653 research outputs found

    Development of a Real-time Ultra-wideband See Through Wall Imaging Radar System

    Get PDF
    Ultra-Wideband (UWB) See-Through-Wall (STW) technology has emerged as a musthave enabling technology by both the military and commercial sectors. As a pioneer in this area, we have led the research in addressing many of the fundamental STW questions. This dissertation is to investigate and resolve a few hurdles in advancing this technology, and produce a realizable high performance STW platform system, which will aid the STW community to find the ultimate answer through experimental and theoretical work. The architectures of a realizable STW imaging system are thoroughly examined and studied. We present both a conceptual system based on RF instruments and a standalone real-time system based on custom design, which utilize reconfigurable design architecture and allows scaling down/up to a desired UWB operating frequency with little difficulty. The systems will serve as a high performance platform for STW study and other related UWB applications. Along the way to a complete STW system, we have developed a simplified transmission line model for wall characteristic prediction; we have developed a scalable synthetic aperture array including both the RF part and the switch control/synchronization part; we have proposed a cost-effective and efficient UWB data acquisition method for real-time STW application based on equivalent-time sampling method. The measurement results reported here include static image formation and tracking moveable targets behind the wall. Even though digital signal processing to generate radar images is not the focus of this research, simple methods for image formation have been implemented and results are very encouraging

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    Tunable Sub-Nanosecond Ultra Wideband Narrow Pulse Generator For Microwave Imaging

    Get PDF
    In recent years, the Ultra Wideband (UWB) technology-based systems exhibited higher performance metrics over narrow band communication systems. The UWB microwave imaging is an emerging application in the biomedical, object detection, and ranging fields. The Narrowband Pulse Generator (NPG) is an essential element of any UWB imaging system and its characteristics partially determine the overall performance of the system. Numerous NPG designs have been developed for specific types of applications and most of them designed for CMOS technology integration. Additionally, they lack the flexibility of user pulse width tuning. In this research, the main contribution is the design of a low-cost sub-nanosecond NPG with many features like tunable pulse duration and to generate a pulse shape with ultrafast rise and fall times that could enhance the quality of UWB microwave images. The design aims to reduce the NPG cost with the use of off-the-shelf components. The very low pulse transition times led to higher BW values in the frequency spectrum and would presage to enhance the quality of images been reconstructed from UWB radar imaging systems. The shortest pulse provided by the proposed NPG is about 820 ps with a fall time of about 64 ps and a pulse level of 200 mV (single-ended). The aforementioned pulse data has been simulated in a locally developed image reconstruction algorithm (EDAS) to detect hypothetical objects and the resultant images show significant quality enhancement in comparison to a Gaussian pulse (or its derivative) with an equivalent duration. Image entropy values have been reduced from 248 to 51. This simulation validated the concept of trapezoidal pulse (or its derivative) influence on image resolution. For a further validation, an experimental UWB imaging system has been configured with a circular array of antennas to detect and locate different targets made of selected materials. The proposed NPG pulses have been applied, after amplification, to the above system. The reconstructed images compared to those obtained from other pulse sources like the VNA and PPG. The images generated from the proposed NPG show better quality in most cases. Compared to VNA images, image entropy values dropped from 63.66 to 43.23 for clay rod, and from 143.77 to 46.50 for an Aluminum rod. The promising results of the proposed NPG can hopefully be applied as a useful tool to obtain higher resolution images and better target detection accuracy in many industrial applications

    Ultra Wideband Preliminaries

    Get PDF
    Non

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Advanced ultrawideband imaging algorithms for breast cancer detection

    Get PDF
    Ultrawideband (UWB) technology has received considerable attention in recent years as it is regarded to be able to revolutionise a wide range of applications. UWB imaging for breast cancer detection is particularly promising due to its appealing capabilities and advantages over existing techniques, which can serve as an early-stage screening tool, thereby saving millions of lives. Although a lot of progress has been made, several challenges still need to be overcome before it can be applied in practice. These challenges include accurate signal propagation modelling and breast phantom construction, artefact resistant imaging algorithms in realistic breast models, and low-complexity implementations. Under this context, novel solutions are proposed in this thesis to address these key bottlenecks. The thesis first proposes a versatile electromagnetic computational engine (VECE) for simulating the interaction between UWB signals and breast tissues. VECE provides the first implementation of its kind combining auxiliary differential equations (ADE) and convolutional perfectly matched layer (CPML) for describing Debye dispersive medium, and truncating computational domain, respectively. High accuracy and improved computational and memory storage efficiency are offered by VECE, which are validated via extensive analysis and simulations. VECE integrates the state-of-the-art realistic breast phantoms, enabling the modelling of signal propagation and evaluation of imaging algorithms. To mitigate the severe interference of artefacts in UWB breast cancer imaging, a robust and artefact resistant (RAR) algorithm based on neighbourhood pairwise correlation is proposed. RAR is fully investigated and evaluated in a variety of scenarios, and compared with four well-known algorithms. It has been shown to achieve improved tumour detection and robust artefact resistance over its counterparts in most cases, while maintaining high computational efficiency. Simulated tumours in both homogeneous and heterogeneous breast phantoms with mild to moderate densities, combined with an entropy-based artefact removal algorithm, are successfully identified and localised. To further improve the performance of algorithms, diverse and dynamic correlation weighting factors are investigated. Two new algorithms, local coherence exploration (LCE) and dynamic neighbourhood pairwise correlation (DNPC), are presented, which offer improved clutter suppression and image resolution. Moreover, a multiple spatial diversity (MSD) algorithm, which explores and exploits the richness of signals among different transmitter and receiver pairs, is proposed. It is shown to achieve enhanced tumour detection even in severely dense breasts. Finally, two accelerated image reconstruction mechanisms referred to as redundancy elimination (RE) and annulus predication (AP) are proposed. RE removes a huge number of repetitive operations, whereas AP employs a novel annulus prediction to calculate millions of time delays in a highly efficient batch mode. Their efficacy is demonstrated by extensive analysis and simulations. Compared with the non-accelerated method, RE increases the computation speed by two-fold without any performance loss, whereas AP can be 45 times faster with negligible performance degradation

    A Study of Integrated UWB Antennas Optimised for Time Domain Performance

    Get PDF
    Antennas for impulse radio ultra-wideband based portable devices are required to be compact and able to transmit or receive waveforms with minimal distortion in order to support proximity ranging with a centimetre-scale precision. The first part of thesis characterises several pulse types for use in the generation of picosecond-scale signals in respect to the regulatory power and frequency standards while the principles of antenna transient transmission and reception are stated. The proximity effect of planar conductors on the performance of an ultra-wideband antenna is investigated in both spectral and temporal domain demonstrating the relationship between the antenna-reflector separation and the antenna performance. Balanced and unbalanced antennas are also investigated for integration into asset-tracking tag applications and are designed to operate in close proximity to PCB boards while meeting realistic dimensional constraints and acceptable time domain performances. Monopole antenna designs are reported with performances optimized for minimum pulse dispersion. Minimization of pulse dispersion effects in the antenna designs is achieved using pulses with optimal spectral fit to the UWB emission mask. The generation of these waveforms are reported for the first time. An antenna de-embedding method is reported enabling validation of the simulated fidelity factor of radiated patterns. Novel differentially-fed planar dipole and slot antennas are reported for direct IC output integration. Design objectives and optimisation are focused on bandwidth enhancement and pulse dispersion minimisation. Finally, time- and frequency-domain measurements are carried out using an approach based on the superposition principle

    Analysis of wideband phased array beamforming at millimeter wave frequencies

    Get PDF
    Abstract. Industries are undergoing an information and communication technology-driven transformation as the world becomes increasingly digitally and globally linked. 5G technology provides a common basis for providing the multiple vertical sectors with a more cost-effective, open, and wide ecosystem solutions. Due to the generally large attainable bandwidths, high frequency technologies have emerged as a promising solution for future wireless communications and attracted great interest in the literature. The millimeter wave (mmWave), i.e., the frequency range 30–300 GHz, would enable the exploitation of tens of gigahertz transmission bands, resulting in a massive channel capacities of even over one Tbps. However, one of the most challenging issues in high-frequency communication connections is the significant channel losses that require highly directional antennas and, in most cases, line-of-sight link between the transmitter and receiver. In this thesis, we study the beamforming design for wideband systems with different bandwidths. The simulation results show that with a larger bandwidth, the power loss increases with the beamforming angle. The loss of power behavior due to beam squinting effect is quite similar over different distances
    corecore