25,137 research outputs found

    Individual differences in causal learning and decision making

    Get PDF
    This is an accepted author manuscript of an article subsequently published by Elsevier. The final published version can be found here: http://dx.doi.org/10.1016/j.actpsy.2005.04.003In judgment and decision making tasks, people tend to neglect the overall frequency of base-rates when they estimate the probability of an event; this is known as the base-rate fallacy. In causal learning, despite people s accuracy at judging causal strength according to one or other normative model (i.e., Power PC, DP), they tend to misperceive base-rate information (e.g., the cause density effect). The present study investigates the relationship between causal learning and decision making by asking whether people weight base-rate information in the same way when estimating causal strength and when making judgments or inferences about the likelihood of an event. The results suggest that people differ according to the weight they place on base-rate information, but the way individuals do this is consistent across causal and decision making tasks. We interpret the results as reflecting a tendency to differentially weight base-rate information which generalizes to a variety of tasks. Additionally, this study provides evidence that causal learning and decision making share some component processes

    The influence of patient's age on clinical decision-making about coronary heart disease in the USA and the UK

    Get PDF
    This paper examines UK and US primary care doctors' decision-making about older (aged 75 years) and midlife (aged 55 years) patients presenting with coronary heart disease (CHD). Using an analytic approach based on conceptualising clinical decision-making as a classification process, it explores the ways in which doctors' cognitive processes contribute to ageism in health-care at three key decision points during consultations. In each country, 56 randomly selected doctors were shown videotaped vignettes of actors portraying patients with CHD. The patients' ages (55 or 75 years), gender, ethnicity and social class were varied systematically. During the interviews, doctors gave free-recall accounts of their decision-making. The results do not establish that there was substantial ageism in the doctors' decisions, but rather suggest that diagnostic processes pay insufficient attention to the significance of older patients' age and its association with the likelihood of co-morbidity and atypical disease presentations. The doctors also demonstrated more limited use of ‘knowledge structures’ when diagnosing older than midlife patients. With respect to interventions, differences in the national health-care systems rather than patients' age accounted for the differences in doctors' decisions. US doctors were significantly more concerned about the potential for adverse outcomes if important diagnoses were untreated, while UK general practitioners cited greater difficulty in accessing diagnostic tests

    Supporting mediated peer-evaluation to grade answers to open-ended questions

    Get PDF
    We show an approach to semi-automatic grading of answers given by students to open ended questions (open answers). We use both peer-evaluation and teacher evaluation. A learner is modeled by her Knowledge and her assessments quality (Judgment). The data generated by the peer- and teacher- evaluations, and by the learner models is represented by a Bayesian Network, in which the grades of the answers, and the elements of the learner models, are variables, with values in a probability distribution. The initial state of the network is determined by the peer-assessment data. Then, each teacher’s grading of an answer triggers evidence propagation in the network. The framework is implemented in a web-based system. We present also an experimental activity, set to verify the effectiveness of the approach, in terms of correctness of system grading, amount of required teacher's work, and correlation of system outputs with teacher’s grades and student’s final exam grade

    Modeling Infection with Multi-agent Dynamics

    Get PDF
    Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited understanding of how infections spread within a small population because it has been difficult to closely track an infection within a complete community. The paper presents data closely tracking the spread of an infection centered on a student dormitory, collected by leveraging the residents' use of cellular phones. The data are based on daily symptom surveys taken over a period of four months and proximity tracking through cellular phones. We demonstrate that using a Bayesian, discrete-time multi-agent model of infection to model real-world symptom reports and proximity tracking records gives us important insights about infec-tions in small populations
    corecore