
Open Research Online
The Open University’s repository of research publications
and other research outputs

Choosers: The design and evaluation of a visual
algorithmic music composition language fornon-programmers
Conference or Workshop Item
How to cite:

Bellingham, Matt; Holland, Simon and Mulholland, Paul (2018). Choosers: The design and evaluation of a
visual algorithmic music composition language for non-programmers. In: Proceedings of 29th Annual Workshop of
the Psychology of Programming Interest Group - PPIG 2018.

For guidance on citations see FAQs.

c© 2018 The Authors

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Choosers: The design and evaluation of a visual algorithmic music composition
language for non-programmers

Matt Bellingham
Department of Music

University of Wolverhampton
matt.bellingham@wlv.ac.uk

Simon Holland
Music Computing Lab
The Open University
s.holland@open.ac.uk

Paul Mulholland
Knowledge Media Institute

The Open University
p.mulholland@open.ac.uk

Abstract
Algorithmic music composition involves specifying music in such a way that it is non-deterministic on
playback, leading to music which has the potential to be different each time it is played. Current systems
for algorithmic music composition typically require the user to have considerable programming skill and
may require formal knowledge of music. However, much of the potential user population are music
producers and musicians (some professional, but many amateur) with little or no programming experience
and few formal musical skills. To investigate how this gap between tools and potential users might be
better bridged we designed Choosers, a prototype algorithmic programming system centred around a new
abstraction (of the same name) designed to allow non-programmers access to algorithmic music
composition methods. Choosers provides a graphical notation that allows structural elements of key
importance in algorithmic composition (such as sequencing, choice, multi-choice, weighting, looping and
nesting) to be foregrounded in the notation in a way that is accessible to non-programmers. In order to test
design assumptions a Wizard of Oz study was conducted in which seven pairs of undergraduate Music
Technology students used Choosers to carry out a range of rudimentary algorithmic composition tasks.
Feedback was gathered using the Programming Walkthrough method. All users were familiar with Digital
Audio Workstations, and as a result they came with some relevant understanding, but also with some
expectations that were not appropriate for algorithmic music work. Users were able to successfully make
use of the mechanisms for choice, multi-choice, looping, and weighting after a brief training period. The
‘stop’ behaviour was not so easily understood and required additional input before users fully grasped it.
Some users wanted an easier way to override algorithmic choices. These findings have been used to
further refine the design of Choosers.

1 Introduction
Algorithmic composition typically involves structural elements such as indeterminism, parallelism,
choice, multi-choice, recursion, weighting, and looping (Jacob, 1996). There are powerful existing tools,
such as Max (Puckette, 1991) and SuperCollider (McCartney, 2002) for manipulating these and other
elements of music. However, while these systems give great compositional power to musicians who are
also skilled programmers (Wilson et al., 2011), many musicians who are not also expert programmers
find these tools inaccessible and difficult to understand and use (Bullock et al., 2011).

This paper presents an evaluation of a prototype visual programming language (Bellingham et al., 2017)
designed to allow structural elements of the kind involved in algorithmic music composition to be readily
visualised and manipulated, while making little or no demand on programming ability. This system,
called Choosers, centres around a novel non-standard programming abstraction (the Chooser) which
controls indeterminism, parallelism, choice, multi-choice, recursion, weighting, and looping.

In this paper we present a programming walkthrough evaluation carried out with seven pairs of
undergraduate Music Technology students. The purpose of this evaluation is to:

• Test the ability of self-taught music producers without programming skills to use Choosers to
carry out a range of rudimentary algorithmic composition tasks;

• Identify usability and user experience problems in the current design;
• Identify tensions and trade-offs in the interaction design of the system.

In the evaluation, pairs of participants were introduced to each element of the graphical programming
language via short tutorial videos. Participants were given a range of practical tasks to complete on paper
or a whiteboard. The facilitator played a Wizard of Oz role, rapidly translating participants’ graphical
solutions into runnable code that was fed into a non-graphical prototype version of Choosers so that
participants could hear the musical results of their attempts.

2 Related work/problem setting
Various music programming languages are capable of algorithmic composition, although they require
significant programming skills (Bullock et al., 2011) and are therefore inaccessible to many users.
Bellingham et al. (2014) used the Cognitive Dimensions of Notations framework (Green and Petre, 1996)
to review the usability of a representative selection of software capable of algorithmic music composition.
The findings of the review included the following. First, we found that most existing software requires the
user to have a considerable understanding of constructs in either graphical (e.g Max, Pure Data) or text-
oriented (e.g. SuperCollider, ChucK, Csound) programming languages: such knowledge requires a
significant learning overhead. Second, users are often required to have an understanding of musical
notation and/or music production equipment such as mixing desks and patchbays. Third, several programs
imposed working practices unconducive to compositional processes. Fourth, in some cases the user was
unable to define, and subsequently change, the musical structure. Finally, complex visual design in
graphical programming languages led to patches with multiple connections, making them difficult to read
and to navigate.

3 Introduction to the system: Choosers
The following section provides a brief overview of Choosers, designed to cover enough detail to allow
readers to understand the evaluation. Full details of the system design can be found in Bellingham et al.
(2017). The system has general musical expressivity, but for simplicity the present evaluation focuses on
the manipulation of samples for algorithmic composition.

Samples are shown in boxes, and can be auditioned by clicking on them. Samples can be assembled into
sequences using arrows (see fig. 1). Samples in a sequence play in the order indicated by the direction of
the arrows. Only a single arrow can enter or exit each element in a sequence. This deliberate limitation
reflects the fact that parallelism and choice are dealt with elsewhere in the language. Boxes and sequences
can be put inside other boxes, thereby packaging them into a single unit.

Figure 1: Samples are shown in boxes, and a sequence is assembled via arrows (left); an annotated

Soundable Chooser (right)

Boxes referring to samples or sequences can be snapped together vertically to create what are known as
Choosers. Fig. 1 shows a Chooser with two lanes, each containing a sample (drums and bass). The
number 1 in the nose cone indicates that at run time, just one of the lanes will be selected at random
(subject to restrictions described below). By manipulating the number in the nose cone, any number of
lanes from 0 to 2 can be chosen randomly to play simultaneously. A Chooser can have any number n of
lanes. By manipulating the number in the nose cone, any number of lanes from 0 to n can be chosen
randomly at run time and played simultaneously. Each lane has a weight associated with it. Consequently,

in fig. 1, the drums are twice as likely to be chosen as the bass. Additionally, a weight of ‘A’ (‘always
play’) can be used to ensure that the lane is always selected for playback.

Any sample can be set to loop indefinitely when selected on a particular run, or to play just once by the
choice indicated in the status column (shown in fig. 1): indefinite looping of a single sample is typically
not desired, so we now introduce Time Choosers (see fig. 2, left).

Figure 2: An annotated Time Chooser (left); a Full Chooser (right)

If the Time Chooser (fig. 2, left) is attached to the bottom of the Chooser (fig. 1, right) this produces a
Full Chooser (fig. 2, right). When the Full Chooser shown in fig. 2 is played, looped drums, if chosen,
cannot play indefinitely, but will be cut off after 16 bars. However, if the status column in the time
chooser were set to > (indicating a soft stop) rather than × (indicating a hard stop) then, after 16 bars,
the sample would play to the end of its current iteration. With a hard stop, if the Time Chooser duration
cleanly divides the sample duration, every repetition will play in full. If not (e.g. if the bass.wav sample in
fig. 2 had a duration of 3 bars) a hard stop will cut playback mid-sample. The two kinds of stop work
similarly with non-looped lanes. If the non-looped bass lane of the Full Chooser (fig. 2, right) were
chosen, the bass sample would be guaranteed to start playing once. With either kind of stop, if the sample
were less than 16 bars long, there would be silence after completion until the end of the 16 bars. A non-
looped sample longer than 16 bars would be truncated by a hard stop but allowed to complete by a soft
stop.

Now that Time Choosers and Full Choosers have been introduced, in order to avoid ambiguity, we will
refer to Choosers with no attached Time Choosers, such as those shown in fig. 1, as Soundable
Choosers.

A Time Chooser can be used alone as part of a sequence – however, when used in this way it will simply
result in a rest of the specified duration. More generally, the purpose of a Time Chooser within a Full
Chooser is to moderate in a non-deterministic manner how long the Soundable Chooser and its individual
lanes play. Possible interactions between the settings of soundable and Time Choosers can make the
results more varied than might be imagined. A Time Chooser’s nose cone can be set to either one or zero.
If set to one, one time lane will be chosen at run time. If it is set to zero no time lanes will be selected and
the Soundable Chooser will run as though there is no Time Chooser. This allows for quick low viscosity
(Green and Petre, 1996) arrangement changes, with the possibility of infinite playback if the Soundable
Chooser lanes are set to loop. With no Time Chooser and the chosen lanes not set to loop, the samples
will play and the Chooser will be released when they have finished playing, regardless of length.

4 Method

4.1 Participants
Seven pairs of undergraduate Music Technology students took part in user tests utilising a Wizard of Oz
prototyping methodology. These users were targeted as they are typically lack programming skill and
extensive formal music training. While they may be conversant with some elements of music theory, the
predominant background is self-taught music producers with experience of making music electronically
using Digital Audio Workstations (DAWs).

All participants were asked to complete a short questionnaire before taking part in the user tests. Of the
fourteen participants all considered themselves musicians. Six participants did not read any music
notation (though ten had some formal musical training). Most of the music readers could read common
music notation as well as chord notation. All participants were familiar with DAWs, with Logic Pro
(Apple Inc., 2013) mentioned by all fourteen users. Other DAWs mentioned included Pro Tools (6
mentions), Cubase (2 mentions), FL Studio (5 mentions), Reason (1 mention), and Ableton Live (1
mention). Pure Data (Puckette, 1997) a visual audio programming language, was mentioned by two
participants. Twelve participants had experience using hardware for music performance HCI tasks (such
as drum pads or control surfaces). The participants were not habitual performers; seven of the fourteen
participants do not perform with or for others. Of those that do, three perform in church, and four
occasionally play with friends in private. Five of the fourteen participants claimed some experience in
computer programming; however, two of these considered markup for the web (HTML and CSS) as
programming. If simple markup and layout are excluded, then more than two thirds of participants (11 out
of 14) lack experience of writing algorithms in any programming language. One participant listed the use
of Pure Data and SuperCollider. Eight of the fourteen participants did not know what algorithmic music
was at the start of the user tests. The remaining six participants felt that they knew what algorithmic
music was but had not created any.

4.2 Walkthrough protocol
Participants were asked to take part in eight scenarios, as reproduced below. The users were free to
discuss the work and to ask for clarification with the administrator of the test. Users were asked to act as
active participants in the research, and to help in categorising any issues that were raised. The
categorisations that users were asked to use – taken from the programming walkthrough method (Bell et
al., 1992, 1991) – were questions (e.g. why does the loop do that?), problems (e.g. I don’t understand
what these lanes are for), suggestions (e.g. maybe the cone should be a different shape), and other
observations (e.g. I like the fins). In addition, participants were asked if they could think of any other
ways in which each scenario could be completed. This prompted a discussion on alternative routes in
order to test understanding and to capture user expectations.

4.3 Walkthrough scenarios
The eight scenarios issued as part of the user tests are shown in fig. 3. The users were introduced to each
element of the graphical programming language via short tutorial videos1. Users were given a range of
practical tasks to complete on paper or on a whiteboard (see fig. 4), and their outputs were played by the
facilitator using a set of SuperCollider (McCartney, 2002) classes written to implement the musical
abstractions behind the system. The user tests were videoed and transcribed to assist in the analysis
presented here.

1 Available at https://goo.gl/PFeAJf

Figure 3: The eight user test scenarios

4.4 Results
All participants were able to understand the behaviour of Soundable Choosers. Twice participants had to
be corrected after believing vertically stacked lanes all play concurrently – both instances of this
misunderstanding occurred in the first scenario only. Two groups found multiple vertically aligned time
lanes confusing and assumed that both durations would play together, or one would play before the other.
The initial introduction of a Time Chooser as a representing a rest, and only later showing it constraining
a Soundable Chooser’s duration, was confusing for four of the seven groups. Hard and soft stops were
understood, but seven of the fourteen participants asked for clarification of the behaviour of the soft stop.
Two pairs of participants suggested alternatives for the hard and soft stop icons. Two participants wanted
to use ‘always play’ to express infinite playback rather than removing the Time Chooser. There was some
confusion over the meaning of ‘always play’ and whether it could be skipped. Some felt the interface used
numbers for too many parameters.

Three groups commented on the ‘boring’ design. The layout of Choosers was not seen as problematic, but
some users wished for a more stylish and polished presentation. Two groups requested colours to enhance
usability: within one group, one user wanted automatic colour selection (denoting lane type) and the other
user felt that user-controlled colour selection would better support sorting and arrangement tasks. Several
users were interested to know if lanes could be rearranged to visually organise lanes into instrument
groups. One user suggested that lane arrangement could be an alternative to the weight column — moving
a lane higher would result in a higher probability of playback. This is similar to one mechanism which
was considered and rejected before the user tests: it was replaced by the weight column as the column
allows for multiple identical lane weights, quick auditioning, and user-controlled lane ordering to assist
with musical arrangement. One user requested instrument icons for lanes, partly in response to being
unaware of the marimba (one of the samples used in the user test).

Overall, participants were able to complete all scenario tasks, with varying levels of assistance.

Figure 4: User work on paper and on a whiteboard

5 Reflection on design issues
The findings from the user tests outlined above have various implications for the design of Choosers.

5.1 Musical issues
Repeating phrases, and the musical interaction between phrases, are crucially important in a music
system. These have therefore been brought to the surface via the loop and hard/soft stop behaviours. We
found that the stop behaviour was confusing to four of the seven pairs of users, and the documentation
will be enhanced to better explain the system. The hard and soft stop system can be conceptualised in a

number of ways. For musicians, one useful way is to consider soft stops as suitable for melodies, and hard
stops for accompaniment. Melodies are therefore allowed to finish, whereas accompanying elements are
stopped when the duration of the Chooser elapses.

Three of the fourteen users were keen to have a visual indication of current position with respect to
duration, such as a progress bar. While this seems a reasonable request, it is complicated by the non-
deterministic nature of the system.

A significant number of participants found the use of Time Choosers for both rests and Chooser duration
to be confusing. This was largely due to rests being introduced before the Time Chooser’s primary
function, which is to control the duration of a Chooser.

None of the participants had experience in algorithmic composition, so these sessions essentially
introduced algorithmic compositional tools while also testing the interface. This led some participants to
presume that the concepts themselves were novel. Some time was spent discussing the desirability of
algorithmic processes rather than this specific implementation. Two participants assumed that the process
would lead to a linear audio file, which indeed it can, but many use cases would require the music to
remain nonlinear. Future evaluations could explore the nature of attitudes to nonlinear playback,
including how it is related to expectations set by commercial music creation software and linear playback.
We are also interested in the use of Choosers in genres which routinely incorporate extemporaneous
changes and improvisation, such as folk and jazz.

One group specifically wanted a mechanism to allow them to easily reuse material for thematic
development. The design of Choosers allows for this via the nesting of Choosers within lanes, although it
was not included in the user tests for simplicity. The users were shown nesting in response to their
questions and found it to meet the need they had expressed.

Choosers can be used in the creation of a range of music. However, given the unusual combination of
usability and affordances, Choosers are particularly suited to music in which users would benefit from
easy access to non-linear playback. Some classic Minimalism techniques (Potter, 2002), such as phasing
(Scherzinger, 2005), are easily achievable using Choosers. Game music is often non-linear, created using
layers of musical material which are triggered by in-game events (Collins, 2008). Such material can be
created using Choosers, and we have a mechanism which would allow for external input via OSC or an
alternative protocol; this would allow a game engine to trigger changes in the music. Choosers also allow
musicians and music producers to create nonlinear versions of existing recordings by loading alternate
takes into Choosers. The playback could range from very close to the original (e.g. algorithmically
switching between vocal takes of the same melody) to playing significantly different material
(e.g. branching to play different sections), depending on the decisions made by the creators.

5.2 Programming-related issues
As shown in sec. 3, the Soundable Chooser nose cone slopes down and the Time Chooser nose cone
slopes up – this allows them to be joined together and communicates the required upper/lower order to the
user. Interestingly, some users guessed the combination of Soundable and Time Choosers, suggesting that
the nose cone shapes of the two Chooser types were effective in communicating their combinatorial
usage.

The Chooser system is designed to allow for consistent logic to be applied across Soundable and Time
Choosers where possible. Participants in the user tests successfully reused elements of the Soundable
Chooser system when manipulating duration, but there were some cases where such reuse or re-
contextualisation was not possible. Interestingly, the actions of the users in these cases would have made
sense neither from a musical nor programming perspective, but the rationale behind these requests is
instructive as it shows how users understand the tools in the system. For example, in scenario five (fig. 3)
two participants wanted to use the ‘A’ (always play) mechanism to set infinite playback – they wanted to
override the set duration and had understood ‘A’ to be a global override control. In a similar example, one

user wanted to be able to loop a Time Chooser. If the system were to be changed to allow for a set
number of repeats, rather than an infinite loop, such a move may be desirable.

Users will also require access to metadata – for example, to check the length of a sample loaded into a
soundable lane in a Chooser. Such metadata could be shown via a tooltip, accessed by hovering the
mouse over a lane.

5.3 Shared and existing knowledge
One design motivation is to enable people to understand the system very quickly. The Chooser design
tacitly draws on a number of systems of existing knowledge.

Some users wanted to be able to leverage their existing understanding of DAW software and found it
frustrating that they needed to learn new paradigms for duration, synchronicity, and so on. This is an
example of technological framing (Orlikowski and Gash, 1994). The knowledge gained by using other
music software can be useful, but it can also prove problematic if the design of the software being learned
is sufficiently differentiated. As a result, there is much to be gained by following standard design
conventions where possible, as this maximises the user’s ability to reuse existing knowledge. One
interesting example was seen in scenario 6 (fig. 3), in which one pair of users learned the rules of
Choosers and then wanted to use the same rules elsewhere.

Technological framing, and the expectations set by the use of commercial DAWs, may be an influence on
user requests for a progress bar and the conversations on the desirability of nonlinear vs. linear playback
that took place during the user tests (as considered in sec. 5.1).

5.4 Metaphor
Interface metaphors are very common and can be useful in communicating the roles of the software and
setting realistic expectations when users are familiar with the original interface. However, such metaphors
can become problematic if users are not familiar with the original interface.

Related to technological framing is the assumption, ubiquitous in Digital Audio Workstations, that signal
flow and processing will be applied using a mixing desk metaphor. Such virtual desks often make use of
skeuomorphism (such as the fader caps and rotary potentiometers in Pro Tools), although some other
designs have made graphical changes while retaining the overall layout. As an example, Ardour’s use of a
textured ‘strip’ instead of a fader is still skeuomorphic as it makes use of a ribbon controller metaphor
but, in an attempt to improve mouse control by increasing the size of the target, it does not follow the
traditional desk layout.

Given that DAWs are now capable of performing all mixdown tasks, and the financial cost of consoles
and outboard effects processors can be prohibitive, many users learn in a virtual studio environment rather
than on hardware. Many DAWs were designed to mimic hardware in order to leverage existing
knowledge and ease the transition from hardware to software. However, now most people are introduced
to music production via software, and many do not use hardware, there is an opportunity to revisit some
design assumptions.

Some users felt that the user interface was ‘boring’, lacking the use of colour, metaphor, and
skeuomorphic design common in DAWs. This may be another example of technological framing
(Orlikowski and Gash, 1994). We can also consider the impact of metaphor in music software by making
use of the Cognitive Dimensions of Notations (Green and Petre, 1996). Using this framework, the
closeness of mapping and role expressivity of a mixing desk can be implied by making a software
recreation look and function like hardware.

Some users had difficulty understanding the outcome of hard and soft stops in Choosers. The vast
majority of music production software is focussed on the creation of linear music, and the concept of
‘play until finished’ is rarely implemented. As a result, none of the user test participants had encountered
it, and did not have a frame of reference for why it might be desirable. As a result, there is not a clear

existing metaphor for what we refer to here as a ‘soft’ stop. Users agreed that the × icon represented a
traffic stop sign and that it was a suitable analogy for ‘stop now’, but the > icon used for a soft stop was
not immediately understood as there is no readily accessible metaphor.

5.5 Arithmetic
The use of numbers and arithmetic relationships in an interface can be a valuable organising tool, as they
are more or less universally familiar and can concisely represent many relationships. The decision to use
numbers for several parameters was motivated by parsimony and consistency. However, the use of
numbers for multiple parameters was perceived as negative by three participants. Upon questioning, the
issue was that numbers meant different things in different parts of the interface. The Chooser design
presented to participants in the user tests made use of integers in five different ways: for the number of
simultaneously playing soundable elements, weight, duration, repeats, and Time Chooser on/off. Despite
this, for different reasons, the user issues surrounding the ‘always play’ option led us to consider
extending the range of numerical concepts used in the interface, by allowing the metaphorical use of ∞ as
a weight (to outrank any positive integer weight) as discussed in the next section.

In sec. 6, we propose changes to Chooser design to address these various issues.

6 Design problems and candidate solutions in Choosers
Given the problems for some users with the use of integers for multiple parameters (see sec. 5.5), we
propose the use of a simple on/off icon for the Time Chooser nose cone. Interestingly, one pair of users
suggested this change in the user tests. Scenario five (fig. 3) showed that two users wanted to leverage the
‘always play’ mechanism beyond the weight column, and one user wanted to set the duration of a time
lane to infinity. We propose a change to Choosers which allows for both mechanisms.

We propose a design change which allows the user to allocate a maximum possible weight (∞) for a lane,
thereby guaranteeing that it will play if the nose cone number is high enough to allow all such lanes to
play. When allowing ∞ as a weight, a useful metaphor is to think of lanes with weight ∞ as having paid
for ‘priority boarding’, as when boarding an aircraft. Lanes with weight ∞ will always be chosen before
any lanes with any finite weight. Compared with the ‘always play’ mechanism, this has the potential for
greater clarity when the number of maximally-weighted lanes exceeds the number of the nose cone. In
such cases, under the current ‘always play’ system it is not obvious whether ‘always play’ should override
the nose cone or vice versa. Under the proposed system, the nose cone would determine the number of
lanes to play, and if that was less than the number of lanes with weight ∞, the winners would be chosen
from those lanes at random. We are also considering the use of a maximum value (∞) for the nose cone
of a Soundable Chooser (‘play all available lanes’) and for the duration of a time lane (‘play forever’).

We propose that future work will introduce Time Choosers in the context of a Full Chooser, with the rest
functionality introduced later as a special case. Tutorial materials will provide a clear explanation and will
offer context and examples. The value of all of these proposed changes will be tested empirically.

7 Conclusions
Choosers were developed to allow non-programmers access to algorithmic composition tools and
processes. The design principles were to leverage parsimony in order to enhance learnability; to surface
musically meaningful actions, and to make them quick and easy; to allow both bottom-up and top-down
construction; and to make use of progressive disclosure to allow for advanced use without harming
usability for beginners.

The user tests outlined here show that non-programmers were able to successfully use Choosers to create
a number of short pieces of music. Future work will focus on the refinement and re-evaluation of the
Chooser notation and supporting materials.

References
Apple Inc. (2013) ‘Logic Pro X’, International Computer Music Conference.

Bell, B., Citrin, W. V., Lewis, C. and Rieman, J. (1992) ‘The Programming Walkthrough: A Structured
Method for Assessing the Writability of Programming Languages; CU-CS-577-92’, Computer
Science Technical Reports, vol. Paper 554.

Bell, B., Rieman, J. and Lewis, C. (1991) ‘Usability Testing of a Graphical Programming System: Things
We Missed in a Programming Walkthrough’, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’91, New York, NY, USA, ACM, pp. 7–12.

Bellingham, M., Holland, S. and Mulholland, P. (2014) ‘A Cognitive Dimensions analysis of interaction
design for algorithmic composition software’, Boulay, B. du and Good, J. (eds), Proceedings of
Psychology of Programming Interest Group Annual Conference 2014, University of Sussex, pp.
135–140.

Bellingham, M., Holland, S. and Mulholland, P. (2017) ‘Choosers: designing a highly expressive
algorithmic music composition system for non-programmers’, 2nd Conference on Computer
Simulation of Musical Creativity.

Bullock, J., Beattie, D. and Turner, J. (2011) ‘Integra Live: a new graphical user interface for live
electronic music’, International Conference on New Interfaces for Musical Expression.

Collins, K. (2008) Game Sound: An Introduction to the History, Theory, and Practice of Video Game
Music and Sound Design, Cambridge, MA, MIT Press.

Green, T. R. and Petre, M. (1996) ‘Usability Analysis of Visual Programming Environments: a ’cognitive
dimensions’ framework’, Journal of Visual Languages and Computing, vol. 7, pp. 131–174.

Jacob, B. L. (1996) ‘Algorithmic Composition as a model of creativity’, Organised Sound, Cambridge
University Press, vol. 1, no. 3, pp. 157–165.

McCartney, J. (2002) ‘Rethinking the Computer Music Language: SuperCollider’, Computer Music
Journal, vol. 26, no. 4, pp. 61–68.

Orlikowski, W. J. and Gash, D. C. (1994) ‘Technological Frames: Making Sense of Information
Technology in Organizations’, ACM Transactions on Information and System Security, New
York, NY, USA, ACM, vol. 12, no. 2, pp. 174–207.

Potter, K. (2002) Four Musical Minimalists: La Monte Young, Terry Riley, Steve Reich, Philip Glass,
Cambridge University Press, vol. 11.

Puckette, M. (1991) ‘Combining Event and Signal Processing in the MAX Graphical Programming
Environment’, Computer Music Journal, The MIT Press, vol. 15, no. 3, pp. 68–77.

Puckette, M. (1997) ‘Pure Data’, ICMC.

Scherzinger, M. (2005) ‘Curious Intersections, Uncommon Magic: Steve Reich’s It’s Gonna Rain’,
Current musicology, vol. 79, pp. 207–244.

Wilson, S., Cottle, D. and Collins, N. (2011) The SuperCollider Book, MIT Press.

