692 research outputs found

    Percolation and cooperation with mobile agents: Geometric and strategy clusters

    Get PDF
    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius rP, which accounts for the population viscosity, and an interaction radius rint, which defines the instantaneous contact network for the game dynamics. We show that, differently from the rP=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size

    Cooperative Agent Systems: Artificial Agents Play the Ultimatum Game

    Get PDF
    We explore computational approaches for artificial agents to play the ultimatum game. We compare our agents\u27 behavior with that predicted by classical game theory, as well as behavior found in experimental (or behavioral) economics investigations. In particular, we study the following questions: How do artificial agents perform in playing the ultimatum game against fixed rules, dynamic rules, and rotating rules? How do coevolving artificial agents perform? Will learning software agents do better? What is the value of intelligence? What will happen when smart learning agents play against dumb (no-learning) agents? What will be the impact of agent memory size on performance? This exploratory study provides experimental results pertaining to these questions

    Data-Driven Equations for Coevolving Network Systems

    Get PDF
    The framework of coevolving networks is a tool to model large-scale interacting dynamical systems undergoing change in connective structure, describing phenomena such as epidemic spreading on social networks with individuals changing their connections to avoid infection. Along with direct computational simulation, coevolving network systems are often formulated in terms of systems of ordinary differential equations in their descriptive statistics. The equation approach reduces the computational burden of analyzing the systems, but deriving equations becomes difficult as the underlying model becomes more complicated and as the desire for accuracy increases. We present an approach to construct equations for coevolving network systems automatically, using data from computational simulations and a formulation of sparse model identification. Using this approach we construct a data-driven system of equations for a coevolving SIS model that reproduces system behavior in both temporal evolution and dependence of steady states on system parameters

    Evolutionary Dynamics of Predator-Prey Systems: An Ecological Perspective

    Get PDF
    Evolution takes place in an evolutionary setting that typically involves interactions with other organisms. To describe such evolution, a structure is needed which incorporates the simultaneous evolution of interacting species. Here a formal framework for this purpose is suggested, extending from the microscopic interactions between individuals- the immediate cause of natural selection, through the mesoscopic population dynamics responsible for driving the replacement of one mutant phenotype by another, to the macroscopic process of phenotypic evolution arising from many such substitutions. The process of coevolution that results from this is illustrated in the predator-prey systems. With no more than qualitative information about the evolutionary dynamics, some basic properties of predator-prey coevolution become evident. More detailed understanding requires specification of an evolutionary dynamic; two models for this purpose are outlined, one from our own research on a stochastic process of mutation and selection and the other from quantitative genetics. Much of the interest in coevolution has been to characterize the properties of fixed points at which there is no further phenotypic evolution. Stability analysis of the fixed points of evolutionary dynamical systems is reviewed and leads to conclusions about the asymptotic states of evolution rather than different from those of game-theoretic methods. These differences become especially important when evolution involves more than one species

    Evolutionary dynamics of predator-prey systems: an ecological perspective

    Get PDF

    Computability and Evolutionary Complexity: Markets As Complex Adaptive Systems (CAS)

    Get PDF
    The purpose of this Feature is to critically examine and to contribute to the burgeoning multi disciplinary literature on markets as complex adaptive systems (CAS). Three economists, Robert Axtell, Steven Durlauf and Arthur Robson who have distinguished themselves as pioneers in different aspects of how the thesis of evolutionary complexity pertains to market environments have contributed to this special issue. Axtell is concerned about the procedural aspects of attaining market equilibria in a decentralized setting and argues that principles on the complexity of feasible computation should rule in or out widely held models such as the Walrasian one. Robson puts forward the hypothesis called the Red Queen principle, well known from evolutionary biology, as a possible explanation for the evolution of complexity itself. Durlauf examines some of the claims that have been made in the name of complex systems theory to see whether these present testable hypothesis for economic models. My overview aims to use the wider literature on complex systems to provide a conceptual framework within which to discuss the issues raised for Economics in the above contributions and elsewhere. In particular, some assessment will be made on the extent to which modern complex systems theory and its application to markets as CAS constitutes a paradigm shift from more mainstream economic analysis

    Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

    Full text link
    Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/

    Grid coevolution for adaptive simulations; application to the building of opening books in the game of Go

    Get PDF
    International audienceThis paper presents a successful application of parallel (grid) coevolution applied to the building of an opening book (OB) in 9x9 Go. Known sayings around the game of Go are refound by the algorithm, and the resulting program was also able to credibly comment openings in professional games of 9x9 Go. Interestingly, beyond the application to the game of Go, our algorithm can be seen as a ”meta”-level for the UCT-algorithm: ”UCT applied to UCT” (instead of ”UCT applied to a random player” as usual), in order to build an OB. It is generic and could be applied as well for analyzing a given situation of a Markov Decision Process

    Computational Molecular Coevolution

    Get PDF
    A major goal in computational biochemistry is to obtain three-dimensional structure information from protein sequence. Coevolution represents a biological mechanism through which structural information can be obtained from a family of protein sequences. Evolutionary relationships within a family of protein sequences are revealed through sequence alignment. Statistical analyses of these sequence alignments reveals positions in the protein family that covary, and thus appear to be dependent on one another throughout the evolution of the protein family. These covarying positions are inferred to be coevolving via one of two biological mechanisms, both of which imply that coevolution is facilitated by inter-residue contact. Thus, high-quality multiple sequence alignments and robust coevolution-inferring statistics can produce structural information from sequence alone. This work characterizes the relationship between coevolution statistics and sequence alignments and highlights the implicit assumptions and caveats associated with coevolutionary inference. An investigation of sequence alignment quality and coevolutionary-inference methods revealed that such methods are very sensitive to the systematic misalignments discovered in public databases. However, repairing the misalignments in such alignments restores the predictive power of coevolution statistics. To overcome the sensitivity to misalignments, two novel coevolution-inferring statistics were developed that show increased contact prediction accuracy, especially in alignments that contain misalignments. These new statistics were developed into a suite of coevolution tools, the MIpToolset. Because systematic misalignments produce a distinctive pattern when analyzed by coevolution-inferring statistics, a new method for detecting systematic misalignments was created to exploit this phenomenon. This new method called ``local covariation\u27\u27 was used to analyze publicly-available multiple sequence alignment databases. Local covariation detected putative misalignments in a database designed to benchmark sequence alignment software accuracy. Local covariation was incorporated into a new software tool, LoCo, which displays regions of potential misalignment during alignment editing assists in their correction. This work represents advances in multiple sequence alignment creation and coevolutionary inference
    • …
    corecore