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ABSTRACT 

 

ntennas for impulse radio ultra-wideband based portable devices are required 

to be compact and able to transmit or receive waveforms with minimal 

distortion in order to support proximity ranging with a centimetre-scale precision. 

 The first part of thesis characterises several pulse types for use in the generation of 

picosecond-scale signals in respect to the regulatory power and frequency standards 

while the principles of antenna transient transmission and reception are stated. The 

proximity effect of planar conductors on the performance of an ultra-wideband antenna 

is investigated in both spectral and temporal domain demonstrating the relationship 

between the antenna-reflector separation and the antenna performance. Balanced and 

unbalanced antennas are also investigated for integration into asset-tracking tag 

applications and are designed to operate in close proximity to PCB boards while 

meeting realistic dimensional constraints and acceptable time domain performances.  

Monopole antenna designs are reported with performances optimized for minimum 

pulse dispersion. Minimization of pulse dispersion effects in the antenna designs is 

achieved using pulses with optimal spectral fit to the UWB emission mask. The 

generation of these waveforms are reported for the first time. An antenna de-

embedding method is reported enabling validation of the simulated fidelity factor of 

radiated patterns. Novel differentially-fed planar dipole and slot antennas are reported 

for direct IC output integration. Design objectives and optimisation are focused on 

bandwidth enhancement and pulse dispersion minimisation. Finally, time- and 

frequency-domain measurements are carried out using an approach based on the 

superposition principle.  
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CHAPTER 1: INTRODUCTION 
 

n the mid 1800’s, James Clerk Maxwell expressed electromagnetism in the form 

of 20 equations, unifying the classic laws of the discipline [1]. In 1881, Oliver 

Heaviside reduced the complexity of Maxwell’s theory by reformulating 12 of the 20 

Maxwell equations using the curl and divergence operators. From this simplification, 

he ended up with four differential equations known now as the “Maxwell’s 

equations” [2]. In 1897, Guglielmo Marconi sent the first ever wireless 

communication over open sea using spark-gap transmitters and in 1901, performed 

the first transatlantic communication from Poldhu, England to St. John’s, 

Newfoundland using an array of 50 wires connected to the ground for transmission 

while using a 200 meters kite supported antenna for the reception [3]. Because of the 

spark-gap transmitter, the signal used by Marconi was inherently wideband. Since 

then the evolution of radio technology has greatly increased. For the following 3 

decades, radio technology advancements mainly focussed on transmission of 

information using narrow bandwidth, due to the frequency congestion in the 

electromagnetic spectrum. However in the late 60’s, researchers started to study 

Ultra Wide Band (UWB) technology. Between 1977 and 1989 the United State Air 

Force (USAF) had a program on the UWB system [4], and in the meantime some 

universities were focused on the interaction of short pulses with matter. In 1994 T.E. 

McEwan invented the Micropower Impulse Radar (MIR) which proves to be the first 

compact, inexpensive and low power radar, which consumes only microwatts from 

batteries [5]. 

I 
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In 2002, the Federal Communication Commission (FCC) allocated the 3.1 GHz 

to 10.6 GHz for UWB unlicensed use and a standardisation body known as the 

IEEE 802.15.3a working group was established to write the specification for the 

high-data-rate Personal Area Network (PAN) [6]. At the beginning, two different 

schemes were investigated, the Direct Sequence Code Division Multiple Access 

(DS-CDMA), and the Multi-Band Orthogonal Frequency Division Multiplexing 

(MB-OFDM). DS-CDMA is realised by spreading the spectrum of the transmitting 

signal by multiplying the latter with a signal that has a very large bandwidth. 

Consequently the Power Spectrum Density (PSD) of the transmitted signal is 

significantly lowered, limiting interferences with other radio systems. The UWB 

MB-OFDM scheme uses 14 subcarriers having 528 MHz of bandwidth each and 

divided into 6 groups as shown on Figure 1-1. The OFDM symbols can hop across 

subcarriers in each band group, but cannot hop between groups [7]. This provides 

greater flexibility to accommodate different existing regulations. 

 
Figure 1-1: MB-OFDM spectrum allocation for UWB radio 

 Nevertheless the IEEE 802.15.3a task group ended up in deadlock and failed to 

consolidate the two approaches. However, it had setup the basis for the WiMedia 

Alliance which consists of a consortium of major electronics manufacturers.  

Because of their very wide bandwidth, UWB signals have a high temporal 

resolution (typically less than 1ns), making this technology particularly suitable for 

Wireless Sensor Network (WSN) and Real Time Location System (RTLS). 
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However, these systems typically use low-data rate links. In March 2004, the 

IEEE 802.15.4a task group was officially created, and has been focusing on the 

standardisation of UWB radio for low-rate systems. This group chose to use two 

approaches for the physical layer, the Direct Sequence UWB (DS-UWB) and the 

Chirp Spread Spectrum (CSS) [8].  

 

1.1. UWB Regulation 

In May 2002, The FCC allocated a 7.5 GHz band ranging from 3.1 GHz to 

10.6 GHz in the U.S.A. It limited the maximum Equivalent Isotropic Radiated Power 

(EIRP) for UWB radio to –41.3 dBm/MHz (74 nW/MHz) and specifies that a UWB 

signal must have, at any point in time, a fractional bandwidth equal to or greater than 

20% or to have a 500 MHz bandwidth regardless of the fractional bandwidth [9]. 

The fractional bandwidth is given in Equation (1.1) where flow and fhigh represents the 

lower and upper limit of the signal spectrum. 

          
          

          
 (1.1) 

In February 2007, the European Communication Commission (ECC) released 

their decision for the use of UWB technology in Europe [10]. The organisations 

involved in regulations and standards are defined as follows. The European 

Radiocommunications Office (ERO) is the facilitator for the European Technical 

Standards Institute (ETSI) and for the European Conference of Postal and 

Telecommunications Administration (CEPT). ETSI deals with technical standards 

and electromagnetic compatibility issues while the CEPT is in charge of the UWB 

sharing and compatibility studies. Both of these organisations are conservative 

resulting in a more restrictive UWB spectrum mask. The ECC specifies that the 
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3.1 GHz to 4.8 GHz band could be used provided that mitigation techniques such 

Low Duty Cycle (LDC) and Detect And Avoid (DAA) are implemented.  

In Asia the two most advanced UWB regulations are in Japan and Singapore. 

The Japanese UWB spectrum mask for indoor devices proposed by the Ministry of 

Internal affairs and Communications (MIC) has two bands [11]. The first band 

(3.4 GHz to 4.8 GHz) can be accessed if the DAA mitigation technique is 

implemented. Regarding Singapore, in early 2003, the agency in charge of the 

communication regulation, named Infocom Development Authority (IDA) created a 

UWB friendly Zone. Inside, researchers and companies can research, develop and 

test future UWB devices, using a frequency range starting at 2.2 GHz and finishing 

at 10.6 GHz with a maximum EIRP of –35 dBm/MHz (0.316 µW/MHz). A summary 

of the UWB mask for the different regulatory bodies is shown in Figure 1-2 while 

the UWB mask with mitigation techniques is shown in Figure 1-3. 

 
Figure 1-2: UWB EIRP mask of the different regulation bodies 
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Figure 1-3: ECC and MIC UWB EIRP mask for devices using mitigation 

techniques 

 

1.2. Motivation and Research Objectives 

In any radio system the antenna is a crucial component because it is responsible 

for converting electrical currents to/from electromagnetic energy.  For a UWB 

system the antennas need to maintain a broad matched return loss and a stable 

radiation pattern across an extremely wide bandwidth. For Impulse Radio UWB (IR-

UWB) systems, the antenna should also transmit or receive a signal without adding 

distortion. To achieve this, the gain, group delay and the phase response should be 

linear across the entire frequency range. Any sharp variation in these parameters will 

impair the radiated or received signal. Also, IR-UWB antennas are most likely to be 

integrated into portable communication devices, such as laptops, tablet PCs, mobile 

phones and real time location and positioning systems (asset tag tracking and Radio 

Frequency Identification (RFID)). Consequently IR-UWB antennas should be low 

cost and low-profile while maintaining good performance, both in frequency- and 

temporal domain, when operating in an enclosure. Planar monopoles, dipoles and 
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slot antennas fulfil these requirements and hence are good candidates offering 

flexibility for different case scenarios. 

1.2.1. Motivation for Bézier Spline Based Printed Antenna 

The length of conventional antennas is proportional to the wavelength. For 

example, the length of thin cylindrical monopoles and dipoles is approximately a 

quarter and half of the free space wavelength respectively. In general the higher the 

frequency, the smaller the wavelength hence the smaller the antenna length [12].  

UWB antennas are likely to find applications in portable devices. For the vast 

majority of portable device manufacturers, the electronic components are contained 

in the device’s packaging, including the antennas. Nowadays, antennas can be easily 

printed on the same laminate as electronic components offering a saving in 

manufacturing costs. Furthermore, printed antennas exhibit broad bandwidth [13]. In 

the literature, most of the UWB antennas have been reported using canonical 

geometries [14] [15] [16].  However, for miniaturised antenna, Balanis has shown 

that the bandwidth of planar antennas (having their largest dimension equal of 2r) 

can be improved only if its geometry best utilizes the available surface area of a 

circle of radius r that surrounds the antenna. [17]. To compensate for the limitation 

of canonical geometries, Bézier spline based geometries were implemented into 

planar antennas [18] [19]. A number of control points can be assigned to manipulate 

the shape of parametric curves. This allows the antenna design to have smooth and 

efficient geometric features while having a wider bandwidth and better radiation 

performances. 

Planar antennas with canonical and spline geometries have been modelled, 

prototyped and measured. Design and optimisation methods were developed to 

maximize the bandwidth and radiation performance of the antenna in both 
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frequency- and time-domain. The goal is to propose an antenna design method which 

can be exploited by other researchers and industry. 

1.2.2. Motivation for Genetic Algorithm 

Optimisation algorithms are used by engineers and researchers to solve complex 

problems. The scope of these algorithms can range from resolution of a simple 

equation (i.e.: the Rastrigin's Function [20]) to the optimisation of complex problems 

such as space network communication scheduling [21]. These algorithms can be 

divided into two branches, local optimisers, and global optimisers. The local 

optimiser achieves good performance on simple problems or pre-optimised complex 

problems. On the other hand, global optimisers are very efficient at solving complex 

problems with a large search space and/or having many local optima. Evolutionary 

algorithms belong to the latter group. They were designed to digitally replicate 

natural mechanisms and have proven to be very efficient to solve complex 

electromagnetic problems [22] [23] [24]. A well-known global optimiser based on 

the natural selection principle is the Genetic Algorithm (GA). To find the optimum 

solution for a given problem, the GA encodes the problem’s input variables as 

“chromosomes” and defines the cost function and the weight of each goal for multi-

objective problems. From these parameters, the GA creates and computes an initial 

population of individuals. Each individual will have a cost which is the output of the 

cost function (the problem to solve). Then each individual will be sorted out and the 

best individuals will have a chance to mate with others, creating the offspring for the 

next generation. In order to avoid being stuck in local minima, mutation on 

chromosomes can also be implemented. Generally these occur with low probability, 

in order to limit the optimisation disruption and the destruction of information 

carried by the chromosomes. Finally the process is repeated until the GA converges 
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to a stable result, or when the optimised results satisfy particular thresholds. The 

main drawback is that a large number of evaluations are required to find an optimal 

or quasi-optimal goal, leading to long optimisation times, although this is 

compensated by the ever increasing Central Processor Unit (CPU) computational 

power. 

To efficiently use the spline geometry, several construction points are required. 

Since the complexity of a problem increases with the number of variables, traditional 

optimisation is not suitable, and thus computational aided optimisation is required.  

In this study a genetic algorithm provided by the software MATLAB [25] was 

interfaced with the Electromagnetic (EM) transient solver of CST Microwave Studio 

[26], to optimise planar antenna geometries.   

1.2.3. Motivation for Impulse Optimisation 

For conventional narrow band systems, the radiation characteristics and 

impedance bandwidth are the most important parameters. However for carrierless 

communications, such as DS-UWB, other parameters must be taken into 

consideration. To characterise the antenna transient performance, several spatially 

dependent metrics can be used such as the group delay, the phase centre or the 

fidelity factor (FF). The latter is defined as the maximum absolute value of the cross-

correlation coefficient between two signals. It can be used as an optimisation goal to 

optimise an antenna for time-domain performance, by cross correlating the excitation 

signal (or its derivative), with the transmitted signals. This method has the advantage 

to include other metrics such as the transfer function magnitude and phase variation, 

simplifying the antenna performance analysis. From a regulatory point of view, the 

IEEE 802.15.4 standard specifies that the transmitted pulse should have a magnitude 

of the cross-correlation function at least equal to 0.8 and that any side lobe shall not 
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be greater than 0.3 [8]. Hence, the fidelity factor of IR-UWB antennas should be 

greater than 80% in order to satisfy the regulation. If the antenna does not achieve 

sufficient time-domain performance, it will result in the degradation of the RTLS 

system performance (precision, range).  

All antennas designed were optimised for best impulse performance using 

manual parametric or genetic optimisation in combination with the fidelity factor 

method. 

 

1.3. Outline of the Thesis 

Chapter 2 introduces the principal descriptors used, in this thesis, to characterise 

the various type of antennas in the frequency- and time-domain. The antenna 

transmission-reception model is presented as well as the main measurement setups 

and scripts used throughout this work. 

Chapter 3 presents various signals commonly used in the generation of UWB 

waveforms. Their temporal and spectral characteristics are compared and analysed 

regarding the UWB FCC emission mask and the principles of the radiation and 

reception of UWB signal are stated. 

The main contributions of this thesis are presented in Chapter 4 to Chapter 7. 

The proximity effects of a planar reflector on a UWB monopole antenna 

performance are reported in Chapter 4. The frequency- and time-domain 

performances of the antenna are illustrated in terms of the antenna-reflector 

separation and compared with free space results. 

Chapter 5 deals with an improved optimisation technique for time-domain 

performance. This method is used to enhance the bandwidth and to achieve optimal 
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antenna transient characteristics in a broad or single direction. An improved method 

for time-domain measurement is also reported. 

The designs of UWB differentially fed balanced antenna, for direct IC chip 

output integration is described in Chapter 6. Furthermore, integration and 

polarisation problems are studied and the design and miniaturisation of novel slots 

antennas for direct PCB board integration is discussed. 

A general conclusion is given in Chapter 7 while possibilities of future work are 

discussed in Chapter 8. 
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CHAPTER 2: UWB ANTENNA 

CHARACTERISATION 
 

he aim of this chapter is to introduce the most important parameters 

describing the performance of UWB antennas in the frequency- and 

time-domain. In the first section, the frequency-domain parameters are presented for 

both unbalanced and differentially-fed balanced antennas. The second section 

focuses on the transmission and reception models of UWB antennas, while the 

subsequent section presents the use and benefits of the time descriptor for UWB 

antenna time-domain characterisation. Finally the last section, introduces the 

different measurement setups and scripts leading to scientific and repeatable results. 

 

2.1. Frequency-domain Descriptors  

2.1.1. Input Impedance 

Antennas are generally connected to a Radio Frequency (RF) transmitter or 

receiver using a feeding transmission line circuit. The characteristic impedances ZC 

of the measurement instrumentation and devices including feeding circuit (i.e. 

coaxial cable) are usually 50 Ω. To convey the electric energy between the antenna 

and the measurement devices with minimum loss, the transmission lines (microstrip, 

co-planar waveguide, strips line, etc…) presented in this thesis, were designed for 

a 50 Ω characteristic impedance.  

From a circuit point of view the antenna is seen as a load as shown on Figure 2-1. 

Its impedance can be defined as the ratio between the voltage and current at the 

T 
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antenna terminals as seen on Equation (2.1), on which its real part is composed of 

material, radiation resistance and dielectric loss. 

     ( )      ( )       ( ) (2.1) 

 
Figure 2-1: Diagram of an antenna connected to a source and a transmission line 

For differentially-fed antennas their input impedance can be calculated from the 

definition of the Z parameter [27]. This type of antenna can be equivalent to a two 

port network as shown on Figure 2-2. 

 

 

 

  

 

 

Figure 2-2: Network representation of a dipole 

 The voltage at the antenna ports can be defined as 

 
                (2.2) 

                 (2.3) 

by assuming that I0 = I1 = −I2, then the differential voltage is determined by  
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             (                 ) (2.4) 

Thus the impedance ZANT_differential of an antenna fed with a differential signal can be 

deduced by 

                   
  
  
 (                 ) (2.5) 

2.1.2. Input Reflection Coefficient 

The input reflection coefficient Γ indicates how well a circuit or device is 

matched in term of a reference impedance. If the impedance ZANT differs from the 

reference impedance ZC then part of the current will be reflected back to the source 

reducing the power transmitted. In contrast, if the impedance ZANT is equal to the 

impedance ZC then no reflection occurs and a maximum power transmission is 

achieved. For single ended antennas the magnitude of the coefficient Γ expressed 

in dB is commonly called S11 while for balanced antennas the differential mode input 

reflection coefficient refers to the mixed mode S-parameter Sdd11. The coefficient Γ 

is defined as follow 

 

          
  
  
 
       
       

 

           
                    
                    

 

(2.6) 

where VR and VI represent the reflected and incident voltage respectively. For 

the sake of simplicity, the Sdd11 parameter will be called S11 for differentially fed 

antenna. The logarithmic magnitude of the coefficient Γ is defined in Equation (2.7) 

   (  )          (|  |)  (2.7) 

The voltage standing wave ratio (VSWR) can also be calculated from 

Equation (2.8) as follow 
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  |  |

  |  |
  
    
    

 (2.8) 

where VMAX and VMIN represent the maximum and minimum amplitude of the 

standing wave, which is created by the mismatch between the antenna impedance 

and the characteristic impedance. The VSWR values range from 1:1 to ∞:1. Like the 

coefficient Γ, it indicates how good the match between an antenna and a 

transmission line is. A perfect impedance matching will translate into a VSWR equal 

to 1:1. 

In this thesis, the bandwidth of antenna is found by calculating the frequency range 

where the S11(dB) values are consecutively below a threshold, typically set at 

−10 dB or −6 dB. Notice that the equation of the fractional bandwidth was defined in 

Equation (1.1). 

2.1.3. Directivity 

The radiation pattern directivity is calculated by the ratio of the radiation 

intensity in a given direction Prad(θ,φ,ω) to the average radiation intensity in all 

directions, ω being the angular frequency (2πf). The isotropic radiated power 

Piso_rad(ω) being the average radiation power density multiplied by 4π, the directivity 

D(θ,φ,ω) in any direction can be defined as  

  (     ) 
    (     )

        ( )
  

 (2.9) 

However to characterise an antenna the maximum directivity is usually taken and is 

represented as D(ω) as seen on Equation (2.10). 

  ( )    ( (     )) (2.10) 
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2.1.4. Efficiency 

Another antenna performance indicator is the total efficiency which takes 

account of the dielectric and ohmic losses of the material used in the antenna and the 

losses due to mismatch. Radiation efficiency ΕFFrad(ω) is defined as the ratio of the 

radiated power Prad(ω) to the input power fed at the antenna port Pin(ω), with 

ΕFFrad(ω) =1 representing the maximum energy transfer.   

       ( ) 
    ( )

   ( )
 
    ( )     ( )    ( )

   ( )
 (2.11) 

where EFFC(ω) is the conductive efficiency and EFFD(ω) is the dielectric 

efficiency. The antenna total efficiency ΕFFtotal(ω),also noted η, takes account of the 

radiation efficiency ΕFFrad(ω) and the mismatch loss as defined in Equation (2.12). 

  ( )          ( )        ( ) (  |   | ) (2.12) 

2.1.5. Gain 

The realised gain Greal(ω) is proportionally related to the directivity by the 

radiation efficiency EFFtotal(ω) of the antenna. It is defined as the ratio of the power 

radiated in a given direction to the power radiated by an isotropic antenna. To 

achieve a non-dispersive UWB antenna, it is desirable that the gain remains constant 

throughout the frequency range. Any abrupt change of the gain will likely impair the 

radiated or received signal. 

      (     )   (     )         ( ) (2.13) 

At the time of writing this thesis, only a two port Vector Network Analyser (VNA) 

was available, making direct gain measurement of a differentially-fed balanced 

antenna in an antenna system impossible. However by measuring the field radiated 

by the antenna fed by one its ports and by using the superposition principle, it is 
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possible to approximate the total radiated field.  For a two port balanced antenna, its 

realised differential gain Gdiff(θ,φ,ω) can be calculated with Equation (2.14) [28]. 

 

     (     )  

  (     )

 

(  |        |
 )

(  |   |  |   | )

(| ⃗   (     )  ⃗   (     )|
 
  | ⃗   (     )  ⃗   (     )|

 
)

(| ⃗   (     )|
 
 | ⃗   (     )|

 
)

  

i= port1, port2 

(2.14) 

where Gi(θ,φ,ω)in Equation (2.15)  represents the realised gain of the antenna with 

its ports fed individually and is expressed as follows 

   (     )  
    

  

(| ⃗   (     )|
 
 | ⃗   (     )|

 
)

  
 (2.15) 

with r being the distance from the observation point to the antenna, Z0 is the free 

space impedance which equal to 120π Ω. 

2.1.6. Phase Centre 

The phase centre is defined as a point where the variation of the phase in space is 

constant. From this point the radiated fields have spherical waves, meaning that 

fields measured along the surface of sphere, where its centre is the phase centre, 

should have the same phase. For instance the focal point of parabolic antenna must 

be at the phase centre in order to receive equiphase signals [29]. Deviation of the 

feed from phase centre will lead to phase errors reducing the gain of the antenna. 

Since the phase centre varies with frequency and because of the wide frequency 

range of UWB radio systems, it can be used to characterise the dispersive 

characteristics of UWB antennas although it is not straightforward to measure it. For 

best impulse performance the phase centre of antenna should remain stationary 

across the frequency range. 
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2.1.7. Transmission Coefficient, Transfer Function and Group Delay 

The transmission coefficient defines spectrally the ratio of the amplitude of an 

incident complex waveform to the amplitude of the original excitation signal. For a 

system composed of two antennas, the transmission coefficient is often called the S21 

and characterises spatially the dispersion existing in the communication channel (see 

Figure 2-3). From the Friis equation the relation between the channel, transmitting 

and receiving antennas in terms of the frequency is indicated in Equation (2.16) [30].  

 

 

   (     )

   ( )
  

(  |   ( )|
 )(  |   ( )|

 )   (     )   (     ) (
 

    
)
 

 

   (     )

   ( )
    (     ) 

(2.16) 

Where    (     ) is the power measured at the output of the receiving antenna, 

   ( ) is the power transmitted at the transmitting antenna port,    ( ) and    ( ) 

are the input reflection coefficient of the receiving and transmitting antenna 

respectively,    (     ) and    (     ) are the gain of the receiving and 

transmitting antenna respectively and R is the distance separating both antennas. 

Consequently this metric contains the dispersive characteristics of the antennas and 

the channel which make it unsuitable to directly and accurately measure the Antenna 

Under Test (AUT) dispersion performance. 
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Figure 2-3: Block diagram representation of two port antenna system 

To characterise the dispersion of an antenna both the transfer function magnitude 

and phase must be analysed. The transfer function of an antenna indicates the 

spectral response of an antenna relative to an excitation or incident signal. Hence to 

radiate or receive a signal with minimum dispersion at a particular angle in the 

space, an antenna shall exhibit a quasi-constant transfer function magnitude and a 

linear phase across the frequency range of interest. More importantly the transfer 

function group delay should remain constant. This metric is commonly used to 

characterise two port devices such as amplifiers and filters. It is defined as the 

negative derivative of the transfer function phase with respect to angular frequency 

as shown in Equation (2.18).  

  (     )      (     )   (     ) (2.17) 

  (     )   
  (     )

  
 (2.18) 

Although this descriptor can provide a good estimation of the total dispersion, it 

does not provide a precise quantification of the distortion of the signal. This can be 

improved by using a statistical approach. Using the arithmetic mean and standard 

deviation of the group delay it becomes possible to compare antennas with each 

other. The group delay statistical mean  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅  and standard deviation   (   ) are 

defined as follows [31]:  

�⃗� 𝑅𝐴𝐷(𝜔 𝜃 𝜑) 
𝑒 𝑅𝐴𝐷(𝑡 𝜃 𝜑) 

PTX(ω) 
VS(t) 

PRX(ω) 
VREC(t) 

 

Antenna TX 
 

Channel Antenna RX 
 �⃗⃗� 𝑅𝑋(𝜔 𝜃 𝜑) 

ℎ⃗ 𝑅𝑋(𝑡 𝜃 𝜑) 
 

𝐻𝐶𝐻(𝜔) 
ℎ𝐶𝐻(𝑡) 

 

�⃗⃗� 𝑇𝑋(𝜔 𝜃 𝜑) 

ℎ⃗ 𝑇𝑋(𝑡 𝜃 𝜑) 
 



 

28 

  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅  
 

     
∫  (     )  
  

  

 (2.19) 

   (   )  √
 

     
∫ ( (     )   (   ))

 
  

  

  

 (2.20) 

where fL and fH are respectively the lowest and highest frequency in the band of 

interest. 

2.2. Time-domain Characterisation 

2.2.1. Transmission Mode 

Figure 2-4 represents a model of an antenna operating in transmitting mode. In 

free space, the farfield electric field      (     ) emanating from the antenna at a 

distance     and direction (θ,φ), is dependent on the transmitting antenna impulse 

response ℎ⃗   (     ) and the input voltage at the antenna terminals VS(t). The 

impulse responses of antenna are defined as the antenna transient responses to an 

impulse input signal, while a transient response can be defined to the response of 

system, or device, to a change from the steady state response. The electric radiated 

field can be found using Equation (2.21) [32] [33] 

 
Figure 2-4: Block diagram of transmitting antenna; 
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     (     ) 
 

        
ℎ⃗   (     )  

        ( )

  
   (       ) 

with         
     

  
         ( )

  
     

   ( )

  
 

and           
      

        
 ;        

(2.21) 

where the term   stand for convolution, Vs(t) is the input voltage at the antenna 

terminal, Vant,TX(t) is the voltage excited at the antenna feed, c is the speed of light, 

Za,TX is the antenna impedance, fg is the ratio between the antenna impedance and 

free space impedance Z0 equal to 120π Ω and     is the voltage transmission 

coefficient from the transmission line to the antenna. The term ℎ⃗   (     ) 

represents the transmitting antenna impulse response when the antenna is terminated 

by a real impedance equal to the impedance of the feed structure. The convolution 

with the dirac-function  (       ) introduces a total delay       corresponding to 

the propagation time between the input reference plane and the observation point of 

the radiated field. By combining the above equations, Equation (2.21) can be 

simplified into Equation (2.22) [33] 

      (     ) 
   

        
ℎ⃗   (     )  

   ( )

  
  (       ) (2.22) 

In reality Za,TX is a function of frequency so that     and fg are not constant. One way 

to solve the problem is to normalise the voltages and field to the local characteristic 

impedance (transmission line or medium). Starting with Equation (2.22) the 

normalised radiated field is given by Equation (2.23) [32]. 
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(2.23) 

Then Equation (2.23) can be simplified into Equation (2.24) [32] [33]. 
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  (       ) 

with                √
  

     
 

and      ℎ⃗     (     )  
     

√  
ℎ⃗   (     ) 

(2.24) 

The term       describes the incident power on the transmission line as the square 

root of the power launched onto the antenna. The normalised impulse response 

ℎ⃗     (     ) included the antenna impulse response ℎ⃗   (     )and the losses due 

to the mismatch between the antenna and the feeding network. It is seen that the 

radiated field is completely described by Equation (2.24). Applying the Fourier 

transform to Equation (2.24) gives the radiated field in frequency domain as shown 

in Equation (2.25). 

 
 ⃗    (     )

√  
 

  

      
    

   
    ⃗⃗     (     )

  ( )

√  
 (2.25) 

In this equation, the ratio    
 

 represents the time delay td,TX of the dirac-function, and 

 ⃗⃗     (     ) represents the antenna normalised transfer function. As seen on 

Equation (2.25), the term jω can be placed anywhere meaning that the derivation 

d/dt and the convolution   can be exchanged [34], leading to the following equation. 
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  ( )

√  
 (2.26) 

 

2.2.2. Reception Model 

Figure 2-5 represents a model of an antenna operating in receiving mode. When 

the receiving antenna is illuminated with a uniform plane-wave incident E-field 

     (     ) coming from the direction (θ,φ) and evaluated at the antenna phase 

centre, the voltage received at the load (i.e. an oscilloscope)     (     ) can be 

found using Equation (2.27) [32]. 

 
Figure 2-5: Block diagram of receiving antenna 

 

    (     ) ℎ⃗   (     )       (     )        (       ) 

With     
   

        
  and        

(2.27) 

where  ℎ⃗   (     ) is the impulse response of the receiving antenna,     is the 

voltage transmission coefficient from the antenna to the load Zc, Za,RX represents the 

antenna impedance and  (       ) represents the propagation time between the 

phase centre of the antenna and the reference plane where     (     ) is measured. 

Since     is not constant in frequency, it is necessary to normalise Equation (2.27) 

using the same method shown in Equation (2.23) and (2.24) [32] [33]. 
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(2.28) 

Equation (2.28) described the normalised received voltage     (     ) at the 

load Zc. Using the same methodology used for the simplification of Equation (2.23), 

Equation (2.28) can be simplified into Equation (2.29) [32]. 
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and               √
     

  
 

(2.29) 

In Equation (2.29), it is seen that the receiving antenna impulse response and the 

mismatch losses of the receive antenna are contained in the antenna normalised 

impulse response ℎ⃗     (     ). Applying the Fourier transform to Equation (2.29) 

gives the voltage received at the load in the frequency domain as shown in 

Equation (2.30) 

 
    (     )

√  
  ⃗⃗     (     )

 ⃗    (     )

√  
    

   
  (2.30) 

where  ⃗⃗     (     ) is the normalised transfer function of the receiving antenna 

while the ratio    

 
 represents the propagation time delay       of the 

dirac-function  (       ) with    being the distance from the receiving antenna 

phase centre and the reference plane where     (     ) is measured and the term 

    
   
  represents the time delay Dirac function in the frequency domain.  
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In the case of an antenna system comprising a pair of identical antennas and by 

analysing Equation (2.26) and (2.29), it is seen that the normalised impulse response 

of antenna in transmitting mode is proportional to the derivative of the impulse 

response of the same antenna operating in receiving mode [35], as shown in 

Equation (2.31) and (2.32). 

 ℎ⃗     (     ) 
 

    

 ℎ⃗     (     )

  
 (2.31) 

  ⃗⃗     (     ) 
  

    
 ⃗⃗     (     ) (2.32) 

 

2.3. Time-domain Descriptors 

The performances of impulse based systems rely on the quality of a signal 

relative to a reference signal. Hence for an antenna designer, it is important to 

quantify the level of distortion of the radiated signal in the time-domain. Although it 

is possible to obtain time-domain results, such as radiated or received signal, using 

the convolution between the reference signal and the inverse Fourier transform of the 

transfer function, transient results could be impaired if the frequency span and the 

windowing function used in the frequency-domain based measurement system (i.e. 

vector network analyser) is not taken into consideration. Therefore, it is desirable to 

use dedicated time-domain measurement systems such as waveform generators and 

oscilloscopes where the degree of dispersion existing in the measured signal can be 

quantified using several time descriptors [36]. In this thesis only the fidelity factor is 

used to describe the time-domain performance of antennas. 
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2.3.1. Fidelity Factor 

The fidelity factor (FF) can be used to quantify the dispersion of a reference 

signal caused by the antenna. The fidelity factor is based on the principle of the 

cross-correlation between two signals, the reference signal (excitation or incident 

signal), and the radiated or received signal, and calculates the similarities existing 

between these signals. The general equation of the fidelity factor is defined as 

follows: 

       ||
∫   ( )  (    )  
 

  

√∫ |  ( )| 
 

  
  √∫ |  ( )| 

 

  
  

|| (2.33) 

where x1(t) and x2(t) are the signals being compared and td indicates a time delay. 

Since the antenna impulse response changes when the antenna is operating in 

transmitting or receiving mode, the fidelity factor for these two operating modes will 

be different and can be defined as indicated in Equation (2.34) and Equation (2.35) 
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where      (     ) and      (     ) are the radiated and incident far electric fields, 

respectively. As the impulse response of an antenna is not constant in space, FFRAD 

is dependent of the radiated electric field observation point while FFREC depends of 

the angle of arrival of the incident E-field. In this thesis the simulated and measured 
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FF is represented in an azimuth and elevation plane polar plot although it is possible 

to create a 3D fidelity factor pattern. 

 

2.4. Measurement Setup 

In order to provide reliable, repeatable and accurate results, measurements were 

made in a partially anechoic chamber. Absorber materials were placed in strategic 

positions in order to minimise signal reflections that could otherwise impair the 

measurement results. Horn antennas were used as referenced antennas, where their 

S11 and gain were stored in a database. The antenna under test were adjusted and 

rotated on a fully controlled turn table. The AUT were centred on the turn table 

making the radiation pattern only dependent on the angular parameters (θ,φ). 

2.4.1. Frequency-domain Measurement Setup 

In order to have repeatable results, a customized program was interfaced with a 

two port VNA Rohde & Schwarz ZVB24 while controlling the turn table. The 

engineer is guided through a step by step procedure where initialisation, setup and 

calibration are required. It allows the measurement of the co-polar and cross-polar 

components of the E-plane and H-plane. The initial measurement results are then 

post processed using the Friis equation [37] in order to determine the gain of the 

AUT and stored in an Excel file for post processing. The frequency measurement 

setup is shown in Figure 2-6 and Figure 2-7. 
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Figure 2-6: Frequency-domain measurement setup 

 
Figure 2-7: Photo of the frequency-domain measurement setup 

2.4.2. Time-domain Measurement Setup 

An AGILENT DS081204A real time oscilloscope was used to measure signals in 

the time-domain, while a Step Recovery Diode (SRD) based generator or an 

Arbitrary Waveform Generator TEKTRONIX AWG 7122C were used to generate 

impulses at a pulse rate of 80 MHz and 24 MHz respectively. The AUT was 

positioned on the turn table to allow an accurate angular measurement and although 

the measurements were made in a multipath environment, the small time span of the 
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oscilloscope (2ns or 5ns) acts as time gating windows, supressing the possible 

multipath signals reflected back at the antenna under test. 

Unlike VNAs, this high performance real time oscilloscope does not provide a 

reliable fully automatic measurement, especially when the peak to peak amplitude of 

the signal at the oscilloscope port does not exceed 10mV. Below this value the noise 

floor of the scope became significant and the acquisition trigger has to be adjusted, 

manually, with great care to capture a stable signal. Hence for the sake of 

measurement repeatability and accuracy a MATLAB script with an integrated 

graphical user interface was written. The script interfaced a computer equipped with 

MATLAB with the oscilloscope and controls it via a TCP/IP connection. This code 

scans for the signal and calibrates the trigger level and the amplitude scale depending 

on the signal stability and the peak-to-peak voltage of the signal VPP, while 

calculating the FF between the received and reference signals. The script is also able 

to calibrate the scope to a reference plane, making the measurement of the radiated 

E-field possible. The MATLAB script is available upon request at the AHFR centre. 

The time-domain measurement setups are illustrated on Figure 2-8 and Figure 2-9. 

Finally, the code was thoroughly tested, debugged, and optimised for repeatability, 

robustness, and measurement accuracy, as illustrated in the flow chart shown in 

Figure 2-10.  

 
Figure 2-8: Time-domain measurement setup 
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Figure 2-9: Photo of the time-domain measurement setup 

 
Figure 2-10: Flow chart of the automated MATLAB script 
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2.4.3. Coordinate Systems 

In this thesis the radiation pattern is characterised in the farfield, using two 

dimensional plane cuts. The elevation (ZY plane) and azimuth plane (XY plane) 

represents the E-plane and H-plane vectors respectively as seen in Figure 2-11. 

Because the AUT will be tested over a broad frequency range, a contour plot is 

preferred to represent the radiation pattern in the plane of interest versus the 

frequency, simplifying the analysis of the gain. 

 

Figure 2-11: Coordinate systems used for the radiation pattern and fidelity factor 
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CHAPTER 3: UWB SIGNALS 
 

WB impulse radio signals are an integral part of RLTS and radar systems. 

By post processing the scattered signal and comparing against a reference 

signal, these systems are able to track and/or characterise objects or persons. The 

choice of the signal is crucial for the UWB system application, since the system 

precision range is inversely proportional to the signal bandwidth. 

The first part of this chapter will focus on the definition of UWB signals with 

regard to the IEEE 802.15.4 standard and the power restrictions.  The second section 

will present several types of signals that could potentially be used for UWB systems. 

Each are characterised in both frequency- and time-domain and are assessed in terms 

of the regulatory requirements defined in the standard. Furthermore an optimal UWB 

signal will also be presented and discussed. The third and fourth sections describe 

the basic principles of signal transmission and reception from antennas in terms of 

antenna impulse response. 

 

3.1. UWB Signal Definitions 

UWB signal emission masks are shaped by different regulatory bodies. 

According to the FCC, the signal bandwidth must be contained within the UWB 

frequency band (3.1 GHz to 10.6 GHz) while respecting the indoor and outdoor 

UWB power spectrum density mask. It should be noted that the outdoor UWB 

communication is reserved for handheld devices which do not used fixed 

infrastructure. Figure 3-1 gives a quick overview of the different limits set by the 

FCC regulation. It is seen that the signal 10 dB bandwidth is strongly dependent on 

U 
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the signal spectrum shape especially for signals having a centre frequency fc close to 

the UWB mask edge. The transmitted spectrum must also comply with the UWB 

physical layer (UWB PHY) transmit Power Spectrum Density (PSD) mask set by the 

IEEE 802.15.4 standard [8].  

 
Figure 3-1: UWB signal design points 

According to this standard the transmitted signal spectrum must comply with the 

–10 dB and –18 dB bandwidths relative to the maximum spectrum peak of the 

signal, as described in Equation (3.1) and Equation (3.2): 

         
    

  
 |    |  

   

  
 (3.1) 

 

         |    |  
   

  
 (3.2) 

where Tp  is the pulse duration,  f is the lower or upper edge frequency and fc is 

the centre frequency. Figure 3-2 shows the IEEE 802.15.4 transmit PSD mask for a 

Gaussian signal with pulse duration Tp =1.3 ns. 
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Figure 3-2: IEEE 802.15.4 transmit mask for a modulated Gaussian signal 

(Tp =1.3 ns) 

Also a rectangular pulse with a pulse duration Tp =1.5 ns is shown in Figure 3-3. 

It demonstrates that due to the first spectral side lobe, the rectangular pulse fails to 

comply with the IEEE 802.15.4 mask. Therefore choice of pulse type is an important 

consideration for compliance to both regulations. 

 
Figure 3-3: IEEE 802.15.4 transmit mask for a modulated rectangular pulse 

(Tp =1.5 ns) 
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3.2. Type of UWB Signal 

According to the FCC an UWB signal shall have a minimum bandwidth of 

500 MHz. To generate such bandwidth, signals with sharp transitions and extremely 

narrow pulses are used. Naturally, each type of signal exhibits different 

characteristics in the time and frequency-domain depending on signal amplitude 

transition time and temporal main-to-side lobe ratio resulting in a spectrum density 

that can have a significant impact on system performance. 

3.2.1. Rectangular Pulse 

The simplest pulse to represent is the rectangular pulse shown on Figure 3-4. 

This pulse is impossible to generate because of the sharp edges, but has time and 

spectral properties of theoretical interest to be studied.  

The time-domain equation for the rectangular impulse is given in Equation (3.3). 

In Figure 3-5, it is seen that the frequency spectrum, computed via a Fast Fourier 

Transform (FFT), contains significant side lobes. Typically the first side lobe of the 

rectangular pulse is 13 dB below the peak energy, and can exceed the regulatory 

levels in some cases. 

     ( )  {
                
                   ℎ   

 (3.3) 

 Also it is known that the sharper the rise and fall of a time-domain signal, the 

more energy the spectral side lobe will contain [38]. Hence by smoothing the rise 

and fall edge of a time signal it is possible to reduce the level of energy contained in 

the spectral side lobes 
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Figure 3-4: Time-domain representation of a rectangular pulse 

 
Figure 3-5: Frequency-domain representation of a rectangular pulse 

3.2.2. Gaussian Pulse 

The Gaussian pulse is a well-known wavelet that has been used extensively by 

researchers for use as excitation signals for antenna design [30] [39] [40]. This 

impulse, shown in Figure 3-6, has a very smooth amplitude transition in the 

time-domain and is described by the following equation. 

      ( )      ( 
 

 
(
 

( )
)
 

) (3.4) 

with τ being the pulse width parameter defined in Equation (3.5). 



 

45 

   
 

     √     (       )
 (3.5) 

where fbw is the required 10 dB bandwidth (Hz). It is seen, in Figure 3-7, that the 

Gaussian pulse has no spectral lobes, which indicates that all the energy is contained 

in the main lobe. 

 
Figure 3-6: Time-domain representation of a Gaussian pulse 

 
Figure 3-7: Frequency-domain representation of a Gaussian pulse 

3.2.2.1. FCC UWB Compliant Gaussian Pulse 

One way to comply with the FCC UWB regulation is to use the Gaussian 

derivatives. Figure 3-8 represents different Gaussian derivatives at different orders of 

derivation. Each has been tuned for the best 10 dB bandwidth and best compliance 
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with the FCC UWB indoor regulation. It is seen in Figure 3-9, that the fourth and 

fifth order derivative spectra lie within the FCC UWB indoor mask but they do not 

fill completely the 7.5 GHz 10 dB bandwidth available. However none of them are 

suitable for the FCC UWB outdoor EIRP mask (red curve).  

 
Figure 3-8: Time-domain representation of Gaussian pulse derivatives 

 
Figure 3-9: Frequency-domain representation of Gaussian pulse derivatives 

Another solution to comply with the energy levels addressed by the different 

regulatory bodies is to multiply the baseband Gaussian impulse with a carrier as 

shown in Equation (3.6). 

       ( )        ( )    (     ) (3.6) 



 

47 

where fc is the frequency of the signal carrier. Figure 3-10 and Figure 3-11 show 

two modulated Gaussian pulses having spectral energy levels compliant with the 

FCC UWB indoor (τ = 85 ps)  and outdoor mask (τ = 91 ps).  This method allows the 

baseband signal to be frequency shifted to the operating centre frequency, while the 

signal bandwidth can be adjusted independently to fit the mask requirements.  

 
Figure 3-10: Gaussian pulse modulated at 6.85 GHz 

 
Figure 3-11: Power spectrum density of Gaussian pulse modulated at 6.85 GHz 

However, Figure 3-11 also indicates that this type of pulse does not have a 

constant energy level across the UWB frequency range, with a total emitted power of 

−6.22 dBm (τ = 85 ps) and −6.53 dBm (τ = 91 ps) compared with the theoretical 

maximum EIRP of −2.55 dBm (0.556 mW). 
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3.2.3.  Square Root Raised Cosine Pulse 

The square root raised cosine (SRRC) function is well known in the filter and 

telecommunications field. For communications applications, the SRRC filters are 

used at the transmitter and receiver side to reduce Inter Symbol Interference (ISI), 

satisfying the Nyquist criterion. The analytical form of the SRRC transient function 

is shown in Equation (3.7) [41]. 

      ( )   
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where t is the time, TS = 1/RS, RS being the symbol rate (3 dB bandwidth) and β is the 

unitless roll-off factor. By tuning the symbol rate and the roll-off factor, it is possible 

to generate a signal having an evenly contoured power spectrum. Figure 3-12 and 

Figure 3-13 shows a SRRC signal with a symbol rate RS of 4.7 GHz and its power 

spectrum density in term of β. It is seen that as roll-off value decreases toward zero, 

the energy level becomes more constant at the 3 dB bandwidth, in the UWB 

frequency range, at the expense of greater side lobes in both time and 

frequency-domain. Since the pulse has an infinite duration, increasing the time span 

of the signal will lead to an improved spectrum shape, especially when the roll-off 

factor tends to zero. 
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Figure 3-12: SRRC signal in terms of their roll-off factor 

 
Figure 3-13: Spectral representation of SRRC signal in terms of their roll-off factor 

This analysis of the SRRC pulse characteristics shows that an optimal pulse for 

the UWB mask is achievable. Figure 3-14 shows a modulated Gaussian pulse and a 

modulated SRRC pulse independently of wherever (roll-off factor of 0.1 and symbol 

rate of 7.1 GHz), both centred on 6.85 GHz. Figure 3-15 shows the respective PSD 

plots with the IEEE 802.15.4 UWB indoor spectrum mask. The analysis of 

Figure 3-14 and Figure 3-15, reveals that the modulated SRRC signal, with the 

parameters specified earlier, clearly has an optimal fit to the UWB indoor spectrum 

compared to the modulated Gaussian signal. Also the side lobes carry a low energy 

level, fulfilling the FCC UWB energy requirements, while the pulse conveys a power 
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of −2.86 dBm, in other words 93.1% of the theoretical maximum EIRP of 

−2.55 dBm (0.556 mW). Its improved bandwidth makes it an ideal excitation signal 

to characterise antennas in the time-domain as seen in Chapter 5. 

 
Figure 3-14: Modulated Gaussian and SRRC pulses 

 
Figure 3-15: Power spectrum density of Gaussian and SRRC pulses with the 

IEEE 802.15.4 spectrum mask for indoor use. 

3.2.4. Chirp Signal 

The chirp signal is a signal commonly used in radar and in measurement 

hardware such as vector network analysers (VNA). Its main characteristic is a linear 

or exponential increase of frequency with time, as seen in Figure 3-16. In 

Figure 3-17, it can be seen that the spectrum is not constant over the UWB frequency 
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range and has ripples that do not comply with the UWB regulation. The latter 

problem can be solved by using filters to shape the spectrum in order to satisfy the 

spectral power constraint set by the different regulatory bodies.   

 
Figure 3-16: Chirp signal 

 
Figure 3-17: Power spectrum density of a chirp signal 

3.2.5. Other UWB Pulses 

A  UWB spectrum can be generated by using sharp voltage transitions or extremely 

short pulses. These signals are relatively easy to generate but their spectral 

characteristics generally do not comply with the rules set by the regulatory bodies. 
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A step recovery diode (SRD) has the capability to create extremely sharp pulses. If a 

forward biased SRD diode is rapidly reverse-current biased and when its stored 

charges are depleted it will suddenly switch to its normal high reverse impedance, 

stopping the flow of reverse current, in a transition time taking less than a 

nanosecond. This fast transition then creates a pulse with wideband characteristics.  

SRD diodes can be used as comb generators, generating a number of harmonics 

simultaneously that look like a comb on a spectrum analyser [42] [43], or as a pulse 

sharpener [44]. In this section the SRD diode are used for the latter application.  

Figure 3-18 and Figure 3-19 shows a pulse generated by step recovery diode 

(SRD) GC082-361 from HEROTEK and its PSD respectively. It is seen that the 

SRD pulse has a 2.37 GHz 10 dB bandwidth but has a strong DC component. In 

order to attenuate the undesirable pulse spectral components, the pulse was filtered 

through a UWB band pass filter where the time and frequency-domain 

representations of the pulses are shown on Figure 3-18 and Figure 3-19. It is seen 

that the filtered signal has 4.28 GHz 10 dB bandwidth, however the power levels 

from 0 to 1.6 GHz do not satisfy the FCC UWB mask and thus make this signal 

unusable in commercial devices. One way to generate a pulse with a UWB compliant 

spectrum density is to use an SRD with a sharper transition time, generating a more 

wideband signal while the latter can be filtered through a single or cascaded raised 

cosine filter. Nevertheless it has been demonstrated that an UWB pulse can be 

generated with inexpensive components, and although they do not fully comply with 

regulation, they can find use in time-domain antenna UWB characterisation. 
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Figure 3-18: Original and filtered SRD pulses 

 
Figure 3-19:  Original and filtered SRD pulse power spectrum density 

 

3.3. Radiation of UWB Signal 

Compared to narrow band signals, UWB signals exhibit interesting features 

when radiated.  A narrow band radiated signal closely resembles a sine wave 

independently of wherever their observation point is, while UWB signals have 

different shapes depending of the radio link observation point.  

It is well known that radiation in free space is the result of a time-varying current 

or acceleration of charges [45] [46]. When an antenna is excited with a signal, the 
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current travels along the conductive materials and encounters discontinuities in the 

conductors. These cause a change in current velocity and produce radiation as well 

as the opposite polarisation of the surface currents. Since acceleration is the time 

derivative of the velocity, it is expected that the radiation coming from the antenna 

corresponds to the partial derivative in time and delay of the current [47]. For narrow 

band signals this effect is not really important since, the derivative of a sinusoidal 

signal is a cosinusoidal signal, meaning that the signal shape will remain the same 

through the radiation process. However, the wider the pulse bandwidth is, the more 

the pulse differs from its time derivative. Consequently, for UWB systems, the shape 

of radiated signals will be dependent on the observation point, the type of antenna 

and will be different from the excitation signal at the antenna feed point [48] [49] 

[50].   

Researchers have studied the antenna effect, when operating in transmitting 

mode, on UWB pulse shape [51]. It appears that only a few antennas, such as the 

long dipole and biconical antenna, are able to transmit a replica of the excitation 

signal [52] as long as the signal does not contain DC components. In general, UWB 

antennas tend to radiate a time derivative of the input signal [51].  Table 3-1 shows 

the general relationship between the input signal and the radiated signal for different 

antennas. By knowing the impulse response of the antenna, its effect on the radiated 

signal can be taken into account during the design of the UWB system, especially for 

precision ranging system. Also, if the impulse response of the antenna operating in 

transmitting mode is known, it is possible to synthesize the excitation pulse for the 

desired radiated signal [52]. 
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Antenna 
Radiated signal Versus  

excitation signal 

Long dipole (h=∞) Replica 

Short dipole (h=0) 2nd derivative 

Bicones (90° flares) Replica 

TEM horn 1st derivative 

Vivaldi 1st derivative 

Bow-tie 1st derivative 

Table 3-1: Relationship between the input and radiated signal for different 
antennas 

 

3.4. Reception of UWB Signal 

The reception of UWB signals also exhibit interesting characteristics compared 

to the reception of narrowband signals. In the previous section it has been shown that 

the transmit impulse response of an antenna has little effect on the narrow band 

signal shape, since the derivative of a sinusoidal signal is also a sinusoidal-like 

signal and it is also valid for an antenna operating in receiving mode. However for 

the reception of UWB signals, the impulse response of the antenna in receiving mode 

can impair the received signal. 

Signal reception is due to the electric field incident in the conductive surface of 

the antenna.  Hence, the receiving voltage at the antenna feed point is the 

convolution of the incident field and the surface current that will be present on the 

antenna operating in transmitting mode, integrated over the volume [48].  

M. Kanda has demonstrated that the transient response of an antenna operating in 

transmitting mode is proportional to the time derivative of the transient response of 
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the antenna operating in reception mode [35]. For example, a bicone antenna in 

receiving mode will have a received signal at its port that approximately corresponds 

to the integral of the incident electric field as shown in [51] [52]. Table 3-2 shows 

the relationship between the incident field and the received signal for antennas 

operating in receiving mode. 

 

From Table 3-1 and Table 3-2, and assuming that the antennas are not dispersive, it 

is seen that it is possible to create a radio channel where the received signal is 

proportional to the excitation signal. 

  

Antenna 
Received signal Versus  

incident signal 

Long dipole (h=∞) Integral 

Short dipole (h=0) 1st derivative 

Bicones (90° flares) Integral 

TEM horn Replica 

Vivaldi Replica 

Bow-tie Replica 

Table 3-2: Relationship between the received signal versus the incident field for 
different antennas  
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3.5. Conclusion 

In this chapter, the FCC UWB power regulation mask was described and several 

types of UWB signals were characterised and assessed in relation to the 

IEEE 802.15.4 standard UWB requirements.  

It has been shown that the modulated Gaussian signal (the most commonly used 

in antenna design) cannot take full advantage of the UWB mask. It appears that the 

SRRC pulse is better suited and can provide an improved antenna time-domain 

characterisation by providing a quasi-constant energy level throughout the UWB 

frequency range. Moreover, its spectrum shape can be adjusted to fit different 

requirements, unlike other pulses. 

It was also shown that the radiation and reception of UWB pulses differ from the 

radiation and reception of narrowband signals. The shape of the radiated pulse is 

dependent not only on the observation point but also on the impulse response of the 

transmitting antenna. Equally the received signal is dependent on the antenna 

orientation and the impulse response of the receiving antenna at the reception point. 

Moreover, the relationship between the impulse response of an antenna operating in 

transmitting mode and in reception mode was clarified.  
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CHAPTER 4: UWB MONOPOLE 

PERFORMANCE IN PROXIMITY TO 

PLANAR  REFLECTORS 
 

he power restrictions of IR-UWB radio imply that its use is generally limited 

to short range systems which may be portable.  Also, in order to stimulate and 

to satisfy the electronic devices market, ever increasing functions and thus 

components are embedded into portable devices. This miniaturisation trend demands 

that antennas are integrated or placed close to PCB boards and electronics 

components. 

 In this chapter the time-domain performance of antennas in close proximity to a 

planar reflector is investigated. The study was validated with the fabrication of a 

compact UWB monopole antenna and by frequency- and time-domain measurement. 

 

4.1. Antenna Geometries and Optimisation 

4.1.1. Geometry 

In order to assess the effect of a planar reflector in proximity to a UWB antenna, 

a UWB monopole was designed using an evolutionary algorithm and Bézier spline 

and optimised for wide-band performance and pulse fidelity in the frequency range 

of 3.1 to 7 GHz, using a multi-objective cost function. The antenna consists of a 

50 Ω single-ended microstrip-fed monopole with the radiator and ground plane 

optimised using mirror spline elements. It was fabricated on a 20×36×0.7 mm FR4 

double-sided PCB with a dielectric constant εr = 4.3 and loss tangent 0.02. 

The substrate dimensions were chosen following the work of researchers on ground 

T 
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plane dimensions on antenna properties [53] and from previous antennas design. The 

geometry of the antenna is shown in Figure 4-1.  

 
Figure 4-1: UWB monopole geometry and coordinate system 

4.1.2. Optimisation 

 The UWB monopole was optimised using 8 construction points. The radiator 

construction point P5 uses one degree of freedom (Z-axis) while P6, P7 and P8 use 2 

degrees of freedom (X and Z axis). The ground plane construction points (P1 to P4) 

use one degree of freedom (Z axis) in order to limit the complexity of the problem, 

raising the number of variables to 11. Table 4-1 shows the parameters constraints in 

millimetres. 

P1,2,3,4 (z) = 5 < z < 20 
P5 (z)       = P4 < z < (P4 + 5) 
P6,7,8 (x)   = 0 < x < 10 
P6,7,8 (z)   =P5 < z < 36 

Table 4-1: UWB spline monopole geometry parameters (mm) 

In order to efficiently optimise the antenna geometry, a genetic algorithm was 

used. At the time of the study, the CST package did not have an embedded optimiser 

and thus the antenna was optimised using a GA from the matrix software MATLAB 



 

60 

interfaced with the EM package CST Microwave Studio. For time-domain 

optimisation, 36 farfield virtual probes were placed around the H-plane in 10° steps 

to capture the radiated signal. The antenna was assessed by using two weighted 

goals, bandwidth and pulse fidelity, embedded in a cost function similar to the one 

proposed by M. John [54] and shown in Equation (4.1) 

        (    
 

 
    

   

 
)  with           (4.1) 

where ζ is the number of points for which S11 < −10 dB, µ is the number points 

that contain the S11 curve, FF is the fidelity factor (field probes relative to the 

derivative of the excitation pulse) at each angle and  is the number of FF values. 

From Equation (4.1), it is seen that the possible values of the cost function lie 

between 0 (best result) and 1 (worst result) while the empirically selected coefficient 

weightings were chosen to provide a balance between optimization time and 

accuracy. 

The excitation signal used during the optimisation was an amplitude modulated 

Gaussian signal, from the CST Microwave Studio package, having 3.9 GHz 

bandwidth at −20 dB. The initial population of the GA has been set to 1375 (125 

individuals per variables). This number was found empirically and allows the GA to 

create a broad search landscape. The remaining populations were set to 70 and stop 

after 30 generations. The roulette selection scheme and the intermediate cross-over 

were used in the GA. Figure 4-2 represents the two objectives (X-Y axis) in terms of 

the number of iterations. It is seen that the GA considered has efficiently explored 

the search landscape during the first generation, in other words, up to the 1375th 

iteration. Then on each generation the result is refined, represented by the darker 

colour, until the GA stops at the 30th generation. 
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Figure 4-2: UWB spline monopole optimisation goal in terms of iteration number 

 

4.2. Free Space Results 

4.2.1. Return Loss 

In order to measure the effect of the planar reflector on the performance of the 

antenna, it is essential to characterise the antenna in free space. To do so the antenna 

was measured by a Rohde & Schwarz ZVA 24 vector network analyser, illuminated 

in an anechoic chamber. The S11 of the antenna in free space is represented on 

Figure 4-3. Good agreement is achieved between simulation and measurement. The 

measured data exhibits a 10 dB bandwidth from 3.23 GHz to 8.14 GHz and a 6 dB 

return loss from 2.9 GHz to 9.29 GHz. 

4.2.2. Radiation Pattern 

The radiation patterns were measured in the H-plane (X-Y plane) from 3.1 GHz 

to 7 GHz to evaluate the radiation pattern stability. Figure 4-4 shows the measured 

co-polar realised gain in term of angle versus frequency. From 3.1 GHz to 7 GHz the 

radiation pattern remains stable and omnidirectional, with a peak of 4.3 dBi (φ, θ = 

90°, 90°) at 7 GHz. 



 

62 

 
Figure 4-3: Simulated and measured S11 for the UWB spline monopole in free space 

 
Figure 4-4: Measured free space radiation pattern of the UWB spline monopole 

4.2.3. Fidelity Factor 

In order to characterise the time-domain performance of the antenna, the 

transmission coefficients of the antenna system, composed of two identical UWB 

spline monopoles, were measured. The impulse responses of the channel were 

determined using the time-domain post processing capability of the vector network 

analyser [55] [56] [57] and were recorded every 5° degrees on the azimuth plane and 

quantified by cross-correlating the input impulse response against the channel 

impulse response. As seen in Figure 4-5, the simulated and measured fidelity factors 

are in good agreement while the antenna time-domain performance is very good. It 

shows an omnidirectional pulse fidelity pattern while the antenna system exhibits a 
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measured fidelity factor (FF) mean of 99.8% with the lowest and highest values 

equal to 99.7% (φ, θ = 90°, 45°) and 99.9% (φ, θ = 90°, 225°) respectively.  

 

Figure 4-5: Measured Fidelity Factor 

 

4.3. Reflector Proximity Effect on Antenna Performance 

Generally, UWB antennas are likely to be embedded and in close proximity to 

metallic surfaces which can act as reflectors. These pseudo-reflectors can impair the 

performances of antenna in some cases. Therefore the study of reflector proximity 

effect on antenna performance is important, especially for integrated antenna. 

4.3.1. Return Loss 

In order to study the effect of reflector proximity on antenna performance, a 

sheet of brass of dimension 100 × 100 mm was positioned at various distances (from 

λ to λ/8 at 3.1 GHz) from the receiving antenna while both of them were rotated in 

5° steps. Figure 4-6 represents the experiment while Figure 4-7 and Figure 4-8 

demonstrate the effect of the reflector proximity on the S11. It is seen that the 
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proximity of the reflector is negligible on S11 until the separation d between the 

antenna and reflector approaches λ/4. 

 
Figure 4-6: Experimental setup 

 
Figure 4-7: S11 dependence on antenna–reflector separation  

 

Figure 4-8: S11 dependence on antenna–reflector separation from λ/4 to λ/8 

λ ≥ d ≥ λ/8 

d  
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From λ/4, the S11 degrades especially from 3.5 to 4.5 GHz and from 6 to 7 GHz 

due to an increased variation in input impedance with frequency. However, even 

with d = λ/8, the return loss is still acceptable with a 6 dB bandwidth of 7.03 GHz 

starting from 1.98 GHz to 9.01 GHz. 

4.3.2. Radiation Pattern 

The measured azimuthal radiation pattern is shown in Figure 4-9. Up to d = λ/4, 

the radiation pattern exhibits additional side lobes also “scalloping effects” [58]. 

Referring to Figure 4-9, this effect is maximal for a separation of λ and is gradually 

reduced for shorter values of d. 

 

Figure 4-9: Realised gain radiation pattern angle vs. frequency in terms of 
antenna-reflector separation 

 For d>λ, a larger number of lobes will also be formed. The antenna-reflector 

combination can be approximated as a horizontal dipole over a horizontal infinite 
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perfect conductor. From this simplification the total number of lobes can be 

calculated from this equation [58], unity being the smallest number. 

         (
 

 
) (4.2) 

It is also seen that the directivity of the antenna increases when the separation d 

is short (λ/4 and λ/8). The simulated maximum directivity of the UWB spline 

monopole versus the distance d is shown in Figure 4-10. It is seen that the directivity 

is maximum at a separation of around λ/12, reaching a value of 8.3. At 0 λ the 

ground plane is shorting the antenna and no signal will be radiated from the antenna 

elements.  

 
Figure 4-10: Maximum directivity of the antenna system in term of antenna-

reflector separation. 

4.3.3. Fidelity Factor 

By using the method presented in Section 4.2.3, the impulse response of the 

antenna system was recorded for every 5° between φ=0° to φ=180° in the azimuth 

plane. Figure 4-11 shows the input impulse response versus the antenna system 

impulse responses for different values of d at φ= 90°. For d =λ, the second peak 

represents the reflected signal from the reflector. For d = λ/2, it is seen that the Full 

Width at Half Maximum (FWHM) was increased by 140 ps compared to the FWHM 
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input impulse response. This increase of width indicates that a signal reflection 

occurs but cannot be fully distinguished, due to the windowing function (hann 

windows), and the frequency range (3.1 to 7 GHz) limiting the discontinuity 

resolution [59]. By increasing the frequency span the resolution will be improved, 

but the antenna will be tested over a broader range of frequencies than designed for, 

corrupting the time-domain result. If a rectangular window is used, better accuracy 

can be achieved in the main pulse, but at the expense of accuracy in the impulse 

response side lobes [59]. Consequently the default windowing function (hann 

windows) was chosen for measurement. In order to quantify the impulse response 

distortion versus the distance d, the reference impulse response was cross-correlated 

against the different antenna impulse responses. Figure 4-12 shows the spatial 

fidelity factor and indicate the effect of the reflector on the pulse fidelity. It is 

interesting to note that the best time-domain performance is achieved when the 

reflector is located at a λ/4 from the received antenna. 

 
Figure 4-11: Input and antenna system impulse response in term of antenna-

reflector separation 

Figure 4-13 represents the measured antenna system impulse response 2D 

surface plots. For an antenna–reflector separation of λ and λ/2, the impulse response 



 

68 

is clearly distorted at every angle with a peak signal reflection occurring at φ= 90°. 

However for a separation of less than a λ/4, the impulse response is rather 

homogeneous through the azimuth plane.  

 

Figure 4-12: Impulse response fidelity factor for different antenna-reflector 
separation 

 

Figure 4-13: 2D surface graph representing the measured normalised impulse 
response in terms of angle versus time. 
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4.4. Conclusion 

In this chapter, the effect of a 100 × 100 mm planar reflector on the pulse 

performance of an UWB spline monopole was presented. The antenna was optimized 

for time-domain performance over a frequency range of 3.1GHz to 7 GHz (band 1 to 

band 7). The antenna time-domain performance was measured using the 

time-domain post processing capability of a VNA.  The free space measurements 

demonstrated that a system composed of a pair of identical UWB spline monopoles 

achieved an impulse response fidelity factor of 99.8% on average, for this frequency 

range.  These performances were compared with those of an antenna system with 

reflector. It was shown that when the reflector is close to an antenna (λ/4), the 

antenna directivity significantly increases while the time-domain performance of the 

antenna remains comparable with those of the antenna in free space. However for 

larger antenna–reflector separation (d > λ/2), the antenna’s performance, in both 

frequency- and time-domain, were impaired, due to formation of side lobes in the 

radiation pattern. In terms of application, the presence of a reflector can be 

advantageous due to the increased directivity, gain and pulse fidelity preservation. 

Concerning the time-domain capability of the VNA, this measurement technique 

is efficient at providing information of the device performance at specific locations. 

However this method is unable to provide information on the time-domain 

performance of a single antenna and it has been shown that the results depends on 

the type of windowing function used and the frequency span, raising the need to 

have a more accurate measurement procedure. 
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CHAPTER 5: NOVEL METHOD FOR 

ANTENNA TIME-DOMAIN 

OPTIMISATION  
 

his chapter describes the implementation of a new optimisation method to 

improve UWB antenna time-domain performance. Traditionally, UWB 

antennas were designed using Gaussian signals and Rayleigh pulses for antenna 

excitation [30] [60] [61] [39]. Their characteristics include a bell shaped energy 

distribution, very low level side lobes in the frequency-domain and fast energy 

damping in the time-domain. Using this method, several types of antennas were 

successfully designed [62] [63]. However, as the energy distribution of Gaussian like 

signals is not optimal for the UWB spectrum mask, this allows frequency 

discrimination during the optimisation. To compensate for this shortcoming, a series 

of modulated Gaussian pulse can be sequenced to cover the entire UWB mask [30] 

or by using a chirp signal [64]. However these approaches are not-suitable for 

antenna optimisation because they significantly extend the duration of the simulation 

time, which is proportional to duration of the excitation signal, and add complexity 

to the time-domain analysis of the models. However one solution to overcome the 

limitations is to use a SRRC pulse. 

In this chapter, antennas will be optimised for time-domain performance by 

interfacing a GA with CST Microwave Studio, and by using a Gaussian and SRRC 

pulses as excitation signals. The radiating element and ground plane geometries are 

outlined using Bézier spline curves and are optimised simultaneously using control 

points. A key aspect of this chapter is to demonstrate that using a SRRC pulse as an 

T 
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excitation signal during the optimisation process generates UWB antennas with 

superior time-domain performance. 

 

5.1. Monopole Antenna Construction and Modelling 

As seen in Section 3.2.3, it is clear that the SRRC signal has a more broadband 

energy profile compared to the Gaussian signal. Because of this essential 

characteristic, the SRRC signal can be used as an excitation signal to fully 

characterise and optimise the antennas for UWB time-domain performance.  

In order to solve the pulse performance limitation imposed by traditional 

canonical shapes, the antenna radiator and ground plane geometries were designed 

using Bézier splines [18]. These curves allow for the generation of a large number of 

configurations. Monopole type antennas were designed for ultra wideband and 

dispersionless performance. In order to validate the SRRC optimisation approach, a 

monopole (GM) was optimised using the default Gaussian signal from CST 

Microwave Studio, while monopole (SM) was optimised using a SRRC excitation 

signal. These two antennas are shown in Figure 5-1 and Figure 5-2 respectively. In 

order to obtain superior performance in time-domain, the microstrip fed monopoles 

were optimised using mirrored splines with independent control points for both the 

ground plane (4 points) and the radiator (4 points). The ground plane spline points 

have one degree of freedom (Z-axis) as well as P5 while the other radiator spline 

points have two degrees of freedom (X and Z-axis) as shown in Table 5-1. Antennas 

were designed and manufactured on a 40 × 40 × 0.7 mm FR4 double-sided laminate 

with a dielectric constant εr = 4.3 and loss tangent = 0.02. The antennas were initially 

performance-optimized when configured with the system circuitry in the simulation 

model; therefore without SMA connectors. 
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Figure 5-1: Gaussian Monopole GM geometry and coordinate system 

 

Figure 5-2: SRRC Monopole SM geometry and coordinate system 

5.2. Design Optimisation 

The shapes of monopole GM and SM antennas were optimised by CST 

Microwave Studio interfaced with the GA optimisation package from MATLAB. 

Compared with CST’s GA optimiser, MATLAB’s GA offers much improved setup 

options, such as the type of scaling, reproduction, mutation and crossover function to 
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name a few. The monopoles were optimised by assigning 11 parameters until the GA 

converges to a maximum performance goal. Table 5-1 indicates the different 

dimensional constraints, in millimetres, assigned to the optimiser. 

P1,2,3,4 (z) =  5 < z < 25 
P5 (z)       =  P4 < z < (P4 + 5) 
P6,7,8 (x)   =  0 < x < 20 
P6,7,8 (z)   = P5 < z < 40 
 

Table 5-1: Antennas geometry parameters (mm) 

For time-domain optimisation, farfield probes were used to capture the radiated 

signal at different locations around the antenna H-plane. Because of the geometrical 

symmetry of the antenna, field symmetry in CST was used while limiting the probe 

to θ = 90°, 90° ≤ φ ≤ 270° in 5° steps. During the optimisation, the antennas were 

assessed by using a weighted cost function using Equation (5.1) and Equation (5.2) 

          (    
 

 
     

   

 
), for X < α (5.1) 

          (        
   

 
), for X ≥ α  (5.2) 

Where X is the least magnitude value in the S11, α is the S11 match target, FF is the 

fidelity factor (field probes relative to the derivative of the excitation pulse) at each 

angle and  is the number of FF values. Equation (5.2) aims to prevent the optimizer 

to favour minimum S11 value at the expense of the FF value. Therefore, the range of 

the cost function lies between 0 and 1, zero the being the optimum value. Initially the 

GA had an initial population of 1650 individuals, which was then reduce to 165 for 

the remaining populations. The initial population number was chosen empirically to 

create a broad search landscape and thus to prevents the GA being stuck in local 

optima. The algorithm also uses an intermediate crossover, the roulette wheel 

selection, and stops after 30 population iterations (maximum antenna simulations ≤ 
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8085). Also, a script was implemented to skip simulations of non-realistic structures, 

occurring mainly during the earlier generation, and re-simulation of identical 

structures appearing as the algorithm converges to an optimum solution. This 

subroutine significantly reduces the theoretical maximum optimisation time of 89.8 

hours, while having minimum effect on the GA behaviour. Figure 5-3 represents the 

two objectives (X-Y axis) in terms of the number of iterations for the monopole GM. 

The first 1650 iterations (1st generation) indicate that the GA explored a broad search 

landscape. From 1650th iteration to final one, the GA progressively refines the 

different parameters towards the optimum values which are shown in darker colours. 

 
Figure 5-3: Monopole GM optimisation goal in terms of iteration number 

5.3. Frequency-domain Results 

5.3.1. Return Loss 

The simulated and measured S11 for monopole GM and monopole SM are illustrated 

in Figure 5-4. Both antennas have a good impedance matching for the 3.1-10.6 GHz 

band, exhibiting a 10 dB return loss for 3.06 - 12.21 GHz and 2.97 - 12.22 GHz 

respectively, with good agreement between measurement and simulation. 
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Figure 5-4: S11 for monopole GM and monopole SM 

5.3.2. Radiation Pattern 

The monopole radiation patterns were measured in the H-plane (X-Y plane) from 

3-11 GHz to evaluate the performance of the antenna, in terms of realised gain and 

radiation pattern stability. Figure 5-5 and Figure 5-6 represent the measured co-polar 

gain against the frequency and azimuth angle for the monopole GM and the 

monopole SM. It is seen that both antennas exhibit an omnidirectional radiation 

pattern. The gain values are good across 3.1-10.6 GHz with an averages of 0.75 dBi 

(std. dev. = 2.29) for monopole GM and 0.8 dBi (std. dev. = 2.23) for Monopole SM. 

The respective maximum gains are 4.53 dBi (θ, φ = 90°, 40°) at 8.27 GHz and 

4.51 dBi (θ, φ = 90°, 25°) at 8.93 GHz. 

 
Figure 5-5: Measured monopole GM radiation pattern in the θ=90° plane 
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Figure 5-6: Measured monopole SM radiation pattern in the θ=90° plane 

 

5.4. Time-domain Results 

The fidelity factor was used as a metric to quantify the time-domain performance 

of the antennas. In an antenna system, the radiated pulse and the received signal are 

functions of the source pulse, the antenna and its operating mode. In Section 3.4 it 

was shown that the transient response of an antenna in transmitting mode is 

proportional to the time derivative of the transient response of the same antenna in 

receiving mode. It also has been shown that UWB antennas, in general, radiate the 

time derivative of the input signal. Consequently the radiated pulse must be cross-

correlated with the 1st order time derivative of the input signal.  

5.4.1. Simulation Results 

In order to compare the performance of monopole GM and monopole SM, the 

antennas were fed using a modulated Gaussian signal and modulated SRRC UWB 

pulse (see Figure 3-14). Figure 5-7 represents the FF for the monopole antennas fed 

by the Gaussian and SRRC. The analysis of this graph indicates that the antennas fed 

with the SRRC pulse have lower FF values. Indeed because the SRRC signal is more 

broadband than modulated Gaussian signal, the radiated pulse is subject to more 
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frequency filtering effects from the antennas. Table 5-2 shows the antenna FF 

performance range when fed with a Gaussian and SRRC signal. It also shows that 

monopole GM outperforms monopole SM even though the latter antenna was 

optimised with an optimal UWB pulse. In order to explain this apparent 

contradiction each antenna was simulated with three narrow-band modulated SRRC 

excitation pulses (β = 0.5 and RS = 1.95×109, 2.5 GHz bandwidth at −10 dB) at 

different centre frequencies across the UWB band as shown in Figure 5-8 and 

Figure 5-9. Table 5-3 indicates that an antenna optimised with an SRRC pulse or 

with a signal having a constant energy level across the frequency range, achieved a 

better overall time-domain performance compared with an antenna optimised for 

Gaussian-like pulse. However monopole GM achieved better performance than 

monopole SM for the pulse centred at 6.85 GHz.  

 

Figure 5-7: Simulated Fidelity Factor for monopole antenna fed with modulated 
Gaussian and SRRC pulse. 
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  Gaussian pulse Square Root Raised Cosine pulse 

 Monopole GM Monopole SM Monopole GM Monopole SM 

Mean 0.97801 0.97395 0.93557 0.95598 

Min 0.95237 0.96084 0.83538 0.89323 

Max 0.98776 0.97888 0.95948 0.96498 

Table 5-2: Fidelity Factor values for antennas fed by Gaussian & SRRC pulses 

 
Figure 5-8: SRRC pulse: 2.5 GHz bandwidth, modulated at 6.85 GHz, with the 

peak value normalized to unity 

 

Figure 5-9: Spectrum Power Density for 2.5 GHz bandwidth SRRC pulse at 
various centre frequencies 
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  4.35 GHz  6.85 GHz  9.35 GHz 

Monopole GM 0.97563 0.99647 0.97329 

Monopole SM 0.98016 0.99270 0.99293 

Table 5-3: Fidelity Factor mean for narrow band SRRC pulses 

This result is due to the fact that monopole GM was optimised with a signal 

having its peak energy level at 6.85 GHz. Therefore the results show that the type of 

excitation pulse used for optimisation will affect how the optimiser will influence the 

antenna’s geometric features. These also show that monopole SM has a better 

time-domain performance than monopole GM where the Gaussian pulse energy level 

is inferior to the energy distribution of the SRRC pulse, leading to a better overall 

time-domain performance compared to Gaussian optimised antennas. 

5.4.2. Time-Domain Measurement Setup 

In order to validate the simulation results, the antennas time-domain 

performances were measured at the Tyndall Institute, Cork, Ireland. To generate the 

SRRC UWB pulse, a digital sampled waveform was exported to a Tektronix AWG 

7122C Arbitrary Waveform Generator (AWG). Due to its output voltage limitation, 

the AWG output signal was amplified with a Picosecond Pulse Labs wideband 

amplifier (Model 5865) and fed to the antenna under test. Also, in order to accurately 

measure the radiated pulse, the receiving antenna should not be dispersive. 

Consequently a directional tapered slot antenna was designed and its geometry is 

shown in Figure 5-10. Using the SRRC pulse (see Figure 3-14) as an incident signal 

instead of excitation signal, it was optimised for optimal time-domain performance 

on bore-sight in receiving mode. In this operating mode, the antenna has a simulated 

pulse fidelity factor of 98.6% at the bore-sight. This result indicates that the received 

signal at the antenna’s port is nearly identical to the replica of the incident signal. 
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Figure 5-10: Tapered slot antenna optimised for time-domain performance in 
receiving mode 

A distance of 20 cm was chosen between the transmitting and receiving antenna to 

maintain the farfield measurement while achieving an adequate signal to noise ratio 

(SNR) as from a distance of 50 cm, the SNR dropped to an unacceptable level, 

impairing the time-domain measurement. Figure 5-11, depicts the time-domain 

measurement setup. 

 

Figure 5-11: Time-domain measurement setup 
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5.4.3. Pulse Equalisation 

Because of the imperfect impulse response of the transmit network components, 

the AWG generated SRRC pulse fed at the AUT’s input port suffers from impaired 

frequency- and time-domain characteristics. If such a signal is fed to the transmit 

antenna, the measured pulse fidelity will not represent the full transient performance 

of the AUT.   

 

Figure 5-12: in(t) waveform to AWG and out(t) pulse 

Figure 5-12 illustrates the AWG input waveform in(t) with the pulse out(t) 

offered to the transmit antenna. To subdue the component losses, the input signal 

was compensated using Equation (5.3), where the Inverse Fast Fourier Transform 

(IFFT) and the Fast Fourier Transform (FFT) are used to manipulate the pulse in 

frequency- and time-domain. In Figure 5-13, the power spectrum density of the 

compensated signal out’(t), the  input signal in(t) and the initial output signal out(t) 

are shown.  

    ( )        [   (  ( ))      (   ( ))] (5.3) 
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Figure 5-13: Input, output and output equalized pulse Power Spectrum 

Compared to the original SRRC signal in(t), the compensated signal out’(t) 

energy distribution level share many characteristics in the UWB band, demonstrating 

that the transmit network impulse response was equalised. Hence, the out’(t) signal 

was fed at the transmitting antenna port allowing an accurate time-domain 

characterisation of the AUT. 

5.4.4. Antenna Impulse Response De-embedding 

In the last section, an equalisation method was presented, suppressing the 

transmit network impulse response from the measurement. However, in order to get 

an accurate measure of the radiated signal, the receive network impulse response, 

which includes the one from the receiving antenna, should also be removed.  

Using two identical antennas, in an antenna system configuration, and by using 

the method described by [65], it is possible to estimate the transient and frequency 

response of the AUT. Indeed, the UWB channel model can be decomposed in three 

different blocks, consisting of the transmitting antenna, the free space channel, and 

the receiving antenna. Each block can be described by a transfer function such as,  

 ⃗⃗   (     ) , HCH (ω) and  ⃗⃗   (     ), as shown on Figure 5-14. 



 

83 

 

Figure 5-14: UWB channel model 

Hence the UWB channel can be completely described in both frequency- and 

time-domain as shown in Equation (5.4) and Equation (5.5) [65]. 

 
     ( )

   ( )
  ⃗⃗   (     )     ( )    ⃗⃗   (     ) (5.4) 

     ( )  ℎ⃗   (     )  ℎ  ( )    ℎ⃗   (     )    ( ) (5.5) 

where ω is the angular frequency, and the symbol   is the convolution symbol. 

The free space channel transfer function can be defined using Equation (5.6), where 

c is the speed of light in free space, d is the antenna separation and λ is the 

wavelength. 

    ( )  
 

  
   (   

 

 
) (5.6) 

 Then, by measuring the vectorial S21 of two identical antennas with same 

orientation, it is possible to deduce the transfer function of the antenna in 

transmitting and receiving mode as shown in (5.7) and (5.8). 
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)   (5.8) 

By knowing the transfer function of the receiving antenna , the free space 

channel and the antenna system’s S21, the transfer function of the unknown 

transmitting antenna can be calculated has shown on Equation (5.9). 

�⃗� 𝑅𝐴𝐷(𝜃 𝜑 𝜔) 
𝑒 𝑅𝐴𝐷(𝜃 𝜑 𝑡) 

VS (ω) 
VS (t) 
 
 

VREC (ω) 
VREC (t) 

 

Antenna TX 
 

Free space channel Antenna RX 
 

�⃗⃗� 𝑅𝑋(𝜃 𝜑 𝜔) 

ℎ⃗ 𝑅𝑋(𝜃 𝜑 𝑡) 
 

𝐻𝐶𝐻(𝜔) 
ℎ𝐶𝐻(𝑡) 

 

�⃗⃗� 𝑇𝑋(𝜃 𝜑 𝜔) 

ℎ⃗ 𝑇𝑋(𝜃 𝜑 𝑡) 
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  ⃗⃗   (     )  
    (     ) 

   ( )    ⃗⃗   (     ) 
  (5.9) 

Hence the incident radiated pulse      (     ) at the receiving antenna can be 

deduced by using Equation (5.10) 

      (     )  ℎ⃗   ( )   ̅  [     (    (     ))] (5.10) 

where the symbol  ̅ stands for the deconvolution. Using this method, the 

measured radiated pulse from the transmitting antenna can be compared with the 

simulated radiated field captured from the virtual probe in the simulation model. It is 

seen that the measured radiated signal               (            ) is in good 

agreement with the simulated radiated signal                (            ) as 

seen in Figure 5-15. Figure 5-16 demonstrates that the signal  ⃗             (  

          )  energy distribution shares similarities, in the UWB frequency range, 

with the energy spectrum of the  ⃗              (            ) and the 1st order 

derivative of the reference signal out’(f), demonstrating that the transmitting antenna 

tends to radiate a signal that is approximately proportional to the reference signal 

derivative at  θ=90°, φ=0°. 

 

Figure 5-15: Simulated and measured radiated pulse 
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Figure 5-16: Received output signal out*(t), 1st derivative pulse out’(t), simulated 
radiated signal  ⃗              (            ), measured radiated signal 
 ⃗             (            ), normalised power spectrum density. 

5.4.5. Measured Time-domain Results 

During the measurement process, the AUT was rotated in 15° steps in the 

radiation plane. In order to obtain an accurate oscilloscope pulse reading, the 

measured signal was averaged over 64 samples, improving the stability of the 

recorded pulse. The post-processed pulses were cross-correlated against the 1st order 

derivative of the AWG output pulse out’(t), using the FF method, allowing a 

comparison with the simulated radiated results. Figure 5-17 shows the measured FF 

and simulated results with an equalised modulated SRRC excitation pulse. Good 

agreement between simulation and measurement is achieved. Furthermore the 

measured results confirm that antennas optimised with full UWB excitation signal 

have better performance in the full UWB range than antennas optimised with 

conventional optimisation techniques. 
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Figure 5-17: Measured and simulated Fidelity Factor for monopole GM and 

monopole SM with an equalized modulated SRRC excitation pulse 

5.5. Conclusion 

This chapter demonstrated that the time-domain performance of an antenna can 

be optimized according to the type of UWB pulse used. Two novel monopoles were 

designed using GA based optimisation techniques using Gaussian and SRRC pulses 

as excitation signals.  To deal with the complexity of the antenna geometry, a broad 

search landscape was initiated during the optimisation process while computation 

time saving methods were implemented. Excellent time-domain performances were 

achieved, with a FF ≥ 93.5% and better for the full 3.1 to 10.6 GHz range. 

Furthermore the optimized antennas achieved good matching and radiation patterns, 

throughout the full FCC UWB frequency range. Moreover, by assessing the 

time-domain performance of the antenna with pulses having a third of the FCC 

bandwidth, it has been demonstrated that SRRC optimised antennas achieved better 

time-domain performances than Gaussian optimised antennas.  
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CHAPTER 6: DIFFERENTIALLY-FED UWB 

ANTENNAS 
 

ll the antennas shown in the previous chapters are monopole-like antennas. 

While these are suitable for most applications, they need a balanced to 

unbalanced transformer (BALUN), when connected to the differential IC output. The 

introduction of the balun will likely cause losses and dispersion in both transmission 

and reception mode, impairing the accuracy and range of the overall system. Unlike 

monopole antennas, balanced antennas, such as dipoles or slot antenna can be 

differentially fed making their integration into the system more straightforward.  

This chapter will present several differentially fed antennas. In the first section 

the design of a differentially fed balanced dipole is introduced. This antenna was 

optimised using a SRRC excitation signal for minimum dispersion. Its spectral and 

time-domain performances are presented and compared with a dipole optimised with 

a modulated Gaussian like excitation signal. The second section will present the 

design of a novel differentially fed slot antenna presenting interesting characteristics 

compared to dipole like antennas. Finally the third and fourth sections focus on the 

miniaturisation and performance improvement of the antenna presented in the second 

section.  

A 
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6.1. Differentially Fed Balanced Dipole Antennas 

6.1.1. Geometry and Optimisation 

In this section the dipole antennas were optimised for wide-band performance 

and pulse fidelity, using a SRRC excitation signal for the SRRC dipole (SD) and a 

modulated Gaussian like excitation signal for the Gaussian dipole (GD) shown in 

Figure 6-1 and Figure 6-2 respectively. Antennas GD and SD, shown in Figure 6-3 

and Figure 6-4, are planar dipole-like with a balanced microstrip feed arrangement 

which requires a small ground plane. They consist of two identical dipole arms 

(defined by 4 spline points) fed with 50 Ω dual mitred microstrip lines and a 

mirrored splined ground plane (4 points). The spline points for the radiators have 

two degrees of freedom (X and Z-axis), while the spline points for the ground plane 

are restricted to one degree of freedom (Z-axis) in order to limit the complexity of 

the problem. 

Both antennas were fabricated on a 40 × 40 × 0.7 mm FR4 double-sided laminate 

with a dielectric constant εr = 4.3 and loss tangent = 0.02. The antennas were initially 

performance-optimized without SMA connectors but the simulation model included 

the connectors to allow a fair comparison between measurement and simulation.  

The antennas were optimised for best fidelity factor between the excitation signal 

derivative and the radiated signal. The optimisation process used was similar to that 

presented in Section 5.2.The antenna dimensional constraints, defined in millimetres, 

are shown in Table 6-1. 
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P1,2,3,4 (z) = 5 < z < 26 
P5 (x)       = 0 < x < 4 
P5 (z)       = P4 < z < 40 
P6,7,8 (x)   = 10 < x < 20 
P6,7,8 (z)   =P5 < z < 40 
G1            = 1 < x < 5 
G2            = 0 < z < 5 

Table 6-1: Dipole antennas dimensional constraints (mm) 

 

 
Figure 6-1: Modulated Gaussian and SRRC pulses 

 

 
Figure 6-2: Power spectrum density of Gaussian and SRRC pulses with the 

IEEE 802.15.4 spectrum mask for indoor use 
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Figure 6-3: Gaussian dipole GD geometry and coordinate system 

 
Figure 6-4: SRRC dipole SD geometry and coordinate system 

For time-domain optimisation, farfield electric field probes were located at 30 cm 

from the dipole and configured in 5° steps along φ = 90°, −90° ≤ θ ≤ 90° half plane. 

The multi-objective cost function used for the dipole antenna geometries 

optimisation was the same as in Section 5.2, excepted that Γ corresponds to the 

differential input reflection coefficient Sdd 
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6.1.2. Frequency-domain Results 

6.1.2.1. Return Loss 

The measured and simulated S11 are shown in Figure 6-5. It is seen that dipole 

GD and SD achieve a measured 8 dB bandwidth across 2.75 GHz - 10.6 GHz and 

2.9 - 13.8 GHz, respectively. Both antennas exhibit good matching across the UWB 

frequency range with good agreement between simulation and measurement.  

 
Figure 6-5: S11 for dipole GD and SD 

6.1.2.2. Radiation Pattern 

The dipole radiation patterns were measured in the H-plane (Z-Y plane) which 

covers the direction of main radiation. The frequency-domain measurements were 

made using a two port Rohde & Schwarz ZVA24 VNA, which required the use of 

Equation (2.14) [28] described in Section 2.1.5. By inputting the radiation pattern of 

the dipole with each port individually excited to Equation (2.14), the measured 

radiation pattern of the dipole operating in differential mode can be achieved, using a 

two port VNA. 

 As seen in Figure 6-6 and Figure 6-7, the dipoles show a good stability in their 

radiation pattern across the 3.1 - 10.6 GHz. The dipoles achieve an average co-polar 

realized gain of 0.27 dBi (std. dev. = 2.45) and 0.8 dBi (std. dev. = 2.47) 
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respectively. Regarding their maximum gain dipole GD achieved a gain of 6.4 dBi 

(θ, φ = 90°, 55°) at 8.88 GHz, while dipole SD had the maximum gain of 6.87 dBi 

(θ, φ = 90°, 60°) at 9.4 GHz. 

 
Figure 6-6: Measured dipole GD radiation pattern in the φ =90° plane 

 
Figure 6-7: Measured dipole SD radiation pattern in the φ =90° plane 

6.1.3. Time-domain Results 

The antenna under test was operating in transmitting mode and rotated through 

15° angle steps in the radiation plane. The time-domain measurement setup was 

similar to the one described in Section 5.4 with the exception that a UWB out of 

phase power divider [66], optimised for our needs, was connected between the UWB 

amplifier and the AUT as shown in Figure 6-8. The excitation signal, generated by 
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the AWG, was equalised in order to take account of the losses introduced by the 

transmit network, thereby feeding the antennas with a signal having a quasi-constant 

energy level across the UWB frequency range. 

 
Figure 6-8: Time-domain measurement setup for differentially fed antennas 

Finally the receive network impulse response, which includes the receiving 

antenna and the cables and connectors, was de-embedded from the received signal as 

shown in Section 5.4.4, allowing an efficient characterisation of the time-domain 

performance of the AUT 

The measured signals were averaged over 64 samples, increasing the 

repeatability of measurement and cross-correlated with the derivative of the input 

signal received at the port of the AUT. From these results, the measured fidelity 

factor was calculated for each recorded signal, allowing an accurate comparison with 

simulated results. Figure 6-9 and Figure 6-10 show the measured radiated pulse at 

boresight for dipole GD and SD, compared with the simulated radiated E-field 

recorded at the same orientation. It is seen that the radiated signals from the dipoles 

are in excellent agreement with the simulation. Figure 6-11 represents the normalised 

PSD of the measured radiated signals at boresight for the dipoles and the derivative 

of the signal fed to the antenna ports. It seen that the PSD of the signal radiated by 
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the dipole SD is in better agreement with the derivative of the excitation signal than 

the one from dipole GD. This translates to a better FF for dipole SD at boresight as 

shown in Figure 6-12. It is also seen in Figure 6-12 that the agreement between 

simulation and measurement is acceptable around the φ =90° plane except at θ, φ 

=90°, 195°. This disagreement is due to the proximity of the coaxial cable to the 

reference antenna, impairing the quality of the received signal. It is seen that from θ, 

φ =90°, 270° to θ, φ =90°, 90° the fidelity factor values are greater than the value 

from θ, φ =90°, 90° to θ, φ =90°, 270° due to the fact that the antenna was optimised 

for best time-domain performance in the first half plane. Nevertheless the fidelity 

factor values from θ, φ =90°, 90° to θ, φ =90°, 270° are of lesser importance because 

of the reduced rearwards gain.   

 
Figure 6-9: Dipole SD simulated and measured radiated signal at boresight 
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Figure 6-10: Dipole GD simulated and measured radiated signal at boresight 

 
Figure 6-11: Power spectrum density of excitation signal derivative versus the 

measured radiated signals at boresight for dipole GD and SD 

 
Figure 6-12: Measured and simulated Fidelity Factor for an antenna system for 

dipole GD and dipole SD with an equalized modulated SRRC excitation pulse 
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6.2. Differentially Fed Slot like Antennas 

The previous sections successfully show the design of planar dipole for direct 

integration. Naturally, balanced dipole like antennas can have their performance 

impaired depending on the geometrical (dimension) and electromagnetic constraints 

(matching, radiation pattern, polarisation, etc…).   

The slot antenna can be an alternative choice to dipole like antenna since its 

geometrical shape is complementary to the dipole antenna. For a dipole and slot 

antenna with identical shape, their radiation patterns will be similar, but the E-field 

and H-field of the slot will be interchanged from the ones of the dipoles. This means 

that a slot mounted vertically will radiate a horizontally polarised electric field, while 

a dipole mounted vertically will have its electric field vertically polarised [67]. 

This section will introduce the design of differentially fed slot like antennas 

using two optimization approaches for Real Time Location System (RTLS) 

applications requiring vertical polarization and a reasonably 

omnidirectional/bidirectional pattern. The geometries are created using canonical 

and Bézier spline shapes. Both were designed for pulse fidelity for the full UWB 

range while one was refined using genetic algorithm, trust region framework 

algorithm and SRRC pulse.  

6.2.1. Elliptical Slot Antenna 

6.2.1.1. Design Geometry 

The initial project was to design a balanced differentially fed antenna to be 

integrated to a 110 × 70 × 0.7 mm RTLS test board with a maximum antenna 

dimension of 40 × 70 × 0.7 mm. This antenna was required to have a 10 dB 

bandwidth across 3.1 GHz to 10.6 GHz while radiating a reasonably 
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omnidirectional/bidirectional pattern, with vertically polarised electric field. 

Empirical design and optimisation studies have shown that dipole like antennas were 

unable to comply with the requirements, due to the proximity of the circuitry and 

components which can be approximated as ground plane as shown on Figure 6-13. 

 
Figure 6-13: 3D model of an elliptical dipole integrated on 110 × 70 × 0.7 mm test 

board 

To reach those objectives an elliptical slot antenna was fabricated on a 70 mm × 

40 mm × 0.7 mm double copper clad FR4 PCB board as shown in Figure 6-14. The 

antenna geometry, optimized for time-domain performance using a conventional 

parameter sweep, consists of two mirrored elliptical slots connected with a 

rectangular microstrip-to-slot transition while being fed with 50 Ω dual mitred 

microstrip lines. Elliptical slots were chosen because of their non-dispersive 

properties [68]. The values, in millimetres, for the geometric parameters A, B and C 

are given in Table 6-2. Also virtual E-field probes were setup around the X-Y plane, 

providing spatial information about radiated electric fields. 
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Figure 6-14: Elliptical slot geometry and dimensions 

A = 60 
B= 4 
C= 4 

Table 6-2: Elliptical slot antenna parameters (mm) 

6.2.1.2. Frequency-domain Result 

Figure 6-15 represents the S11 in terms of different values of parameters A, B and 

C. It is seen that the parameter A mostly determines the lowest 10 dB frequency 

point on the S11 curve, reducing the lowest 10 dB frequency point for high values of 

A and vice-versa. Parameter B influences the magnitude of the S11, the lowest 10 dB 

frequency point with its optimal value being 4 mm. Parameter C impacts only the S11 

overall magnitude. For high values of C the antenna matching improves from 

2.6 GHz to 7 GHz and degrades  in the higher frequency band, while from low 

values of C (up to 2 mm), the impedance is improved in the higher band and 

decreases and the lower band. A value of 4 mm for parameter C was chosen as it 

provides a good trade off. Figure 6-16 shows the elliptical slot measured S11. As 

expected it is seen that the S11 is below −10 dB across the full UWB frequency 

range, with a −10 dB bandwidth starting a 2.98 GHz. 
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Figure 6-15: S11 for different parameter sweeps; A (left), B (Right), C (centre) 

 
Figure 6-16: Elliptical slot measured and simulated S11 

Figure 6-17 shows clearly a bidirectional radiation pattern with its orientation 

approximately normal to the substrate plane up to 6 GHz. From 6 GHz to 9 GHz the 

radiation pattern becomes more omnidirectional with a peak value located at θ, φ = 

90°, 115° for 8.88 GHz. The maximum gain is equal to 7 dBi while the average 
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azimuthal gain from 3 GHz to 11 GHz is equal to −1.94 dBi. The simulated value for 

the average (total) radiation efficiency over the UWB band was ≈66%.  

 
Figure 6-17: Measured elliptical radiation pattern in the φ =90° plane 

6.2.1.3. Time-domain Results 

The configuration setup used to characterise this antenna was identical to the one 

described in Section 6.1.3 and a SRRC signal was used to excite the antenna. 

Figure 6-18 represents the measured fidelity factor in the φ =90° plane, taking as 

reference signal the input signal at the antenna port and also the first derivative of 

this signal. It is seen that reasonable agreement is achieved. In the azimuth plane, the 

measured FF mean is equal to 89% with a minimum and maximum of 70.5% and 

96.6%. The mean of the FF for the input derivative is equal to 84% with a minimum 

and maximum of 71% and 93.3% respectively. By analysing Figure 6-18 and 

Figure 6-17, it is seen that the elliptical slot tends to radiate a signal similar to the 

antenna excitation signal, especially in the direction of the two directional beams.  

6.2.2. Optimised Open Slot Antenna 

6.2.2.1. Design geometry 

From the design of the elliptical slot antenna, another slot like antenna was 

designed and optimised using Bézier spline curves and a modulated SRRC (centred 

at 6.85 GHz and tailored to uniformly fit the full UWB mask) was used as excitation 
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pulse. The size was reduced by 36% and was fabricated on 45 mm × 40 mm × 0.7 

mm double side FR4 laminate, as shown on Figure 6-19.  

 

 
Figure 6-18: Measured fidelity factor in the φ =90° plane 

 
Figure 6-19: Optimised open slot antenna geometry and dimensions 

The geometry consists of two mirrored 5 point spline shaped slots. Except for P1 

and P5, each point had two degrees of freedom (X-Z plane). P1 and P5 have only 

degree of freedom because they both are in the symmetry axes.  The geometry of the 

antenna was optimized with the MATLAB genetic algorithm for global optimization, 
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using the same configuration setup defined in Chapter 5, and refined through a Trust 

Region Framework (TRF) algorithm from the CST Microwave Studio package. The 

latter algorithm is very efficient for narrow search landscapes or pre-optimised 

problems and will optimise the parameters option towards their global optimal value, 

if the GA solution is not optimal. The multi-objective goal consists of two weighted 

cost functions taking account of the least matched magnitude in the S11 and the FF 

average in the plane of interest as indicated in Equations (5.1) and (5.2) in 

Section 5.2. The search landscape, show on Figure 6-20, indicates that a broad 

random search was done on the initial population, consisting of 750 individuals, 

reducing the probability of the GA to be stuck in local optima.  

 
Figure 6-20: Genetic Algorithm optimisation search landscape for the optimised 

open slot antenna 

6.2.2.2. Frequency-domain Result 

From Figure 6-21, it is seen that the antenna exhibits a good impedance matching 

across the UWB frequency range, achieving a 10 dB bandwidth of 7.68 GHz starting 

from 2.52 GHz up to 10.2 GHz. The differential S11 is above −10 dB from 10.2 GHz 

due to the slight mismatch induced by the SMA connectors required for 

measurement purposes. 
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The differential mode radiation pattern was measured using the procedure 

described in Section 2.1.5 .The antenna shows a bidirectional radiation pattern with 

the two main lobes quasi-perpendicular to the substrate as seen in Figure 6-22. The 

antenna achieved an average gain of −2.83 dBi in Y-Z plane with a maximum gain 

of 5.26 dBi at θ, φ=90°, 260° at a frequency of 6.87 GHz. From 8 to 9 GHz the 

radiation pattern becomes omnidirectional, with an average gain of 0.39 dBi and a 

maximum and minimum gain of 4.56 dBi and −6.1 dBi respectively.  

 
Figure 6-21: Optimised slot like antenna measured and simulated differential S11  

 
Figure 6-22: Measured optimised slot like antenna radiation pattern in the φ =90° 

plane 
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6.2.2.3. Time-domain Results 

At the time of this study, no AWG was available to generate the SRRC signal, 

thus only simulated results are presented in this section. 

Virtual farfield E-field probes were setup around the antenna on the Y-Z plane at 

10° steps and at a distance of 300 mm while the antenna was excited using a 

modulated SRRC signal with a bandwidth of 7.5 GHz centred at 6.85 GHz. The 

fidelity factor was calculated by cross-correlating the captured electric field and the 

excitation signal or the first derivative of the latter. The antenna achieved an average 

FF of 0.91 with a minimum and maximum of 87.5 % and 96.3% respectively.  

 
Figure 6-23: Optimised open slot fidelity factor 

From the analysis of Figure 6-23, it is seen that the antenna has an 

omnidirectional  FF and radiates excellent replicas of the excitation signal around θ, 

φ=90°, 90° and θ, φ=90°, 270°, which corresponds to the direction of the main 

beams seen in the radiation pattern plot (Figure 6-22). From a RF systems point of 

view, and assuming the receiving antenna is not dispersive, the cross analysis of 

Figure 6-22 and Figure 6-23 is important because it indicates that at the receiving 
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end the system should expect a signal similar to the signal fed to the open slot 

antenna (transmitting antenna), since most of the power is radiated around θ, φ=90°, 

90° and θ, φ=90°, 270°. 

6.3. Conclusion 

This section described the time-domain performance optimisation of 

differentially-fed dipole and slot-like antennas for direct connection to the chip 

output.  Antennas were fed with out-of-phase signals at their ports and exhibit good 

matching when operating in differential mode. Furthermore the differential gain of 

these antennas was characterised using a method based on the superposition 

principle and by measuring the gain when the antennas were excited at one port only. 

Measurement results show a stable gain throughout the full UWB frequency range 

whilst displaying excellent time-domain performances from θ, φ =90°, 270° to 

θ, φ=90°, 90°. 

Unlike the dipole antennas, differentially fed slot-like antennas are shown to be a 

good alternative when vertical polarisation in constrained geometries is required with 

good frequency-domain performance. These antennas achieve a quasi-full UWB 

bandwidth (7.5 GHz), while being in proximity to the circuitry and components of a 

110 × 70 × 0.7mm test board. Also it has been shown that in the direction of their 

main beams, these slot-like antennas radiate a signal that resembles the replica of the 

excitation signal, which is   important for RF system designers. 

Finally it was shown that the dipole and slot-like antennas optimised with SRRC 

as excitation signal outperform antennas optimised with excitation signal with non-

constant energy levels, proving that the optimisation technique presented in 

Chapter 5 is efficient regardless of the type of antennas.  
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CHAPTER 7: CONCLUSION 
 

 number of new and existing technologies were described, adapted and 

enhanced in this thesis. Time-domain and spectral characterisation was 

carried out on several types of signals and it was shown that signals with optimal fit 

to the UWB spectrum mask can be generated. The frequency- and time-domain 

performances of monopole antennas in close proximity to metallic surfaces were 

evaluated. A novel antenna optimisation method based on Bézier spline curves, 

genetic algorithms and SRRC signal was developed for improved antenna transient 

performance. An improved method of time-domain measurements was also 

implemented allowing a comparison of measurement and simulation results. Finally 

differentially fed dipole and slot antennas were designed for direct integration onto 

PCBs with integrated circuit UWB technology and optimised for best time-domain 

performance. 

A study of UWB signals was carried out as the starting point of this 

investigation. It was shown that the temporal signal shape has a significant effect on 

the spectrum making it ultimately non-compliant to standard regulation. Also it was 

shown that the transmission and reception of UWB signals differ from the radiation 

and reception of narrowband signals due to the time derivative occurring between the 

impulse response of the antenna operating in transmitting and receiving mode. From 

this analysis it was demonstrated that the radiated signal is not only dependent on the 

observation point but also on the impulse response of the transmitting antenna. 

The effect of a planar conductor in proximity to a UWB monopole was studied. 

The spline based monopole was optimised for bandwidth and time-domain 

A 
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performance from band 1 to band 7 (in UWB MB-OFDM spectrum allocation), 

resulting in a measured antenna system fidelity factor of 99.8%. It was shown that an 

antenna-reflector separation between a wavelength and half of a wavelength 

significantly impaired the antenna time-domain and spectral performance due to 

formation of side lobes in the radiation pattern. At the contrary, for an antenna-

reflector separation of a quarter wavelength, the antenna becomes significantly more 

directive, while its time-domain performance, in the main beam direction, remains 

comparable to the transient performance in free space. It was also shown that the 

time-domain option capability of VNAs is inefficient in providing direct 

time-domain characterisation of the antenna under test, due to the dependency on the 

type windowing function and frequency span used in the measurements.  

The integration of UWB antennas for commercial asset tracking tag applications 

was demonstrated. In this case, the antenna needed to achieve a −6 dB bandwidth on 

channel 4 and channel 7, and a total radiation efficiency of greater than 50%, while 

being in close proximity to IC components, dielectric and conductive materials. In 

order to reduce the complexity of the problem the 3D model was simplified dividing 

the computational size by 3. An evolutionary global optimisation was used to 

optimise the geometry and antenna performance. The optimised antenna impulse 

response was characterised using SRRC signals with different bandwidths. It 

demonstrates that the ability of an antenna to transmit distortionless pulses is also 

dependent on the excitation signal bandwidth. 

Two novel monopole antennas were designed to radiate distortion less signals. 

They were designed using the combination of a genetic algorithm based techniques 

and modulated Gaussian or SRRC excitation signals. An initial broad search 

landscape was used while computation time saving techniques were implemented. 
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Both antennas have shown excellent spectral and time-domain performance with 

FF ≥ 93.5% for a signal having a full UWB bandwidth (7.5 GHz). Also, the study 

has shown that a monopole antenna optimised with a excitation signal having a 

constant energy level will have significantly better overall time-domain performance 

than antennas optimised with Gaussian like excitation signals, proving that use of 

SRRC signals can enhance the time characterisation of antennas. Time-domain 

measurements were carried out, using a pulse equalisation and reference antenna 

de-embedding allowing a direct comparison between simulated and measured 

results. 

Novel differentially fed balanced dipole and slot like antennas were designed for 

direct integration to the chip output. The differential mode impedance matching and 

radiation pattern of these antennas were characterised using the superposition 

principle and a two port VNA. Both types of antennas exhibit a stable gain in the 

direction of their main beams across the UWB frequency range. The SRRC 

optimised dipole shows excellent time-domain performance with a measured average 

FF of 93.2 % from θ, φ =90°, 270° to θ, φ =90°, 90°. 

In the case of conductive surface proximity and polarisation issues, differentially 

fed slot like antennas appear to be a good alternative to dipole antennas. In that 

respect two novel slot antennas were designed and optimised using SRRC 

optimisation techniques and both exhibit a −10 dB bandwidth across the UWB 

frequency range. It was also demonstrated that the best FF is achieved in the 

direction of their main beam, indicating that these slot antennas radiated a replica of 

the excitation signal.  
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CHAPTER 8: FUTURE WORK 
 

uring the development of this thesis, several research topics and potential 

improvements were identified.  

Increased demand for localisation systems with improved accuracy and range is 

creating the need for reconfigurable antennas for time-domain performance. 

Reconfigurable S11 and radiation patterns enable selective antenna filtering of 

unwanted frequencies and bands, direction changing of the main beam or improved 

impulse response in particular directions [69] [70]. Possible reconfigurable 

approaches could include combining several antennas having different characteristics 

into a single antenna. Each active part of the antenna could be control by using PIN 

diodes, phase shifters or Micro-Electromechanical system (MEMS) [71] [72]. 

Another solution would be to use antennas with multiple tuneable elements such as a 

UWB array or reflect array antenna. The latter antenna type has the advantage of 

having a high directivity and could be used to provide improved point to point 

connection by steering the main beam in the direction of the received signal, 

improving the range, accuracy and battery life of the system. 

Possible future research efforts should also focus on the study of circularly 

polarised antennas optimised for time-domain performance, in contrast to the 

linearly polarised antennas designed in this thesis. It was shown in Chapter 6, that 

the radiated and received signal polarisation is an important criterion for radio 

systems. However RTLS devices such as UWB RFID tags are often oriented in a 

random manner, which can degrade the system performance due to polarisation 

mismatch loss. This problem can be solved by using time-domain optimised UWB 
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circularly polarised antennas. Although UWB circularly-polarised antennas have 

been reported [73] [74] [75], there is significant variation in the axial-ratio across the 

wide bandwidth and very little has been reported on the impulse response. A 

circularly-polarised antenna with good axial-ratio and impulse response enable UWB 

RTLS systems to achieve a high level of accuracy independent of the radiated-

received signal polarisation. Combining these two characteristics is a very 

challenging topic and is highly relevant from an industrial and academic point of 

view. Time-domain optimised circularly-polarised antennas could initially be applied 

in the anchor devices of RTLS systems, whereas the antenna integrated in tag could 

be linearly polarised. Using this configuration the system accuracy would be more 

independent of tag orientation. 

Further investigation on the miniaturisation and resilience to proximity de-tuning 

for UWB antennas should be carried out. In Chapter 6, it was shown that by using a 

Bézier spline, good time-domain performance can be realised even for very small 

antennas. By designing antennas to operate in the ECC UWB 6 GHz to 9 GHz band 

and because of the smaller bandwidth used, antennas operating in this frequency 

range will be significantly smaller, with antenna surface area less than 1 cm2.   This 

will allow the antenna to be applied in systems such as compact UWB RFID tags or 

body-worn RTLS systems. However for such small antenna the ground plane size 

becomes critical and a study on ground plane miniaturisation must be undertaken. 

These studies are of the outmost importance since miniaturisation is an extremely 

important topic for the industry and will eventually lead to patents and 

commercialisation of antenna solutions. 

Chapter 4 has shown that antennas are subject to detuning when in close 

proximity to conductors or dielectrics. Also previous work [76] [77] shows that 
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when a free space optimised antenna is placed near body tissue, its S11, radiation 

efficiency and impulse response are degraded, impairing the radiated or received 

signals and therefore degrading the system accuracy. Therefore, a study on the 

improvement of antenna resilience to de-tuning due to body proximity will be of 

great benefit, especially for time-domain optimised UWB body-worn devices.  

UWB antennas array have demonstrated a great potential in the field of imaging 

[78]. Since UWB imaging systems and radar are pulse based systems, an 

investigation on the performance of through-wall and body imaging using time-

domain optimised UWB array antennas fed with SRRC signal should be made.  This 

investigation involves the design of a time-domain optimised antenna array where 

the coupling between each element must be considered and optimised in order to 

maximise the directivity of the radiation pattern. A study of the geometry of each of 

the antenna elements and the feeding structure will have to be done to characterise 

their effects on the antenna impulse response.  

For array elements, is critical and will have to be optimised to reduce the 

mismatch loss and to improve the impulse response of the array. UWB array 

antennas could be optimised for farfield imaging applications, such as through-wall 

imaging or ground penetrating radar, or for near field imaging application [79] such 

as body imaging. For the latter application, the study of the antenna in a coupling 

medium is important since it acts as a transitional layer between the antenna and the 

skin of the body. Finally, an investigation could be carried out on the imaging 

system performance improvement when using a UWB SRRC waveform compared to 

other signals. 

The optimisation technique reported in this thesis is a key enabling method for 

antenna operating in the FCC UWB. Electronic manufacturers are more and more 
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interested in the millimetre wave range especially above 60 GHz. At this frequency 

the antenna size becomes very small, and substrates exhibit increases losses, making 

the design tolerance more critical. An investigation could be undertaken to determine 

if the optimisation process described in this thesis, is relevant for UWB millimetre 

wave antenna. Due to the specific constraints of millimetre wave antenna, a new 

optimisation technique could be derived to enable the design of high performance 

UWB millimetre antenna that would have been impossible to achieve using 

traditional optimisation technique. Furthermore by using a SRRC excitation signal, it 

would allow the creation of antennas with best-in-class time-domain performance.  
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