536 research outputs found

    Robust Digital-Twin Localization via An RGBD-based Transformer Network and A Comprehensive Evaluation on a Mobile Dataset

    Full text link
    The potential of digital-twin technology, involving the creation of precise digital replicas of physical objects, to reshape AR experiences in 3D object tracking and localization scenarios is significant. However, enabling robust 3D object tracking in dynamic mobile AR environments remains a formidable challenge. These scenarios often require a more robust pose estimator capable of handling the inherent sensor-level measurement noise. In this paper, recognizing the challenges of comprehensive solutions in existing literature, we propose a transformer-based 6DoF pose estimator designed to achieve state-of-the-art accuracy under real-world noisy data. To systematically validate the new solution's performance against the prior art, we also introduce a novel RGBD dataset called Digital Twin Tracking Dataset v2 (DTTD2), which is focused on digital-twin object tracking scenarios. Expanded from an existing DTTD v1 (DTTD1), the new dataset adds digital-twin data captured using a cutting-edge mobile RGBD sensor suite on Apple iPhone 14 Pro, expanding the applicability of our approach to iPhone sensor data. Through extensive experimentation and in-depth analysis, we illustrate the effectiveness of our methods under significant depth data errors, surpassing the performance of existing baselines. Code and dataset are made publicly available at: https://github.com/augcog/DTTD

    Camera Marker Networks for Pose Estimation and Scene Understanding in Construction Automation and Robotics.

    Full text link
    The construction industry faces challenges that include high workplace injuries and fatalities, stagnant productivity, and skill shortage. Automation and Robotics in Construction (ARC) has been proposed in the literature as a potential solution that makes machinery easier to collaborate with, facilitates better decision-making, or enables autonomous behavior. However, there are two primary technical challenges in ARC: 1) unstructured and featureless environments; and 2) differences between the as-designed and the as-built. It is therefore impossible to directly replicate conventional automation methods adopted in industries such as manufacturing on construction sites. In particular, two fundamental problems, pose estimation and scene understanding, must be addressed to realize the full potential of ARC. This dissertation proposes a pose estimation and scene understanding framework that addresses the identified research gaps by exploiting cameras, markers, and planar structures to mitigate the identified technical challenges. A fast plane extraction algorithm is developed for efficient modeling and understanding of built environments. A marker registration algorithm is designed for robust, accurate, cost-efficient, and rapidly reconfigurable pose estimation in unstructured and featureless environments. Camera marker networks are then established for unified and systematic design, estimation, and uncertainty analysis in larger scale applications. The proposed algorithms' efficiency has been validated through comprehensive experiments. Specifically, the speed, accuracy and robustness of the fast plane extraction and the marker registration have been demonstrated to be superior to existing state-of-the-art algorithms. These algorithms have also been implemented in two groups of ARC applications to demonstrate the proposed framework's effectiveness, wherein the applications themselves have significant social and economic value. The first group is related to in-situ robotic machinery, including an autonomous manipulator for assembling digital architecture designs on construction sites to help improve productivity and quality; and an intelligent guidance and monitoring system for articulated machinery such as excavators to help improve safety. The second group emphasizes human-machine interaction to make ARC more effective, including a mobile Building Information Modeling and way-finding platform with discrete location recognition to increase indoor facility management efficiency; and a 3D scanning and modeling solution for rapid and cost-efficient dimension checking and concise as-built modeling.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113481/1/cforrest_1.pd

    Event-based neuromorphic stereo vision

    Full text link

    Navigating in Patient Space Using Camera Pose Estimation Relative to the External Anatomy

    Get PDF
    Ultrasound probe localization is essential for volumetric imaging with a 2D ultrasound probe, and for establishing a recorded anatomical context for ultrasound-guided surgery and for longitudinal studies. The existing techniques for probe localization, however, require external tracking devices, making them inconvenient for clinical use. In addition, the probe pose is typically measured with respect to a fixed coordinate system independent of the patient’s anatomy, making it difficult to correlate ultrasound studies across time. This dissertation concerns the development and evaluation of a novel self-contained ultrasound probe tracking system, which navigates the probe in patient space using camera pose estimation relative to the anatomical context. As the probe moves in patient space, a video camera on the probe is used to automatically identify natural skin features and subdermal cues, and match them with a pre-acquiring high-resolution 3D surface map that serves as an atlas of the anatomy. We have addressed the problem of distinguishing rotation from translation by including an inertial navigation system (INS) to accurately measure rotation. Experiments on both a phantom containing an image of human skin (palm) as well as actual human upper extremity (fingers, palm, and wrist) validate the effectiveness of our approach. We have also developed a real-time 3D interactive visualization system that superimposes the ultrasound data within the anatomical context of the exterior of the patient, to permit accurate anatomic localization of ultrasound data. The combination of the proposed tracking approach and the visualization system may have broad implications for ultrasound imaging, permitting the compilation of volumetric ultrasound data as the 2D probe is moved, as well as comparison of real-time ultrasound scans registered with previous scans from the same anatomical location. In a broader sense, tools that self-locate by viewing the patient’s exterior could have broad beneficial impact on clinical medicine

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    A parking assistant system

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 111-114).Parking a car can be very cumbersome and difficult in many circumstances, especially when the rear view of the car is blocked. This thesis designs a prototype for an efficient parking assistant system that aims to facilitate the parking process by providing the drivers with distance information of obstacles in the scene. A video camera mounted on the rear window of a car is used to supply a sequence of input images to the system which then generates a 3-D depth map of the environment. The algorithm proposed in this thesis to reconstruct 3-D distance information from an image sequence involves several steps. First, feature points are extracted in each image using a Curvature Scale Space (CSS) based corner detector. Corresponding feature points are then matched between consecutive frames and tracked through the entire sequence. Using the motion parameters of the vehicle obtained from measuring the angular moment of the steering wheel and the distance information provided by the wheel encoders attached to the rear wheels of the vehicle, the distance of objects in the scene can be reasonably estimated. The algorithm is tested on several sets of real image sequences captured inside a parking lot. Some experimental results are presented and analyzed in detail.by Duangmanee Putthividhya.M.Eng

    Towards High-Frequency Tracking and Fast Edge-Aware Optimization

    Full text link
    This dissertation advances the state of the art for AR/VR tracking systems by increasing the tracking frequency by orders of magnitude and proposes an efficient algorithm for the problem of edge-aware optimization. AR/VR is a natural way of interacting with computers, where the physical and digital worlds coexist. We are on the cusp of a radical change in how humans perform and interact with computing. Humans are sensitive to small misalignments between the real and the virtual world, and tracking at kilo-Hertz frequencies becomes essential. Current vision-based systems fall short, as their tracking frequency is implicitly limited by the frame-rate of the camera. This thesis presents a prototype system which can track at orders of magnitude higher than the state-of-the-art methods using multiple commodity cameras. The proposed system exploits characteristics of the camera traditionally considered as flaws, namely rolling shutter and radial distortion. The experimental evaluation shows the effectiveness of the method for various degrees of motion. Furthermore, edge-aware optimization is an indispensable tool in the computer vision arsenal for accurate filtering of depth-data and image-based rendering, which is increasingly being used for content creation and geometry processing for AR/VR. As applications increasingly demand higher resolution and speed, there exists a need to develop methods that scale accordingly. This dissertation proposes such an edge-aware optimization framework which is efficient, accurate, and algorithmically scales well, all of which are much desirable traits not found jointly in the state of the art. The experiments show the effectiveness of the framework in a multitude of computer vision tasks such as computational photography and stereo.Comment: PhD thesi

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Ultrasound-Augmented Laparoscopy

    Get PDF
    Laparoscopic surgery is perhaps the most common minimally invasive procedure for many diseases in the abdomen. Since the laparoscopic camera provides only the surface view of the internal organs, in many procedures, surgeons use laparoscopic ultrasound (LUS) to visualize deep-seated surgical targets. Conventionally, the 2D LUS image is visualized in a display spatially separate from that displays the laparoscopic video. Therefore, reasoning about the geometry of hidden targets requires mentally solving the spatial alignment, and resolving the modality differences, which is cognitively very challenging. Moreover, the mental representation of hidden targets in space acquired through such cognitive medication may be error prone, and cause incorrect actions to be performed. To remedy this, advanced visualization strategies are required where the US information is visualized in the context of the laparoscopic video. To this end, efficient computational methods are required to accurately align the US image coordinate system with that centred in the camera, and to render the registered image information in the context of the camera such that surgeons perceive the geometry of hidden targets accurately. In this thesis, such a visualization pipeline is described. A novel method to register US images with a camera centric coordinate system is detailed with an experimental investigation into its accuracy bounds. An improved method to blend US information with the surface view is also presented with an experimental investigation into the accuracy of perception of the target locations in space
    • …
    corecore