356 research outputs found

    Code Clone Detection Using Wavelets

    Get PDF
    For different reasons, developers may produce code that is cloned. It has a negative impact on code quality and code clones are one of the most frequent problems that may appear in a software project. Code clones have an influence on the difficulty of maintaining code, which results in loss of time and money. In this thesis we will propose solution for code clone detection by using wavelet analysis. Wavelet analysis has been found to be extremely useful for clone detection in image processing and financial market analysis. Wavelets have the benefit of allowing comparisons than span different scales and strength. It also benefits a lot from parallelisation, which has become more affordable thanks to GPU computing and cloud computing advances. Thus, it makes sense to evaluate wavelet analysis for solving problems in software engineering as well. The code clone detection algorithm made in this thesis will be language independent and its usefulness will be evaluated in finding different type of clones and compared against existing solutions.Erinevatel põhjustel võivad arendajad teha koodi, mis on kloon olemasolevast lahendusest. Sellel on negatiivne mõju koodi kvaliteedile mistõttu on sellest saanud üks levinumatest probleemidest, mis leidub tarkvaraprojektis. Koodikloonid mõjutavad koodi hallatavust, mis põhjustab omakorda kaotuse nii ajas kui ka rahas. Selle töö raames pakume välja lahenduse leidmaks koodikloone kasutades lainik analüüsi. Lainik analüüs on kasutusel ja vägagi kasulik kloonide leidmisel pilditöötluses ja finantsturgude analüüsis. Lisaks saab lainik analüüsis kasutada võrdlusi, mis muutuvad erinevatel skaaladel ja tugevustel ning ära kasutada paralleliseerimist, mis on saanud kättesaadavamaks tänu GPU ja pilvearvutuste arengule. Seetõttu on loogiline lainik analsüüsi hinnata ka tarkvaraarenduses. Töö raames loodav koodikloonide leidmise algoritm on keelest sõltumatu ning selle väljundi kasulikkust hinnatakse erinevate kloonide leidmisel ja võrreldakse olemasolevate lahendustega

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    The search for spinning black hole binaries in mock LISA data using a genetic algorithm

    Full text link
    Coalescing massive Black Hole binaries are the strongest and probably the most important gravitational wave sources in the LISA band. The spin and orbital precessions bring complexity in the waveform and make the likelihood surface richer in structure as compared to the non-spinning case. We introduce an extended multimodal genetic algorithm which utilizes the properties of the signal and the detector response function to analyze the data from the third round of mock LISA data challenge (MLDC 3.2). The performance of this method is comparable, if not better, to already existing algorithms. We have found all five sources present in MLDC 3.2 and recovered the coalescence time, chirp mass, mass ratio and sky location with reasonable accuracy. As for the orbital angular momentum and two spins of the Black Holes, we have found a large number of widely separated modes in the parameter space with similar maximum likelihood values.Comment: 25 pages, 9 figure

    Mammalian gene expression variability is explained by underlying cell state.

    Get PDF
    Gene expression variability in mammalian systems plays an important role in physiological and pathophysiological conditions. This variability can come from differential regulation related to cell state (extrinsic) and allele-specific transcriptional bursting (intrinsic). Yet, the relative contribution of these two distinct sources is unknown. Here, we exploit the qualitative difference in the patterns of covariance between these two sources to quantify their relative contributions to expression variance in mammalian cells. Using multiplexed error robust RNA fluorescent in situ hybridization (MERFISH), we measured the multivariate gene expression distribution of 150 genes related to Ca2+ signaling coupled with the dynamic Ca2+ response of live cells to ATP. We show that after controlling for cellular phenotypic states such as size, cell cycle stage, and Ca2+ response to ATP, the remaining variability is effectively at the Poisson limit for most genes. These findings demonstrate that the majority of expression variability results from cell state differences and that the contribution of transcriptional bursting is relatively minimal

    Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes

    Get PDF
    Studying the insect visual system provides important data on the basic neural mechanisms underlying visual processing. As in vertebrates, the first step in visual processing in insects is through a series of retinotopic neurons. Recent studies on flies have found that these converge onto assemblies of columnar neurons in the lobula, the axons of which segregate to project to discrete optic glomeruli in the lateral protocerebrum. This arrangement is much like the fly's olfactory system, in which afferents target uniquely identifiable olfactory glomeruli. Here, whole-cell patch recordings show that even though visual primitives are unreliably encoded by single lobula output neurons because of high synaptic noise, they are reliably encoded by the ensemble of outputs. At a glomerulus, local interneurons reliably code visual primitives, as do projection neurons conveying information centrally from the glomerulus. These observations demonstrate that in Drosophila, as in other dipterans, optic glomeruli are involved in further reconstructing the fly's visual world. Optic glomeruli and antennal lobe glomeruli share the same ancestral anatomical and functional ground pattern, enabling reliable responses to be extracted from converging sensory inputs

    JPEG2000-Based Data Hiding to Synchronously Unify Disparate Facial Data for Scalable 3D Visualization

    No full text
    International audienceWe present a scalable encoding strategy for the 3D facial data in various bandwidth scenarios. The scalability, needed to cater diverse clients, is achieved through the multiresolution characteristic of JPEG2000. The disparate 3D facial data is synchronously unified by the application of data hiding wherein the 2.5D facial model is embedded in the corresponding 2D texture in the discrete wavelet transform (DWT) domain. The unified file conforms to the JPEG2000 standard and thus no novel format is introduced. The method is effective and has the potential to be applied in videosurveillance and videoconference applications

    Texture Analysis Using DWT for Grape Plant Species Classification

    Get PDF
    ABSTRACT By observing leaf, we can easily identify plant but it is difficult to identify its species. In this project we developed an algorithm that gives user the ability to identify plant species based on photographs of the leaf. The core theme of this application is an algorithm that acquires statistical features of the leaves, and then classifies the species based on a novel combination of the computed texture feature analysis and wavelet analysis. While implementing this algorithm we have considered the Grape plant and its four species viz. Clone, Sonaka, Thomson and Manik. The algorithm is first trained against several samples of known plant species and then used to classify unknown query species. By using this algorithm we have achieved 93.33% efficiency

    Why Chromatic Imaging Matters

    Full text link
    During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u-v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.Comment: Accepted for publication in Experimental Astronomy as part of the topical collection: Future of Optical-infrared Interferometry in Europ
    corecore