima. Therefore,
when two ANN models with the same parameter initialisations are
trained independently on different subsets of IID data, naive aver-
aging of their updated parameters can be used to obtain a single
model describing combined data. This is the underlying principle
of FedAvg [31]. The performance for averaged model in some cases
can also be better than either of the two models [31]. However, over-
parameterising the ANNs also leads to increased need for training
data and overfitting hazard. Therefore, the ANN architecture must
be carefully analysed by the users, and the number of parameters
must be kept at the bare minimum necessary for FedAvg. Further
information about the effect of ANN parameters on its training can
be found in [30].

FedAvg is applicable where the ANN models are trained using
gradient descent methods and for statistically homogeneous (IID)
datasets only [29]. In FedAvg, a random subset of network nodes
parallely updates global model parameters based on their data using
a gradient descent method. The updated model parameters from
these nodes are averaged by the server to obtain a new, updated,
global model. Often, if the data are non-uniformly distributed across
nodes, weighted averaging is used to aggregate parameter updates
at the server. After this, the updated global model is again shared
with a new randomly selected subset of nodes, and the same process
repeats. A single communication round comprises of local updates
at the nodes followed by parameter aggregation at the server. After
several such communication rounds, the global model converges
and describes cumulative data across all nodes [21]. A schematic
representation of the above described steps is shown in Figure 1.

For the case of asset prognosis, training data comprises of histor-
ical failure trajectories, which are distributed across several assets.
Assets lie at the nodes of the network, that could have varying
instances of failure occurrences. Since FedAvg requires data to be
IID, each failure type has a prediction model specifically trained for
its prediction. The clustering step in collaborative prognosis helps
identifying such clusters comprising IID failure trajectories, as dis-
cussed in Section 2.1. FedAvg is proposed in this paper as the step
following the clustering step in collaborative prognosis, to train pre-
diction models for each of these identified homogeneous clusters.
The parameters involved and mathematical description of FedAvg
for asset prognosis are presented in the following subsection.

2.4 Mathematical Description

The standard mathematical description of FedAvg is presented here,
and its application for asset fleet prognosis is explained based on this
description.

Let us consider a distributed system comprising of m nodes, total
data across all nodes be n, and nk be amount of data at node k. Of
thesem nodes, consider a subset of nodes having size St be selected
at the tth communication round. This subset of nodes is called a
federation, which is generally expressed as a fraction C of nodes
selected from the total m nodes, such that |St| = max(int(C ∗
m), 1). Where int(C ∗m) means the highest integer less than or
equal to (C ∗m) Parameter C influences the model performance
and also the overall learning process, and therefore must be carefully
selected depending on the application. The effects of the parameters
governing the FedAvg learning process are discussed in Section 5.

FractionC is constant for every communication round. Each node
in St computes average gradient of local objective function Fk(),
for current parameters of the global model and using its data. This
gradient is given by gk = ∇Fk(wt), where wt are global model
parameters at tth communication round. The server then generates
the global model for the next round as:

wt+1 ← wt −
∑

k∈St

(
nk
fSt

∗ gk
)
,

since
∑

k∈St

(
nk
fSt

∗ gk
)

= ∇F (wt) (2)
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Algorithm 1: Steps followed while implementing FedAvg
for a fleet containing n failure instances across m assets.

Result: To optimise the global objective function F (w),
explained in (1) using local updates explained in (2)

1 At the Server:
2 initialise w0;
3 for each communication round t = 1,2,3... do
4 s← max

(
int(C ∗m), 1

)
;

5 St ← (random subset of s assets) ;
6 fSt

←∑
k∈St

nk ;
7 for each asset k ∈ St in parallel do
8 wk

t+1 ← AssetUpdate(k,wt);
9 end

10 wt+1 ←
∑

k∈St

nk
fSt

wk
t+1;

11 end
12 space
13 AsssetUpdate(k,w):
14 for each local epoch i from 1 to E do
15 w ← w − λ∇Fk(w, nk);
16 end
17 return w to the server

Where fSt
are total failures in St subset of assets. Local updates

are further governed by their corresponding ANN parameters includ-
ing epochs per node (E), the optimiser, and the learning rate (λ)
of the optimiser used for training [31]. Overall, FedAvg Algorithm
is governed by three main parameters: (C,E, λ). Batch size cor-
responding to local training of ANNs can also be varied, but it is
considered for prognosis applications that a single asset does not
fail often and therefore the batch size for local updates would not
substantially effect the learning process.

Several distributed computing architectures exist that enable col-
laborative prognosis in physical assets with computing capabilities,
and therefore also make them capable for FedAvg. One such archi-
tecture used for experiments discussed in this paper is explained
in Section 3. FedAvg steps are summarised in Algorithm 1, which
adapted from [31].

While applying for asset prognosis, parameter m introduced
above corresponds to total assets included in a given cluster, n to
total number of instances of that failure across all comprising assets,
and nk to its number of instances at asset k.

Conventional collaborative prognosis involves exchanging failure
trajectories amongst all participating assets. For a cluster compris-
ing total n failures, m assets, and btrajec being the size of single
failure trajectory data, [(m).(m− 1).(n).(btrajec)] amount of data
would need to be transmitted across the network during the training
process. On the other hand, FedAvg involves only sharing model
parameters between assets and the server. Therefore, a total of
[(m).(C).(bmodel).(r)] data would be transmitted across the net-
work, where bmodel is the size of model parameters data and r
are total communication rounds. For most prognosis applications,
failure trajectory data is significantly higher than model parame-
ters data [11]. Moreover, transmitted data exponentially increases
with increasing number of assets for the case of conventional col-
laborative prognosis. Data transmission for FedAvg on the other
hand linearly increases with increasing number of assets, and is
independent of total number of failures in the fleet.

3 Implementing FedAvg for Prognosis

This section describes the dataset and the enabling architecture for
collaborative prognosis that were used for the experiments.

3.1 Dataset Description

Dataset used for experiments discussed here is the publicly avail-
able Turbofan Engine Degradation Simulation Data Set [32]. This

Table 1 A Sample of FD_001 Dataset

AssetID Cycles OC1 OC2 OC3 s1 ... s21

1 1 -0.0007 -0.0004 100 519 ... 23.419
1 2 0.0019 -0.0003 100 519 ... 23.424
... ... ... ... ... ... ... ...

2 1 -0.0018 0.0006 100 519 ... 23.458
... ... ... ... ... ... ... ...
2 287 -0.0005 0.0006 100 519 ... 23.084

... ... ... ... ... ... ... ...
100 200 -0.0032 -0.0005 100 519 ... 23.052

dataset is generated using a Matlab based simulator called Commer-
cial Modular Aero-Propulsion System Simulation (C-MAPSS), and
therefore will subsequently be referred to as the C-MAPSS dataset.
Detailed description of its simulator can be found in [33].

C-MAPSS is capable of simulating turbofan engines operating
under various user defined operating conditions. These conditions
include the altitude at which the engine is operating, its Mach num-
ber, and the temperature at sea-level conditions. Thermodynamic
equations are used to calculate fluid flow parameters, and health con-
ditions of engines are reflected in sensor measurements from various
internal locations. A single simulated turbofan is monitored using 21
sensors [33].

Turbofans also comprise of independent sub-systems includ-
ing regulators, limiters and control systems. The limiters resem-
ble warning-trip mechanisms typically present in industrial turbo-
machinery that prevent machines from exceeding pre-set tolerances.
In C-MAPSS, there are limiters for the core speed, the engine-
pressure ratio, for the high pressure turbine exit temperature, and for
the static temperature at the high-pressure compressor. An engine
is deemed inoperable/ failed when any of the limiters are exceeded
[33].

The C-MAPSS dataset represents several simulated turbofans
with continuously degrading health, until they eventually fail. A
turbofan’s degradation is manifested in simulations as percentage
reduction in a component’s efficiency(e(t)) and flow(f(t)) values
at time step (t) compared to those at its healthy state (at time step
t = 0). The overall health index of a machine at time t is a com-
bined function of flow and efficiency of the overall engine: H(t) =
g(f(t), e(t)).

The e(t) and f(t) values of a given component are simulated to
degrade with time according to an inverse exponentially decreasing
function. However, no two simulated turbofans would be identical
because the parameters governing inverse exponential function are
randomly chosen from their permissible range of values. Turbofans
also commence operation with a slight but random initial deteriora-
tion to replicate real world manufacturing inefficiencies, and noise is
added to the sensor measurements to replicate real world errors [33].

As a result of a turbofan’s health degradation, the fluid flow
parameters recorded by sensors across various components devi-
ate and trend away from their normal operation values. Time series
of sensor measurements ranging from a given turbofan’s healthy
state until its failure are saved with their corresponding timestamps
and operating conditions. These failure trajectories are analogous to
real world trajectories used to train prediction models. A sample of
C-MAPSS data is shown in Table 1, where the columns indicate
unit id, cycles (or timestamp of measurement), operating conditions,
and sensor measurements with their corresponding sensor tags. The
data shown in Table 1 is sampled from the FD_001 file, which is
explained in the following paragraphs.

The C-MAPSS dataset is divided into four files, each of them
comprising of failure trajectories for simulated turbofans operat-
ing in various conditions and incipient failure modes. Files FD_001
and FD_003 specifically comprise of data corresponding to simu-
lated degrading turbofans operating at sea-level conditions only, and
are used for conducting experiments. All turbofans represented in
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Fig. 2: Shown above are sample rolling mean averages of normalised sensor 7 measurements, that trend differently for high-pressure
compressor degradation and fan degradation failure modes in FD_003 turbofans. Identification of failure modes is similar to [9]

FD_001 were simulated to fail because of their high-pressure com-
pressor degradation, and turbofans in FD_003 could fail either due
to high-pressure compressor degradation or fan degradation.

As explained in Section 2.3, FedAvg is applicable for IID data
only [29]. To conform with this requirement, only files FD_001 and
FD_003, where the turbofans operate in same conditions through-
out, were used for experiments. All trajectories in FD_001 were used
for experiments, but only those trajectories in FD_003 correspond-
ing to failures caused by high-pressure compressor degradation were
identified and merged with FD_001 dataset. By visually observing
the trends in sensor measurements, it was possible to identify the
corresponding failure modes for turbofans in FD_003 with 100%
accuracy. This classification for a sample of data from FD_003 is
shown in Figure 2, where high-pressure compressor degradations
amongst concatenated failure trajectories are indicated using pink
background colour, and fan degradations with green.

Finally, a single file containing 148 failure trajectories corre-
sponding to simulated turbofan failures, operating at sea level con-
ditions and incipient high-pressure compressor failure, was obtained
and used for experiments. This data was further preprocessed before
being used for analysis.

Sensors recording consistent measurements were removed for
better training. Concretely, sensors corresponding to measurements
with standard deviation of less than 0.003 were removed from data
file. The cycles column of every trajectory was inverted to obtain
remaining useful life (RUL) for the corresponding feature values.
RUL column served as the output/ target variable. Furthermore, val-
ues of remaining sensors, operating condition indicators, and RULs
were scaled using MinMax scaler, so that their values across the
entire file ranged from 0 to 1. RULs were scaled because the range
of the output neuron in the RNN, used as the prediction model and
explained in Section 4.1, was from 0 to 1. After preprocessing, the
trajectories comprised of unit ids, scaled cycle numbers, scaled oper-
ating condition values, and scaled measurements from 15 sensors.
Out of 148 trajectories, 10 trajectories were set aside for testing.

3.2 System Architecture

The multi-agent system architecture presented in [8–10] was used
as the underlying architecture for experiments discussed here. This
architecture has been shown to be well suited for implementa-
tion in real world industries, and is analogous to the nodes-server
(or clients-server) network type suitable for deploying federated
learning algorithms [9].

Similar to a nodes-server network, where several computing
nodes representing user devices are connected to a central server, the
architecture used for experiments discussed here involves a network
of connected industrial computing agents. It is formally a modified
hierarchical architecture type, where every asset in the fleet is moni-
tored and controlled by its corresponding agent. Asset agents analyse

data and make decisions for their corresponding assets. They are all
connected to a central agent which is responsible for higher level
decisions making. Concretely, the architecture comprises of three
levels: virtual assets, digital twins, and a social platform. The dig-
ital twins and the social platform are implemented for experiments
discussed here, and are therefore briefly described in the following
paragraphs. Detailed description of entire architecture and industrial
multi-agent systems in general can be found in [8] and [16, 34, 35]
respectively. The notion of "agent" in this paper refers to a collec-
tion of computational entities, that cooperate or compete to achieve
a certain objective [36].

Digital Twins: Digital Twin is an asset’s local data analyser. It
is responsible for monitoring data and extracting operationally use-
ful information. Apart from analysing the data, digital twins can
also serve as local decision makers. However, digital twins in the
experiments discussed here only act as data analysers for prognosis.
Operational decisions for mitigating impending failures are gov-
erned by operator policies and asset criticality, and are therefore not
discussed here.

A Digital Twin is segmented into data repository, analytics
engine, and output manager. The data repository stores data stream-
ing in from other agents, the analytics engine analyses data stored
in the repository, and the output manager manages communications
between the Digital Twin and agents it is connected with (such as the
social platform and the Virtual Asset).

Social Platform: The social platform is a central agent to which
all digital twins are connected, and therefore serves as the overall
network enabler. It enables communications within the network, and
is also responsible for conducting higher level analysis for the overall
asset fleet such as identifying clusters of similar assets or registering
queries from newly introduced assets. The social platform is also
segmented into a data repository, an analytics engine, and a com-
munications manager. The functions served by these are similar to
those for digital twins, but the only difference being that the analyt-
ics engine of the social platform conducts higher level analysis.

This paper, and experiments discussed herewith, focus only on the
model training step of collaborative prognosis pipeline. Therefore,
we assume that the participating assets have already been deemed
similar by the clustering step, and shown here is the model training
step for a given cluster. Moreover, since only historical failures are
used to train the prognosis algorithm, implementing virtual assets to
standardise online data are deemed not necessary for experiments
discussed here. Trajectories selected from the preprocessed dataset
explained in Section 3.1 for various experiment cases are stored
directly in data repositories of the digital twins to replicate failures
distributed across assets constituting a fleet. The only task performed
by the analytics engines of the digital twins is to evaluate local
updates using trajectories stored in their corresponding repositories.
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Fig. 3: This figures presents a schematic description of computa-
tions and data stored at architectural levels. Only three digital twins
are shown for ease of presentation, but the actual number of digital
twins equals number of assets comprising the cluster.

Similarly, tasks performed by the analytics engine of the social plat-
form are to aggregate updates from the participating digital twins,
and to select the subset of digital twins for the following commu-
nication round. A schematic diagram indicating the computations
(red underlined text) involved at corresponding levels of the archi-
tecture is shown in Figure 3. Further implementation details about
the experiments are explained in Section 4.

3.3 Developmental Specification

Python 3.6 and its standard libraries including Pandas and Numpy
were used to preprocess the dataset. While TensorFlow Federated
framework could be directly used to implement FedAvg, owing to
the nature of its beta release, TensorFlow Federated framework is
extremely slow and does not enable necessary modifications of the
hyper parameters involved. Therefore, Python’s Socket library was
used to develop a network of digital twins and the social platform. To
enable parallel computation, digital twins were run on separate pro-
cessor threads using Python’s Multithreading library. Keras library
with Tensorflow backend was used to develop and train RNNs, and
NVIDIA Tesla P100 server processor with 3584 CUDA cores GPU
was used to perform the experiments discussed here.

4 Experiments

This section explains the various experimental cases that were per-
formed to analyse FedAvg for collaborative prognosis. Experiment
cases were designed to study the effect of various FedAvg param-
eters on the training process, and also to serve as an example
application.

4.1 Experiment Cases

A Recurrent Neural Network (RNN), specifically consisting of one
Long-Short Term Memory (LSTM) layer, was used in the experi-
ments as prediction model. RNN is a special type of ANNs, where
the outputs of certain neurons are included with their inputs. This
feature enables the RNNs to understand the time dependency of
trending features, and therefore make them well suited for time
series prediction applications like prognosis.

The RNN used for experiments here comprised of three interme-
diate layers, containing 12*25*10 neurons respectively, where the
layer containing 12 neurons was the LSTM layer, and the rest were
standard feed forward neurons. The tanh activation functions were
used at every neuron. Owing to the tanh activation function, the

Table 2 Values of hyper parameters across various experiment cases.

Hyper parameter Value

C {0.1, 0.25, 0.5, 1}
E {1, 5, 10, 20}
λ {0.01, 0.05, 0.1}
n {10, 35, 70, 138}

Table 3 Total assets and number of failures at individual
assets corresponding to various number of total failures

Total Failures
(n)

Total Assets
(m)

Failures per individual
Assets (nk)

10 10 [1,1,1,1,1,1,1,1,1,1]
35 16 [1,1,2,3,3,1,2,3,3,2,1,3,3,1,3]
70 17 [4,7,4,7,5,5,5,7,3,3,7,1,3,3,1,2]

138 15 [6,12,3,13,7,12,13,6,9,5,13,8,6]

range of the output neuron was constrained between 0 to 1. There-
fore, the same MinMax scaler used to downscale the training data
was used to upscale the output of the RNN.

Effects of the hyper parameters including the participating frac-
tion of assets (C), epochs per asset participating in the update step
(E), learning rate (λ) of the RNN during local updates, total fail-
ures in the fleet (n), and the optimiser of the RNN were studied by
varying them across different values. Moreover, decaying learning
rate with subsequent communication rounds was also experimented
and compared with a constant learning rate. Table 2 summarises the
values of the above parameters studied across the experiment cases.
Global and local objective functions were both aiming to minimise
the mean absolute difference between real and predicted RUL values
for trajectories in training dataset.

For each set of hyper parameter values, the RNN was trained for
600 communication rounds, and its mean absolute error of predic-
tions for test failure trajectories was evaluated at the end of each
round.

4.2 Fleet Simulation

From the remaining 138 trajectories obtained after preprocessing
explained in Section 3.1, the initial n trajectories were used for the
corresponding experiment cases described in Section 4.1. However,
to replicate failures distributed across multiple assets, these n trajec-
tories were further segmented into smaller groups of trajectories and
stored in data repositories of separate digital twins.

Let these digital twins be indexed using k ∈ 1, 2, ..., therefore
|k| = m, where m is the number of assets in the cluster. Each of the
digital twins holds nk trajectories, where the integer nk is randomly
selected as nk ∈ [1, int(n/10)]. Concretely, this resembles a cluster
wherem assets have failed due to a given failure mode, with varying
number of failure occurrences. The goal was to train the RNN using
this dataset of total n failures, distributed acrossm assets. The assets
(m) and number of failures of individual assets (nk) corresponding
to different values of total failures (n) are presented in Table 3.

All possible permutations of parameter values listed in Table 2
were analysed for FedAvg training. Analysis included recording the
global model’s mean of the absolute prediction error for the test data
after every communication round. Rate and extent error reduction in
the end model performance were studied for all sets of parameter
values.

5 Discussion

This Section discusses the effect of parameters deduced from the
experimental results, and presents the corresponding performance
plots explaining those effects. While plots for only certain param-
eter values are included for ease of presentation, the corresponding
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Fig. 4: Effect of learning rate on model performance. Parameters
(C,E, n) = (0.5, 5, 70) with SGD optimiser. LR = Learning Rate.

conclusions hold true across all permutations. Parameter values asso-
ciated with the plots in following subsections are all mentioned in
their figure captions.

Corresponding model performances achieved with conventional
collaborative prognosis, which involved sharing failure data across
assets, for same values of total failures n and the optimisers are
also shown on those plots. RNN with same architecture as the one
used for FedAvg was used for conventional collaborative prognosis.
It was trained using an optimal set of hyper parameters, and was
trained until its error for test data did not decrease any further. The
same test data, and mean absolute error of predictions, were used to
evaluate the performance of model trained using conventional col-
laborative prognosis as well. The horizontal cyan lines in Figures 4
to 8 indicate test errors while using conventional collaborative prog-
nosis for training the same prediction models and with same failure
trajectories as FedAvg.

5.1 Effect of Decaying Learning Rate (λ)

Shown in Figure 4 are performances of models trained using a decay-
ing learning rate, alongside the same models trained using a constant
learning rate. It is observed that allowing λ to decay after every com-
munication round stabilises the model’s test error while training. A

Fig. 5: Effect of epochs per asset on model performance. Parame-
ters (C, λ, n) = (0.25, 0.1, 138) with SGD optimiser. LR = Learning
Rate.

constant decay of 0.99 was implemented during the experiments.
Model training was found to be comparatively stable for decay-
ing learning rates than constant learning rate across all parameter
combinations, similar to that shown in Figure 4.

However, if the initial λ is not sufficiently high enough, end model
performances tend to a higher test error than the one trained using
non-decaying learning rate. This is observed in the performance
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Fig. 6: Effect of participating fraction of assets on model perfor-
mance. Parameters (n, λ,E) = (10, 0.01, 5) with SGD optimiser.

plots shown in Figure 4, where for lower initial λ, models converge
to substandard performance compared to non-decaying learning rate.

Plots for non-decaying λ are shown using blue dotted line and for
decaying λ using red solid line in Figure 4. Their initial learning rates
are also mentioned on the same plots, and the corresponding param-
eter values, which were constant for all three plots, are mentioned in
the caption.

5.2 Effect of Epochs per Asset (E)

It can be observed from the plots presented in Figure 5, that the test
errors during training process decrease and becomes more stable as
E increases. The test error was found to stabilise with increasing E
value, with other parameters kept constant. Moreover, as the number
of epochs per asset are increased, models converge to much lower
test errors, compared to the same ones stabilised using learning rate
decay. In Figure 5, constant learning rate while training is shown
using blue dotted line, and decaying rate with red solid line.

The marginal improvement in end model performance, as it was
expected and also observed in Figure 5, however decreases with
increasing E. Therefore, the optimal E value corresponds to its
minimum value which stabilises model training and results in an
acceptable end model performance.

Fig. 7: Effect of total failures on model performance. Parameters
(C, λ,E) = (0.25, 0.1, 5) with Adam optimiser.

5.3 Effect of Participating Fraction of Assets (C)

Experiments showed that increasing C had no substantial effect on
the end model performances. However, test errors stabilised with
increasing C value. This is presented in Figure 6.
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Fig. 8: Effect of the optimiser on model performance. Parame-
ters (C, λ, n) = (0.25, 0.1, 35). Performances of models trained
using conventional collaborative prognosis, having Adam and SGD
optimisers are marked with cyan and magenta horizontal lines
respectively.

5.4 Effect of Total Failures (n)

The experiments showed that, similar to conventional collaborative
prognosis (see [9], pp. 600-601), a minimum number of failure tra-
jectories were necessary for prediction models to achieve acceptable
accuracies. The test error for n = 10 is comparatively erratic and
higher than other values of n, which decreases with increasing n.
But unlike conventional prognosis where model performance con-
tinuously increases with increasing number of failure trajectories,
FedAvg’s end model performance saturates after a certain value of
n, which for experiments discussed here is 35. Figure 7 illustrates
the effect of n on model training.

5.5 Effect of the Optimiser

Two popular optimisers- Adam and SGD- were implemented for the
experiments discussed here. SGD is a classic optimiser for ANNs,
and pioneering applications of FedAvg involved using SGD. Adam

is a comparatively newer optimiser than SGD, which is in fact a mod-
ification of SGD that uses adaptive learning rate based on training
data and error [37].

A comparison between Adam and SGD optimisers for FedAvg
is shown in Figure 8 for various E values, where SGD optimiser is
represented by the red solid line, and Adam optimiser by blue dot-
ted line. It was found in the experiments that Adam performed better
than SGD in most experiment cases. However, for either optimis-
ers, models trained using FedAvg could attain their corresponding
performances attained by conventional collaborative prognosis. This
confirms that FedAvg is applicable for collaborative prognosis.

6 Conclusions

This paper highlights those challenges which hinder implementation
of distributed data driven prognosis techniques, specifically collab-
orative prognosis. Of the general challenges faced by distributed
optimisation problems, conventional collaborative prognosis is inca-
pable of addressing problems of data security and communication
efficiency. It is identified that specifically the failure data exchange
step of collaborative prognosis hinders its application for real world
industries.

Also proposed in this paper is the application of Federated Aver-
aging to replace the failure data exchange part of collaborative
prognosis. Authors have demonstrated that FedAvg is applicable
for asset prognosis, and that it is capable of realising collaborative
prognosis. This follows from the observation in figures 4 to 8, that
performances of models trained using FedAvg have improved dur-
ing the training process using FedAvg, and in many cases in fact
surpassed those of models trained using conventional collaborative
prognosis. By avoiding failure data exchange within assets, FedAvg
also has added benefits of securing asset data and of reducing net-
work communication costs. Addressing the problem of localised
training without the need for failure data to leave assets is also
deemed beneficial for data driven prognosis techniques in general,
that rely on failure trajectories distributed across several assets.

As shown in figures 4 to 8, values of parameters including
(C,E, λ), just like any other machine learning technique, must
however be carefully tuned to achieve optimal model performance.
While Section 5 discusses the effect each parameter is expected
to have on FedAvg training, optimal permutation of parameters is
dependent on the application and best deduced by its corresponding
operators.

While the challenges faced by the conventional collaborative
prognosis techniques were mentioned in [38], this paper discusses
them in more detail, proposes FedAvg as a solution to address
those challenges, and presents the results from extensive experi-
ments performed to analyse model performances for the proposed
application.

7 Future Research Directions

The proposed application and experiments also make way for excit-
ing possibilities related to both general FL, and asset prognosis
research:

1. As discussed in Section 2.3, FedAvg is applicable for IID data
only. While IID failure trajectories are identified by the clustering
step, it does not make the collaborative prognosis pipeline truly
localised. This is because the server performs clustering by analysing
failure trajectories across all assets. Therefore, asset data must be
shared with the server. Future research can improve upon the current
FedAvg implementation to make it capable of training prediction
models for IID data, without the need for data to leave assets at all.
Some inspiration for this can arise from FL literature like [23, 29].

2. Another challenge is to implement the trained models in real
time. When an asset is found to deviate from its normal behaviour,
it is seldom possible to identify the impending failure and its predic-
tion model. Collaborative prognosis requires an asset to operate in a
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given condition for certain period before it can be clustered with sim-
ilar assets. This makes it incapable of predicting failures of a newly
introduced asset. Future research can involve automated real time
identification of most suitable prediction model for failing assets.
Neural network ensembles, where their prediction is also associated
with confidence, can possibly address this challenge [39, 40].

3. It is theoretically shown in Section 2.4 that federated learning
reduces the data transferred within the asset network, and therefore
reduces the communication costs to the operator. Future work can
investigate the extent of this reduction for various industrial appli-
cations, to identify important tradeoffs between model performance
and overall data transfer.

4. Lastly, an important follow-up task is to implement FedAvg for
real world asset data. Maximum 148 IID failure trajectories could
be obtained from the C-MAPSS dataset. This is because C-MAPSS
dataset has only 148 instances where assets operating in similar
operating conditions incur same failure type. Real world data could
comprise of higher number of failure trajectories for more failure
types. This could enable analysing FedAvg performance for different
failure types.
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