60,073 research outputs found

    The Art of Engaging: Implications for Computer Music Systems

    Get PDF
    The art of engaging with computer music systems is multifaceted. This paper will provide an overview of the issues of interface between musician and computer, cognitive aspects of engagement as involvement, and metaphysical understandings of engagement as proximity. Finally, this paper will examine implications for the design of computer music systems when these issues are taken into account

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    How Do You Feel, Developer? An Explanatory Theory of the Impact of Affects on Programming Performance

    Full text link
    Affects---emotions and moods---have an impact on cognitive activities and the working performance of individuals. Development tasks are undertaken through cognitive processes, yet software engineering research lacks theory on affects and their impact on software development activities. In this paper, we report on an interpretive study aimed at broadening our understanding of the psychology of programming in terms of the experience of affects while programming, and the impact of affects on programming performance. We conducted a qualitative interpretive study based on: face-to-face open-ended interviews, in-field observations, and e-mail exchanges. This enabled us to construct a novel explanatory theory of the impact of affects on development performance. The theory is explicated using an established taxonomy framework. The proposed theory builds upon the concepts of events, affects, attractors, focus, goals, and performance. Theoretical and practical implications are given.Comment: 24 pages, 2 figures. Postprin

    Algorithms as scores: coding live music

    Get PDF
    The author discusses live coding as a new path in the evolution of the musical score. Live-coding practice accentu- ates the score, and whilst it is the perfect vehicle for the performance of algorithmic music it also transforms the compositional process itself into a live event. As a continuation of 20th-century artistic developments of the musical score, live-coding systems often embrace graphical elements and language syntaxes foreign to standard programming languages. The author presents live coding as a highly technologized artistic practice, shedding light on how non-linearity, play and generativity will become prominent in future creative media productions

    Designing and evaluating the usability of a machine learning API for rapid prototyping music technology

    Get PDF
    To better support creative software developers and music technologists' needs, and to empower them as machine learning users and innovators, the usability of and developer experience with machine learning tools must be considered and better understood. We review background research on the design and evaluation of application programming interfaces (APIs), with a focus on the domain of machine learning for music technology software development. We present the design rationale for the RAPID-MIX API, an easy-to-use API for rapid prototyping with interactive machine learning, and a usability evaluation study with software developers of music technology. A cognitive dimensions questionnaire was designed and delivered to a group of 12 participants who used the RAPID-MIX API in their software projects, including people who developed systems for personal use and professionals developing software products for music and creative technology companies. The results from the questionnaire indicate that participants found the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and good for rapid prototyping with interactive machine learning. Based on these findings, we present an analysis and characterization of the RAPID-MIX API based on the cognitive dimensions framework, and discuss its design trade-offs and usability issues. We use these insights and our design experience to provide design recommendations for ML APIs for rapid prototyping of music technology. We conclude with a summary of the main insights, a discussion of the merits and challenges of the application of the CDs framework to the evaluation of machine learning APIs, and directions to future work which our research deems valuable

    Assessing a Collaborative Online Environment for Music Composition

    Get PDF
    The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual semi-structured interviews with the participants were conducted to analyze the participants\u2019 perspectives regarding the e-learning environment\u2019s functionality, the resources of the e-learning platform, and their overall experience with the e-learning process. Qualitative analyses of forum discussions with respect to metacognitive dimensions, and semi-structured interview transcriptions were performed. The findings showed that the participants successfully completed the composition task in the virtual environment, and that they demonstrated the use of metacognitive processes. Moreover, four themes were apparent in the semi-structured interview transcriptions: Teamwork, the platform, face-to-face/online differences, and strengths/weaknesses. Overall, the participants exhibited an awareness of the potential of the online tools, and the task performed. The results are discussed in consideration of metacognitive processes, and the following aspects that rendered virtual activity effective for learning: The learning environment, the platform, the technological resources, the level of challenge, and the nature of the activity. The possible implications of the findings for research on online collaborative composition are also considered
    • 

    corecore