5,791 research outputs found

    Evolutionary rates and gene dispensability associate with replication timing in the Archaeon Sulfolobus islandicus

    Get PDF
    In bacterial chromosomes, the position of a gene relative to the single origin of replication generally reflects its replication timing, how often it is expressed, and consequently, its rate of evolution. However, because some archaeal genomes contain multiple origins of replication, bias in gene dosage caused by delayed replication should be minimized and hence the substitution rate of genes should associate less with chromosome position. To test this hypothesis, six archaeal genomes from the genus Sulfolobus containing three origins of replication were selected, conserved orthologs were identified, and the evolutionary rates (dN and dS) of these orthologs were quantified. Ortholog families were grouped by their consensus position and designated by their proximity to one of the three origins (O1, O2, O3). Conserved orthologs were concentrated near the origins and most variation in genome content occurred distant from the origins. Linear regressions of both synonymous and nonsynonymous substitution rates on distance from replication origins were significantly positive, the rates being greatest in the region furthest from any of the origins and slowest among genes near the origins. Genes near O1 also evolved faster than those near O2 and O3, which suggest that this origin may fire later in the cell cycle. Increased evolutionary rates and gene dispensability are strongly associated with reduced gene expression caused in part by reduced gene dosage during the cell cycle. Therefore, in this genus of Archaea as well as in many Bacteria, evolutionary rates and variation in genome content associate with replication timing

    Accelerated Evolution of the ASPM Gene Controlling Brain Size Begins Prior to Human Brain Expansion

    Get PDF
    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size

    GISMO—gene identification using a support vector machine for ORF classification

    Get PDF
    We present the novel prokaryotic gene finder GISMO, which combines searches for protein family domains with composition-based classification based on a support vector machine. GISMO is highly accurate; exhibiting high sensitivity and specificity in gene identification. We found that it performs well for complete prokaryotic chromosomes, irrespective of their GC content, and also for plasmids as short as 10 kb, short genes and for genes with atypical sequence composition. Using GISMO, we found several thousand new predictions for the published genomes that are supported by extrinsic evidence, which strongly suggest that these are very likely biologically active genes. The source code for GISMO is freely available under the GPL license

    Insights into a dinoflagellate genome through expressed sequence tag analysis

    Get PDF
    BACKGROUND: Dinoflagellates are important marine primary producers and grazers and cause toxic "red tides". These taxa are characterized by many unique features such as immense genomes, the absence of nucleosomes, and photosynthetic organelles (plastids) that have been gained and lost multiple times. We generated EST sequences from non-normalized and normalized cDNA libraries from a culture of the toxic species Alexandrium tamarense to elucidate dinoflagellate evolution. Previous analyses of these data have clarified plastid origin and here we study the gene content, annotate the ESTs, and analyze the genes that are putatively involved in DNA packaging. RESULTS: Approximately 20% of the 6,723 unique (11,171 total 3'-reads) ESTs data could be annotated using Blast searches against GenBank. Several putative dinoflagellate-specific mRNAs were identified, including one novel plastid protein. Dinoflagellate genes, similar to other eukaryotes, have a high GC-content that is reflected in the amino acid codon usage. Highly represented transcripts include histone-like (HLP) and luciferin binding proteins and several genes occur in families that encode nearly identical proteins. We also identified rare transcripts encoding a predicted protein highly similar to histone H2A.X. We speculate this histone may be retained for its role in DNA double-strand break repair. CONCLUSION: This is the most extensive collection to date of ESTs from a toxic dinoflagellate. These data will be instrumental to future research to understand the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production

    Long-Range Periodic Patterns in Microbial Genomes Indicate Significant Multi-Scale Chromosomal Organization

    Get PDF
    Genome organization can be studied through analysis of chromosome position-dependent patterns in sequence-derived parameters. A comprehensive analysis of such patterns in prokaryotic sequences and genome-scale functional data has yet to be performed. We detected spatial patterns in sequence-derived parameters for 163 chromosomes occurring in 135 bacterial and 16 archaeal organisms using wavelet analysis. Pattern strength was found to correlate with organism-specific features such as genome size, overall GC content, and the occurrence of known motility and chromosomal binding proteins. Given additional functional data for Escherichia coli, we found significant correlations among chromosome position dependent patterns in numerous properties, some of which are consistent with previously experimentally identified chromosome macrodomains. These results demonstrate that the large-scale organization of most sequenced genomes is significantly nonrandom, and, moreover, that this organization is likely linked to genome size, nucleotide composition, and information transfer processes. Constraints on genome evolution and design are thus not solely dependent upon information content, but also upon an intricate multi-parameter, multi-length-scale organization of the chromosome

    A Quantitative Approach to Investigating the Hypothesis of Prokaryotic Intron Loss

    Get PDF
    Using a novel method, we show that ordered triplets of motifs usually associated with spliceosomal intron recognition are underrepresented in the protein coding sequence of complete Thermotogae, archaeal and bacterial genomes. The underrepresentation observed does not extend to the noncoding strand, suggesting that the cause of the asymmetry is related to mRNA rather than DNA. Our data do not suggest that the underrepresentation is due to gene transfer from eukaryotes. We speculate that one possible explanation for these observations is that the protein coding sequence of Thermotogae, Archaea and Bacteria was at some time in the past subjected to selection against certain motifs appearing in an order which might initiate splicing in environments harboring a functional spliceosome. This is consistent with, but certainly does not prove, a hypothetical scenario in which at least some prokaryote lineages once possessed a functional spliceosome. Thus, we present a new quantitative method, observations obtained using the method, and a speculative discussion of a possible explanation of the observations

    Exploring multipartite genomes using pangenome analysis

    Get PDF
    Bacteria are small single-celled organisms that are found in nearly every habitat on Earth. While bacterial genomes usually consist of one large circular replicon, about 10% of bacteria have organized their genes onto several large replicons. These multipartite bacteria are often found in symbiotic or pathogenic relationships with other higher organisms and are believed to have greater ability to adapt to new niches and to changing environments. However, much remains unknown about multipartite bacteria. In this study we aimed to gain a better understanding of why some bacteria have organized their genes on several large replicons. To do so, Vibrionacaeae and Pseudoalteromonas, which both consist of two large replicons, were used as model systems. In Paper 1, pangenome analysis and transcriptomic data of Vibrionaceae revealed a highly organized distribution pattern of different gene types on the chromosome, and a strong correlation between gene expression and distance to the origin of replication. In Paper 2, Pseudoalteromonas showed a similar distribution pattern and correlation with gene expression on the chromosome as in Vibrionaceae. In Paper 3, pangenome analysis showed that Vibrio and Pseudoalteromonas have a larger repertoire of genes than genomes with one chromosome. Furthermore, horizontally transferred genes are inserted into specific regions on the replicons. In Paper 4, seven new complete genomes of Vibrio anguillarum genomes were presented. Overall, results from these studies have increased our understanding of how multipartite genomes are organized with respect to their genes, how they are expressed and where newly acquired genes are retained on the replicons

    Strand-specific Composition Bias in Bacterial Genomes

    Get PDF

    Characterization of Toxoplasma gondii subtelomeric-like regions: identification of a long-range compositional bias that is also associated with gene-poor regions

    Get PDF
    Background Chromosome ends are composed of telomeric repeats and subtelomeric regions, which are patchworks of genes interspersed with repeated elements. Although chromosome ends display similar arrangements in different species, their sequences are highly divergent. In addition, these regions display a particular nucleosomal composition and bind specific factors, therefore producing a special kind of heterochromatin. Using data from currently available draft genomes we have characterized these putative Telomeric Associated Sequences in Toxoplasma gondii. Results An all-vs-all pairwise comparison of T. gondii assembled chromosomes revealed the presence of conserved regions of ∌ 30 Kb located near the ends of 9 of the 14 chromosomes of the genome of the ME49 strain. Sequence similarity among these regions is ∌ 70%, and they are also highly conserved in the GT1 and VEG strains. However, they are unique to Toxoplasma with no detectable similarity in other Apicomplexan parasites. The internal structure of these sequences consists of 3 repetitive regions separated by high-complexity sequences without annotated genes, except for a gene from the Toxoplasma Specific Family. ChIP-qPCR experiments showed that nucleosomes associated to these sequences are enriched in histone H4 monomethylated at K20 (H4K20me1), and the histone variant H2A.X, suggesting that they are silenced sequences (heterochromatin). A detailed characterization of the base composition of these sequences, led us to identify a strong long-range compositional bias, which was similar to that observed in other genomic silenced fragments such as those containing centromeric sequences, and was negatively correlated to gene density. Conclusions We identified and characterized a region present in most Toxoplasma assembled chromosomes. Based on their location, sequence features, and nucleosomal markers we propose that these might be part of subtelomeric regions of T. gondii. The identified regions display a unique trinucleotide compositional bias, which is shared (despite the lack of any detectable sequence similarity) with other silenced sequences, such as those making up the chromosome centromeres. We also identified other genomic regions with this compositional bias (but no detectable sequence similarity) that might be functionally similar.Fil: Dalmasso, Maria Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Carmona, Santiago Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Ángel, Sergio Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: AgĂŒero, Fernan Gonzalo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; Argentin
    • 

    corecore